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GROUND STATE CORRELATIONS
BEYOND RANDOM PHASE APPROXIMATION

AND COLLECTIVE EXCITATIONS
V.V. Voronov∗, D. Karadjov∗∗, F. Catara∗∗∗, A.P. Severyukhin∗

We present a method which allows one to treat correlations in ˇnite Fermi systems in a more
consistent way than Random Phase Approximation (RPA). We derive a closed, nonlinear set of
equations which determines the energies and wave-functions of the excited states as well as the
single-particle occupation numbers in the ground state. As an example we apply it to metallic
clusters. We show that our method allows one to correct for the inadequacy of standard RPA in
cases where the use of quasiboson approximation becomes questionable. The basic equations of the
nuclear quasiparticle-phonon model are generalized for the case when RPA phonons are replaced
by the phonons of the extended RPA (ERPA). The properties of the low-lying vibrational states in
spherical nuclei are studied within the developed approach.

�·¥¤¸É ¢²¥´ ³¥Éµ¤, ±µÉµ·Ò° ¶µ§¢µ²Ö¥É É· ±Éµ¢ ÉÓ ±µ··¥²ÖÍ¨¨ ¢ ±µ´¥Î´ÒÌ Ë¥·³¨-¸¨¸É¥³ Ì
¡µ²¥¥ ¸µ£² ¸µ¢ ´´Ò³ ¶ÊÉ¥³, Î¥³ ¢ ¶·¨¡²¨¦¥´¨¨ ¸²ÊÎ °´ÒÌ Ë § (�‘”). �µ²ÊÎ¥´  § ³±´ÊÉ Ö ´¥-
²¨´¥°´ Ö ¸¨¸É¥³  Ê· ¢´¥´¨°, ±µÉµ· Ö µ¶·¥¤¥²Ö¥É Ô´¥·£¨¨ ¨ ¢µ²´µ¢Ò¥ ËÊ´±Í¨¨ ¢µ§¡Ê¦¤¥´´ÒÌ
¸µ¸ÉµÖ´¨°,   É ±¦¥ ¨ µ¤´µÎ ¸É¨Î´Ò¥ Î¨¸²  § ¶µ²´¥´¨Ö ¢ µ¸´µ¢´µ³ ¸µ¸ÉµÖ´¨¨. �·¨¢¥¤¥´ ¶·¨³¥·
¶·¨³¥´¥´¨Ö ÔÉµ° ¸¨¸É¥³Ò ± ¨¸¸²¥¤µ¢ ´¨Õ ³¥É ²²¨Î¥¸±¨Ì ±² ¸É¥·µ¢. �µ± § ´µ, ÎÉµ ´ Ï ³¥Éµ¤
¶µ§¢µ²Ö¥É ¨¸¶· ¢²ÖÉÓ ´¥¤µ¸É É±¨ µ¡ÒÎ´µ£µ �‘”, ±µ£¤  ¨¸¶µ²Ó§µ¢ ´¨¥ ±¢ §¨¡µ§µ´´µ£µ ¶·¨¡²¨-
¦¥´¨Ö ¸É ´µ¢¨É¸Ö ¸µ³´¨É¥²Ó´Ò³. �¸´µ¢´Ò¥ Ê· ¢´¥´¨Ö ±¢ §¨Î ¸É¨Î´µ-Ëµ´µ´´µ° ³µ¤¥²¨ Ö¤· 
µ¡µ¡Ð¥´Ò ´  ¸²ÊÎ °, ±µ£¤  Ëµ´µ´Ò �‘” § ³¥´ÖÕÉ¸Ö ´  Ëµ´µ´Ò · ¸Ï¨·¥´´µ£µ �‘”. ‚ ÔÉµ³
Ê¸µ¢¥·Ï¥´¸É¢µ¢ ´´µ³ ¶µ¤Ìµ¤¥ ¨¸¸²¥¤ÊÕÉ¸Ö ¸¢µ°¸É¢  ´¨§±µ²¥¦ Ð¨Ì ¢¨¡· Í¨µ´´ÒÌ ¸µ¸ÉµÖ´¨°.

1. INTRODUCTION

The simplest theory of excited states of a quantum system where correlations
in the ground state can be taken into account is the Random Phase Approxima-
tion (RPA). In this theory one introduces a set of operators Qν whose vacuum
represents the ground state of the system, while the action of Q†

ν on this vacuum
creates the excited states. Starting from a HartreeÄFock (HF) or a HartreeÄFockÄ
Bogoliubov (HFB) state as a reference state to deˇne single-particle levels, the
Q†

ν operators are built as linear superpositions of particle-hole (p-h) or quasi-
particle (qp) pair operators. The coefˇcients of these linear forms are solutions
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of equations which can be derived by using the equations-of-motion method [1].
If the Hamiltonian contains one- and two-body operators, the solution of these
equations implies the evaluation of one- and two-body density matrices. In stan-
dard RPA, this difˇculty is overcome by replacing the correlated ground state
with the uncorrelated HF or HFB state whenever density matrices are needed. In
the RPA equations there will appear expectation values of commutators of p-h or
qp creation and annihilation operators and actually, the above approximation is
equivalent to neglecting terms such that the commutators become those of boson
operators. This is the origin of the name ®quasiboson approximation¯ attached to
this approximation.

The above remarks explain why possible improvements of RPA have been
examined so far from two quite different points of view: either reformulating the
whole theory in a boson formalism, paying attention to the violation of the Pauli
principle [2], or remaining in the fermion space, attempting to eliminate as far as
possible the above inconsistency [1,3Ä16].

It is worth mentioning that renormalized RPA equations that include cor-
rections for the ground state correlations (GSC) have been applied not only
to the study of the properties of the low-lying isoscalar vibrations in spherical
nuclei [11Ä13], but also to the investigation of the charge-exchange modes in nu-
clei [17Ä19] and the giant resonances in metal clusters [15,16]. The GSC beyond
RPA for nuclei at ˇnite temperature have been considered in Refs. 20, 21.

In this work we follow the fermionic approach and we discuss an application
of the extended RPA to describe collective excitations in metal clusters [15, 16]
and spherical nuclei [13, 22]. We demonstrate that the basic equations of the
Quasiparticle-Phonon-Model (QPM) developed by V.G.Soloviev and coauthors
[23Ä26], where the RPA phonons are used as a basis, can be generalized to
the ERPA case. Taking into account that the GSC beyond RPA results in a
modiˇcation of the phonon-phonon coupling we study also the in|uence of such
effects on properties of vibrational states in some spherical nuclei.

2. THE GENERAL SCHEME OF ERPA FOR SYSTEMS
WITHOUT PAIRING

First of all we consider ˇnite fermionic systems like metal clusters or atomic
nuclei with closed shells where there is no pairing. The spirit of our method is
close to that of Ref. 6 since we aim at using equations built with a correlated
reference state |0〉 which is itself determined by these equations and therefore,
the solution will be reached only after an iterative process.

Physical situation where ERPA can be necessary is found in clusters of atoms.
In particular, recent RPA calculations based on jellium model for metallic clusters
have shown [27, 28] that the values of occupation numbers in the ground state
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can be rather different from the HF values, namely 0 and 1 for unoccupied and
occupied single-particle states, respectively. This is just a case where the HF state
does not resemble the correlated ground state and therefore, the standard RPA is
clearly inconsistent and an improvement of the theory is required.

In this section we propose a generalization of standard RPA where ground
state correlations are taken into account in a more consistent way. The formalism
we are going to introduce goes one step further in the direction undertaken in
previous papers [11, 14], where the Hara approach [3], and an improved version
of it, were applied to the study of atomic nuclei.

2.1. RPA Equations and Self-Consistency. Let us denote by |0〉 the ground
state of the system and by |ν〉 its excited states, which are assumed to be linear
combinations of p-h and hole-particle (h-p) conˇgurations built upon |0〉

|ν〉 ≡ Q†
ν |0〉 ≡

∑
ph

[ψν
phA

†
ph − φν

phAph]|0〉 , (2.1)

where p (h) represents the quantum numbers of an unoccupied (occupied) single-
particle state in the uncorrelated HF reference state |HF 〉. In the above equation
we have introduced renormalized p-h creation and annihilation operators

A†
ph =

∑
p′h′

Nph,p′h′a†p′ah′ , (2.2)

where the matrix N will be speciˇed below. In order to avoid unnecessarily
complicated expressions, we do not introduce coupling to total quantum numbers
(angular momemtum,etc.) in the notations. By imposing that |0〉 is the vacuum
for the Qν operators

Qν |0〉 = 0 , (2.3)

the orthonormality conditions for the excited states read

δν′ν = 〈ν′|ν〉 = 〈0|[Qν′ , Q†
ν ]|0〉

=
∑

ph,p′h′

ψν′∗
p′h′ψν

ph〈0|[Ap′h′ , A†
ph]|0〉 + φν′∗

p′h′φν
ph〈0|[A

†
p′h′ , Aph]|0〉

=
∑

ph,p′h′

∑
p1h1,p′

1h′
1

N∗
p′h′,p1h1

Nph,p′
1h′

1
(ψν′∗

p′h′ψν
ph − φν′∗

ph φ
ν
p′h′) (2.4)

×(δp1p′
1
〈0|a†h1

ah′
1
|0〉 − δh1h′

1
〈0|a†p′

1
ap1 |0〉) .

If we assume for simplicity that the one-body density matrix is diagonal

〈0|a†αaβ |0〉 = nαδαβ , (2.5)



908 VORONOV V.V. ET AL.

and choose

Nph,p′h′ = δpp′δhh′(nh − np)−1/2

≡ δpp′δhh′D
−1/2
ph , (2.6)

we obtain ∑
ph

(ψν′∗
ph ψ

ν
ph − φν′∗

ph φ
ν
ph) = δνν′ , (2.7)

i.e., the same condition as in standard RPA. The same procedure was used in Ref. 1
to derive the ®Renormalized RPA¯. The equations determining the amplitudes ψ
and φ can be obtained by using the equations-of-motion method [1,29]. One gets(

A B
B∗ A∗

)(
ψν

φν

)
= Eν

(
ψν

−φν

)
, (2.8)

where Eν is the excitation energy of |ν〉 and the matrices A and B have elements

Aph,p′h′ = 〈0|
[
Aph, H,A

†
p′h′

]
|0〉 , (2.9)

and
Bph,p′h′ = −〈0|

[
A†

ph, H,A
†
p′h′

]
|0〉 , (2.10)

H being the Hamiltonian of the system. In the above equations, the symmetrized
double commutators are deˇned as

[A,B,C] =
1
2
{[A, [B,C]] + [[A,B], C]} . (2.11)

As is apparent, equation (2.8) and the orthonormality condition (2.7) are formally
identical to those of standard RPA, differing from the latters only in the fact that
the elements of the matrices A and B contain the correlated ground state of the
system rather than the HF one.

2.2. One-Body and Two-Body Density Matrices. We stress that Eqs. (2.7)Ä
(2.10) are exact, within the space spanned by p-h and h-p elementary excitations.
However, the evaluation of A and B matrix elements requires the knowledge of
the one- and two-body density matrices. Here, we show that the one-body density
matrix, and the p-h part of the two-body density matrix can be expressed exactly
in terms of the ψ and φ amplitudes. Only the particle-particle and hole-hole parts
of the two-body density matrix do not lend themselves easily to such expressions
and for these parts we make an ansatz as explained below.

For the one-body density matrix, we use the number operator method [30]
and ˇnd

nh = 1 −
∑
pνν′

[δνν′ − 1
2

∑
p′h′

Dp′h′ψν′

p′h′ψν∗
p′h′ ]Dphφ

ν
phφ

ν′∗
ph , (2.12)
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and

np =
∑
hνν′

[δνν′ − 1
2

∑
p′h′

Dp′h′ψν′

p′h′ψν∗
p′h′ ]Dphφ

ν
phφ

ν′∗
ph . (2.13)

The above expressions are exact up to terms O(|φ|4).
Let us comment brie|y these results. The occupation numbers of standard

RPA, namely

nh = 1 − 1
2

∑
pν

|φν
ph|2 , (2.14)

and

np =
1
2

∑
hν

|φν
ph|2 , (2.15)

are easily obtained by considering only terms up to O(|φ|2) and approximating
Dph 	 1. The expressions for nh and np of Eqs. (2.12) and (2.13) are also
different, and more reˇned than those introduced in Refs. 3 and 14. In particular,
in Ref. 14 an approximation suggested by boson mappings was used leading to

nh = 1 −
∑
pν

Dph|φν
ph|2 , (2.16)

and
np =

∑
hν

Dph|φν
ph|2 . (2.17)

By maintaining only terms up to O(|φ|2) in Eqs. (2.12) and (2.13) one gets
expressions similar to those used in Ref. 14, differing from them by the factor
1
2 . It is interesting to remark that the same correction factor with respect to
the standard RPA expressions [31] was found in Refs. 9, 30 many years ago. In
conclusion, Eqs. (2.12) and (2.13) are deˇnitely better than those derived and
used in Ref. 14, at least because they tend continuously to the standard RPA
expressions when the backward amplitudes φ are small.

We turn now to the part of the two-body density matrix containing at least
one p-h pair. First, we invert Eq. (2.1) and its adjoint to express the operators A†

and A in terms of Q† and Q:

A†
ph =

∑
ν

(ψν∗
phQ

†
ν + φν

phQν) , (2.18)

Aph =
∑

ν

(ψν
phQν + φν∗

phQ
†
ν) . (2.19)

Using the above equations and (2.3) one easily ˇnds

〈0|a†p1
a†h2

ah3ah4 |0〉 = 〈0|a†h1
a†p2

ap3ap4 |0〉 = 0 . (2.20)
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Similarly one gets

〈0|a†p1
a†h2

ap3ah4 |0〉 = −δp1p3δh2h4nh2 +D
1/2
p1h4

D
1/2
p3h2

∑
ν

ψν
p3h2

ψν∗
p1h4

, (2.21)

and

〈0|a†p1
a†p2

ah3ah4 |0〉 =
1
2
[〈0|a†p1

a†p2
ah3ah4 |0〉 − 〈0|a†p2

a†p1
ah3ah4 |0〉] =

=
1
2
[D1/2

p2h3
D

1/2
p1h4

∑
ν

φν
p2h3

ψν∗
p1h4

−D
1/2
p1h3

D
1/2
p2h4

∑
ν

φν
p1h3

ψν∗
p2h4

] . (2.22)

The terms of the two-body density matrix we have considered so far have
been expressed self-consistently in terms of the ψ and φ amplitudes. In order
to calculate the remaining terms (of the particle-particle and hole-hole type), we
have to introduce some approximation. We recall that

〈HF |a†h1
a†h2

ah3ah4 |HF 〉 = δh1h4δh2h3 − δh1h3δh2h4 , (2.23)

and
〈HF |ap1ap2a

†
p3
a†p4

|HF 〉 = δp1p4δp2p3 − δp1p3δp2p4 . (2.24)

When the two-body density matrix is evaluated with respect to the correlated
ground state |0〉 instead of |HF 〉, the above equations are no longer valid. We
propose to make the following diagonal ansatz:

〈0|a†h1
a†h2

ah3ah4 |0〉 = (δh1h4δh2h3 − δh1h3δh2h4)〈0|a
†
h1
a†h2

ah2ah1 |0〉 , (2.25)

and

〈0|a†p1
a†p2

ap3ap4 |0〉 = (δp1p4δp2p3 − δp1p3δp2p4)〈0|a†p1
a†p2

ap2ap1 |0〉 . (2.26)

With this ansatz the expressions (2.25), (2.26) reduce to the HF expressions
(2.23), (2.24) when calculated in |HF 〉, and they are manifestly antisymmetric.
By using again the number operator method we calculate up to terms O(|φ|4) the
diagonal matrix elements in the r.h.s. of the above equations and obtain

〈0|ah1ah2a
†
h2
a†h1

|0〉 =
1
2

∑
νν′

(
∑
p′

Dp′h1ψ
ν′

p′h1
ψν∗

p′h1
)(
∑

p

Dph2φ
ν
ph2

φν′∗
ph2

) , (2.27)

〈0|a†p1
a†p2

ap2ap1 |0〉 =
1
2

∑
νν′

(
∑
h′

Dp2h′ψν′

p2h′ψν∗
p2h′)(

∑
h

Dp1hφ
ν
p1hφ

ν′∗
p1h) . (2.28)

In this way one can calculate the matrices A and B by expressing them in terms
of the ψ and φ amplitudes. Therefore, Eqs. (2.8) become a set of nonlinear
equations in the latter unknowns. They can be solved iteratively, starting from
some initial guess for the ψ's and φ's and calculating with them A and B. The
solution of Eqs. (2.8) gives a new set of ψ's and φ's, and so on until convergence
is reached.
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2.3. Extended Random Phase Approximation and Simpliˇed Versions.
As is well known, the RPA equations can also be obtained by linearizing the
equations of motion [1]. All the elements of the two-body density matrix ap-
pearing in the commutator of the Hamiltonian with a p-h operator are contracted
with respect to a reference state. In this way one obtains a quantity linear in the
p-h operators. Substituting this in the double commutator of Eqs. (2.9), (2.10),
one gets an expression for the matrices A and B containing only the one-body
density matrix. When the reference state is chosen to be |HF 〉, one obtains again
the standard RPA. The generalization we propose, as a simpliˇed version of the
more general ERPA, is to use the same linearization method but choosing the
correlated ground state |0〉 as reference state. Starting from Eqs. (2.9), (2.10) and
performing the above described linearization procedure one gets

Aph,p′h′ =
1
2
(D1/2

ph D
−1/2
p′h′ +D

1/2
p′h′D

−1/2
ph )×

×
{

[(p′|t|p) +
∑
α

nα(p′α|v|pα)]δhh′ − [(h|t|h′) +
∑
α

nα(αh|v|αh′)]δpp′

}
+

+D1/2
ph D

1/2
p′h′(hp′|v|ph′) , (2.29)

and
Bph,p′h′ = D

1/2
ph D

1/2
p′h′(hh′|v|pp′) , (2.30)

where t is the kinetic-energy operator; and v, the two-body interaction. We solve
the equations of motion (2.8) with the general expressions (2.29) and (2.30) for the
matrix A and B in the basis diagonalizing the one-body density matrix. The latter
is determined as follows. Following closely the number operator method [15] one
can get in a generic basis

〈0|a†pap′ |0〉 =
∑
hνν′


δν′ν − 1/2

∑
p1h1

〈0|a†h1
ap1 |Ψν′〉〈Ψν |a†p1

ah1 |0〉


×

×〈0|a†pah|Ψν〉〈Ψν′ |a†hap′ |0〉 (2.31)

and

〈0|a†hah′ |0〉 = δhh′ −
∑
pνν′


δν′ν − 1/2

∑
p1h1

〈0|a†h1
ap1 |Ψν′〉〈Ψν |a†p1

ah1 |0〉


×

×〈0|a†pah|Ψν〉〈Ψν′ |a†h′ap|0〉 , (2.32)

which can be expressed in terms of the ψ and φ amplitudes and the matrix N
using Eqs. (2.1), (2.2), and (2.3). In order to solve the so-obtained equations, we
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use an iterative procedure and assume that at the nth iteration we can approximate
the matrix N by using the diagonal form Eq. (2.6). We get then

〈0|a†pap1 |0〉 =
∑
hνν′


δν′ν − 1/2

∑
p′h′

Dp′h′ψν′

p′h′ψν∗
p′h′


D1/2

ph D
1/2
p1hφ

ν
phφ

ν′∗
p1h (2.33)

and

〈0|a†hah1 |0〉 = δhh1 −
∑
pνν′


δν′ν − 1/2

∑
p′h′

Dp′h′ψν′

p′h′ψν∗
p′h′


D1/2

ph D
1/2
ph1

φν
phφ

ν′∗
ph1

,

(2.34)
where the occupation numbers in the right-hand sides (rhs) are approximate values
at the nth iteration. By diagonalizing the matrices (2.33) and (2.34) one gets a
new set of occupation numbers which are substituted in the rhs, and so on.

An essential simpliˇcation [15] can be done by neglecting the deviations from
0 and 1 of the occupation numbers appearing in the square brackets of Eq. (2.29),
which then reduce to the HF single-particle energies εp and εh. The expression
(2.29) of the matrix A simpliˇes then to

Aph,p′h′ = δpp′δhh′(εp − εh) +D
1/2
ph D

1/2
p′h′(hp′|v|ph′) . (2.35)

Equations (2.30) and (2.35) are identical to those used in Refs. 11, 14. How-
ever, the occupation numbers appearing in the coefˇcients Dph as given by
Eqs. (2.12), (2.13) are different from those of Refs. 11, 14 as discussed in the pre-
vious section. The above equations are also very similar to those proposed by
Rowe [30] in his ®Renormalized RPA¯. We see that the only difference with re-

spect to standard RPA is the presence of the factor D1/2
ph D

1/2
p′h′ which renormalizes

the matrix elements of the residual interaction. Since these factors are less than
or equal to unity, their effect will be to reduce the interaction matrix elements
involving particle and hole states whose occupation numbers differ appreciably
from the HF values.

Some recent applications of the above model (2.30), (2.35) with occupation
numbers calculated as in Ref. 14, have shown that this quenching of the residual
interaction plays an important role in the study of double β decay [32].

2.4. An Application to Metallic Clusters As the ˇrst example [15] for ERPA
we apply the model (2.30), (2.35) with the occupation numbers (2.12), (2.13) to
a speciˇc example of metallic cluster.

Let us consider a metallic cluster consisting of N ions and N valence elec-
trons. We assume for simplicity that the ionic background can be modelized by
a jellium of constant density inside a sphere of radius R = rsN

1/3, where rs is
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the WignerÄSeitz radius of the atoms:

n(r) = n0θ(R− r) . (2.36)

The jellium produces an external ˇeld acting on the valence electrons:

Vext(r) = −
∫

n(r′)
|r − r′|d

3r′ . (2.37)

The results will be expressed in eV and �A. The calculations are done for the
cluster Na58 (rs=3.93 a0).

We have ˇrst solved the HartreeÄFock equations with a box boundary con-
dition at a radius twice that of the jellium. We have then solved the standard
RPA equations in the p-h conˇguration space, truncated so that for each multi-
polarity the Thouless theorem on EWSR is satisˇed within 0.1%. Calculations
have been done for excited states of total spin S = 0 and S = 1. It is known
that, especially in the S = 1 channel, the screening of exchange interactions due
to effects outside RPA is of paramount importance [33]. However, in order to
study how much the more consistent treatment of ground state correlations in
ERPA allows one to correct for the inadequacies of RPA, avoiding any confusion
coming from possible double counting due to the use of a correlation term in the
energy functional, we have decided to use the bare Coulomb interaction among
electrons in the calculations we are going to discuss.

We examine ˇrst the occupation numbers and compare the RPA values,
Eqs. (2.14), (2.15) with the ERPA ones, Eqs. (2.12), (2.13). In all cases we have
considered states of multipolarities ranging from L = 0 to L = 6 in the summa-
tions appearing in those equations. When only the S = 0 degrees of freedom
are included, the two sets of values are close to each other and to the HF limits,
0 and 1. This is shown in Fig. 1, where for the occupied states the quantities
(nh − 1) rather nh are reported in order to show in a clearer way the deviations.
The situation is quite different when the S = 1 modes are also included. In the
lower panel of Fig. 2 we see that now the RPA values deviate strongly from the
HF limits, the maximum deviation being 0.32 for the last occupied single-particle
state. The total number of electrons in the single-particle states below the Fermi
level is 46.42. These ˇndings clearly point to the fact that the quasi-boson ap-
proximation is not valid, and therefore standard RPA is not adequate, when both
S = 0 and S = 1 channels are considered.

This conclusion was already reported in Ref. 15. The corresponding values
obtained within ERPA are shown in the upper panel of the same Fig. 2. When
ground state correlations are taken into account in a more consistent way, the
occupation numbers turn out to be much closer to 0 and 1, with a maximum
deviation equal to 0.15, and the total number of electrons below the Fermi level
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is increased to 51.64. Therefore, we can say that RPA overestimates the cor-
relations in the ground state and important modiˇcations are introduced by the
use of ERPA.

Fig. 1. Occupation numbers np for particle states and the opposite of depletion numbers
nh − 1 for hole states. In the lower and in the upper panel the RPA and ERPA results,
respectively, are reported. Only spin S = 0 states are included in the calculations. In
abscissa the single-particle energies in eV are indicated

The different sets of occupation numbers lead to the 3 electron densities ρ(r)
shown in Fig. 3, namely those calculated in HF, RPA and ERPA. The wiggles
shown by the HF density in the interior part are smoothed when RPA correlations
are included. In addition to that, the tail of the RPA density is much longer than
the HF one. The ERPA density has a behaviour intermediate between the two
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Fig. 2. As in Fig. 1, but including both S = 0 and S = 1 states

others. This difference is re|ected in the electronic spillout

∆Z = 4π
∫ ∞

R

r2ρ(r)dr (2.38)

which is 6.03, 8.94, and 7.85 respectively in the three approaches.
The more general method described in the previous section has been applied

recently [16] to study the electronic properties of alkali metal clusters within the
jellium approximation. For the interaction of the delocalized electrons with the
ionic background and among themselves we use the bare Coulomb interaction
rather than one derived from density functional including correlation terms. This
choice is suggested by the fact that RPA and its generalizations explicitly include
some correlations which, in principle, are also present in the density functional.
Therefore, in order to avoid possible double countings, we prefer to use the bare
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interaction. Its exchange parts are calculated exactly, without making local-density
approximation.

Fig. 3. Electron density ρ as obtained in HF (dot-
dashed line), RPA (dotted line) and ERPA (full line).
The arrow indicates the radius of the jellium sphere

First of all we solve the
HF equations in order to ˇx the
occupied and unoccupied sin-
gle particle states, whose wave
functions will be used as a ze-
roth order basis. Next we cal-
culate the occupation numbers
with an initial guess for the ψ
and φ amplitudes. The best
would be to make use of the
coefˇcients, which result from
the RPA equations. However,
in some cases these equations
are found to have imaginary
solutions. This happens, for
example, for some states with
spin S = 1 and it is due to
the fact that the bare Coloumb
interaction is too much attrac-
tive in the S = 1 channel. The
states having imaginary RPA
energy are not included in this

preliminary step. Then, we solve iteratively Eq. (2.8) with these values of the
occupation numbers. Due to the fact that the interaction entering Eqs. (2.29) and
(2.30) is quenched when the occupation numbers are different from 0 and 1, we
ˇnd that the next solutions are real. With the new ψ and φ coefˇcients we can
start the complete calculation which is again based on an iterative procedure. We
compute the one-body density matrix, diagonalize it and recalculate the A and B
matrices in the new basis. At this stage, the terms in curly brakets in Eq. (2.29)
are also calculated correctly. Then we solve iteratively Eq. (2.8) in the new basis
and with the new occupation numbers. The new set of ψ and φ is used to recal-
culate the one-body density matrix, which is again diagonalized and so on. The
procedure is continued until the maximum difference in the occupation numbers
between two successive iterations is less than a chosen limit. In the calculations
we are going to present, this limit has been put equal to 10−6.

In Fig. 4 we illustrate the S = 0 dipole strength distributions for the al-
kali clusters NaN with N = 8, 20, 40, and 58. Solid lines refer to calculations
performed within the present approach whereas dashed lines refer to standard
RPA calculations. In all cases one observes an overall shift of the distributions
to lower energies, as compared to the RPA results, while the basic structure of the
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Fig. 4. S = 0 dipole strength distributions for the alkali clusters NaN with N = 8 (a),
20 (b), 40 (c), and 58 (d). Solid lines refer to calculations performed within the present
approach, whereas dashed lines refer to standard RPA calculations

distributions remains essentially unchanged. A comparison with the experimental
photoabsorption cross sections turns out particulary useful. In the case of Na8,
the experimental distribution [34] exhibits a broad peak centered at about 2.5 eV,
which is in good agreement with the plot of Fig. 4. A similar good agreement
is observed in the case of Na20 where the experimental distribution [35] shows
two broad peaks centered at about 2.4 and 2.8 eV, the ˇrst peak with a strength
more than double the second one. Both in the case of Na8 and Na20, the shift
produced by the present calculations with respect to the RPA ones improves the
ˇt with experimental data.
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The situation is less transparent in the case of Na40. Here, in fact, the
experimental distribution [35] exhibits two broad peaks at about 2.4 and 2.65 eV
and the ˇrst one is higher than the second one. These data have to be compared
with theoretical predictions which, in the present approach, shows two peaks at
energy rather close to the experimental values (about 2.35 and 2.7 eV) but with
the second one about twice the ˇrst one. The same situation occurs in the RPA
case where, in addition, the energy of the second peak is found rather larger
(about 2.9 eV). Therefore, the present calculations improve the RPA results for
what concerns the energy of the peaks, but leave unsolved the problem of the
relative height of the peaks.

3. GROUND STATE CORRELATIONS
AND QUASIPARTICLE PHONON MODEL

The pairing is very important to describe properties of nuclei with open shells.
To treat nuclear spectra one can replace the p-h pair operators A†

ph and Aph by
the two-quasiparticle ones and in many cases the quasiparticle RPA is the basic
method to treat the nuclear vibrational motion [26,29,36]. It is well known that
due to the anharmonicity of vibrations there is a coupling between one-phonon
and more complex states [26, 36]. Taking into account such a coupling it is
possible to describe particularities of the low-lying states and damping of the
giant resonances [23Ä26]. Usually such coupling was considered for the RPA
phonons only [26].

In the present paper we use phonons of the extended RPA [12] as a basis on
which the quasiparticle phonon model (QPM) [26] equations are generalized so as
to account for the GSC in the description of nuclear vibrational states constructed
by one- and two-phonon conˇgurations. Besides the GSC, we take into account
the Pauli principle corrections arising in the two-phonon terms due to the fermion
structure of the phonon operators [37]. As an example we study the effect of
the GSC on the energies, transition probabilities and transition densities of the
low-lying vibrational states in Zn isotopes and compare present results with the
results within other approaches.

3.1. ERPA and the QPM Basic Formulae. We employ the QPM Hamiltonian
including an average nuclear ˇeld described as the WoodsÄSaxon potential, pair-
ing interactions, the isoscalar and isovector particleÄhole (pÄh) and (pÄp) residual
forces in separable form with the BohrÄMottelson radial dependence [36]:

H =
∑

τ


∑

jm

τ
(Ej − λτ )a†jmajm − 1

4
G(0)

τ : P †
0 (τ)P0 (τ) : −
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1
2

∑
a

∑
σ=±1

∑
λµ

((
κ

(λ,a)
0 + σκ

(λ,a)
1

)
: M (a)+

λµ (τ)M (a)
λµ (στ) :

).(3.1)
We sum over the proton(p) and neutron(n) indexes and the notation {τ =

= (n, p)} is used and a change τ ↔ −τ means a change p ↔ n; a is the
channel index a = {ph, pp}. The single-particle states are speciˇed by the
quantum numbers (jm); Ej are the single-particle energies; λτ is the chemical

potential; G(0)
τ and κ(λ) are the strengths in the pÄp and in the pÄh channel,

respectively. The monopole pair creation and the multipole operators entering the
normal products in (3.1) are deˇned as follows:

P+
0 =

∑
jm

(−1)j−ma+
jma

+
j−m, (3.2)

M
(ph)+
λµ (τ) =

1√
2λ+ 1

∑
jj′mm′

τ
(−1)j+m〈jmj′ −m

′ | λµ〉f (λ)
j′j a

+
jmaj′m′ ,

(3.3)

M
(pp)+
λµ (τ) =

(−1)λ−µ

√
2λ+ 1

∑
jj′mm′

τ
〈jmj′

m
′ | λµ〉f (λ)

jj′ a
+
jma

+
j′m′ , (3.4)

where f (λ)

jj′
are the single particle radial matrix elements of residual forces.

In what follows we work in quasiparticle (qp) representation, deˇned by the
canonical Bogoliubov transformation:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m. (3.5)

The Hamiltonian can be represented in terms of bifermion quasiparticle operators
(and their conjugate ones):

B(jj
′
;λµ) =

∑
mm′

(−1)j
′
+m′〈jmj′

m
′ | λµ〉α+

jmαj′−m′ , (3.6)

A+(jj
′
;λµ) =

∑
mm′

〈jmj′
m

′ | λµ〉α+
jmα

+
j′m′ . (3.7)

The phonon creation operators are deˇned in the 2-qp space in a standard
fashion:

Q+
λµ,i =

1
2

∑
jj′

{ψλi
jj′

A+(jj
′
;λµ) − (−1)λ−µϕλi

jj′
A(jj

′
;λ− µ)}, (3.8)
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where the index λ = 0, 1, 2, 3, ... denotes multipolarity and µ is its z projection in
the laboratory system. The present deˇnition of the phonon operators differs by
a factor of 1/2 from (2.1) to keep the link with notations used in previous QPM
papers. The following relation can be proved using the exact commutators of the
fermion operators:

〈0 | [Qλµ,i, Q
+
λ′µ′ ,i′

] | 0〉 =
1
2
δλλ′ δµµ′

∑
jj′

(1 − qjj′ )[ψ
λi
jj′

ψλi
′

jj′
− ϕλi

jj′
ϕλi

′

jj′
],

(3.9)
where | 0〉 is the phonon vacuum, qjj′ = qj + qj′ and qj is the quasiparticle

distribution in the ground state: qj ≡ (2j + 1)−
1
2 〈0 | B(jj; 00) | 0〉. This

relation corresponds to (2.4) if there is no pairing.
The pairing and phonon characteristics are determined by the following non-

linear system of equations [22]:

G
(0)
τ

2

∑
j

τ (j + 1/2)(1 − 2qj)√
∆2

τ + (Ej − λτ )2
= 1, (3.10)

N (τ) =
∑

j

τ
(j + 1/2)

(
1 − (Ej − λτ ) (1 − 2qj)√

∆2
τ + (Ej − λτ )2

)
, (3.11)


 Mκ(λ,ph)

0 (τ) − I Mκ(λ,pp)

1 (τ) Mκ(λ,pp)

2 (τ)
Mκ(λ,ph)

1 (τ) Mκ(λ,pp)

4 (τ) − I Mκ(λ,pp)

3 (τ)
Mκ(λ,ph)

2 (τ) Mκ(λ,pp)

3 (τ) Mκ(λ,pp)

5 (τ) − I




 D0 (τ)

D+ (τ)
D− (τ)


=0,

(3.12)∑
jj′

(1 − qjj′ )
(
(ψλi

jj′
)2 − (ϕλi

jj′
)2
)
− 2 = 0, (3.13)

qj =
1
2

∑
λi,j′

2λ + 1
2j + 1

(1 − qjj′ ) (ϕλi
jj′

)2, (3.14)

where

I =
(

1 0
0 1

)
.

The formulae for the quasiparticle energies εj =
√

∆2
τ + (Ej − λτ )2 and

for the coefˇcients uj , vj remain the same as in the usual BCS theory; the new
values for

∆τ ≡ 1
2G

(0)
τ

(τ)∑
j

(1−2qj)(2j+1)uj vj and λτ , come from Eqs. (3.10) and (3.11);

εjj′ = εj + εj′ .
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We introduced the functions

Dn (τ) =
(

Dλi
n (τ)

Dλi
n (−τ)

)
,

where n = {0,+,−},

Dλi
0 (τ) =

∑
jj′

τ
f

(λ)

jj′
(1 − qjj′ )u

(+)

jj′

(
ψλi

jj′
+ ϕλi

jj′

)
,

Dλi
± (τ) =

∑
jj′

τ
f

(λ)

jj′
(1 − qjj′ )v

(±)

jj′

(
ψλi

jj′
∓ ϕλi

jj′

)
,

v
(±)

jj′
= ujuj′ ± vjvj′ u

(±)

jj′
= ujvj′ ± vjuj′ .

The functions Mκ(λ,a)

l (τ) have the following form

Mκ(λ,a)

l (τ) =

(
(κ(λ,a)

0 + κ
(λ,a)
1 )Xλι

l (τ) (κ(λ,a)
0 − κ

(λ,a)
1 )Xλι

l (τ)
(κ(λ,a)

0 − κ
(λ,a)
1 )Xλι

l (−τ) (κ(λ,a)
0 + κ

(λ,a)
1 )Xλι

l (−τ)

)
,

where

l = {0, 1, 2, 3, 4, 5}, Xλi
0 (τ) =

∑
jj′

τ Xλi
jj′

(
u

(+)

jj′

)2

εjj′ ,

Xλi
1 (τ) =

∑
jj′

τ Xλi
jj′u

(+)

jj′
v
(+)

jj′
ωλi, Xλi

2 (τ) =
∑

jj′
τ Xλi

jj′u
(+)

jj′
v
(−)

jj′
εjj′ ,

Xλi
3 (τ) =

∑
jj′

τ Xλi
jj′v

(+)

jj′
v
(−)

jj′
ωλi, Xλi

4 (τ) =
∑

jj′
τ Xλi

jj′

(
v
(+)

jj′

)2

εjj′ ,

Xλi
5 (τ) =

∑
jj′

τ Xλi
jj′

(
v
(−)

jj′

)2

εjj′ ,

Xλi
jj′ =

(f (λ)

jj′
)2 (1 − qjj′ )

(2λ+ 1)
(
ε2

jj′
− ω2

λi

) .
One can get the following expressions for the phonon amplitudes:

ψλi
jj′

(τ) =
1√
2Yλi

τ

fλ
jj′(

εjj′ − ωλi

) (u(+)

jj′
+ v

(+)

jj′
zλi
+ (τ) + v

(−)

jj′
zλi
− (τ)

)
, (3.15)

ϕλi
jj′

(τ) =
1√
2Yλi

τ

fλ
jj′(

εjj′ + ωλi

) (u(+)

jj′
− v

(+)

jj′
zλi
+ (τ) + v

(−)

jj′
zλi
− (τ)

)
, (3.16)
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where

Yλi
τ =

2 (2λ + 1)2(
Dλi

0 (τ)
(
κ

(λ,ph)
0 + κ

(λ,ph)
1

)
+Dλi

0 (−τ)
(
κ

(λ,ph)
0 − κ

(λ,ph)
1

))2 , (3.17)

zλi
n (τ) =

Dλi
n (τ)

(
κ

(λ,pp)
0 + κ

(λ,pp)
1

)
+Dλi

n (−τ)
(
κ

(λ,pp)
0 − κ

(λ,pp)
1

)
Dλi

0 (τ)
(
κ

(λ,ph)
0 + κ

(λ,ph)
1

)
+Dλi

0 (−τ)
(
κ

(λ,ph)
0 − κ

(λ,ph)
1

) , (3.18)

and n = {+,−}.
The pairing vibrations (λ = 0) have been considered in [38]. The system

of nonlinear ERPA equations (3.10)Ä(3.14) includes effects of the isoscalar and
isovector forces in the p-h and p-p channels and it is a generalization of equations
derived in [3, 11,12]. This system treats the GSC self-consistently and describes
the coupling between different vibrations, different phonon roots of a certain
multipolarity and the pairing. Eq. (3.14) corresponds to Eq. (2.13) from the
previous section. The factors (1 − qjj′ ), distinguishing the new equations from
the conventional BCS and RPA ones, take into account the blocking effect due
to the Pauli principle. If we put qjj′ = 0 in the r.h.s. of Eq. (3.14), we get
the expression for the quasiparticle distribution in the ground state in the RPA
case [9, 30] (see (2.15)). In the case of qj=0 equations (3.10)Ä(3.14) reduce to
the usual BCS and RPA equations with the p-h and p-p channels [23,26].

The GSC affect not only the RPA, but they also should change the quasipartic-
le-phonon coupling. To take into account such effects we follow the basic ideas
of the QPM. Hereafter we derive the generalized QPM equations which take into
account the GSC beyond the RPA. As it was shown in our previous paper [38]
the pairing vibrations give a negligible contribution to qj . On the other hand,
the two-phonon conˇgurations including the pairing vibration phonons have an
energy essentially higher than the conˇgurations constructed from usual vibration
phonons. That is why we do not take into account the coupling with the pairing
vibrations in what follows. Using the completeness and orthogonality conditions
for the phonon operators one can express bifermion operators A+ and A by
phonons:

A+(jj′;λµ) + (−)λ−µ A(jj
′
;λ− µ) =

(1 − qjj′ )
∑

i

(ψλi
jj′

+ φλi
jj′

)(Q+
λµi + (−)λ−µ Qλ−µi). (3.19)

The initial Hamiltonian (3.1) can be rewritten in terms of quasiparticle and
phonon operators in the following form:
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H = h0 + hpp

0 + hQQ + hQB, (3.20)

h0 + hpp

0 =
∑
jm

εj α
+
jm αjm, (3.21)

hQQ = −1
4

∑
λµii′ τ

X
λii′

(τ) +X
λi′i

(τ)√
Yλi

τ Yλi′
τ

Q+
λµiQλµi′ , (3.22)

hQB = − 1
2
√

2

∑
λµiτ

∑
jj′

τ f
(λ)

jj′√
Yλi

τ

(
(−)λ−µQ+

λµiL
λi(+)

jj′
(τ)+

Qλ−µiL
λi(−)

jj′
(τ)
)
B(jj

′
;λ− µ) + h.c.,

where

X
λii

′

(τ) =

√
Yλi

τ

2

(
Dλi

0 (τ) +Dλi
+ (τ) zλi′

+ (τ) +Dλi
− (τ) zλi′

− (τ)
)
,

L
λi(±)

jj′
(τ) = v

(−)

jj′
+
(
zλi
− (τ) ± zλi

+ (τ)
) (

u
(−)

jj′
− u

(+)

jj′

)
.

One can prove that the solutions of the system of equations (3.10)Ä(3.14)
obey the following equality:

〈Qλµi | H | Q+
λµi〉 = ωλi. (3.23)

The term hQB is responsible for the mixing of the conˇgurations and, there-
fore, for the description of many characteristics of the excited states of evenÄeven
nuclei. In the simplest case the wave functions of those states could be written
down as:

Ψν(λµ) = {
∑

i

Ri(λν)Q+
λµi +

∑
λ1i1λ2i2

Pλ2i2
λ1i1

(λν)
[
Q+

λ1µ1i1
Q+

λ2µ2i2

]
λµ

}|0〉

(3.24)
with the normalization condition:

〈Ψν(JM) | Ψν(JM)〉 =
∑

i

R2
i (Jν) +

2
∑

λ1i1λ2i2

(Pλ1i1
λ2i2

(Jν))2(1 +KJ(λ1i1, λ2i2)) = 1, (3.25)
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where
KJ(λ1i1, λ2i2) ≡ KJ(λ1i1, λ2i2 | λ2i2, λ1i1)

and

KJ(λ2i2, λi
′ | λi, λ2i2) = (2λ+ 1)(2λ2 + 1)

1
1 + δi,i′ δλi,λ2i2

×

∑
j1j2j3j4

(1 − 1
2
qj1j2j3j4)(−1)j2+j4+J




j1 j2 λ2

j4 j3 λ
λ λ2 J


×

(ψλi
′

j1j4ψ
λi
j3j4ψ

λ2i2
j3j2

ψλ2i2
j1j2

− ϕλ2i2
j3j2

ϕλ2i2
j1j2

ϕλi
′

j3j4ϕ
λi
j1j4), (3.26)

qj1j2j3j4 ≡ qj1 + qj2 + qj3 + qj4 .

The mean value of H is

〈Ψν(JM) | H | Ψν(JM)〉 =
∑

i

R2
i (Jν)ωJi + 2

∑
λ1i1λ2i2

(Pλ1i1
λ2i2

(Jν))2×

×(ωλ1i1 + ωλ2i2 + ∆ωJ(λ1i1, λ2i2))(1 +KJ(λ1i1, λ2i2))+

+2
∑

λ1i1,iλ2i2

Ri(Jν)Pλ1i1
λ2i2

(Jν)Uλ1i1
λ2i2

(Jν)(1 +KJ(λ1i1, λ2i2)), (3.27)

where the matrix element coupling of one- and two-phonon conˇgurations is:

〈QJν |hQB|
[
Q+

λ1i1
Q+

λ2i2

]
J
〉 = Uλ1i1

λ2i2
(Jν)(1 +KJ(λ1i1, λ2i2)), (3.28)

Uλ1i1
λ2i2

(λi) = (−1)λ1+λ2+λUλ2i2
λ1i1

(λi),

Uλ1i1
λ2i2

(λi) ≡
∑

τ

Uλ1i1
λ2i2

(λi, τ),

Uλ1i1
λ2i2

(λi, τ) = (−1)λ1+λ2+λ 1√
2

√
(2λ1 + 1)(2λ2 + 1)

∑
j1j2j3

τ
(1 − qj2j3)×

×
(
fλ

j1j2√
Yλi

τ

{
λ1 λ2 λ
j2 j1 j3

}(
Lλi

j1j2 (τ)ψλ2i2
j2j3

φλ1i1
j3j1

+ Lλi
j2j1 (τ)ψλ1i1

j3j1
φλ2i2

j2j3

)
+

+
fλ1

j1j2√
Yλ1i1

τ

{
λ1 λ2 λ
j3 j2 j1

}(
Lλ1i1

j2j1
(τ)φλ2i2

j3j1
φλi

j2j3 + Lλ1i1
j1j2

(τ)ψλi
j2j3ψ

λ2i2
j3j1

)
+
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+
fλ2

j1j2√
Yλ2i2

τ

{
λ1 λ2 λ
j1 j3 j2

}(
Lλ2i2

j1j2
(τ)φλ1i1

j2j3
φλi

j3j1 + Lλ2i2
j2j1

(τ)ψλi
j3j1ψ

λ1i1
j2j3

))

Lλi
j1j2 (τ) =

1
2

(
L

λi(+)
j1j2

+ L
λi(−)
j2j1

)
and

∆ωJ (λ1i1, λ2i2) =

= −1
4

∑
iτ

(
X

λi1i
(τ) +X

λii1 (τ)√
Yλ1i1

τ Yλ1i
τ

KJ(λ2i2, λ1i | λ1i1, λ2i2)+

+
X

λi2i
(τ) +X

λii2 (τ)√
Yλ2i2

τ Yλ2i
τ

KJ(λ2i, λ1i1 | λ1i1, λ2i2)

)
.

Calculating the mean value of H we used the so-called quasidiagonal ap-
proximation for the quantities KJ(λ1i1, λ2i2 | λ3i3, λ4i4) because the diagonal
terms dominate over nondiagonal ones (see [26,37]).

Using the variational principle in the form:

δ (〈Ψν(λµ) |H | Ψν(λµ)〉 − Eν (〈Ψν(λµ) |Ψν(λµ)〉 − 1)) = 0 (3.29)

one obtains the following system of equations:

(ωJi − Eν)Ri(Jν) +
∑

λ1i1λ2i2

Pλ1i1
λ2i2

(Jν)Uλ1i1
λ2i2

(Jν)(1 +KJ(λ1i1, λ2i2)) = 0,

(3.30)

2(ωλ1i1 +ωλ2i2 +∆ωJ(λ1i1, λ2i2)−Eν)Pλ1i1
λ2i2

(Jν)+
∑

i

Ri(Jν)Uλ1i1
λ2i2

(Ji) = 0.

(3.31)
The energies of the states (3.24) are solutions of

F (Eν) ≡ det

∣∣∣∣(ωλi − Eν)δii′−

− 1
2

∑
λ1i1,λ2i2

Uλ1i1
λ2i2

(λi)Uλ1i1
λ2i2

(λi′)
(
1 +KJ(λ1i1, λ2i2)

)
ωλ1i1 + ωλ2i2 + ∆ωJ (λ1i1, λ2i2) − Eν

∣∣∣∣∣∣ = 0. (3.32)

The rank of the determinant (3.32) is determined by the number of the one-
phonon conˇgurations included in the ˇrst term of the wave function (3.24).

These equations are more general in comparison with the ones derived for
the pure p-h channel [13]. The equations derived above have the same form as
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the basic QPM-equations [26, 37] and we call them the extended QPM with the
Pauli principle corrections (EQPMPP) in what follows. The GSC affect phonon
energies ωλi, normalization constants Yλi

τ and renormalize the matrix elements
of the quasiparticle-phonon interaction. If we put KJ(λ1i1, λ2i2) = 0 we get
the equations already derived in [39] where all the fourth-order terms in phonon
amplitudes ψλi

jj′
and φλi

jj′
were neglected (we call this approach the extended QPM

(EQPM)). In the limit qjj′ → 0 one reproduces precisely all the expressions of the
QPM with taking into account the Pauli principle corrections [26, 37](QPMPP).
In the case when qjj′ = 0 and KJ(λ1i1, λ2i2) = 0 we have equations describing
coupling of one- and two-RPA phonons without taking into account the Pauli
principle (QPM approach in the following discussions).

3.2. GSC and Properties of Vibrational States. The charge transition den-
sity, being the spatial overlap between the ground state wave function and the
excited state wave function, provides a good test for nuclear models. The sur-
face nature of the low-lying collective states predicted by calculations performed
within the HartreeÄFock (HF) approach with effective forces [40] and the ˇnite
Fermi systems theory [41] has been demonstrated in the experiments on inelastic
electron scattering from magic nuclei [42]. The changes of the nuclear densities
due to the zero point |uctuations associated with surface modes in the Ca isotopes
were calculated within the nuclear ˇeld theory in Ref. 43, where the quasiparticle
distribution in the ground state was calculated within the RPA. Recent experi-
mental and theoretical (based on the random phase approximation (RPA)) studies
of the charge transition densities [44,45] of the low-lying states in some spherical
nuclei are in reasonable agreement, but the theory gives too large |uctuations of
the transition densities in the interior region. All theoretical calculations in RPA,
as in HF, demonstrate the same behaviour in the nuclear interior, which indicates
a systematic problem of a more fundamental nature (a detailed discussion can be
found in Refs. 46, 47.

We study this long standing problem within our approach. Knowing the
wave functions it is not difˇcult to calculate any matrix elements and physical
quantities. For example, the charge transition density is calculated by the formula:

ρ(J)
ν (r) =

∑
j1j2

ρJ
j1j2(r){

1
2
(1 − qj1j2)u

(+)
j1j2

∑
i

Ri(Jν)(ψJi
j1j2 + φJi

j1j2 ) −

v
(−)
j1j2

∑
λ1i1λ2i2

√
(2λ1 + 1)(2λ2 + 1)Pλ1i1

λ2i2
(Jν)

∑
j3

(1 − qj3j1) ×

{
λ1 λ2 J
j1 j2 j3

}
(ψλ1i1

j2j3
φλ2i2

j3j1
+ ψλ2i2

j3j1
φλ1i1

j2j3
)}. (3.33)

The expression for the two-quasiparticle transition density ρJ
j1j2(r) can be found

in [44]. Our charge-transition densities are folded with the formfactor of the
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proton charge distribution [48]. Using quantities (3.33) one calculates the reduced
transition probabilities from the ground to the excited state (Jν) [49]

B(EJ ; 0+ → (Jν)) = (2J + 1) |
∞∫
0

rJ+2ρ(J)
ν (r)dr |2 . (3.34)

As an example we have performed numerical calculations for the Zn isotopes.
The WoodsÄSaxon potential parameters in use are from [38], slightly modiˇed to
better describe the ground state density. In so far as our single-particle spectrum
includes the bound and quasibound states we do not use any effective charge
to calculate the electromagnetic transition probabilities. The pairing constants

G
(0)
τ are ˇxed so as to reproduce the odd-even mass difference of neighbouring

nuclei. As was shown in Ref. 22, the ERPA calculations with the p-p channel give
results that are very close to the p-h ERPA ones and that is why we neglect the
p-p channel in what follows. We give one example to demonstrate the in|uence
of the p-p channel on the transition charge density later. The strength parameters
κ(λ) for the cases based on the RPA and ERPA schemes are adjusted so that the
B(Eλ) values calculated with the wave function (3.24) within both approaches
are reasonably close to the experimental ones. This means that κ(λ) for the
ERPA calculations are larger than for the RPA ones [12]. No changes of κ(λ)

have been done for calculations without the two-phonon terms. We use the ratio

κ
(λ)
1 /κ

(λ)
0 = −1.2 that enables one to reproduce the excitation energies of the

isovector giant resonances in spherical nuclei. It is worth to mention that in our
previous papers [11,12,38] we took into account only the isoscalar interaction for
the p-h channel, but the inclusion of the isovector interaction does not affect the
structure of low-lying states practically. It should be noted also that according
to our present calculations the selfconsistent inclusion of the GSC in the pairing
problem (see Eqs. (3.10)Ä(3.11)) guarantees the number conservation with a high
accuracy, otherwise the deviation of the average particle number from the exact
one reaches up to 3%.

The system of Eqs. (3.10)Ä(3.14) describes (via Eq. (3.14)) the coupling be-
tween different vibrations and between all the phonon roots of a certain multipo-
larity. Our studies [11] show that the interplay of different roots of the system
of Eqs. (3.10)Ä(3.14) is not essential: the contribution from the second root for
example affects the qj by no more than 2 %. Thus, one can restrict the sum in
Eq. (3.14) to only the ˇrst (collective) root without substantial loss of accuracy.
According to our calculations for 64Zn [11] the most essential role for the GSC
is played by the quadrupole and octupole vibrations. The values of qj calculated
for the pure quadrupole vibrations (i.e. λ = 2, only) are as a rule a few times
higher than those for the pure octupole vibrations (λ = 3, only). However, in the
case of coupled (λ = 2, 3) vibrations the resulting qj are larger than the sum of
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qj (λ = 2) and qj (λ = 3) contrary to the RPA case because of the nonlinear
character of the λ mixing. The admixture of the hexadecapole vibrations changes
qj by no more than 5 %. In addition we checked the effect of the inclusion of
λ = 5 , 6 terms for all the Zn isotopes. These terms do not affect the results,
hence, one can take into account the mixing of the quadrupole and octupole
modes only.

Solving the nonlinear equations (3.10)Ä(3.14) one can ˇnd the phonon am-
plitudes, energies and the quasiparticle distributions within ERPA. Making use of
them as input values it is possible to deˇne from equations (3.25), (3.30)Ä(3.32)
the energies and the structure of the states described by the wave function (3.24).

Table 1. Quasiparticle distribution in the ground state of 68Zn

qnlj

neutrons protons

nlj RPA ERPA RPA ERPA

2s1/2 0.0047 0.0134 0.0122 0.0189
1f7/2 0.0163 0.0222 0.0320 0.0451
2p3/2 0.0540 0.0651 0.0862 0.1053
1f5/2 0.0482 0.0609 0.0324 0.0445
2p1/2 0.0899 0.0994 0.0359 0.0461
1g9/2 0.0230 0.0295 0.0144 0.0161
2d5/2 0.0072 0.0087 0.0042 0.0047

The results of our calculations for the quasiparticle distribution in the ground
state of 68Zn are shown in Table 1. It contains the values of qj obtained in
the RPA and ERPA schemes. As one can see from the table the qj have large
values for the subshells near the Fermi surface only and the ERPA gives stronger
correlations in comparison with the RPA. A similar behaviour of qj's has been
found for other Zn isotopes [12]. This is valid for our choice of the multipole
constants. As was mentioned above, the multipole constants κ(λ,ph) have been
chosen to describe with a reasonable accuracy experimental B(Eλ)-values. The

value of κ(2,ph)
0 = 0.0259 MeV/fm for the nonlinear problem is quite larger than

the critical RPA constant κ(2,ph)
0 = 0.0242 MeV/fm where the RPA solution

becomes complex. (In the RPA case κ(2,ph)
0 = 0.0227 MeV/fm). The octupole

constants in use are equal to κ(3,ph)
0 = 0.0235 MeV/fm for the RPA and κ(3,ph)

0 =
= 0.0250 MeV/fm for the ERPA calculations, respectively. The last value is
smaller than the critical RPA constant for the octupole vibrations in contrast to

the quadrupole ones. The dependence of the 2+
1 energies on κ(2,ph)

0 at the ˇxed
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value of κ(3,ph)
0 in 64Zn for the RPA and ERPA is presented in Fig. 5. It is

seen from this ˇgure that the ERPA has no critical point in contrast to the RPA
case. Due to the coupling of the octupole vibrations with the quadrupole ones
(via qj) the ˇrst 3− state loses its collectivity and the 3−1 energy goes up. Such
a behaviour is a consequence of the Pauli principle.

Fig. 5. The dependence of the ωλ1 on

κ
(2,ph)
0 in 64Zn. The dashed line corre-

sponds to the RPA result for λ = 2; the
dotted line Å to ERPA for λ = 2; the
dot-dashed line Å to ERPA λ = 3

Taking into account the p-p chan-
nel results in some reduction of values
of qj , but not more than 8% and such
a reduction does not change the transi-
tion charge densities (see Fig. 6). All the
calculations based on the RPA phonons
(RPA, QPM, QPMPP) have been per-
formed with the RPA constants as well
all the calculations based on the ERPA
phonons (ERPA, EQPM, EQPMPP) have
been done with the ERPA set of con-
stants. It is worth mentioning that as in
the case of metallic clusters ( [15]) our
ERPA calculation gives also weaker cor-
relations compared to the RPA ones, if the
same set of multipole constants is used in
both approximations, but in this case nei-
ther energies nor transition probabilities
can be reproduced within the ERPA or
its modiˇcations.

Let us discuss in more detail the be-
haviour of the transition charge densities.
Figure 7 shows the experimental [50] and calculated transition charge densities
from the ground to the ˇrst 2+ states in the 64Zn. Our calculations for the ρJ

ν (r)
give results which are similar to the ones of [51], obtained in the RPA with the
Skyrme forces, but in contrast with [51] we did not assign occupation probability
to each single-particle orbital empirically. As was pointed in [51], the authors
were enforced to destroy the self-consistency shifting the single-particle spectrum
for the unoccupied orbitals with respect to the occupied ones to reproduce the
experimental value for the ˇrst 2+ state.

As one can see from Fig. 7 the RPA reproduces the behaviour of the tran-
sition charge densities qualitatively but it overestimates the interior part of the
ρJ

ν (r). The inclusion of the GSC beyond the RPA gives a 37% depletion of
the maximum of the ρJ

ν (r) in the interior region of the nucleus. The calculated
ρJ

ν (r) for 64Zn becomes closer to the experimental data. Such a depletion is re-
lated with the Pauli blocking effect for the proton two-quasiparticle conˇguration
{2p3/2, 2p3/2}, which is mainly responsible for the interior bump in the charge
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Fig. 6. The transition charge density from the ground to the ˇrst 2+ state in 64Zn. The
dashed line corresponds to the ERPA result taking into account the p-h channel only; the
dotted line Å to the ERPA taking into account the p-h and p-p channels. Experimental
data are presented by a shadowed area

transition densities in the Zn isotopes. According to our RPA calculations the
proton two-quasiparticle conˇguration {2p3/2, 2p3/2} gives a contribution about
24% into the norm of the ˇrst quadrupole phonon in 64Zn. The inclusion of the
GSC redistributes the strength of this conˇguration over many phonon roots and
as a result the contribution into the ˇrst root becomes 18.1%. As follows from
Eq. (3.33) the GSC suppresses the contribution of the partial two-quasiparticle
transition densities having big qjj′ . It is seen from Table 1 that the q2p3/2 is
the biggest for protons and as it was mentioned above plays an essential role
in the structure of the interior part of the transition density for the 2+

1 states.
The conˇguration {1f5/2, 1f5/2} gives some contribution in the interior part, too,
and the same mechanism of a suppression takes place for it. Besides the block-

ing effect there are changes in the coefˇcients u(+)
j1j2 because of the in|uence of the
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Fig. 7. The transition charge density from the ground to the ˇrst 2+ state in 64Zn. The
dashed line corresponds to the RPA result; the dotted line Å to ERPA. Experimental data
are presented by a shadowed area

GSC on pairing and in the phonon amplitudes. All these effects suppress the
interior bump. It should be noted that the amplitudes of the oscillations for the
conˇgurations with low orbital momenta are bigger than for the ones with high
orbital momenta. That is, because the single particle wave functions with low
orbital momenta are mainly localized in the interior part of nuclei in contrast to
those with high orbital momenta.

The behaviour of the neutron transition densities differs from the proton
ones (see Fig. 8). In the case of 64Zn, for example, the in|uence of the GSC
on the interior part of the transition density is very weak because the neutron
conˇguration {2p3/2, 2p3/2} contributes not more than 5% in the norm of the 2+

1

state, and the contribution of the conˇguration {1f5/2, 1f5/2} remains practically
the same in all cases.
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Fig. 8. The neutron transition density from the ground to the ˇrst 2+ state in 64Zn. The
dashed line corresponds to the RPA result; the dotted line Å to ERPA

We calculated the charge transition density for the one-phonon 4+ state and
did not ˇnd any essential oscillations in the interior region. That is due to the
lack of the conˇguration {2p3/2, 2p3/2} in such states because of the angular
momentum coupling rule.

Figure 9 presents the charge transition density for the 3−1 state in 64Zn.
This density has a clear surface nature and there are no strong oscillations in
the interior region of the nucleus because of a destructive interference of the
two-quasiparticle partial transition densities constructed from the single-particle
wave functions with different parity. The same picture takes place in the other
Zn isotopes and it is typical for the transition densities of the octupole vibration
states (see Refs. 44Ä47).

It is interesting to note that the GSC increase slightly the ground state r.m.s.
charge radii in comparison with its RPA values.

To study the in|uence of the GSC on the quasiparticle-phonon coupling we
calculated the structure of the low-lying states in 68Zn with the wave function
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Fig. 9. The transition charge density from the ground to the ˇrst 3− state in 64Zn. The
dashed line corresponds to the RPA result; the dotted line Å to ERPA

(3.24). Experimental data [50,52] and results of our calculations for the 2+
1,2 and

3−1 states within different approaches are shown in Table 2.

One can see from Table 2 that the RPA and ERPA overestimate the ener-
gies and fail to reproduce the transition probabilities for the 2+

2 and 3−1 states.
Taking into account coupling of the one- and two-phonon components improves
essentially the description of all states under consideration. Besides the transi-
tions to the ground state, one can reproduce the B(E2) value for the E2-transition
between the ˇrst and the second 2+ states. The inclusion of the Pauli principle
corrections in two-phonon terms changes to worse the description of the second
2+ state mainly. The EQPMPP describes energies and transition probabilities
better than the QPMPP. It is worth to point out that the B(E2) values for the E2
transition between the ˇrst and the second 2+ states depend essentially on the
two-phonon components of the wave function of the 2+

2 state and the latter can
be affected by the three-phonon terms, which are out of the present consideration.
One can conclude that the most consistent approach from theoretical point of
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Table 2. Energies and B(Eλ)-values for up-transitions to some ˇrst vibrational states of
68Zn

State 2+
1 2+

2 3−1

Energy B(E2) Energy B(E2) Energy B(E3)

0+ → 2+
1 0+ → 2+

2 0+ → 3−
1

2+
1 → 2+

2

(MeV) (e2fm4) (MeV) (e2fm4) (MeV) (e2fm6)

EXP. 1.077 1266 1.883 46 2.751 38400
287

RPA 1.360 1290 2.390 75 3.830 48240

QPM 1.090 1200 2.060 48 2.760 38550
231

QPMPP 1.140 1220 2.180 27 2.840 39200
351

ERPA 1.330 1250 2.320 106 3.980 43070

EQPM 1.080 1170 1.810 47 2.760 34700
212.

EQPMPP 1.080 1270 1.960 38 2.750 35660
436

view (EQPMPP), where the Pauli principle is taken into account in both one- and
two-phonon terms, gives a rather good description of experimental data in general.

The transition probabilities are the integral characteristics of the vibrational
states and they are less sensitive to the details of the nuclear wave functions
than the differential ones. As was discussed above, the GSC affect essentially
the charge transition densities. To test the developed approach we calculated the
charge transition densities using Eq. (3.33) in 68Zn within different approaches.

Figures 10 and 11 show the transition charge densities (ρ(J)
ν (r)) from the ground to

the ˇrst 2+ state in 68Zn. The experimental data [50] are presented as a shadowed
area. Figure 10 shows results of calculations based on the RPA phonons while
calculations based on the ERPA phonons are presented in Fig. 11.

The RPA reproduces the behaviour of the charge transition densities qualita-

tively, but it overestimates the interior part of the ρ(2)
1 (r). As one can see from

Fig. 10, the inclusion of the two-phonon terms (see the QPM case) reduces the

bump in the interior part of ρ(2)
1 (r) by 17%. This is due to the reduction of the
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Fig. 10. The transition charge density from the ground to the ˇrst 2+ state in 68Zn. The
dashed line corresponds to the RPA result; the dot-dashed line Å to QPM; the full line Å
to QPMPP. Experimental data are presented by a shadowed area

contribution of the ˇrst term in Eq. (3.33) (Ri < 1). In spite of the dominance of
the ˇrst term, the second one gives an additional reduction of ρ, too. The Pauli
principle correction for the two-phonon terms (QPMPP case) changes results not
more than by 3%.

Taking into account GSC beyond the RPA results in a suppression of interior
oscillations by 9% in comparison with the RPA case (see Fig. 11). Such a
depletion is related with the same Pauli blocking effects as it was discussed for
64Zn. Taking into account the phonon coupling we get an additional lowering of
the interior bump in the charge transition density and a reason of such lowering
is the same as it was discussed above for the coupling of the RPA phonons.

Finally the EQPM approach gives 30% reduction of the ρ(2)
1 (r) in the interior

nucleus region. It is worth to note that the Pauli principle corrections in two-
phonon terms change the results slightly, but such corrections must be taken
into account because they are often responsible for the weak electromagnetic
transitions between excited states. One can see from Eq. (3.34) that the outer
part of the charge transition density is responsible mainly for the value of the
reduced transition probability. Since all above discussed approaches have very
close values for this part of the charge transition density, the calculated B(E2)
are close, too.
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Fig. 11. The transition charge density from the ground to the ˇrst 2+ state in 68Zn. The
dotted line corresponds to the RPA result; the dashed line Å to ERPA; the dot-dashed
line Å to EQPM; the full line Å to EQPMPP. Experimental data are presented by a
shadowed area

We would like to emphasize that the depletion effect discussed above cannot
be reproduced by any renormalization of the force strength κ(2,ph) in the RPA if
one wants to describe energies and reduced transition probabilities. As concerning
the charge transition density for the second 2+ state, it is impossible to treat it
without taking into account the three-phonon terms, which are out of the present
consideration due to its numerical complexity.

The charge transition densities for the 3−1 states in all Zn isotopes have a
clear surface nature and there are no strong oscillations in the interior region
of the nucleus because of a destructive interference of the 2-qp partial transition
densities constructed from the single-particle wave functions with different parity.

4. CONCLUSION

We have proposed a method to determine selfconsistently the one-body
density matrix and the particle-hole excitations of a ˇnite Fermi system with-
out pairing. This method enables one to go beyond RPA avoiding the use
of the quasiboson approximation, which can be questionable when the single
particle occupation numbers deviate appreciably from their HF limiting values,
namely 0 and 1.
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Considering collective operators Q†
ν expressed as superpositions of p-h cre-

ation and annihilation operators and by using the equation-of-motion method, a
set of RPA-like equations for the ψ and φ amplitudes deˇning the Q†

ν's and
for the one-phonon energies has been obtained. The linearization is performed
with respect to the correlated ground state. These equations, depending on the
one-body density matrix, which in turn can be expressed in terms of the ψ and
φ's, have been solved iteratively.

We have calculated spectra and strength distributions of some metallic clusters
within the jellium approximation and with a pure Coulomb jellium-electron and
electron-electron interaction. These calculations show that the new proposed
method gives a better agreement with experiments than RPA. In particular there
is a shift of the position towards lower energies with respect to RPA. This is
partially due to the fact that in the new equations the one-body energy terms are
no more the single particle HF energies.

A consistent treatment of the ground state correlations beyond the RPA in-
cluding their in|uence on the pairing and phonon-phonon coupling in nuclei is
presented. A new general system of nonlinear equations for the quasiparticle
phonon model is derived. It is shown that this system contains as a particular
case all equations derived for the QPM early. The system is solved numerically
for the ˇrst time in a realistic case for Zn isotopes to study the effect of the GSC
on the excitation energies, transition probabilities and charge transition densities
of the vibrational states. Taking into account the GSC results in better agreement
with experimental data for the characteristics of the low-lying states.

The GSC effect in the ˇnite fermionic systems should be taken into account
to treat correctly any physical value that includes matrix elements containing wave
functions of levels near the Fermi surface.
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