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In connection with the question of color conˇnement the origin of the GotoÄImamuraÄSchwinger
term has been studied with the help of renormalization group. An emphasis has been laid on the
difference between theories with and without a cut-off.

1. INTRODUCTION

Field theory is full of ghosts and bugs, and we have to bring divergences,
anomalies and ambiguities under control. Among others we shall concentrate on
the origin of the so-called GotoÄImamuraÄSchwinger (GIS) term [1,2] in ˇeld
theory, since it bears a close connection with the question of color conˇne-
ment [3Ä5].

In evaluating the equal-time commutator (ETC) between two local operators
we sometimes encounter a result in conHict with that obtained by a naive appli-
cation of the canonical commutation relations (CCRs). The deviation from the
naive expectation is referred to as the GotoÄImamuraÄSchwinger term hereafter.
Such a term does not arise, however, when we evaluate the ETC between two
fundamental ˇelds, and it indicates that the origin of the GIS term must be sought
in the deˇnition of the singular product of ˇeld operators at the same space-time
point.

In many examples it is possible to ˇnd a renormalization group (RG) equation
controlling the GIS term in question, but then the next question is raised of how to
formulate the initial or boundary condition for this equation. In the RG approach
we introduce running parameters such as the running coupling constant and they
tend to the bare or nonrenormalized ones in the high energy limit provided that
we introduce a cut-off in the unrenormalized version of the theory as we shall see
in Sec. 2. Then we can introduce boundary conditions in the high energy limit
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into the cut-off theory by assuming the CCRs. In some cases it is possible to
formulate the boundary condition kinematically, namely, without reference to the
dynamics of the system but often it is necessary to refer to the dynamics of the
system by evaluating higher order corrections. In Sec. 3 we shall illustrate these
statements in quantum electrodynamics (QED). Then, we ˇnd that the origin of
the GIS terms may be attributed to one of the following causes: (1) operator-
mixing under renormalization [3,5], (2) nonlocal character of the product of ˇeld
operators at the same space-time point, and (3) divergences induced by lifting
the cut-off. In Sec. 4 we shall proceed to quantum chromodynamics (QCD) in
connection with the question of color conˇnement.

2. RENORMALIZATION GROUP

In introducing the RG approach [6Ä8] we shall employ the neutral scalar
theory for illustration. We assume the quartic interaction of the scalar ˇeld φ(x)
with the coupling constant g. The unrenormalized Green function is given by

G
(n)
0 (x1, ..., xn) = 〈0|T

[
φ(0)(x1) · · ·φ(0)(xn)

]
|0〉, (1)

where the subscript 0 and the superscript (0) denote unrenormalized quantities.
The Fourier transform of the renormalized n-point Green function is denoted by

G(n)(p1, ..., pn; g(µ), µ), (2)

where µ denotes the renormalization point deˇned below; and g(µ), the running
coupling constant deˇned at the renormalization point as seen from

(p2 +m2)G(2)(p2; g(µ), µ) = 1, for p2 = µ2, (3)

G(4)
conn(p1, ..., p4; g(µ), µ) = g(µ)

4∏
i=1

G(2)(p2
i ; g(µ), µ) · Γ(p1, · · · , p4; g(µ), µ),

(4)

Γ(p1, · · · , p4; g(µ), µ) = 1, for pi · pj =
µ2

3
(4δij − 1), (5)

where G
(4)
conn denotes the 4-point Green function for connected Feynmann dia-

grams alone. These are the normalization conditions for the Green functions and
specify the renormalization point in the Pauli metric.
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The generator of the RG is given by

D = µ
∂

∂µ
+ β(g)

∂

∂g
, (6)

and the RG equation for the n-point Green function is given by

[D + nγφ(g)]G(n)(p1, ..., pn; g, µ) = 0, (7)

where we write g for g(µ) and γφ denotes the anomalous dimension of the scalar
ˇeld φ. For the two-point Green function or the propagator we may assume the
Lehmann representation [9],

G(2)(p2; g, µ) =
∫

dκ2 ρ(κ2; g, µ)
p2 + κ2 − iε

, (8)

and we have

[D + 2γφ(g)] ρ(κ2; g, µ) = 0. (9)

Then Eq. (2.3) in the limit µ → ∞ yields

lim
µ→∞

(µ2 +m2)G(2)(µ2; g, µ) =
∫

dκ2ρ(κ2; g(∞),∞) = 1, (10)

in the cut-off theory where m denotes the mass of the quantum of the scalar ˇeld.
Lehmann's theorem [9] on the ETC for the ˇeld operator normalized at µ

readily yields the relation

δ(x0 − y0)
[
φ(x; g, µ), φ̇(y; g, µ)

]
= iδ4(x− y)

∫
dκ2ρ(κ2; g, µ), (11)

and Eq. (2.10) then implies that the ˇeld operators are identiˇed with the un-
renormalized ones in the limit µ → ∞ since they satisfy the CCR. At the same
time we can show that g(µ) also tends to the bare coupling constant g0 in the
same limit.

In order to deˇne the running parameters we introduce

R(ρ) = exp (ρD), (12)

where ρ denotes the parameter of the RG, then R(ρ) obeys the composition law

R(ρ1)·R(ρ2) = R(ρ1 + ρ2), (13)

and the RG is literally a group identiˇed with GL(1, R).
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The running parameters in the scalar theory are deˇned by

g(ρ) = R(ρ) · g, (14)

µ(ρ) = R(ρ) · µ = µ exp (ρ), (15)

then we readily obtain

R(ρ) G(n)(p1, ..., pn; g, µ) = G(n)(p1, ..., pn; g(ρ), µ(ρ)). (16)

We differentiate this equation with respect to ρ and combine it with Eq. (2.7) to
obtain

∂

∂ρ
G(n)(p1, ..., pn; g(ρ), µ(ρ)) = R(ρ)DG(n)(p1, ..., pn; g, µ)

= −nR(ρ)γφ(ρ) G(n)(p1, ..., pn; g, µ)

= −nγφ(g(ρ)) G(n)(p1, ..., pn; g(ρ), µ(ρ)). (17)

We have to introduce a boundary condition to this differential equation. In a
cut-off theory we may set

lim
µ→∞

G(n)(p1, ..., pn; g(µ), µ) = G
(n)
0 (p1, ..., pn; g0), (18)

where g0 denotes the bare coupling constant.
By integrating Eq. (2.17) we ˇnd

G(n)(p1, ..., pn; g, µ) = exp
[
n

∫ ρ

0

dργφ(g(ρ))
]
·G(n)(p1, ..., pn; g(ρ), µ(ρ)). (19)

In the limit ρ → ∞ and consequently µ(ρ) → ∞ we have

G(n)(p1, ..., pn; g, µ) = exp
[
n

∫ ∞

0

dργφ(g(ρ))
]
·G(n)

0 (p1, ..., pn; g0). (20)

In a cut-off theory all the vertex corrections to g(µ) for µ → ∞ tend to vanish
leaving only the bare one, namely,

lim
µ→∞

g(µ) = lim
ρ→∞

g(ρ) = g0. (21)

The fundamental ˇeld φ is multiplicatively renormalized as

φ(0)(x) = Z
1/2
φ φ(x), (22)

where Zφ is the renormalization constant of the scalar ˇeld φ, and it is a function
of g. Comparison of Eqs. (2.20) and (2.22) yields
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Z−1
φ = exp

[
2

∫ ∞

0

dργφ(g(ρ))
]
. (23)

The running renormalization constant is given by

Z−1
φ (ρ) = R(ρ)Z−1

φ (g)

= exp
[
2

∫ ∞
ρ dρ′γφ(g(ρ′))

]
.

(24)

When Zφ depends not only on g but also on µ, γφ(ρ) must be replaced by
γφ(ρ, µ).

In a cut-off theory we have

lim
ρ→∞

Z−1
φ (ρ) = 1, (25)

but this is not true when the integral in the exponent of Eq. (2.23) does not
converge and as we shall see later this feature is a possible cause of the emergence
of the GIS terms.

Although the RG approach has been introduced for the scalar theory we can
easily extend it to gauge theories. In QED the generator of the RG is given by

D = µ
∂

∂µ
+ β(e)

∂

∂e
− 2αγV (e)

∂

∂α
, (26)

where α denotes the gauge parameter. The γV (e) denotes the anomalous di-
mension of the electromagnetic ˇeld and is related to β(e) through the Ward
identity

β(e) = eγV (e). (27)

Furthermore in QCD the generator is given by

D = µ
∂

∂µ
+ β(g)

∂

∂g
− 2αγV (g, α)

∂

∂α
, (28)

where g denotes the gauge coupling constant; and γV , the anomalous dimension
of the color gauge ˇeld. The running parameters in QCD satisfy the following
equations:

dg

dρ
= β(g), (29)

dα

dρ
= −2αγV (g, α). (30)
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Then we introduce their asymptotic values by

g∞ = lim
ρ→∞

g(ρ), α∞ = lim
ρ→∞

α(ρ). (31)

This is possible since the RG is a group GL(1, R) but not U(1). Asymptotic
freedom [13,14] of QCD implies

g∞ = 0. (32)

By integrating Eq. (2.30) we immediately ˇnd a sum rule,

2
∫ ∞

0

dργV (ρ) = ln(
α

α∞
) (33)

and hence we also have [4,5,12]

Z−1
3 = exp

[
2

∫ ∞

0

dργV (ρ)
]

=
α

α∞
, (34)

where γV (ρ) ≡ γV (g(ρ), α(ρ)).
In QCD it is known that α∞ can take three possible values [4,5,12]

α∞ = 0, α0, −∞, (35)

where α0 is a constant which depends only on the number of quark Havors. These
three values are related to the integral of γV as

∫ ∞

0

dργV (ρ) =




∞, for α∞ = 0
ˇnite, for α∞ = α0

−∞, for α∞ = −∞
(36)

and Z−1
3 vanishes when α∞ = −∞.

3. QUANTUM ELECTRODYNAMICS

Quantum electrodynamics is a suitable ground to exercise the analysis of the
GIS terms. The Lagrangian density for QED is given by

L = Lem + Lmatter, (37)

where the unrenormalized version of the Lagrangian density for the electromag-
netic ˇeld is given by

Lem = −1
4
F (0)

µν · F (0)
µν + ∂µB

(0) ·A(0)
µ +

α0

2
B(0) · B(0), (38)
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where B denotes the NakanishiÄLautrup auxiliary ˇeld [10] and the interactions
are included in the matter Lagrangian. The resulting ˇeld equations are given by

∂µF
(0)
µν + ∂νB

(0) = −J (0)
ν , (39)

∂µA
(0)
µ = α0B

(0), (40)

and the renormalized version of these equations can be expressed as

∂µFµν + ∂νB = −Jν , (41)

∂µAµ = αB. (42)

The fundamental ˇelds Aµ and B as well as the gauge parameter α are renor-
malized multiplicatively,

A(0)
µ = Z

1/2
3 Aµ,

B(0) = Z
−1/2
3 B, (43)

α0 = Z3α .

Apparently renormalization of the composite current operator Jν is not multi-
plicative, but its execution requires operator mixing [3,5] as illustrated by

J (0)
ν = Z

1/2
3

[
Jν + (1 − Z−1

3 )∂νB
]
,

or (44)

Jν = Z
−1/2
3

[
J (0)

ν + (1 − Z3)∂νB
(0)

]
.

Operator mixing is one of the sources of the GIS terms, and in order to illustrate
this statement we shall evaluate the ETC

δ(x0 − y0) [Aj(x), J0(y)] (45)

for j = 1, 2, 3. In the unrenormalized version we have

δ(x0 − y0)
[
A

(0)
j (x), J

(0)
0 (y)

]
= 0. (46)

As has been mentioned before we can rely on the ETCs only between two
fundamental ˇelds, so that we shall express J in terms of A and B by using
Eqs. (3.5) and (3.7),

[Aj(x), J4(y)] = − [Aj(x), ∂µFµ4(y) + ∂4B(y)]

= −Z−1
3

[
A

(0)
j (x), ∂kF

(0)
k4 (y)

]
−

[
A

(0)
j (x), ∂4B

(0)(y)
]

= (−Z−1
3 + 1)∂jδ

3(x − y)
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for x0 = y0. Thus we have

δ(x0 − y0) [Aj(x), J0(y)] = i(Z−1
3 − 1)∂jδ

4(x− y)

≡ is∂jδ
4(x− y),

(47)

where s is the coefˇcient of the GIS term. In this case it is clear that the origin
of the GIS term is the operator mixing. Then s satisˇes the RG equation

[D + 2γV (e)] (s + 1) = [D + 2γV (e)]Z−1
3 = 0, (48)

where D is given by Eq. (2.26), and the running GIS coefˇcient s(ρ) satisˇes
the differential equation[

∂

∂ρ
+ 2γV (e(ρ))

]
(s(ρ) + 1) = 0. (49)

In a cut-off theory the GIS term is absent in the unrenormalized version as
expressed by Eq. (3.10), and the boundary condition for s(ρ) is given by

s(∞) = 0. (50)

By combining the boundary condition (3.14) with Eq. (3.13) we ˇnd the solution

Z−1
3 (ρ) = 1 + s(ρ) = exp

[
2

∫ ∞

ρ

dρ′γV (e(ρ′))
]
. (51)

In the absence of the cut-off we do not know what kind of boundary condition
we should impose on s(ρ) so that we take this solution (3.15) for granted even
in this case.

In QED we assume that Z−1
3 = Z−1

3 (0) is divergent so that we have

1 + s(∞) = lim
ρ→∞

exp
[
2

∫ ∞

ρ

dρ′γV (e(ρ′))
]

= ∞, (52)

and the boundary condition (3.14) is no longer satisˇed in the absence of the
cut-off. This is another source of the GIS terms, and the ˇeld operators do
not necessarily tend to the unrenormalized ones in the limit ρ → ∞ and hence
µ → ∞ when the cut-off is lifted.

Finally we shall turn our attention to the ETC between two components of
the current density. This is precisely the original problem in which the GIS term
was recognized [1,2]. We shall make use of the ˇeld equations (3.5) to express
the current density as a linear combination of the fundamental ˇelds, and then we
can make use of the commutativity of B with Fµν and B itself [10],
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[Jµ(x), Jν(y)] = [∂αFαµ(x) + ∂µB(x), ∂βFβν(y) + ∂νB(y)]

= [∂αFαµ(x), ∂βFβν(y)] ,
(53)

and we introduce the GIS coefˇcient s by

δ(x0 − y0)〈0| [Jj(x), J0(y)] |0〉 = is∂jδ
4(x− y). (54)

As a matter of fact, the ETC on the left-hand side of Eq. (3.18) is known to be
a c number before taking its vacuum expectation value in spinor electrodynamics
[15]. Here we are aware of the fact that the GIS term can be expressed in
terms of the ETC between derivatives of ˇeld strengths. In order to evaluate
the ETC by making use of the CCRs it is necessary to express derivatives of
ˇeld strengths in terms of canonical variables by making use of canonical ˇeld
equations. Therefore, we are taking commutators between those operators that
are nonlocal in time and then taking the local limit. The way in which this limit
is taken is dictated in the evaluation of the higher order corrections as we shall
see below.

This is in a sharp contrast to the original naive way of evaluating the com-
mutator between two bilinear forms of the Dirac ˇelds by making use of only the
CCRs without taking the possibility of nonlocality into consideration. This gap
generates the GIS term.

By combining Eqs. (3.17) and (3.18) we ˇnd that the GIS coefˇcient s satisˇes
the RG equation

[D + 2γV (e)] s = 0. (55)

In this case we cannot give the boundary condition for this equation since it
requires the information about the dynamics of the system such as the photon
propagator. The Lehmann representation of the electromagnetic ˇeld is given in
the following form:

〈0|T [Aµ(x), Aν (y)] |0〉 =
−i

(2π)4

∫
d4keik·(x−y)DFµν(k), (56)

DFµν(k) =
(
δµν − kµkν

k2 − iε

) ∫
dM2 ρ(M2; e, µ)

k2 +M2 − iε
+ α

kµkν

(k2 − iε)2
. (57)

Then inserting this expression into Eq. (3.17) we ˇnd

s =
∫

dM2ρ(M2; e, µ)M2. (58)
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This expression certainly satisˇes Eq. (3.19) since we have

[D + 2γV (e)] ρ(M2; e, µ) = 0. (59)

It is clear that Z−1
3 also satisˇes Eq. (3.19) since it is given by

Z−1
3 =

∫
dM2ρ(M2; e, µ). (60)

We may conclude that the GIS terms are controlled by RG if not completely.

4. COLOR CONFINEMENT IN QCD

In QCD the GIS term plays an important role in connection with color
conˇnement [3Ä5]. The ˇeld equation in QCD corresponding to Eq. (3.5) is given
by

∂µF
a
µν + Ja

ν = iδδAa
ν , (61)

where δ and δ denote two kinds of BecchiÄRouetÄStora (BRS) transformations
[11], respectively, and the superscript a represents the color index. Since we
are not entering the subject of BRS transformations here we shall refer to other
references [3Ä5] for their deˇnitions.

We are interested in ETC

∂µ〈0|T
[
iδδAa

µ(x), Ab
j(y)

]
|0〉

= δ(x0 − y0)〈0|
[
iδδAa

0(x), Ab
j(y)

]
|0〉

= iδabC ∂jδ
4(x− y),

or

δ(x0 − y0)〈0|
[
∂kF

a
k4(x) + Ja

4 (x), Ab
j(y)

]
|0〉

= −δabC ∂jδ
4(x− y). (62)

The constant C is gauge-dependent, and a sufˇcient condition for color conˇne-
ment is the existence of a gauge in which the following equality holds:

C = 0. (63)

In order to determine C we have to evaluate the ETC in Eq. (4.2), and for that
purpose we introduce the RG equation satisˇed by C 3−5),

(D − 2γFP )C = 0, (64)
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where D is given by Eq. (2.28) and γFP denotes the anomalous dimension of
the FaddeevÄPopov ghost ˇelds. Then the renormalization constant of the ghost
ˇelds denoted by Z̃3 also satisˇes the same RG equation,

(D − 2γFP ) Z̃3 = 0. (65)

We are going to study the relationship between C and Z̃3 in this section. They
satisfy the same RG equation, but their normalizations are different.

The unrenormalized version of Eq. (4.1) reads as

iδδA(0)
ν (x) = ∂µA

(0)
µν + g0∂µ(A(0)

µ ×A(0)
ν ) + J (0)

ν , (66)

where Aµν = ∂µAν−∂νAµ denotes the linear part of Fµν and we have suppressed
the color index. The cross product denotes the antisymmetric product in the color
space deˇned in terms of the structure constants of the algebra su(3). When we
insert the r.h.s. of Eq. (4.6) into the ETC (4.2) in the unrenormalized version, we

ˇnd that only the ˇrst term ∂µA
(0)
µν gives a nonvanishing canonical commutator

and the rest would give only a vanishing result provided that the naive CCRs
are employed. However, this is true only in a cut-off theory or in a convergent
theory and in general we should not discard the possibility of a nonvanishing GIS
term so that the unrenormalized constant C0 would be given by

C0 = 1 + s. (67)

The ˇrst term is a result of the CCR and is equal to unity. Thus the renormalized
C is given by

C = C0Z̃3 = (1 + s)Z̃3. (68)

Then a question is raised of how to evaluate the GIS coefˇcient s. For this
purpose we introduce a cut-off theory and we write a(ρ) for Z−1

3 (ρ), and we
shall rewrite Eq. (4.7) in the form

C(∞) = a(∞) (69)

based on the argument developed in Sec. 2. In a cut-off theory the GIS coefˇ-
cient s vanishes, but it does not vanish when the cut-off is lifted. The running
parameters C(ρ), a(ρ) and Z̃3(ρ) satisfy the following differential equations,
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respectively,

[
∂

∂ρ
− 2γFP (ρ)

]
C(ρ) = 0, (70)

[
∂

∂ρ
+ 2γV (ρ)

]
a(ρ) = 0, (71)

[
∂

∂ρ
− 2γFP (ρ)

]
Z̃3(ρ) = 0. (72)

Among them the last two are renormalization constants, and they are immediately
given by

a(ρ) = Z−1
3 (ρ) = exp

[
2

∫ ∞

ρ

dρ′γV (ρ′)
]
, (73)

Z̃−1
3 (ρ) = exp

[
2

∫ ∞

ρ

dρ′γFP (ρ′)
]
. (74)

We should be aware of the following relations:

Z−1
3 = Z−1

3 (0), Z̃−1
3 = Z̃−1

3 (0), (75)

Then C(ρ) should be determined by solving Eq. (4.10) under the boundary con-
dition (4.9) and we obtain

C(ρ) = lim
ρ′→∞

exp

[
2

∫ ∞

ρ′
dρ′′γV (ρ′′) − 2

∫ ρ′

ρ

dρ′′γFP (ρ′′)

]
, (76)

and, in particular, we have

C = lim
ρ′→∞

exp

[
2

∫ ∞

ρ′
dρ′′γV (ρ′′) − 2

∫ ρ′

0

dρ′′γFP (ρ′′)

]
. (77)

From now on we lift the cut-off while keeping these formulas. With recourse to
Eqs. (2.34) and (2.36) we ˇnd that C vanishes when Z−1

3 vanishes as claimed
before [3Ä5]. Then we may express Eq. (4.17) as

C = lim
ρ→∞

exp
[
2

∫ ∞

ρ

dρ′γV (ρ′)
]
· Z̃3, (78)
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and with reference to Eq. (4.8) we ˇnd

1 + s = lim
ρ→∞

exp
[
2

∫ ∞

ρ

dρ′γV (ρ′)
]

=




∞, for α∞ = 0
1, for α∞ = α0

0, for α∞ = −∞.
(79)

Only in the case α∞ = α0 do we ˇnd the vanishing GIS coefˇcient s, and this
is precisely what happens when the integration of γV converges just as in the
cut-off theory. Now we shall summarize the relationship between C and Z̃3 as
follows:

C =




∞, α∞ = 0
Z̃3, α∞ = α0

0 α∞ = −∞.
(80)

As we have seen above we formulate the boundary condition for a given RG
equation by introducing a cut-off, but when the cut-off is lifted in the solution
the GIS term appears as a manifestation of the divergent character of the theory.
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