Home Home


ÊÈÍÅÒÈ×ÅÑÊÎÅ ÓÐÀÂÍÅÍÈÅ ÄËß ÄÈÍÀÌÈ×ÅÑÊÎÉ ÑÈÑÒÅÌÛ, ÂÇÀÈÌÎÄÅÉÑÒÂÓÞÙÅÉ Ñ ÔÎÍÎÍÍÛÌ ÏÎËÅÌ

Í. Í. Áîãîëþáîâ

Îáúåäèíåííûé èíñòèòóò ÿäåðíûõ èññëåäîâàíèé, Äóáíà

Í. Í. Áîãîëþáîâ (ìë.)

Ìàòåìàòè÷åñêèé èíñòèòóò èì. Â. À. Ñòåêëîâà ÀÍ ÑÑÑÐ, Ìîñêâà

In this review article that is a generalization of N. N. Bogolubov's paper [1], we formulate methods for studying the electron-phonon system and excluding the phonon operators from the kinetic equations.
In particular, for the electron interaction with the phonon field a kinetic equation is derived for the polaron which, within a reasonable approximation, results in the exact Boltzmann equation for the polaron.
Methods for calculating the «response» functions (impedance and admittance) are proposed on the basis of the introduced «approximating» Hamiltonian with linear interaction. The probability density for the particle distribution is calculated.

Îáîáùàåòñÿ ðàáîòà Í. Í. Áîãîëþáîâà [1] è ôîðìóëèðóþòñÿ ìåòîäû èçó÷åíèÿ ýëåêòðîííî-ôîíîííîé ñèñòåìû è èñêëþ÷åíèÿ èç ñîîòâåòñòâóþùèõ êèíåòè÷åñêèõ óðàâíåíèé ôîíîííûõ îïåðàòîðîâ.  ÷àñòíîñòè, äëÿ âçàèìîäåéñòâèÿ ýëåêòðîíà ñ ôîíîííûì ïîëåì ïîëó÷åíî êèíåòè÷åñêîå óðàâíåíèå äëÿ ïîëÿðîíà, ïðè ýòîì, åñëè îãðàíè÷èòüñÿ íàäëåæàùåé àïïðîêñèìàöèåé, èç íåãî ñëåäóåò, íàïðèìåð, òî÷íîå óðàâíåíèå Áîëüöìàíà äëÿ ïîëÿðîíà.
Ïðåäëàãàþòñÿ òàêæå ìåòîäû âû÷èñëåíèÿ ôóíêöèé îòêëèêà (èìïåäàíñà è àäìèòòàíñà), îñíîâàííûå íà ââåäåíèè àïïðîêñèìèðóþùåãî ãàìèëüòîíèàíà ñ ëèíåéíûì âçàèìîäåéñòâèåì. Ïðîâîäèòñÿ âû÷èñëåíèå ôóíêöèè ïëîòíîñòè âåðîÿòíîñòè ðàñïðåäåëåíèÿ ÷àñòèöû.

Full text in PDF (3.062.533)



Home Home