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Statistical methods are reviewed that have been used to extract the root-mean-squared
matrix element, M, of the nuclear parity-violating interaction between compound-nuclear
states from parity-violating asymmetries measured in experiments with polarized neutrons
[1,2,3,8,9]. The likelihood function is derived for M for the situation where the spins of the
p-wave compound-nuclear resonances are unknown. The likelihood functions used by dif-
ferent authors are compared. It is shown that the likelihood function in the approach of Ref.
[2,3] is inconsistent with Bayesian statistics.

AHanu3upyloTcs NPUIOXEHH BEPOITHOCTHO-CTATHCTHYECKHX METOMOB JUIS TIONYYEeHHUs
(43 3KCTIEPUMEHTANBLHBIX NAaHHBIX 18 HEHTPOHHBIX PE30HAHCOB) MAaTPUYHOTO 3yieMeHTa M,
HapyWaKILEro NpoCTPaHCTBEHHYI0 UYETHOCTh B3aUMOMCHCTBHS MEXZY KOMMNAayHI-COCTOS-
HHUSMHU B sape. BriBopuTcs BepaxeHue Ans yHKimMH npasnononobus or M, cripaseninboe
ans obiiero ciydas BHIGOPKHM W3 COBOKYMHOCTH p-BOJTHOBBIX PE30HAHCOB C HEU3BECTHBIMM
CTIMHaMH, BO30YX1aeMbIX 1IPH B3aHMOACHCTBHHM HEHTPOHOB ¢ YETHO-YETHBIMH SIpaMH. 310
BbIPAXEHHE M COOTBETCTBYIOLUME 3HAYEHUS ANt M CPaBHMBAIOTCH C pe3y/ibTaTaMM B I10IXO-
nax npyrux astopos [1,2,3,8,9], u nenaerca BLIBOA O TOM, YTO (pyHKUMS npaBgononobus B
nonxone [2,3] HecoBMecTHMA ¢ 6aleCOBCKON CTATHCTHKOM.
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1. INTRODUCTION

The TRIPLE Collaboration has published a number of articles reporting the
measurement of parity-violating (PV) asymmetries in compound-nuclear (CN)
resonances using polarized neutrons at the Los Alamos Neutron Scattering
Centre, Ref. [1]. Many non-zero asymmetries were measured in individual nuc-
lei. These data formed the basis of a statistical analysis. Values of the root-
mean-squared matrix element, M, of the PV interaction between s-1/2 and p-1/2
CN resonances were extracted from the measured asymmetries using likelihood
analysis. Bunakov has criticized the likelihood function introduced by the
TRIPLE Collaboration and used by several authors [1,8,9] to extract values of .
M in his articles «Fundamental Symmetry Breaking in Nuclear Reactions»,
Ref[2], and «Statistical Analysis of lmperfect Measurements of Stochastic
Variables», Ref. [3].

Bunakov and the TRIPLE Collaboration start from the same assumptions,
but reach inconsistent conclusions. Bunakov bases his arguments on Bayesian
statistics. The likelihood analysis employed by the TRIPLE Collaboration was
in fact a Bayesian analysis. The assumptions made concerning the statistical
model of the CN were the same. In order to clarify the nature of the dis-
agreement, we first give a careful derivation of the likelihood function intro-
duced by the TRIPLE Collaboration starting from the fundamental relation of
Bayesian statistics. We then show that the likelihood function proposed in
Refs.[2,3] is inconsistent with Bayesian statistics. We discuss the results ob-
tained for M by different authors [1,2,3,8,9].

2. ASSUMPTIONS
Bowman et al. [1] showed that, under the assumptions of the statistical
model of the CN, the reduced asymmetry, x (defined below), for a p-1/2

(J™=1/27) CN resonance in a spin-zero target nucleus has a Gaussian PDF.
Bowman et al. start from the perturbation-theory expression for the PV asym-
metry, Py of the CN resonance p [4]

= 1
py=2 Z Ev E P, M
Here the va are the matrix elements of the PV interaction between the p-1/2

CN state p and s-1/2 (JT=1/2%) state v, Eu, E, and 8, 8, are the energies

and neutron decay amplitudes of the resonances. The sum extends over all
s-1/2 resonances. According to the statistical model of the CN, the matrix
elements VVu and the decay amplitudes 8y and g, behave as statistically inde-
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pendent Gaussian random variables with mean zero*. Furthermore, the matrix
elements and decay amplitudes for different resonances are statistically in-
dependent. We assume that the relevant CN amplitudes satistfy the ergodic
hypothesis. We assume that the energies and the neutron decay widths Fu and
Fv (ru = |gp|2 and Fv = 1gviz) are known from experiment. Bunakov makes

the same assumptions. It then follows, using the assumption of statistical
independence, that the asymmetry, Py is the sum of independent Gaussian

random variables, and that pu itself has a Gaussian PDF with mean zero. The

variance of Py is given by:

4 T .
Epy=Elv,[H Y i r—“ =£(lv,, 1942 2)
v ST R Ty

where E(u) denotes the expectation value of the quantity u over an ensemble
of CN states. The reduced asymmetry,

p

- =K 3

=L (3)
u

has the same variance, M2, as the va’ Mz, defined in this way, is the mean-

squared matrix element of the PV interaction between s-1/2 and p-1/2 states,

2_ 2, _ 1 2
w=elv, h=o ¥ v % )
EVeAE,EueAE

where S and T are the numbers of s-1/2 and p-1/2 states contained in the
energy interval AE. We assume that AE is small compared to the width of any
structure in the strength functions of the p-1/2 and s-1/2 resonances. The PDF
of the reduced asymmetry for p-1/2 resonances is given by:

2
1 I x

P(x|M, 1/2)=———exp |-~ |. (5)

a2 P 1T g a2

*Although statistical independence was assumed, this condition is in general not fulfilled. The
statistical model of the CN assumes that the wave functions of CN resonances are superpositions of a
large number, N, of basis states and that the amplitude of no individual basis state dominates all others.
The correlations between the matrix elements of few-body operators that are unrelated to the Hamil-
tonian of the system and to each other are then of order 1/N. Experiments in *“Th have found
non-statistical correlations between PV asymmetries. Large amplitudes of individual doorway configu-

rations in the wave functions of p- and s-wave resonances have been invoked to explain these cor-
relations [5].
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The TRIPLE Collaboration used a likelihood analysis based on Eq.5 to
extract values of M from measured reduced PV asymmetries. The spin of
p-wave resonances can be 1/2 or 3/2, but only p-1/2 resonances can mix with
s-1/2 resonances to exhibit parity violation. For most nuclei, the spins of
p-wave resonances are not known, and in order to write down the likelihood
function of M it is necessary to take into account the fact that the spins are
unknown. In the present article we do this accounting within the framework
of Bayesian statistics.

3. BAYESIAN STATISTICS
AND LIKELIHOOD ANALYSIS

We will next give a brief discussion of the relationship between likelihood
analysis and Bayesian statistics. We follow the discussion given by Eadie et al.
[6]. We begin with the fundamental equation of Bayesian statistics:

PP, (1)

P (2) ’ ©)

P (tl2)=
where the normalization factor Pz(z) is the unconditional probability of ob-

taining an experimental outcome z;
P()=] PelnP (. 7

P(z|t) is the conditional PDF of observing an experimental result, z, given a
value of the parameter, t. The a priori PDF of ¢, PA(t), expresses the know-

ledge of t before the experiment to measure z was done. The a posteriori
PDF, PP(tlz), is the PDF of ¢ after the result from the experiment is included.

Equation 6 is identical to Bunakov’s Equation 154{2]. We identify the likeli-
hood function of ¢, L(t|z), with the a posteriori PDF, where the value of z, w,
actually obtained in an experiment is substituted into PP(t|z):

L(t|wy=Pt|w). (8)

Equations 6 and 8 define the a posteriori PDF, or the likelihood function.
The definition given in Eq.6 is general and applies for any sets of parameters
and experimentally measured quantities {ti} and {wl.}. The likelihood function

can be used to estimate values of the parameters from experimental data. The
maximum likelihood estimate (MLE) of a parameter ¢ is the value of ¢ that
maximizes L(t|w). Several methods of establishing confidence intervals for
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the MLE are discussed in Eadie et al. [6]. Bowman and Sharapov [7] have
discussed the reliability of the confidence intervals determined by the
-TRIPLE Collaboration using Monte Carlo methods (see section 4 below).

4. DERIVATION
OF THE LIKELIHOOD FUNCTIONS

First we derive likelihood function of M when the spins of the levels are
known. In this case, only the levels with spin 1/2 need be considered, since the
levels with spin 3/2 carry no information about M (see section 5 below). The
measured reduced PV asymmetry, y (as opposed to the reduced asymmetry, x,
defined in Eq.3, which does not include the experimental error), of a p-1/2 level
will have a variance larger than M 2, the variance of the reduced asymmetry,
due to the (Gaussian) experimental error, ¢, of y. The PDF of the measured
asymmetry is

2
PyIM, 172 ~—F 9
ol /)ﬁ;? [ (02+M2J ®

Substituting Eq.9 into Eq.6 yields the following for the likelihood function
for a single p-1/2 level:

LMy 1/2)=P, M, 1/2)=

1 1y
= —— X exp |~ — P,(M) (10)
N2n(o? + M%) [ 2 (02+M2)J A

(In Eq.10 and in most subsequent expressions for likelihood functions the
normalization factors are omitted for brevity). The reduced asymmetries of
different levels are statistically independent, and the same value of M applies
to all the levels in the energy interval AE. It follows that for a set of mea-
surements of reduced asymmetries of several p-1/2 resonances, {yi}, 1<i<gn,

the joint PDF of the y; is the product of the individual PDFs

1 y

Py} M, 1/2)= - . (11)
’ 11 m 2 @+ M)

The likelihood function is obtained by substituting Eq.11 into Eq.6:
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- 1 1 %
Ll y),1/9=P,0) [] ———exp-L =21 (1)
A ,-I:—[l Von(c? + M) [ 2 (0f+M2)]

Next we derive the likelihood function for M when the spins of the levels
are unknown. All s-wave resonances have spin 1/2. Since the PV interaction
commutes with the angular momentum operator, the matrix elements of the PV

interaction between p-3/2 (J ™ =3 /27) states and s-1/2 states are zero. There is
no PV asymmetry for p-3/2 states (we neglect the very small PV asymmetry due
to mixing of p-3/2 states with very weak d-3/2 states) whatever the value of M.

The PDF of the measured asymmetry is Gaussian with variance (f given by the
experimental error in the reduced asymmetry:

1y
5 exp[—2 0.2] (13)

Although we include the symbol M in the expression for the conditional PDF
of y for purely formal reasons, the PDF does not depend on M. As before, we
assume that a set of reduced asymmetries {yi}', 1 €£i<n has been measured.

PylM, 3/2) =
2no

We assume that the spins of the p-wave resonances, J[.: 1/2 or 3/2, are not

known. We take p and g as the probabilities that the spin of a resonance is
1/2 or 3/2. The conditional PDF for each of the y; given M is the sum of two

terms, the first associated with spin 1/2 and the second with spin 3/2:

1 y.2
P(yl.lM)= **—L‘——exp — 4
Von (2 + M) 2 (o7 + M)
1 y.2
+—L—exp|-— £ | |. (14)
V27t0i2 2 0,2

Since the yi\ére independent random variables, the joint PDF of the set of

measurements is the product of the individual PDFs:

" 1 y.2
Py =[] | —E—exp|-= "5 |+
1__11 Vano? + M) 2 (0] +M?)

: y? (15)
+T%f' exp|—— — ||
20 PI7y of

Combining Eq.15 and Eq.6 gives:
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n : 1 y?
Ll iy h=T1 {_"——*

!
EXP|—— T 5 T 5 +
(21| Van(a? + M) 2 (0 +M?)

_— L ip,mn. 16
+$:ﬁ.?exp > & } () (16)

This is the likelihood function used by the TRIPLE Collaboration.

5. COMPARISON WITH BUNAKOV’S APPROACH

In section 1V, «Statistical Approach to Compound-Resonance Measure-
ments», of his article, [2] Bunakov challenges the applicability of the above
form of the likelihood function stating, in his words: «We see that this expres-
sion (Eq.16 in the present article) is built in violation of both Bayes statistics
(since the 3/2 term with the g coefficient should be delta-shaped — see (159))
and the rule (159) of conditional probability theory (conditional probability of
n independent measurements differs from a product of n conditional probabi-
lities)».

We have given a derivation of the likelihood function, Eq.16, from the
Bayesian point of view. We disagree with assertions that Eq.16 is incorrect and
that the g-term is 8 shaped. In the derivation we have shown that the g-term is
a Gaussian with variance o7 and that the product form of the likelihood function
follows from the product form of P({y;} | M) (Eq.15). Why our likelihood func-

tion (Eq.16) is different from the expression of Refs. [2,3] (Eq.160 [3]) for the
a posteriori PDF, PP(M|x)? In deriving his expression Bunakov assumes that

the a priori PDF for M is different depending on whether one is considering a
p-1/2 level or a p-3/2 level. This assumption contradicts the fundamental equa-
tion of Bayesian statistics. We now duscuss this in some detail.

Bunakov asserts (just before Eq. 159 [2]) that for a p-3/2 level,

P, (M) = 5(M), (17)
and for a p-1/2 level
P, (M) = 6(1). (18)

Equations 17 and 18 are diametrically opposed. Equation 17 implies complete
knowledge of M, namely M =0, and Eq.18. implies no knowledge of M. The
a priori PDF of M cannot depend on whether one is considering a p-1/2 or a
p-3/2 level. The quantity M is a property of all p-1/2 levels and s-1/2 levels
in the averaging interval AE. The a priori PDF of M is the same for all levels
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in the energy range AE. The fact that a p-3/2 level must have zero asymmetry
does not imply that M =0 or that PA(M)=8(M) if one is considering a p-3/2

level. To the contrary, the reduced asymmetry for a p-3/2 level is zero
whatever the value of M.

From the assumption that P, (M) =38(M), it follows that the Bayesian a pos-

teriori PDF for M given y for a single p-3/2 resonance is a delta function (the
Eq.159 [2])

Py y,3/2) = 8a) (19)

If the a priori PDF of M is a 8 function, then there is perfect knowledge of
M before any experiment has been done. Additional experimental data cannot
improve the knowledge of M. It follows that the a posteriori PDF of M is a
d function whatever the conditional probability of observing an experimental
outcome given a value of M. Equation 19 follows from the assumption of
complete a priori knowledge of M, not from any information on M that is
contributed by experimental data.

It is illuminating to derive the expression for Py(M |y, 3/2) without the
assumption of complete knowledge of M. We make no assumption for the form
of P,(M) other than that it is normalized. We start with the definition of the

a posteriori PDF (Eq.6) and the conditional PDF for the reduced asymmetry
given a value of M for a p-3/2 resonance, (Eq.13). Recall that P(y |M, 3/2) does
not depend on M. We combine Eq.13 and Eq.6 to obtain the a posteriori PDF
for 'a p-3/2 resonance. (The normalization factor has been included).

p 1 ex —lﬁ
A Vangt ™2
PMly,3/2)=—

J‘P(M)—1 exp —-I-Lz dM

frio0 3
Equation 20 demonstrates that a measurement of the PV asymmetry for a
p-3/2 resonance gives no information on M. The a posteriori PDF is identical
to the a priori PDF. Equation 20 follows from the general result that if the
conditional PDF of an experimental outcome is independent of a parameter,
then the a posteriori PDF is-the same as the a priori PDF and the experi-
mental result does not affect our knowledge of the parameter. Equation 20 is

intuitively appealing because the quantity M has nothing to -do with p-3/2
resonances. Equation 19 is consistent with Eq.20, but Eq.20 is more general.

=P,(0).  (0)
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Articles [2,3] contain the following expression for the likelihood function
for a single p-wave level whose spin is unknown (Eq.160 [2] expressed in our
notation):

2
P(M|y) = ——E—e [—é%’y—JG(M)+q8(M). Q1)

exp
N2n(e? + M) (c* +M?)

The first term is associated with spin 1/2; and the second, with spin 3/2. The
fundamental equation of Bayesian statistics (Eq.6), involves a single a priori
PDF of the parameters. The conditional PDF of the experimental outcome
given values of the parameters is a sum over the PDFs for different spins.
However, the a priori PDF cannot be different for terms associated with the
different spins. The assumption that the a priori PDF depends on the spin
is therefore inconsistent with the fundamental equation of Bayesian statis-
tics, Eq.6.

6. DETERMINATION
OF ROOT-MEAN-SQUARED MATRIX ELEMENTS
OF THE PARITY-VIOLATING INTERACTION

Bunakov, ([2] after Eq.162), argues that if the spins of the p-wave levels
are not known, then only upper limits can be determined for M. The TRIPLE
Collaboration using Eq.16 has determined non-zero for M when the level spins
are unknown [1]. It is not surprising that the approach of Ref. [2] leads only to
upper limits for M. The assertion that Py(M|y,3/2)=58(M) is equivalent to

assuming that the consideration of the PV asymmetry of any p-3/2 resonance
determines that M =0. As the number of resonances with unknown spin is
increased, the probability that any of them has spin 3/2 rapidly approaches
unity. Then the a posteriori probability that M =0 also approaches unity. How-
ever, as discussed above, the same a priori PDF of M must apply to p-1/2 levels
as well as p-3/2 levels. If it is assumed that P, (M)= &(M), then all p-1/2 levels

must have reduced asymmetry zero (to within experimental uncertainty). The
results of experiments show many resonances with highly significant non-zero
reduced asymmertries [1]. Therefore the assumption that P,(M)= O(M) and the
requirement that there be a single a priori PDF of M are inconsistent with
experiment.

To allow M #0 as required by experiment it is necessary to choose an
a priori PDF other than 8(M). We expect that the value of M that is extracted
from data will not be strongly dependent on the form of the a priori PDF that
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is assumed. Two groups have analysed the data on 38y assuming the spins to
be unknown. Bowman et al. [1] took P,(M) to be constant between O and

M_ =10 meV and 0O elsewhere and obtained M=O.57": 8;?

max
fidence interval was determined by finding the values of M at which the likeli-
hood function decreases by a factor of exp (—1/2) from its maximum value.
Bowman and Sharapov [7] studied the reliability of this confidence interval
using Monte Carlo techniques. Bowman and Sharapov generated one thousand
sets of pseudo-random data that had statistical properties similar to the expe-
rimental data. They determined the maximum likelihood estimate and the con-
fidence interval for each of these pseudo-random data sets. The average value
of the MLE was 0.96 of the value of M used to generate the pseudo-random’
data. For 76% of the data sets the assumed value of M fell within the confidence
interval. If the likelihood function had a Gaussian shape the confidence interval
would correspond to + one standard deviation and for 68% of the data sets the
assumed value of M would fall within the confidence interval. The study of
Ref. [7] shows that the assigned confidence interval is somewhat smaller than a
68% confidence interval. Davis [8] took

meV. The con-

1 M
PD=5, exp[— . ] , 22)

where M is a scale parameter determined from a self-consistency condition,

and obtained M =0.49 meV. The analysis of data using these two choices
gave similar (non-zero) results. After the TRIPLE results had been published,
Corvi et al. [9] measured the spins of p-wave resonances in 238y and carried
out a likelihood analysis for the p-1/2 levels using Eqg.12 to obtain

M=0.56" 32 meV. The value of M obtained by the TRIPLE Collaboration

[1] without knowledge of the spins is non-zero and consistent with the value
determined by Corvi et al. {9]. The knowledge of the spins leads to a modest
improvement of the confidence interval. The reason for this behavior is that
in the situation when the spins are not known and a given resonance shows a
statistically significant PV asymmetry, then that resonance is with high pro-
bability a p-1/2 resonance. Resonances that show null results may be either
p-1/2 or p-3/2. As the experimental error decreases, the probability that a
p-1/2 resonance shows a null result decreases. Most of the p-1/2 resonances
identify themselves by showing PV. Use of the likelihood method correctly
estimates and includes in the analysis the small probability that some p-1/2
resonances have null asymmetries by chance.
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We have derived the form of the likelihood functions used by the TRIPLE
Collaboration to analyse parity-violating asymmetries measured for compound-
nuclear resonances starting explicitly from Bayesian statistics. The forms of the
likelihood functions for the root-mean-squared matrix element of the parity-
violating interaction between s-1/2 and p-1/2 levels are given when the spins of
the p-wave levels are known to be 1/2 and when the spins are unknown. We
compared the likelihood functions used by different authors. We show that the
approach of Refs. [2,3] to likelihood analysis for the situation where the spins
of the p-wave levels are unknown is not correct. The stem of an error is an
assumption of different a priori probability density functions for the root-mean-
squared matrix element for terms in the likelihood function arising from spins
1/2 and 3/2. This assumption is contrary to the fundamental equation of
Bayesian statistics and is the root cause of the many disagreements between
approaches of Refs. [2,3] on one side and of Refs. [1,7,8,9] on the other side.
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