
®”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��¯
1999, ’�Œ 30, ‚›�. 4

“„Š 539.17, 539.16.01

COLD FISSION MODES IN 252Cf
A.S�andulescu, S�.Mis�icu, F. Carstoiu

National Institute for Nuclear Physics, Bucharest P.O.Box MG-6, Romania

W.Greiner

Institut f éur Theoretische Physik der J.W.Goethe Universitéat, Frankfurt am Main, Germany

INTRODUCTION 908

DOUBLE FOLDING POTENTIAL BARRIER 910

THE COLD BINARY FISSION 914

THE COLD TERNARY FISSION 926

DISCUSSION AND CONCLUSIONS 950

REFERENCES 952



®”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��¯
1999, ’�Œ 30, ‚›�. 4

“„Š 539.17, 539.16.01

COLD FISSION MODES IN 252Cf
A.S�andulescu, S�.Mis�icu, F. Carstoiu

National Institute for Nuclear Physics, Bucharest P.O.Box MG-6, Romania

W.Greiner

Institut f éur Theoretische Physik der J.W.Goethe Universitéat, Frankfurt am Main, Germany

The binary and ternary cold fragmentations of heavy nuclei are studied in the frame of a
deformation dependent cluster model where the ˇnal fragments are born to their respective ground
states and interact via a double-folded potential with M3Y forces. The deformation effects are taken
into account up to a multipolarity λ = 4. We show that two regions of cold fragmentation arise. The
ˇrst one has large quadrupole and even hexadecupole deformations and mass number of the heavy
fragment ranging between 138 and 158. In the second region, the Q-value principle dictates the
occurrence of a few spherical nuclei around the double magic 132Sn, similar to the case of heavy
cluster radioactivity, where the daughter nuclei are around 208Pb. This structure is similar for both
binary and ternary cold ˇssion. We compute the cold ˇssion yields for the binary fragmentation and
for the alpha-accompanied ˇssion of 252Cf. For the ternary cold ˇssion mode we derive the most
likely geometrical and dynamical characteristics of the fragments at the release moment of the light
particle and perform classical trajectory calculations, in order to compute the ˇnal kinetic energy of the
alpha particle. The recent observation of 10Be in the cold ternary ˇssion is discussed in conjunction
with the concept of giant nuclear molecule.

ˆ¸¸²¥¤µ¢ ´  ¤¢µ°´ Ö ¨ É·µ°´ Ö Ìµ²µ¤´ Ö Ë· £³¥´É Í¨Ö ÉÖ¦¥²ÒÌ Ö¤¥· ¢ · ³± Ì ±² ¸É¥·´µ°
³µ¤¥²¨ ¸ ÊÎ¥Éµ³ ¤¥Ëµ·³ Í¨¨. �·¥¤¶µ² £ ²µ¸Ó, ÎÉµ ±µ´¥Î´Ò¥ Ë· £³¥´ÉÒ ·µ¦¤ ÕÉ¸Ö ¢ ¸µµÉ¢¥É-
¸É¢ÊÕÐ¨Ì µ¸´µ¢´ÒÌ ¸µ¸ÉµÖ´¨ÖÌ ¨ ¢§ ¨³µ¤¥°¸É¢ÊÕÉ ¶·¨ ¶µ³µÐ¨ ¶µÉ¥´Í¨ ²  ¤¢µ°´µ° ¸¢¥·É±¨
¸ M3Y -¸¨² ³¨. �ËË¥±ÉÒ ¤¥Ëµ·³ Í¨¨ ÊÎ¨ÉÒ¢ ²¨¸Ó ¢¶²µÉÓ ¤µ ³Ê²ÓÉ¨¶µ²Ó´µ¸É¨ λ = 4. �µ± -
§ ´µ, ÎÉµ ¢µ§´¨± ÕÉ ¤¢¥ µ¡² ¸É¨ Ìµ²µ¤´µ° Ë· £³¥´É Í¨¨. �¥·¢µ° µ¡² ¸É¨ µÉ¢¥Î ÕÉ ¡µ²ÓÏ¨¥
±¢ ¤·Ê¶µ²Ó´Ò¥ ¨ ¤ ¦¥ £¥±¸ ¤¥± ¶µ²Ó´Ò¥ ¤¥Ëµ·³ Í¨¨ ¨ ³ ¸¸µ¢Ò¥ Î¨¸²  ÉÖ¦¥²ÒÌ Ë· £³¥´Éµ¢ ¢
¤¨ ¶ §µ´¥ µÉ 138 ¤µ 158. ‚µ ¢Éµ·µ° µ¡² ¸É¨ ¢Ò¤¥²Ö¥É¸Ö ¸²ÊÎ ° ´¥¡µ²ÓÏµ£µ Î¨¸²  ¸Ë¥·¨Î¥¸±¨Ì
Ö¤¥· ¢ µ±·¥¸É´µ¸É¨ ¤¢ ¦¤Ò ³ £¨Î¥¸±µ£µ 132Sn, ¶µ¤µ¡´Ò° · ¸¶ ¤Ê ´  ÉÖ¦¥²Ò¥ ±² ¸É¥·Ò, ¶·¨
±µÉµ·µ³ ¤µÎ¥·´¨¥ Ö¤·  ²¥¦ É ¢ µ±·¥¸É´µ¸É¨ 208Pb. �É  ¸É·Ê±ÉÊ·  µ¤¨´ ±µ¢  ¤²Ö ¸²ÊÎ ¥¢ ¤¢µ°-
´µ£µ ¨ É·µ°´µ£µ Ìµ²µ¤´µ£µ ¤¥²¥´¨Ö. � ¸¸Î¨É ´ ¢ÒÌµ¤ Ìµ²µ¤´µ£µ ¤¥²¥´¨Ö 252Cf ¤²Ö ¡¨´ ·´µ°
Ë· £³¥´É Í¨¨ ¨ ¸µ¶ÊÉ¸É¢ÊÕÐ¥£µ  ²ÓË -· ¸¶ ¤ . „²Ö É·µ°´µ° ³µ¤Ò Ìµ²µ¤´µ£µ ¤¥²¥´¨Ö ¶µ²ÊÎ¥´Ò
´ ¨¡µ²¥¥ ¢¥·µÖÉ´Ò¥ £¥µ³¥É·¨Î¥¸±¨¥ ¨ ¤¨´ ³¨Î¥¸±¨¥ Ì · ±É¥·¨¸É¨±¨ Ë· £³¥´Éµ¢ ¶·¨ ¢Ò¤¥²¥´-
´µ³ ³µ³¥´É¥ ²¥£±µ° Î ¸É¨ÍÒ ¨ ¶·µ¢¥¤¥´ · ¸Î¥É ±² ¸¸¨Î¥¸±µ° É· ¥±Éµ·¨¨ ¸ Í¥²ÓÕ ¶µ²ÊÎ¥´¨Ö
±µ´¥Î´µ° Ô´¥·£¨¨  ²ÓË -Î ¸É¨ÍÒ. �¡¸Ê¦¤ ÕÉ¸Ö ´¥¤ ¢´¨¥ ´ ¡²Õ¤¥´¨Ö 10Be ¢ Ìµ²µ¤´µ³ É·µ°´µ³
¤¥²¥´¨¨ ¢ ¸¢Ö§¨ ¸ ±µ´Í¥¶Í¨¥° £¨£ ´É¸±¨Ì Ö¤¥·´ÒÌ ³µ²¥±Ê².

1. INTRODUCTION

Rare decays ranging from the emission of heavy clusters having masses
between AL = 14 and 34 [1, 2], up to the cold (neutronless) ˇssion of many
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actinide nuclei which produce fragments with ≈ 70 to ≈ 166 atomic mass units
were observed in the last decade [3Ä9]. All these fragmentation processes are
conˇrming the theoretical predictions based on the idea of the cold rearrangements
of large groups of nucleons from the ground state of the initial nucleus to the
ground states of the two or three ˇnal fragments [1, 10].

Milton and Fraser [11] were the ˇrst who noticed that a small percentage of
the ˇssion fragments are produced predominantly at high kinetic energies so that
those nuclei are formed nearly in their ground-state. Later on, Signarbieux et al.
[12] conˇrmed the previous interpretation by determining the mass distributions of
the primary fragments for the highest values of the kinetic energy. They concluded
that even before the scission takes place we deal with a superposition of two
fragments in their ground state, from which the cold (neutronless) fragmentation
term emerged. In all these situations the ˇnal fragments have compact shapes
at the scission point and almost zero excitation energy. In the hypothesis that
the cold(neutronless) fragmentation is the tail of the ˇssion mass distribution, it
has been shown that the transitions from the ˇssion valley to the fusion valley
along the ˇssion path can qualitatively explain the cold fragmentation of the
actinides [13]. On the other hand the deformation dependent cluster model for
cold ˇssion, similar to the one for cluster radioactivity [1], where the ground state
deformations of the ˇnal fragments are a very important ingredient [14, 15], is
able to explain quantitatively the mass and charge experimental yields [16]. Thus
the cold ˇssion is viewed as an extension of cluster radioactivity.

The ˇrst direct observation of cold (neutronless) binary fragmentations in
the spontaneous ˇssion of 252Cf was recently made [5, 6] by using the multi-
ple Ge-detector Compact Ball facility at Oak Ridge National Laboratory, and
more recently with the early implementation of Gammasphere [7]. Also the ˇrst
evidence for cold (neutronless) ternary ˇssion where the third particle is an α par-
ticle was very recently reported [17]. All these data were obtained in studying the
spontaneous ˇssion of 252Cf with Gammasphere by using the triple coincidence
technique. We notice that the probability for neutronless ˇssion is 0.0021±0.0008
for 252Cf.

Very recently, average angular momentum for primary ˇssion fragments as
a function of neutron multiplicity were extracted for the ˇrst time for the Mo-
Ba and Zr-Ce charge splits of 252Cf [18]. It was found that for the major
part of ˇssion events characterized by close to the average numbers of emitted
neutrons (νtot = 2-5), bending oscillations are excited to the temperature of 2Å3
MeV which implies a weak coupling between collective and internal degrees of
freedom from descent to the scission point.

In this review paper we present a deformation dependent cluster model for
the cold (neutronless) binary and ternary ˇssion of 252Cf. We use only the
penetrabilities through the potential barrier and neglect the cluster preformation
factors. For the evaluation of the potential barriers between the ˇnal fragments
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we used the M3Y nucleon-nucleon forces. We found that the binary and ternary
isotopic yields are very sensitive to the deformations of fragments and especially
to the hexadecupole term.

Also we study the ˇnal characteristics of the light particle emitted in the
α-accompanied ternary cold ˇssion of 252Cf.

A short section is devoted to the recent observation of 10Be accompanying
the ternary cold ˇssion.

2. DOUBLE FOLDING POTENTIAL BARRIER

In order to compute the cold ˇssion barriers we employ a cluster model
similar to the one-body model used for the description of cluster radioactivity [1].
The initial nucleus is assumed to be already separated in two fragments or into
two heavier fragments and a light cluster, for the cold binary ˇssion and the cold
ternary ˇssion, respectively. Consequently we deˇne the binary(ternary) ˇssion
barrier as the sum of interaction energies Vij between the two(three) fragments

V =
∑
i>j

Vij(Rij ). (1)

The above heavy-ion interactions depend on the centre-to-centre distances, Rij ,
and on the relative orientation Ω1 and Ω2 as we shall see below. In the most
simple case, that of the binary ˇssion, only one term will be involved in the
above deˇnition whereas for a multifragmentation process, when more than two
nuclei are emerging from the reaction, some constraints should be imposed on the
relative positions Rij . In the chapter devoted to the ternary ˇssion this question
will be addressed in detail.

The advantage of such a model is that the barrier between the fragments can
be calculated quite accurately due to the fact that the touching conˇgurations are
situated inside of the barriers. Moreover the shapes of the fragments are constant
at every stage of the ˇssion. The Q values and the deformation parameters contain
all nuclear shell and pairing effects of the corresponding fragments.

We evaluated the interaction between two deformed fragments V (R) as the
sum of the short-range nuclear interaction VN (R) and the long-range Coulomb
VC(R) parts. It can be calculated as the double folding integral of ground state
one-body densities [19]

V (R) =

∫
dr1dr2ρ1(r1)ρ2(r2)v(r12). (2)

The ground state one-body nuclear densities of the fragments are taken as Fermi
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distributions in the intrinsic frame

ρ(r) = ρ0

1 + exp
1

a

r −R0

1 +
∑

λ=2,3,4

βλYλ0(θ, 0)

−1

. (3)

The constant ρ0 is ˇxed by normalizing the proton and neutron density to the Z
proton and N neutron numbers, respectively. This condition ensures the volume
conservation. The radius R0 and diffusivity parameters were taken from the liquid
drop model [20]. Only static axial symmetric deformations were considered in our
calculations. However, possible triaxial conˇgurations for the nuclei emerging in
the cold ˇssion of 252Cf should not be discarded.

The double folded potential barrier for two ˇnal nuclei with orientation in
space given through the Euler angles Ω1 and Ω2 is computed by making a general
multipole expansion [21,22].

V (R,Ω1,Ω2) =
∑
λi,µi

V µ1µ2µ3

λ1λ2λ3
(R)Dλ1

µ10(Ω1)Dλ2
µ20(Ω2)Yλ3µ3(R̂). (4)

Here, Dλ1
µ10(Ω1) and Dλ2

µ20(Ω2) are the Wigner rotation matrices describing the

relative orientation of the two fragments, whereas Yλ3µ3(R̂) describes the orien-
tation of the axis joining the two nuclei with respect to the laboratory frame. For
the case with both ˇnal fragments aligned along the same symmetry axis ( R̂ =
(0, 0), Ω1 = Ω2 = ( 0, 0, 0) ) we obtain

V (R) =
∑
λi

V 0 0 0
λ1λ2λ3

(R) (5)

with

V 0 0 0
λ1λ2λ3

(R) =
2

π

(
Cλ1λ2λ3

0 0 0

)2
∫
r2
1dr1r

2
2dr2 ρλ1(r1)ρλ2(r2)Fλ1λ2λ3(r1, r2, R),

(6)
where C0 0 0

λ1λ2λ3
is a ClebschÄGordan coefˇcient. Above we have introduced the

double folding kernel

Fλ1λ2λ3(r1, r2, R) =

∫
q2dq ṽ(q)jλ1(qr1)jλ2 (qr2)jλ3(qr3), (7)

where ṽ(q) denotes the Fourier transform of the effective interaction and jλ are
spherical Bessel functions. The quantities ρλ are the multipole components of the
corresponding expansion of the nuclear densities

ρ(r) =
∑

λ=0,2,3,4

ρλ(r)Yλ0(r̂). (8)
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The selection rules for the angular momentum coupling give λ1 + λ2 +
λ3 =even. When βλ 6= 0, λ = 2, 3, 4 for both fragments, then the sum in (5)
involves 32 terms for a nose-to-nose conˇguration and λ3 ≤ 6. Special care has
been payed to obtain numerically the integrals involved in expressions (6), (7).
For most of the fragmentation channels studied here, large quadrupole, hexade-
cupole, and occasionally octupole deformations are involved. Therefore a Taylor
expansion method for obtaining the density multipoles cannot be considered. On
the other hand, a large quadrupole deformation induces according to (8) non-
vanishing multipoles with λ=4 and 6 even if β4=β6=0. Therefore for a correct
calculation of ρλ, a numerical method with a truncation error of order O(h7) is
needed in order to ensure the orthogonality of spherical harmonics with λ ≤ 6.

Performing the integrals (6) and (7) we have used a numerical method with
a truncation error of the order O(h9). All short range wavelength (q ≤ 10 fm−1)
have been included and particular care has been taken to ensure the convergence
of the integrals with respect to the integration step and the range of integration.

The asymptotic part of the barrier is determined essentially by the Coulomb
multipoles which are obtained also as double folding integrals involving charge
densities. For R >> r1 + r2, the Coulomb kernel in (7) behaves as [22]

FCλ1λ2λ3
(r1, r2, R) = 2π2 (2λ3 + 1)!!

(2λ3 + 1)(2λ1 + 1)!!(2λ2 + 1)!!

rλ1
1 rλ2

2

Rλ3+1
δλ3,λ1+λ2 . (9)

If we introduce the moments of the charge density as

Qλ =

√
4π

2λ+ 1

∫ ∞
0

r2drρλ(r)rλ, (10)

where Q0 = Z (atomic number), then the λ3 = 2 component of function (6)
behaves for R→∞ as

Z1Q
2
2 + Z2Q

1
2

R3
. (11)

First we have chosen the M3Y effective interaction [23] which is represen-
tative for the so-called local and density independent effective interactions [24].
This interaction is particularly simple to use in folding models since it is parame-
trized as a sum of 3 Yukawa functions in each spin-isospin (S, T ) channel. The
spin-spin v10 and spin-isospin v11 components are disregarded since for a lot of
fragments involved in the calculation the ground state spins are unknown. The
spin-spin component of the heavy-ion potential can be neglected here, as it is
of the order of 1/A1A2. Only the isoscalar and isovector components have been
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retained in the present study for the central heavy ion interaction:

v(r12) = v00(r12) + Ĵ00δ(r12) + (v01(r12) + Ĵ01δ(r12))~τ1 · ~τ2 +
e2

r12
, (12)

where

r12 = R + r2 − r1. (13)

The isoscalar component of the M3Y force is

v00(r) =

[
7999

e−4r

4r
− 2134

e−2.5 r

2.5 r

]
MeV,

and the isovector part has the form

v01(r) =

[
− 4885.5

e−4r

4r
+ 1175.5

e−2.5 r

2.5 r

]
MeV.

The M3Y interaction is dominated by the one-nucleon knock-on exchange
term which leads to a nonlocal kernel. In Eq.(12) the nonlocal potential is reduced
to a zero range pseudopotential Ĵ00δ(r12), with a strength depending slightly on
the energy. This is due to the fact that the range of the nonlocality behaves
as µ−1, where µ = A1A2/(A1 + A2) is the reduced mass of the fragments.
We have used the common prescription [24] Ĵ00 = -276 MeV·fm3 neglecting
completely the small energy dependence. For example, the odd-even staggering
in the Q value for a fragmentation channel, which is typically of the order of
∆Q = 2 MeV, leads to a variation ∆Ĵ00=-0.005∆Q

µ
MeV·fm3 with µ ≈60. The

isovecor component in Eq.(12) with a strength Ĵ01 = 217 MeV · fm3 for the
pseudoexchange term, gives a small repulsive contribution in the barrier region.

As we shall show later, employing M3Y NN effective interactions proved
to be satisfactory for the computation of the WKB penetrabilities for the binary
and ternary cold ˇssion of 252Cf, when only the region in the vicinity of the
barrier is important. However, the M3Y double-folded potential is not taking into
account two major factors - the density dependence of the NN interaction and
the Pauli principle, which are important at distances corresponding to the overlap
of the nuclear volumes. This potential is characterized by a strong, unphysical
attraction of a few thousands of MeV inside the nucleus. To accomodate a
repulsive core which would prevent the reabsorbtion of the lighter fragment by
the heavier one we subsequently introduced a double folding potential based on the
effective Skyrme interaction. This is a good choice for a decaying giant molecule
or dinuclear system [25, 26] in view of its similarities with the inter-atomic
potentials used in the physics of the molecule [27]. Thus the nuclear potential
between two ions contains an attractive part and a repulsive one. Neglecting the
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spin dependence, it can be written as

VN (R) = C0

{
Fin − Fex

ρ00

(
(ρ2

1 ∗ ρ2)(R) + (ρ1 ∗ ρ2
2)(R)

)
+ Fex(ρ1 ∗ ρ2)(R)

}
,

(14)
where ∗ denotes the convolution of two functions f and g, i.e., (f ∗ g)(x) =∫
f(x′)g(x−x′)dx′. The constant C0 and the dimensionless parameters Fin, Fex

are given in Ref.25. To solve this integral we consider the inverse Fourier
transform

VN (R) =

∫
e−iq·RṼN (q)dq, (15)

where the Fourier transform of the local Skyrme potential ṼN (q) can be casted
in the form

ṼN (q) = C0

{
Fin − Fex

ρ00

(
ρ̃2

1(q)ρ̃2(−q) + ρ̃1(q)ρ̃2
2(−q)

)
+ Fexρ̃1(q)ρ̃2(q)

}
.

(16)
Here ρ̃(q) and ρ̃2(q) are Fourier transforms of the nucleon densities ρ(r) and
squared nuclear densities ρ2(r). Then [26]

ρ̃(q) = 4π
∑
λ

iλYλ0(θq, 0)

∫ ∞
0

r2drρλ(r)jλ(qr), (17)

ρ̃2(q) =
√

4π
∑
λ

iλ

λ̂
Yλ0(θq, 0)

∑
λ′λ′′

λ̂′λ̂′′(Cλλ
′λ′′

0 0 0 )2 ×

×
∫ ∞

0

r2drρλ′ (r)ρλ′′ (r)jλ(qr). (18)

3. THE COLD BINARY FISSION

We start the study of the binary cold ˇssion, by assuming that at scission,
the two deformed fragments are coaxial and their poles are almost touching like
in the tip model [15]. For quadrupole deformations we choose prolate spheroids
since the prolate shapes are favoured in ˇssion. Also, it is known that in the
potential energy surfaces of nuclei with masses 100 ≤ A ≤ for each 130, oblate
minimum always corresponds another prolate minimum close in energy. For pear
shapes, i.e., fragments with quadrupole and octupole deformations, we choose
opposite signs for the octupole deformations, i.e., nose-to-nose conˇgurations
(see Fig.1). For hexadecupole deformations we choose only positive signatures,
because they lead to a lowering of barriers in comparison with the negative ones
and consequently such conˇgurations are much more favoured in ˇssion (see
Fig.2).
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Fig. 1. Density plots of 106Mo and 146Ba fragments, placed at R=15 fm, considered
with quadrupole and octupole deformations. In the upper part are represented the prolate-
prolate, oblate-prolate positions and in the lower part two pear shapes Å nose-to-back and
nose-to-nose. The penetrability is maximized for β2 > 0 conˇgurations

In order to illustrate the in
uence of deformations on the barriers we displayed
in Fig.3 the M3Y-folding multipoles for 106Mo interacting with 146Ba, with all
deformations included. The octupole component is large in the interior but gives
negligible contribution in the barrier region in contrast to the hexadecupole one.
Next, in Fig.4 we are illustrating for the same partners the cumulative effect of
high rank multipoles on the barrier.

In the laboratory frame of reference the x axis was taken as the initial
ˇssioning axis of the two heavy fragments, with the origin at their point of
contact. The potential barriers VLH −QLH between the two fragments are high
but rather thin with a width of about 2 to 3 fm. As an illustration, we show in
Fig.5 a typical barrier between 146Ba and 106Mo, as a function of the distance
RLH between their centres of mass. Here QLH is the decay energy for the binary
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Fig. 2. Same as for Fig.1. The in
uence of different signs of hexadecupole deformations on
106Mo and 146Ba densities in the presence of large quadrupole and octupole deformations.
The penetrability is maximized for β4 >0 conˇgurations

fragmentation of 252Cf. For the two fragments, the exit point from their potential
barrier is at RLH typically between 16 and 17 fm which supports our cluster
model.

Note that in the cluster model, employed in this paper, the preformation
factors for different channels are neglected, i.e., we use the same assault frequency
factor ν for the collisions with the ˇssion barrier for all fragmentations. It
is generally known that the general trends in alpha decay of heavy nuclei are
very well described by barrier penetrabilities, the preformation factors becoming
increasingly important only in the vicinity of the double magic nucleus 208Pb.
In the present approach to cold binary fragmentation of 252Cf the preformation
factors are taken to be constant. However in this case too, as we shall see
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Fig. 3. The in
uence of the M3Y-folding
multipoles on the barrier between 106Mo
and 146Ba. Notice that the main effect is
due to λ3 = 2. The in
uence of λ3 = 3
is large but less important in the barrier
region compared with the induced defor-
mations λ3 = 5 and λ3 = 6

Fig. 4. The cumulative effect of high rank
multipoles on the barrier between 106Mo
and 146Ba. We considered the deforma-
tions β3 and β4 much larger than the real
ones in order to illustrate the effect of de-
formations

later, around the double-magic nucleus 132Sn the preformation turns out to be of
capital importance. Eventually, as the experimental data become more accurate
one could extract some fragment preformation factors and discuss the related
nuclear structure effects.

The penetrabilities through the double-folded potential barrier between the
two heavy fragments were calculated by using the WKB approximation

P = exp

{
− 2

h̄

∫ so

si

√
2µ [ VF (s)−QLH ] ds

}
, (19)

where s is the relative distance, µ is the reduced mass and si and so are the inner
and outer turning points, deˇned by VF (si) = VF (so) = QLH .

The barriers were computed with the Liquid Drop Model (LDM) parameters
ap = an=0.5 fm, r0p = r0n = (R− 1

R
)A−1/3 fm with R = 1.28A1/3+0.8A−1/3−

0.76.
Accurate knowledge of Q values is crucial for the calculation, since the

WKB penetrabilities are very sensitive to them. We obtained the Q values from
experimental mass tables [28], and for only a few of the fragmentations the nuclear
masses were taken from the extended tables of Méoller et al. [20] computed using
the macroscopic-microscopic model.

Let us consider for the beginning only the relative isotopic yields corre-
sponding to true cold (neutronless) binary fragmentations in which all ˇnal nuclei
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Fig. 5. The barrier between 146Ba and 106Mo as a function of the distance RHL between
their centres of mass. QLH is the decay energy

are left in their ground state. These relative isotopic yields are given by the
expression (A1 = AL, A2 = AH )

Y (A1, Z1) =
P (A1, Z1)∑

A1Z1
P (A1, Z1)

· (20)

As we mentioned above, the fragment deformations were chosen to be the
ground state deformations of Méoller et al. [20], computed in the frame of the
macroscopic-microscopic model. In Fig.6 we represented separately these de-
formations for the light AL and heavy AH fragments for odd and even charge
Z. We can see that the light fragments have mainly quadrupole deformations
in contrast to the heavy fragments, which have all types of deformations. The
octupole deformations are nonzero in a small heavy fragment mass number region
141 ≤ AH ≤ 148. The fragments with mass number AL ≤ 92 and AH ≤ 138
are practically spherical.

The computed M3Y-ˇssion barriers heights, for different assumptions: no
deformations, including the quadrupole ones, including the quadrupole and oc-
tupole ones and for all deformations, together with the corresponding Q values
are represented in Fig.7 for odd Z and even Z separetely. We notice the large
in
uence due to the quadrupole deformations, but also the hexadecupole ones are
lowering the barriers very much. The octupole deformations in the mass region
141 ≤ AH ≤ 148 have a smaller effect then we expected. This is an illustration
of the difference between cluster radioactivity, which is due only to the large Q
values and the cold ˇssion which is due mainly to the lowering of the barriers by
the fragment deformations. Both processes are cold fragmentation phenomena.
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Fig. 6. The assumed β2, β3, β4 ground state fragment deformations are represented by sym-
bols along an isotopic chain labelled by the charge number. The light fragments (Z1, A1)
have mainly quadrupole deformations in contrast to the heavy fragments (Z2, A2). The
octupole deformations are existing in a small mass region 141≤ A2 ≤148, whereas the
hexadecupole deformations are important in the region 138≤ A2 ≤158. The fragments
with masses A1 ≤94 and A2 ≤138 are practically spherical

The computed yields in percents, for the splittings represented by their frag-
ment deformation parameters in Fig.6 or by their barrier heights in Fig.7, are given
in Fig.8 for spherical fragments (βi = 0), for quadrupole deformations (β2), and
for all deformations (β2 + β3 + β4) at zero excitation energy. We can see that
when the fragments are assumed to be spherical the splittings with the highest
Q values, which correspond to real spherical heavy fragments(see Fig.6), i.e.,
for charge combinations Z1/Z2 = 48/50, 47/51, and 46/52 are the predominant
ones. This situation is encountered also in with the cluster radioactivity where the
governing principle is the Q value. Due to the staggering of Q values (see Fig.7)
the highest yields are for even-even splittings. By including the β2 deformations



920 S�ANDULESCU A., MIS�ICU S�., CARSTOIU F., GREINER W.

Fig. 7. The barrier heights for all considered fragmentation channels represented for differ-
ent charges ZL and mass numbers AL of the light fragment. The Q values are represented
by slightly larger symbols

few asymmetric splittings arise. For all deformations more asymmetric yields
appear. Now the principal yields are for Z1/Z2= 38/60, 40/58, 41/57, and 42/56
along with 44/54, 46/52, and 47/51. It is a direct consequence of the fact that the
in
uence of the fragment deformations on the yields overcome the in
uence of
Q values in the more asymmetric region. This illustrates the fact that cold ˇssion
is a cold rearrangement process in which all deformations are playing the main
role and not the Q values. The staggering for odd Z fragmentations like Z1/Z2

= 39/59, 41/57, 43/55, 45/53, and 47/51 or odd N fragmentations is recognized
at ˇrst glance. However, by the introduction of the density levels this staggering
is reversed. The largest yields will be for odd Z and/or N fragmentations.

In the next ˇgure we represent the mass yields YA2 =
∑

Z2
Y (A2, Z2) (Fig.9)

for spherical fragments (βi=0), for quadrupole deformations (β2 6=0), and for all
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Fig. 8. The true cold ˇssion yields calculated with LDM parameters at zero excitation
energy. Results with all deformation turned off are represented in the upper panel, with
inclusion of quadrupole deformations on the middle and with all deformations on the
bottom. Each group of splittings is labeled by charge combination ZL/ZH on the top of
the middle panel. Numbers on the horizontal axis represent the ordering of fragmentation
channels

deformations (βi 6=0). We can see in the spherical case that the main mass
yields are centered around A2=132. All these heavy fragments are spherical
or nearly spherical (with a small prolate deformation) and have high-Q values.
Since other spherical fragments do not arise in the yields diagram it occurs that
in the spherical case the Q value is the dictating principle. When we turn on the
quadrupole deformation a rearrangement in this spherical region takes place. The
yield corresponding to A2=132 is still important, but the one for A2=134 takes
over, although the maximum decay energy of the ˇrst mass split Qmax is larger
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Fig. 9. The mass yields YAH =
∑

ZH
Y (AH , ZH) in percents, as a function of heavy frag-

ment mass computed with LDM parameters. Calculatio ns without deformations (β2,3,4=0)
enhance only the spherical region AH ≤ 136; the inclusion of quadrupole deformations
(β2 6=0) enhances the yield with AH =134; for all deformations there are two main mass
yields regions, i.e., 132≤ AH ≤136 and 138≤ AH ≤156

than that of the former. In this case the larger quadrupole deformation of the
light partner decides the augmentation of the A2=134 yield. When we include the
higher multipole deformations, i.e., octupole and hexadecupole deformations, the
yields diagram will change drastically over the whole mass range. First of all, in
the spherical region the mass-splittings yields A2=132, 134 are lowered whereas
their odd neighbours are augmented. This is a consequence of the fact that the
hexadecupole deformations of the odd light partners are slightly larger. But the
most important change occurs in the mass region A2=138÷156 where a whole
bunch of splittings show up with yields greater than 0.01%. This is, beyond any
doubt, an effect due to the hexadecupole deformations. As can be inferred from
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Fig.6 the above-mentioned mass region is characterized by noticeable values of
the hexadecupole deformation. Before adding the hexadecupole deformation, this
region has very low yields whereas after the inclusion of β4 the most pronounced
peaks are A2= 142, 144-147, 150, and 154. It is the right place to mention that
these two mass regions obtained by us employing a deformation dependent cluster
model of cold ˇssion were also reported by the Tébingen [29Ä31]. The ranges are
almost identical. However in order to reproduce completely the experimental data
we have to underline the elements that have to be supplied further in our model.
First, in the spherical region, the experiment claims a mass region of cold ˇssion
centered around A2=132, instead of A2=134 as we obtained. However this misˇt
was to be expected since we didn't include the preformation factors. In the case
of the doubly magic nucleus 132Sn this assumption proves to be unsatisfactory.
As has been advocated by the Téubingen group [30] this is a possible manifestation
of heavy-cluster decay. Therefore it is very likely that in this case the prefor-
mation factor, which multiplies the penetrability, is larger for 132Sn than for the
neighbouring nuclei, which could then account for the discrepancies between our
calculations and experimental data. However, an encouraging experimental point
which supports our calculations is the fact that the even masses 134 and 136 are
accompanying the leading yield for 132. In Fig.10 we compare the total yields
for 132 (left side) and 134 (right side). We see that the Z-splitting corresponding
to the spherical 134Te dominates in all the three cases, because, as we mentioned
earlier its light partner has a sensitive quadrupole deformation and a nonvanishing
hexadecupole one. Its Z partner 134Sn has a smaller hexadecupole deformation.
The same reasoning apply to A2=136. Therefore it could be possible that in the
case of these nuclei the deformation dictates the yield magnitude rather than the
magic number in protons or neutrons. The experimental determination of the
double ˇne structure in this region will, hopefully, clarify the situation.

The hexadecupole deformed region, extending from 138 to 156, obtained
in the frame of our cluster model, presents also some discrepancies compared
to the experimental ˇndings. The main problem that we faced here concerns
the odd-even effect which seems to be very strong in this region according to
the Téubingen group [29Ä31]. The things can be understood as follows: In the
vicinity of the ground state, the level densities of odd mass nuclei are much larger
than for even nuclei and consequently it will be more probable to observe cold
ˇssion for odd-odd mass splits in comparison to even-even mass splits. Since in
our present calculations the level density of fragments is not taken into account,
our results point to an enhancement of even-even mass splits with respect to the
odd-odd mass splits. In a preceding paper [32] the effect of level density was
incorporated in the calculation of yields by means of the Fermi Back-Shifted
Model valid also for small excitation energies. In order to get a rough idea of
how the odd-even effect in
uences the yields, we simply shift the decay energy
by the ˇctitious ground-state position ∆ taken from the global analysis of Dilg
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Fig. 10. The yields for the Z splittings of AH=132, 134 in percents computed with LDM
parameters

et al. [33], Q∗ = Q − ∆. In Fig.11 we represented the same thing like in
Fig.10 but with the above-mentioned shift in the Q value. It is obvious from
the inspection of this ˇgure that the odd splittings are enhanced. It is worthwile
to stress once again that in our view, in the mass region extending from 138 to
156, the hexadecupole deformation is the leading mechanism responsible for the
cold fragmentation of 252Cf. The lowering of the barriers due to hexadecupole
deformation increase dramatically the penetrabilities and eventually the yields.

In Fig. 12 we represented the yields for the Z-splittings of A2=143. Compar-
ing the ˇrst two cases we see that the yields are almost unsensitive to quadrupole
deformation. When the hexadecupole deformation is included, the distribution
changes all the yields being increased almost uniformly (in the log scale). It is
worthwhile to notice that the octupole deformations are not inducing the tremen-
dous changes that the hexadecupole do.
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Fig. 11. The mass yields YAH =
∑

ZH
Y (AH , ZH) in percents, as a function of heavy

fragment mass computed with LDM parameters with the decay energy modiˇed Q∗ =
Q−∆. The odd-odd mass splittings are this time favoured

The main result obtained through these calculations is the theoretical conˇr-
mation of the existence of two distinct regions of 252Cf cold ˇssion. The results
indicate two different mechanisms. In the heavy mass region situated between 138
and 156, the hexadecupole deformation gives rise to a large number of splittings.
Here the shell closure in neutrons or protons seems to not be involved. Although
the shell effects should play an important role in the odd-even differences by
enhancing the odd-odd mass splits with respect to the even-even ones, our result
comˇrms that the fragments are emitted with very compact shapes. We should
discard deformations much larger than those calculated for the ground state. For
such deformations a large part of the excitation energy should be allocated for
deforming the fragments. It is not the case for the cold ˇssion system, where
one encounters an acute absence of excitation energy. In the spherical region our
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Fig. 12. The yields for the Z splittings of AH=143 in percents computed with LDM
parameters. Calculations without deformations and with the inclusion of quadrupole defor-
mation give nearly the same yields. The inclusion of hexadecupole deformation increases
uniformly by 4 orders of magnitude the yields

results give only a hint of the importance of the magic nucleus 132Sn which is
susceptible to be produced in a heavy clusterization process, similar to that for
light clusters [1]. Here the decay mechanism should be similar to the light cluster
radioactivity, the daughter nucleus 132Sn being traded for 208Pb and the heavy
cluster 120Cd for 32Si.

4. THE COLD TERNARY FISSION

A. The α-Accompanied Ternary Fission. The ˇrst direct evidence of cold
(neutronless) alpha ternary ˇssion yields was reported in [17]. Using the triple
gamma coincidence technique, only the correlations between the two heavier
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fragments were observed unambigously. This new phenomenon is equivalent to
cluster radioactivity during ˇssion. Such cold ternary decays produce all the three
fragments with very low or zero internal excitation energy and consequently with
very high kinetic energies. Their TKE will be close to the corresponding ternary
decay energy Qt. In order to achieve such large TKE values the three ˇnal
fragments should have very compact shapes at the scission point and deforma-
tions close to those of their ground states, similarly to the case of cold binary
fragmentations [34].

Below, we develope a coplanar three-body cluster model consisting of two
deformed fragments and a spherical α particle for the description of cold (neu-
tronless) alpha accompanied ˇssion of 252Cf. This model is an extension of the
cluster model used for the description of cold binary ˇssion that we presented in
the preceding section.

In what follows, we apply a semiclassical approach to the tunneling process
in a many body system. The system consists in n bodies interacting via a potential
V ({qi}) which is the sum of two-body components. This assumption is not very
restrictive and may be relaxed. Let {qi} be a set of N generalised coordinates.
The total available energy for the system is identiˇed with the decay energy Q.
We assume that in the classically forbidden region (V ≥ Q) the usual WKB
conditions are fulˇled and the semiclassical many body wave function is given
by

Ψ ∝ exp(−S0/h̄), (21)

where S0 is the reduced action between the entrance point and the current
point [35]. The action satisˇes the Hamilton-Jacobi equations. Consequently
the equations of motion ( in imaginary time ) are the (modiˇed) Euler-Lagrange
equations. For a Lagrangian

L =
1

2

N∑
i,j=1

aij q̇iq̇j − V ({q}) (22)

the reduced action may be written

S0 =

∫ √
2(V −Q)

∑
aijdqidqj (23)

and the trajectory is obtained by extremizing S0 with respect to all possible paths
in the coordinates qi. Parametrizing the path by one of the coordinates, say q1,
we obtain a set of coupled equations:

∂V

∂qi
=

1

M
bi

(
V ′ +

∑
k

∂V

∂qk
q′k

)
+
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+
2

M
(Q− V )

(
1

M
bi

(∑
k

a1kq
′′
k +

∑
kl

aklq
′
kq
′′
l

)
−
∑
k

aikq
′′
k

)
, (24)

where i, k, l = 2÷N and f ′ = ∂f/∂q1. The quantity bi is deˇned by

bi = a1i +
∑
k

aikq
′
k

and the effective mass of the system by

M = a11 + 2
∑
i

a1iq
′
i +
∑
ik

aikq
′
iq
′
k . (25)

To the ˇrst order of the WKB approximation, the penetrability is given by the
square of the wave function (21) with the reduced action calculated on the path
satisfying (24) and the boundary conditions

V ({qin,out}) = Q. (26)

In the particular case N = 1 this condition uniquely determines the penetration
path. In the general case, the condition (26) does not specify all the necessary
conditions for integrating (24). In principle we should solve (24) for all solutions
satisfying (26) and choose the path qi(q1) which minimizes the reduced action

S0 =

∫ out

in

√
2M(V −Q) dq1, (27)

where
M = M(qi(q1), q1), V = V (qi(q1), q1) . (28)

This will give the upper bound for the penetrability. In the particular case of a
diagonal mass tensor aik = µiδik, Eq.(24) gets a much simpler form:

M
∂V

∂qi
= µiq

′
i

(
V ′ +

∑
k

∂V

∂qk
q′k

)
+ 2µi(Q− V )

(
q′i
M

∑
k

µkq
′
kq
′′
k − q′′i

)
(29)

and the effective mass reduces to

M = µ1 +
∑
k

µk(q′k)2 . (30)

We stress that the system of Eqs. (26) − (30) does not represent a trivial
generalisation of the tunneling problem in one dimension. The main difference
stems from the fact that Eq.(26) has in general many solutions and the integration
of the highly nonlinear coupled equations (29) cannot be started without imposing
additional constraints on physical trajectories.
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To ˇx the ideas, let us discuss in some detail the speciˇc features of the
tunneling process in the case of cold alpha-accompanied ternary ˇssion. We
assume that all three fragments are preexisting in a quasi-bound molecular state.
Since the process is cold, the heavy fragments have very compact shapes with
deformations close to their asymptotic values. Strong polarisation effects are
expected in the initial stages of the tunneling process. One may include such
effects by introducing effective deformations. In order to grasp the penetrabilities
for the most probable processes one may consider only axial deformations with
symmetry axis oriented along the ˇssion axis. For simplicity the problem is
reduced to a planar one and therefore we have to deal with six coordinates.
Requiring the c.m. to be at rest, we are left with four independent coordinates.
Let (xi, yi, i = 1, 2) be the fragment coordinates and (xα, yα) the coordinates
for the α particle. The corresponding masses are denoted by mi, i = 1, 2, α. The
usual transformation to relative coordinates R = x2 − x1 and y = y2 − y1 leads
to

x1 =
−mαxα −m2R

m1 +m2
, y1 =

−mαyα −m2y

m1 +m2
,

x2 =
−mαxα +m1R

m1 +m2
, y2 =

−mαyα +m1y

m1 +m2
.

The kinetic energy and the third component of the angular momentum in terms
of these coordinates are

T =
1

2

(
µ12(Ṙ2 + ẏ2) + µα(ẋ2

α + ẏ2
α)
)
, (31)

Lz = µ12(Rẏ − Ṙy) + µα(xαẏα − ẋαyα), (32)

where

µ12 =
m1m2

m1 +m2
, µα = mα

(
1 +

mα

m1 +m2

)
.

Since the α-particle mass is small compared to the fragment masses, we further
assume y ≈ 0 on the penetration path. This assumption may lead to a noncon-
servation of the angular momentum (32). However, we expect a very smooth
α-particle trajectory, and to a good approximation the second term in (32) is
vanishingly small. Next, requiring Lz = 0 implies y ' const .R. In the initial
conˇguration one can always choose the heavy fragments along the x axis and
therefore const = 0 and the angular momentum is conserved. Similar consider-
ations lead to the conclusion that even the kinetic energy (31) is well evaluated
along the trajectory. Since y ≈ 0 seems to be a reasonable approximation, one
further assumes y1 ≈ y2 ≈ 0.

We are ˇnally left with the problem of ˇnding the α-particle coordinates
(xα, yα) as a function of the interfragment distance R, which is a natural candidate
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for the variable q1. A close inspection of Eq.(31) readily identiˇes the necessary
mass parameters and the action integral reads:

S0 =

∫ Rout

Rin

√√√√2

{
µ12 + µα

((
∂xα

∂R

)2

+

(
∂yα

∂R

)2
)}

(V −Qt)dR (33)

with V = V (xα(R), yα(R), R). The above formula shows that under well
justiˇed approximations the penetrability for the three-body system is similar
to the well-known WKB expression for two body systems with an important
correction in the effective mass arising from the α-particle trajectory. The one
dimensional case is reproduced in the limit µα → 0. The magnitude of this
correction can be determined by solving the nonlinear coupled equations (29).
Subsequent numerical calculations with selected trajectories showed that the most
important contribution arises from the variation of yα with the interfragment
distance.

The total interaction potential is obtained as the sum of two-body potentials
between the α particle and the fragments and between the light and heavy frag-
ment. An advantage of this approach is that the barrier between the two fragments
and the barrier between the α particle and the fragments can be calculated quite
accurately due to the fact that the touching conˇgurations are situated inside the
barriers. An important requirement for the interaction potential is that the system
should enter the penetration path very close or beyond the touching conˇguration.
This point will be checked carefully in the following.

The data base for the present calculation includes 78 different splittings for
alpha ternary ˇssion and 87 splittings for binary ˇssion of 252Cf. Each splitting
is deˇned by charge and mass numbers, experimental binary and ternary decay
energies and a set of geometrical and deformation parameters which characterize
the one-body densities.

In order to understand the landscape of the three-body potential we ˇrst
represent the potential at different interfragment distances R (Fig.13) with heavy
fragments in a nose-to-nose conˇguration, for the splitting 4He +92Kr+156Nd with
deformed fragments. The potential for a splitting with a spherical fragment looks
quite similar. In the equatorial plane we distinguish a saddle conˇguration which
results from the interplay of the strong repulsive (Coulomb) forces acting on the
α particle and the attractive (nuclear) forces. The saddle trajectory is obtained by
numerically solving the equation

∂V

∂xα
= 0

for ˇxed interfragment distance. Along the saddle trajectory there are two inter-
esting extrema: one is situated on the symmetry axis and another one at the top of
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Fig. 13. The three-dimensional ternary potentials for the splitting 4He+92Kr+156Nd at
different interfragment distances R = 14, 15, 16, 17 fm between the colinear fragments in
a nose-to-nose conˇguration. We can see the two wells corresponding to the light and
heavy fragment and in the equatorial plane a ridge which grows up with the interfragment
distance R between fragments. This ridge has a minimum on the symmetry axis and
a maximum at the equatorial alpha barrier height. This minimum disappears at large
interfragment distances R ' 20− 21 fm

the maximum of the equatorial alpha barrier ridge where all classical forces acting
on the α particle are equilibrated. This last point is denoted in the following as the
Lagrange point and the ensemble of such points for different interfragment dis-
tances Å the Lagrange trajectory. As can be seen in Fig.13 the minimum situated
on the symmetry axis disappears at large interfragment distances R = 20−21 fm.
Following Radi et al. [36], we assume that the position of the α particle is gov-
erned by the well the potential has in the perpendicular direction. If the motion
is not very fast, the α should adiabatically adjust to a stationary state in this
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Fig. 14. The ternary potential minimum in the equatorial plane for the splitting
4He+92Kr+156Nd at different interfragment distances R. The corresponding zero point
energies in an harmonic oscillator approximation are indicated. As can be seen at large R
this minimum disappears

potential. To get the position of the α particle we approximate this potential with
an harmonic oscillator potential

V (y) = Vmin +
1

2
Cy2, (34)

where the stiffness coefˇcient C depends on the interfragment distance and is
obtained by numerically differentiating the potential around the minimum. Then
the eigenvalues are given by:

En =

(
n+

1

2

)
h̄

√
C

mα
. (35)

A convenient measure of the spread of this position is given by:

< y2 >n=
En

C
. (36)

In Fig.14 the saddle potential and the zero point energies are represented as
a function of R for the splitting 4He+92Kr+156Nd with deformed fragments. The
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Fig. 15. The ternary potentials V (xα, yα = 0, R) for the splitting 4He+92Kr+156Nd as a
function of xα for different interfragment distances R. The two wells and the two polar
barriers corresponding to the light and heavy fragment are clearly seen. At R > 17 fm
the polar barriers are below the ternary Q3 value. The interfragment ridge situated in the
equatorial plane is very narrow

zero point energies are consistent with the previous estimation of Radi et al. [36].
In Fig.15 we represented, for the same splitting at different interfragment distances
R, the polar alpha barriers, i.e., the potential V (xα, yα = 0, R). We can clearly
see the two wells corresponding to the light and heavy fragments which are
separated by a very narrow interfragment ridge. Also we can see that the polar
barriers disappear at the interfragment distance R ' 17 fm that is much earlier
than the equatorial barriers. We must stress that the semiclassical approximation
for the penetration factor requires the penetration path be localized in a region,
where V ≥ Qt. This is the most economic way to localize the position of α
particle during the penetration path in the present model. In Figs.16a and 16b, for
the above splitting with deformed fragments and the splitting 4He+117Pd+131Sn
with a spherical fragment, we represented the three-body potential V (xα, yα, R)
in the plane (xα, yα) at different interfragment distances by only one equipotential
line Qt. At small interfragment distances the uncertainty in the α particle position
is rather large but it reduces drastically as R increases. We can see that by
increasing R the Qt-value contours are reduced practically to a single point. One
remarks also that at the exit points the y coordinate of the α particle has the rather
large values, of the order of 5 fm for two deformed fragments and slightly larger
(6 fm) when one fragment is spherical. Such high values, are consistent with
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Fig. 16. The ternary potentials V (xα, yα, R) represented in the plane (xα, yα) by a sin-
gle equipotential line Qt at different interfragment distances R for the splittings: a)
4He+92Kr+156Nd with deformed fragments and b) 4He+117Pd+131Sn with a spherical
heavy fragment. At large R the exit points are quite different for such splittings. This
suggests different energy and angular distributions of the α particle for the two regions

Eq.(36) only if the α particle is placed in a rather high excited state in the saddle
potential. Also one can remark that the penetration path terminates much earlier
in the case of one spherical fragment as compared to the deformed-deformed
case. Based on this observation one may conjecture that the angular and energy
distributions of the α particle which are largely determined by the conˇguration
at the end of the penetration path will be rather different in the two cases.

Other possible characteristics of the three-body potential are given in Figs.17a
and 17b. Here we represented in the plane (xα, yα) for the above two splittings



COLD FISSION MODES IN 252Cf 935

Fig. 16b

the fragments with all deformations included and the two ridges: the equatorial
one deˇned by the equilibrium of the classical forces acting on the α particle
in the x direction and the α particle ridge deˇned by the top of the α barriers
situated around the two fragments. The intersection of these two ridges gives the
Lagrange point where no forces are acting on the α particle. We also represented
the centres of the α particle obtained from the geometrical condition that the α
particle is in touch with each fragment. We deˇne a touching point such that
the densities of the two bodies in contact are half of their central value. We see
that the intersection of the two touching conˇgurations of the α particle and the
two fragments is not situated on the equatorial ridge. Due to the fact that this
ridge is very narrow (see Fig.15) we have to impose the condition that the α
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Fig. 17. Schematic representation of the two fragments for the splittings mentioned in
Fig. 16. The fragment shape is deˇned by the the half-density surface. The dashed line
represents the locus of the centre of the α particle in touching with one of the fragment.
The thick continous line represents the α particle ridge while the thin line is the equatorial
ridge. The intersection of the two continous lines gives the Lagrange point (see text for
details)

particle is in equilibrium on the ridge, in order to exclude the cases of subsequent
disolution of the α particle in one of the fragments. This condition together with
the touching condition with one of the fragments deˇnes the adiabatic trajectory
when the interfragment distance is varied. We recall here that the Lagrange
trajectory which explores the maximal values of the interaction potential gives
a lower bound of the penetrability while the more physically intuitive adiabatic
trajectory gives an upper bound.
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Fig. 17b

One possible physical choice of the α particle initial position is situated on
the interfragment ridge and above the touching curves as previously deˇned. On
the other hand, if we allow the α particle to overlap the fragments, we can
consider different scenarios which could be related to the excited quantum states
deˇned in the equatorial ridge well.

In our static description of the alpha accompanied ˇssion, the alpha ternary
yields depend essentially on the α particle trajectory. This limits considerably
the number of possible scenarios. In the following we shall consider only few
scenarios.

The ˇrst one is the adiabatic scenario. This assumes that the α particle is
situated on the interfragment ridge, satisfying one of the two α particle touching
conˇgurations, i.e., at the lowest y0

α value. By increasing the interfragment
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Fig. 18. Fission barriers and α-particle trajectories for the splittings mentioned in Fig. 16.
Left panels: ternary barriers calculated along selected trajectories and binary barriers for
the cold ˇssion of the daughter nucleus 248Cm leading to the same fragments. The
corresponding ternary and binary reaction energies are indicated by thin lines. Right
panels: The α-particle trajectories (xα, yα) versus the interfragment distance R. The
inner and outer turning points are indicated by arrows

distance R, the α particle is getting closer to the fragment symmetry axis. The
corresponding α particle trajectory together with the ternary and binary barriers
are plotted in Figs.18 for the above two splittings: a)4He+92Kr+156Nd and b)
4He+117Pd+131Sn. Also we represented the intersection of the barriers with the
Q values, i.e., the corresponding inner and outer turning points. Note that the
system crosses the ternary barrier before the α particle becomes colinear with the
fragments.
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Fig. 18b

The second scenario is the Lagrange scenario. In this case we assume that the
α particle is situated at the Lagrange point were all forces acting on the α particle
are in equilibrium. The α particle trajectories and the corresponding barriers
are represented also in Figs.18. Also we plotted the binary barriers of 248Cm
for the same splittings. Clearly the ternary barrier is higher than the binary one
and shifted to larger R distances. As previously discussed the α particle motion
in the transversal well is taken into account by substracting from the Qt value
its energy (35). This procedure does not provide for a ternary barrier the Qt
value when considering the ground and ˇrst two excited states. Therefore we
consider only the third and fourth excited states scenarios. In the same Figs.18,
the α particle trajectories and the corresponding ternary barriers for the third and
fourth excited states are represented by including the En(R) values in the barriers.
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Fig. 19. The cold alpha ternary yields of 252Cf for the Lagrange, adiabatic, second, third,
and fourth state scenarios, corresponding to different initial positions of the alpha particle
on the interfragment ridge, as a function of fragment mass. Also the cold binary yields of
248Cm are given. With the exception of ternary yields obtained in the Lagrange scenario,
which are very similar with the cold binary yields of 248Cm, all scenarios strongly favour
the splitting 4He+116Pd+132Sn with one spherical fragment

Obviously, for these scenarios the y0
α initial values of Eq.(36) are smaller than for

the Lagrange conˇguration, which assumes the maximum y0
α values at the top of

the α barriers, and even smaller than the values for the adiabatic scenario which
is based on the lowest energy conˇguration.

Knowing the barriers and Qt values, the relative alpha ternary yields are
given by the same formula like in the binary case (see Eq.(20)).

The preformation factors for an α particle at the surface of a deformed frag-
ment differs by orders of magnitude as compared to the spherical case. Neverthe-
less, in this case, like in the binary case, no preformation factors are considered.
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Fig. 20. Scatter diagram of the cold alpha ternary yields of 252Cf for Lagrange, adiabatic,
second, third, and fourth state scenarios versus the cold binary yields of 248Cm. Only the
ternary yields of 252Cf obtained in the Lagrange scenario are strongly correlated with the
cold binary yields of the daughter nucleus 248Cm. For all other possible scenarios only
the splitting with 132Sn is favoured

Once again, as fragment deformations we choose the ground state deformations
computed in the framework of the macroscopic-microscopic model. These defor-
mations play a very important role on barrier penetrabilities, i.e., on ternary yields.
The light fragments have mainly quadrupole deformations in contrast to heavy
fragments which have all kinds of deformations. The octupole deformations exist
for a small heavy fragment mass region 141 ≤ AH ≤ 148. The fragments with
mass numbers AL < 92 and AH < 138 are practically spherical. In the following
we shall include all deformation up to λ = 4 with positive values, i.e., oblate
shapes (β2 < 0) are transformed to prolate shapes (β2 > 0) and neck shapes
(β4 < 0) to shapes with positive hexadecupole deformations (β4 > 0).
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The ternary ˇssion yields for different scenarios: Lagrange, adiabatic, second,
third and fourth excited states, corresponding to different initial positions of the α
particle on the interfragment ridge are represented in Fig.19. Also the cold binary
yields for 248Cm are given. With the exception of the Lagrange scenario yields,
which are very similar to the cold binary yields of 248Cm, all other scenarios are
strongly favouring only the spherical splittings.

In Fig.20, for the same scenarios, the ternary yields versus binary yields of
the daughter nucleus 248Cm leading to the same splittings are displayed. Only
in the Lagrange scenario the alpha ternary yields are strongly correlated with the
cold binary yields of the daughter nucleus. Such a possibility is consistent to the
fact that binary barriers are very thin (with only 2Ä3 fm width) [34]. For the
other scenarios, adiabatic, second, third and fourth excited states, only the ternary
yields for spherical splittings, which are dominated by the Q-value principle
become important. This fact is not consistent with the existing experimental data
on cold alpha ternary yields [17], which indicate cold alpha ternary yields for
both regions.

B. Observation of 10Be Emission in the Cold Ternary Fission. Preliminary
data for the cold (neutronless) 10Be-accompanied and 14C- accompanied ternary
fragmentations of 252Cf were obtained [37, 38] using the Gammasphere with 72
Compton suppressed Ge detectors.

Contrary to α-ternary ˇssion whose ˇrst excited state is located very high in
energy (>20 MeV), 10Be has an excited state (2+) at an energy of 3.368 MeV.
Therefore we cannot expect cold ˇssion to the ˇrst excited state of the α particle.
Instead, 10Be and other heavier ternary fragments are more easily polarizable
and thus collective effects can be enhanced. The possible excitation of relative
vibrations and rotation modes of the three fragments will alter signiˇcatively the
angular distribution of the emitted fragments.

In order to detect directly 10Be, two complementary partners, 96Sr and 146Ba,
were chosen, which are situated near the peaks of the mass distribution of 252Cf.
Clearly the missing third particle is 10Be [39]. The coincidence spectrum was
obtained by gating on the 2+ → 0+ transition of energy 181.1 keV in 146Ba
and on the 4+ → 2+ transition of energy 977.5 keV in 96Sr. The transitions
4+ → 2+, with energy 332.6 keV, in 146Ba and 2+ → 0+ with energy 814.7keV
in 96Sr, were clearly observed [39].

Further, it was checked that the missing third fragment is really 10Be. Ex-
amining the high energy region of the same coincidence spectrum, a peak with
energy 3368 KeV was observed and assigned to the 2+ → 0+ transition in 10Be.

Recently, the Darmstadt group [40] reported evidence that 10Be nuclei, in a
rather high excited state of 3.37 MeV, are produced in ternary ˇssion. A puzzling
fact was that a part of the γ quanta with this energy are apparently emitted from
rest. Since the 
ight time of Be nuclei to the detector(≈ 2ns) is much longer
than the lifetime of the 3.37 MeV level (180 fs), we face a huge delay in the
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emission of the ternary particle, if we suppose that the emission takes place in
the detector. In other words the γ quanta seems to be emitted rather from a
quasi-bound trinuclear state, which has a lifetime much larger than the estimated
time of acceleration in the Coulomb ˇeld of the ˇssioning system. This possible
quasi-bound state arises in the potential pocket produced by the mutual interaction
of the three fragments.

C. Trajectory Calculations for the Alpha-Accompanied Ternary Cold Fis-
sion. In order to get a hint on the conˇguration and the dynamics of the ˇssioning
nucleus at scission a large number of studies were devoted in the past to the tra-
jectory calculation, specially for α particles emitted from the neck region [41Ä46].
The authors who considered the ˇnite size and the deformation effects [36,47,48]
showed that these geometrical factors are in
uencing sensitively the angular dis-
tributions of the α particle.

Making a good selection for the initial parameters of the trajectory calcula-
tions is a difˇcult task. This is due to the fact that probing various combinations
of assumed initial conditions and then computing the trajectories for comparison
with the available experimental data, similar results are often obtained. In the
hot alpha accompanied ternary ˇssion the initial conditions are taken in various
combinations. For example the initial kinetic energy of the two main fragments
and of the α emitted in the spontaneous ternary ˇssion should be around 0.5 MeV
according to the statistical theory and the equipartition principle [44,45]. On the
contrary, in the dynamical theory of ˇssion [49] the nascent fragments at scission
are predicted to be moving with appreciable kinetic energy (20Ä50 MeV).

As we showed in the previous section, for the cold ternary ˇssion the initial
conditions are better known. We have to establish the following initial conditions:

a) The Shape of the Fragments. The determination of the shape of the
fragments in the ternary cold ˇssion is facilitated, up to a certain extent, by the
peculiar characteristic of the process, i.e., the fragments should have very compact
shapes at the scission point and deformations close to those of their ground states.
One may next suppose that the shapes of the fragments will not be modiˇed when
the fragments move away in the Coulomb ˇeld of each other.

b) The Tip Distance d. Naturally, d should correspond to the conˇguration at
which the α particle is released. As can be inferred from Fig.13, the light particle
should stay between the two heavy fragments in a position which should avoid
its absorbtion by any of the fragments. We see in Fig.21, that for tip distances up
to 7 fm, the α is facing a thick barrier in the transversal direction. Eventually as
the distance between the fragments increases, the pocket in which the α is located
becomes more and more shallower until it disappears around d = 8 fm. Therefore
one may conclude from these qualitative arguments that the initial tip distance
between the two main fragments should not be larger than that corresponding to
the disappearence of the pocket.
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Fig. 21. The one-dimensional potential well of the α particle for three different tip dis-
tances: d = 6 fm (full line), d = 7 fm (dashed line), d = 8 fm (dotted line)

c) Initial Geometric Conˇguration of the α Particle. We invoke a receipt
proposed by Boneh et al. [42] considering as a possible choice for the α position,
the point of minimum potential energy (the saddle point of the potential energy
surface) that we mentioned in the ˇrst section of this chapter. In the case of our
deformation-dependent cluster model, where the nuclear forces are introduced
via the M3Y potential, this saddle point corresponds to the position where the
combined Coulomb and nuclear forces exerted by the heavy fragments on the α
particle cancel each other, and the potential surface will have a relative minima
at this point. The method by which this point is determined was explained earlier
so we will not return to it.

d) The Kinetic Energy of the α Particle E0
α. As we already noted above the

potential energy of the α positioned at the electro-nuclear saddle point will have
a minimum in the y direction. It is clear that the α particle has no component of
its velocity along the x axis since this would result in a possible absorbtion by
the deep potential wells of the two heavier fragments instead of being emitted(see
Fig.13). The only chance for the α particle to not be reabsorbed during the
descent of the decaying system from scission to the release point is to have a
momenta directed only along the y axis. Taking sections of the potential surface
along the y axis at x corresponding to the saddle point, the resulting potential slice
will look similar to a one-dimensional harmonic potential well (see Figs. 14 or
21). When the tip distance increases, the well becomes more and more shallow
until it vanishes completely. Using the ideas outlined in the ˇrst subsection
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of this chapter we approximate the potential Vα with an harmonic potential in
the y direction, centered at the saddle-point(see Eq.(34)), and eventually get an
estimation for the initial kinetic energy of the α supposing that it can be identiˇed
with the zero-energy in this harmonic potential well, i.e.,

Eα =
1

2
h̄

√
C

mα
, (37)

where the stiffness constant is given by the expression

C =
∑
i=L,H

1

R0
αi

∑
λ≥0

(
∂Vλ0λ(Rαi)

∂Rαi

∣∣∣∣
0

− λ(λ+ 1)

2

Vλ0λ(R0
αi)

R0
αi

)
, (38)

where R0
αi is the distance from the fragment i to the α located at the saddle point:

R0
αL =

D

1 +
√

ZL
ZH

, R0
αH =

D

1 +
√

ZH
ZL

, (39)

where D is the interfragment distance. For increasing tip distance the kinetic
energy of the α decreases. One might suppose that in the range 6Ä8 fm, for the
tip distance, the light particle has the possibility to escape by tunneling or by the
disappearance of the barrier. Further the velocity corresponding to this kinetic

energy, vα =
√

2Eα
mα

will have a nonzero component only with respect to the y

axis, according to the above discussion.
e) The Kinetic Energies of the Two Main Fragments E0

H , E0
L. Usually in

trajectory calculations for the spontaneous ˇssion different choices are taken for
the initial kinetic energies of the fragments emitted in the process. The initial
velocities of the heavy fragments are considered to have nonzero components only
along the x axis. The initial velocity of the light fragment vL(0) is related to the
initial velocity of the heavy fragment vH(0) in such a way that the total momentum
of the two ˇssion fragments is zero along the x axis, i.e., vL(0) = AH

AL
vH(0).

Although this assumption violates the conservation of linear momentum, the error
introduced is usually negligible. In order to determine the kinetic energies of
the two main fragments we make use of the considerations derived from the
deformed cluster model that we employed in a previous paper for the study of
the ternary cold ˇssion [34]. We strongly rely on the conclusion that we drew
earlier and which states the existence of a strong correlation between the cold
alpha ternary yields of 252Cf and the cold binary yields of the daughter nucleus
248Cm. For the binary cold ˇssion of 248Cm, the exit point from the potential
barrier is at a tip distance d around 3 fm, as can be seen in Fig. 22, for the
splitting 248Cm → 104Mo + 144Xe. This barrier is much thiner than the barrier
between the α particle and the heavier fragments, and thus in our model the ˇrst
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Fig. 22. The barrier between the two heavier fragments

two heavier fragments penetrate the potential barrier between them and later on
the light particle is emitted.

On ground of the cold ˇssion characteristics mentioned above one may con-
jecture that at the exit point (second turning point) of the two heavier fragments,
their potential energy is equal to QLH and their kinetic energy is equal to zero.
When the fragments move apart, i.e., their tip distance increases, their kinetic en-
ergies increase, too. In order to estimate the total kinetic energy of the fragments
we have to ˇnd out at which tip distance the release of the α is likely to occur
and compute at that point the potential energy, i.e.,

TKE(d) ≡ TKEL + TKEH = QLH − VLH(d). (40)

Using the conservation of linear momentum invoked above we have

TKEL =
AH

AL
TKEH (41)

and the individual kinetic energies in terms of the total kinetic energy reads

TKEi =
Aj

AH +AL
TKE(d) (i, j = L,H, i 6= j). (42)

If we choose d = 8 fm for the splitting considered in Fig.22, then we get
for the total kinetic energy of the two main fragments TKE=46.21 MeV which
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is much larger than the corresponding kinetic energy in the spontaneous ˇssion.
For d = 6 fm the kinetic energy will drop to TKE=28.78 MeV. Repeating this
calculation for other mass splittings we conclude that the kinetic energy of the
main fragments is ranging in the broad interval 25 Å 50 MeV, but as we shall
see bellow it is correlated to the kinetic energy of the α through the tip distance.

After determination of the conˇguration at the release point we have to
establish the forces acting between fragments in order to write down the equations
of motion. The forces are central, and the initial velocities are conˇned in the x−y
plane. Thus the problem is simpliˇed by a two-dimensional approximation. There
will be required six coordinates and six velocities, which are governed by a system
of twelve ˇrst-order ordinary differential equations. Contrary to other works we
take into account the forces exerted by the α on the fragments. We proceed to
the calculation of the trajectories by considering only the Coulomb forces. Since
the kinetic energies of the fragments are rather high, this approximation is good
even in the point-charge approximation.

In what follows we consider that the symmetry axes of the fragments are lying
in the same plane. Using the formalism presented in chapter 1, the interaction
between two heavy ions with orientation Ω1,Ω2 of their intrinsic symmetry axes
with respect to the ˇxed frame, is given by Eq.(4). In the present study the α is
spherical and thus the interaction between the α and one heavy fragment i(=L,H)
will get a simpliˇed form

V (Rαi) =
∑
λ

U 000
λ0λ(Rαi)Pλ(cos θαi). (43)

The following approximation can be applied for the two heavy fragments : Since
their relative orientation does not change signiˇcantly at the beginning of the
quasi-classical motion, one can neglect the relative orientation of the heavy frag-
ments:

V (RLH) =
∑

λ1λ2λ3

U 0 0 0
λ1λ2λ3

(RLH)Pλ3(cos θLH). (44)

The force acting between a pair of fragments can be written:

Fij = −∇V (Rij). (45)

The equations of motion of the three nuclei are:

MLr̈L = FLH − FLα, (46)

MH r̈H = −FLH − FHα, (47)

mαr̈α = FLα + FHα. (48)

Here we assumed that the two heavy fragments have the same multipolarity
in deformations. Presently we consider only quadrupole deformations.
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Fig. 23. The trajectory of the three fragments for the splitting a) 96Kr + 152Nd, b) 104Mo
+ 144Xe, and c) 116Pd + 132Sn

After solving numerically the above system of ordinary differential equations
we are able to compute relevant quantities from the experimental point of view
like the ˇnal angular distribution and ˇnal kinetic energies of the three fragments.

In Fig.23 we present the trajectories of the three fragments for the two ex-
treme initial conditions (with high and with low kinetic energies of the heavier
fragments) in a sequence of 10 time steps. The time scale is divided into incre-
ments of ∆t = 1.8× 10−22. In Fig.23a we display the trajectories of one of the
most asymmetric splittings, recorded in experiment, i.e., 156Nd + 92Kr. Since
in this case the α feels a stronger repulsion from the heavy fragment, it will
be de
ected at a larger angle in the direction of the light fragment. In the case
of the splitting 144Xe + 104Mo this de
ection will be less pronounced (Fig.23b)
and for the more equilibrated splitting, i.e., 132Sn + 116Pd, the α will be only
slightly de
ected (Fig.23c). We thus observe that in all the cases the α particle is
de
ected in the direction of the light fragment, but with a larger angle when the
initial kinetic energy of the heavier fragments is higher. This fact should be at-
tributed to the low energy of the α (≤ 1MeV) which makes it to feel for a longer
time the repulsion coming from the heavy fragment. In Ref.50 we computed the
ˇnal kinetic energies Efα and the asymptotic angles θfα for the three splittings
mentioned above when we employ point-like and size dependent forces. In all
cases we observe the decreasing of Efα with increasing tip distance d. Apparently,
the phenomenon of α-particle energy ampliˇcation in the cold ˇssion seems to
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Fig. 23b

Fig. 23c

follow the same pattern like in normal ˇssion. This effect should be attributed
solely to the predominant effect of the electric ˇeld lenses and less to deforma-
tion or ˇnite size effects. It should also be remarked the near constancy of the



950 S�ANDULESCU A., MIS�ICU S�., CARSTOIU F., GREINER W.

ˇnal α kinetic energy for different mass splittings at the same tip distance, a fact
already remarked long time ago in spontaneous ˇssion [43]. In what concerns the
angles at which α particles are emitted, their dependence on the mass splitting is
obvious. Deviations from the axis perpendicular to the ˇssion axis increase with
the mass ratio. The difference observed between the two sets of data points to an
important in
uence of the geometrical factors, which however does not alter the
general trends of the process.

There are available experimental data on the α (and other particles) spectra,
as a function of the total excitation energy, reaching TXE = 10 MeV within the
experimental accuracy performed by the Darmstadt group with the DIOGENES
set-up, and in a more recent work at the MPI Heidelberg [51]. These data do
not contain special effects in the alpha spectra, when the cold ˇssion regime is
approached, except that the mean energy of the α increases nearly linearly with
decreasing TXE. This would mean that if the linear dependence is extrapolated
to TXE = 0 MeV, the average kinetic energy of the α will approach the value
(≈ 18.7 MeV) [52]. The fact that the experimental value is slightly higher than
in hot ˇssion (15.9 MeV) is a sign that the α is emitted earlier in cold ˇssion,
according to the uncertainty relation for energy ∆E ·∆t ≈ h̄.

According to the calculations presented above, a range between 12 to 20 MeV
should be expected for the ˇnal kinetic energy if we consider that the α particle
occupies the lowest states in the pocket formed from the interaction with the two
heavier fragments.

The experiment can be reconciled with our calculations if we suppose that
the α is emitted before the pocket disappears, i.e., if the emission takes place
between 6 and 7 fm tip distance.

As has been pointed by Halpern [43], there is no reason to believe that the
third-particle ejection rates should be independent of the initial angular momen-
tum. In our case, the spin of the parent nucleus (252Cf) being zero, the angular
momentum is imparted to the fragments and their relative angular momentum is
mainly due to the creation of a molecular conˇguration at the scission point [53].
In the model presented above, we did not took into account the in
uence of col-
lective molecular excitations, like bending or wriggling, nor the torques exerted
between the fragments during quasi-classical motion [47].

5. DISCUSSION AND CONCLUSIONS

In the frame of a cluster model which includes quadrupole, octupole and
hexadecupole deformations, we studied the spontaneous binary and ternary cold
ˇssion of the nucleus 252Cf.

The calculations carried out for the binary cold ˇssion conˇrmed the existence
of two distinct regions where this process is enhanced. The results indicate two
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different mechanisms. In the heavy-mass region situated between 138 and 156,
the hexadecupole deformation gives rise to a large number of splittings. Here
the shell closure in neutrons or protons seems to not be involved. Although
the shell effects should play an important role in the odd-even differences by
enhancing the odd-odd mass splits with respect to the even-even one, our results
emphasize that the fragments are emitted with the deformations corresponding to
those of the ground state. In the spherical region our results give only a hint of
the importance of the magic nucleus 132Sn which is susceptible to be produced
in a heavy clusterization process, similar to that for light clusters. Here the
decay mechanism should be similar to the light cluster radioactivity, the daughter
nucleus 132Sn being traded for 208Pb and the heavy cluster 120Cd for 14C.

Based on a three-body cluster model, we studied the alpha ternary cold
(neutronless) fragmentations of 252Cf. Two regions of cold ˇssion yields were
obtained: one corresponding to large fragment deformations and another one to
spherical fragments, like in the case of binary fragmentation. It is worthwhile
to mention that based on the existing experimental data on cold alpha ternary
yields [17] we expect that the ˇrst region contains the main cold ˇssion yields
and that the second region represents only few percents of the whole process.
From the structure of the three body potential only few scenarios are possible all
of them related to the initial position of the α particle in the equatorial plane.
Only for the Lagrange scenario which corresponds to the alpha particle situated
on the top of the alpha barrier, we found that the cold alpha ternary yields of
252Cf are strongly correlated with the cold binary yields of the daughter nucleus
248Cm. For all other considered scenarios, adiabatic and some excited states
in the interfragment ridge well, the alpha ternary cold ˇssion yields are existing
mainly for the splittings with one spherical fragment. Due to the fact that there are
experimental data for both regions, we conclude that only the Lagrange scenario
can describe the cold alpha ternary process. We should mention also that the
cold ˇssion yields depend dramatically on some parameters like diffusivity a. If
we choose larger a values for the deformed nuclei than for spherical ones, we
can enhance drastically the corresponding yields. Also by choosing larger values
for diffusivity for odd-even fragmentations than for even-even fragmentations,
we obtain a larger odd-even effect. We expect the largest yield for odd-even
and odd-odd fragmentations. Evidently, such effects must exist for excited states
when the level density is important. Further experimental data are necessary in
order to clarify such effects.

We computed the ˇnal kinetic energies of the fragments emitted in the α
accompanied cold ˇssion of 252Cf taking into account the ground state quadru-
pole deformation and the ˇnite-size effects of the fragments and integrating the
equations of motion for a three-body system subjected only to Coulomb forces.
The comparison with the available experimental data points to an earlier emission
of the light particle in the cold ˇssion.
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A striking feature of the cold ˇssion yields close to the highest TKE values
permitted by the Q-values is the fact that many odd-odd splittings have values
larger than the neighbouring even-even fragmentations. This feature of cold
fragmentations suggests that either the cold ˇssion yields are strongly in
uenced
by the level density of the fragments or that the deformations of odd-dd fragments,
possibly the triaxial ones, are larger than those corresponding to even-even ones.

The recent observation of 10Be accompanying the ternary cold ˇssion of 252Cf
opened the interest to search for possible molecular states in cold fragmentation
processes. The possible occurence of such collective excitations is supported by
the fact that cold ˇssion is just a natural extension of cluster radioactivity to heavy
nuclei.
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