ADIC DYNAMICAL MODELS FOR FUNCTIONING OF COMPLEX INFORMATION SYSTEMS

A.Yu.Khrennikov
Department of Mathematics, Statistics and Computer Sciences
University of Växjö, S-35195, Sweden

We develop a model of functioning of complex information systems in that information states
are coded by \(m\)-adic integers. An information state evolves by iterations of a discrete \(m\)-adic
dynamical system. The \(m\)-adic ultrametric on the space of information states describes the ability
of an information system to operate with associations. The main attention is paid to the collective
dynamics of families of associations.

The system of \(p\)-adic numbers \(\mathbb{Q}_p\), constructed by K. Hensel in the 1890s, was
the first example of an infinite number field (i.e., a system of numbers where the
operations of addition, subtraction, multiplication and division are well defined)
which was different from a subfield of the fields of real and complex numbers.
During much of the last 100 years \(p\)-adic numbers were considered only in pure
mathematics, but in recent years they have been extensively used in theoretical
physics (see, for example, the books [1] and [2] and the pioneer paper [3]), the
theory of probability [2] and investigations of chaos in dynamical systems [4].
In [4,5] \(p\)-adic dynamical systems were applied to the simulation of functioning
of complex information systems (in particular, cognitive systems). In this paper
we continue investigations started in [4,5]. There are no physical reasons to use
only prime numbers \(p\) as the basis for the description of a physical or information
model. Therefore, we use systems of the so-called \(m\)-adic numbers, where \(m > 1\)
is an arbitrary natural number, see, for example, [2].

1. \(m\)-Adic Hierarchic Chains for Coding of Information. The abbreviation
\(\text{«I} \) will be used for information. The symbol \(\tau \) will be used to denote an
\(I\)-system.

Let \(\tau \) be an \(I\)-system. We shall use neurophysiologic terminology: elementary units for \(I\)-processing are called neurons, a «thinking device» of \(\tau \) is
called brain. In our model it is supposed that each neuron \(n \) has \(m > 1 \) levels
of excitement, \(\alpha = 0, 1, \ldots, m - 1 \). Individual neuron has no \(I\)-meaning in this
model. Information is represented by chains of neurons, \(\mathcal{N} = (n_0, n_1, \ldots, n_M) \).
Each chain of neurons \(\mathcal{N} \) can (in principle) perform \(m^M \) different \(I\)-states
\[
 x = (\alpha_0, \alpha_1, ..., \alpha_M), \quad \alpha \in \{0, 1, ..., m - 1\}, \quad (1)
\]
corresponding to different levels of excitement for neurons in \mathcal{N}. Denote the set of all possible I-states by the symbol X_I.

In our model each chain of neurons \mathcal{N} has a hierarchic structure: neuron n_0 is the most important, neuron n_1 is less important neuron than n_0, ..., neuron n_j is less important neuron than $n_0, ..., n_{j-1}$. This hierarchy is based on the possibility of a neuron to ignite other neurons in this chain: n_0 can ignite all neurons $n_1, ..., n_k, ..., n_M$, n_1 can ignite all neurons $n_2, ..., n_k, ..., n_M$, and so on; but the neuron n_j cannot ignite any of the previous neurons $n_0, ..., n_j$. Moreover, the process of igniting has the following structure. If n_j has the highest level of excitement, $\alpha_j = m - 1$, then increasing of α_j to one unit induces the complete relaxation of the neuron n_j, $\alpha_j \to \alpha_j' = 0$, and increasing to one unit of the level of excitement α_{j+1} of the next neuron in the chain,

$$\alpha_{j+1} \to \alpha_{j+1}' = \alpha_{j+1} + 1 . \quad (2)$$

If neuron n_{j+1} already was maximally excited, $\alpha_{j+1} = m - 1$, then transformation (2) will automatically imply the change to one unit of the state of neuron n_{j+2} (and the complete relaxation of the neuron n_{j+1}) and so on.*

We shall use the abbreviation HCN for hierarchic chain of neurons. This hierarchy is called a horizontal hierarchy in the I-performance in brain.

HCNs provide the basis for forming associations. Of course, a single HCN is not able to form associations. Such an ability is a feature of an ensemble B^τ of HCNs of τ. Let $s \in \{0, 1, ..., m - 1\}$. A set

$$A_s = \{x = (\alpha_0, ..., \alpha_M) \in X_I : \alpha_0 = s\} \subset X_I$$

is called an association of the order 1. This association is represented by a collection B^s_τ of all HCNs $\mathcal{N} = (n_0, n_1, ..., n_M)$ which have the state $\alpha_0 = s$ for neuron n_0. Thus any association A_s of the order 1 is represented in the brain of τ by some set B^s_τ of HCNs. Of course, if the set B^s_τ is empty the association A_s does not present in the brain (at this instance of time). Associations of higher orders are defined in the same way. Let $s_0, ..., s_{l-1} \in \{0, 1, ..., m - 1\}, l \leq M$. The set

$$A_{s_0...s_l} = \{x = (\alpha_0, ..., \alpha_M) \in X_I : \alpha_0 = s_0, ..., \alpha_{l-1} = s_{l-1}\}$$

is called an association of the order l. Such an association is represented by a set $B^s_{s_0...s_l} \subset B^\tau$ of HCN. We remark that associations of the order M coincide with I-states for HCN. We shall demonstrate that an I-system τ obtains large advantages by working with associations of orders $l \ll M$.

*In fact, transformation (2) is the addition with respect to mod m.

138 KHRENNIKOV A.Yu.
Denote the set of all associations of order l by the symbol $X_{A,l}$. We set $X_A = \cup_l X_{A,l}$. This is the set of all possible associations which can be formed on the basis of the I-space X_I.

Sets of associations $J \subset X_A$ also have an I-meaning. Such sets of associations will be called ideas of τ (of the order 1). Denote the set of all ideas by the symbol X_{ID}.

The hierarchy I-state \rightarrow association \rightarrow idea is called a vertical hierarchy in the I-performance in the brain.

In our model «hardware» of the brain of τ is given by an ensemble B^τ of HCNs. For an HCN $\mathcal{N} \in B^\tau$, we set $i(\mathcal{N}) = x$, where x is the I-state of \mathcal{N}. The map $i : B^\tau \rightarrow X_I$ gives the correspondence between states of brain and I-states. In general it may be that $i(\mathcal{N}_1) = i(\mathcal{N}_2)$ for $\mathcal{N}_1 \neq \mathcal{N}_2$. It is natural to assume that in general the map i depends on the time parameter $t : i = i_t$. In particular, if t is discrete, we obtain a sequence of maps $i_t : t = 0, 1, 2, \ldots$.

2. Dynamical Evolution of Information. In this section shall we study the simplest dynamics of I-states, associations and ideas. Such I-dynamics is «ruled» by a function $f : X_I \rightarrow X_I$ which does not depend on time and random fluctuations. This «process of thinking» has no memory: the previous I-state x determines a new I-state y via the transformation $y = f(x)$. In this model time is discrete, $t = 0, 1, 2, \ldots, n, \ldots, K$. Set

$$U^\tau_0 = i_o(B^\tau), U^\tau_1 = i_1(B^\tau), \ldots, U^\tau_n(B^\tau), \ldots \tag{3}$$

A set U^τ_n of I-states is called an I-universe of τ. This is the set of all I-states which are generated by the ensemble B^τ of HCNs of τ at the instant of the time $t = n$. We suppose that sets $\{U^\tau_n\}_{n=0}^\infty$ of I-states can be obtained by iterations of one fixed map $f : X_I \rightarrow X_I$. Thus dynamics (3) of I-universe of τ is induced by pointwise iterations:

$$x_{n+1} = f(x_n). \tag{4}$$

If $x \in U^\tau_n$, then $y = f(x) \in U^\tau_{n+1}$. Each $x_0 \in U^\tau_0$ evolves via I-trajectory:

$$x_0, x_1 = f(x_0), x_2 = f(x_1) = f^2(x_0), \ldots, x_{n+1} = f(x_n) = f^n(x_0), \ldots \text{.}$$

Here the symbol f^n denotes nth iteration of f.

Suppose that, for each association A, its image $B = f(A) = \{ y = f(x) : x \in A \}$ is again an association. Denote the class of all such maps f by the symbol $\mathcal{A}(X_I)$. If $f \in \mathcal{A}(X_I)$, then dynamics (4) of I-states of τ induces dynamics of associations

$$A_{n+1} = f(A_n). \tag{5}$$

In principle, it is possible to consider sets of ideas of the order 1 as new I-objects (ideas of the order 2) and so on. However, we restrict our attention to dynamics of ideas of order 1.
Starting with an association A_0 (which is a subset of I-universe U^r_0) τ obtains a sequence of associations: $A_0, A_1 = f(A_0), \ldots, A_{n+1} = f(A_n), \ldots$. Dynamics of associations (5) induces dynamics of ideas: $J^t = f(J) = \{B^t = f(A) \mid A \in J\}$. Thus each idea evolves by iterations:

$$J_{n+1} = f(J_n). \quad (6)$$

Starting with an idea J_0 τ obtains a sequence of ideas: $J_0, J_1 = f(J_0), \ldots, J_{n+1} = f(J_n), \ldots$. In particular, by choosing $J_0 = U^r_0$ we obtain dynamics of I-universe (which is also an idea of τ).

3. m-Adic Representation for Information States. It is surprising that number systems which provide the adequate mathematical description of HCN were developed long time ago by purely number theoretical reasons. These are systems of the so-called m-adic numbers, $m > 1$ is a natural number. First we note that in mathematical model it would be useful to consider infinite I-states:

$$x = (\alpha_0, \alpha_1, \ldots, \alpha_M, \ldots), \quad \alpha_j = 0, 1, \ldots, m - 1. \quad (7)$$

Such an I-state x can be generated by an ideal infinite HCN N. Denote the set of all vectors (7) by the symbol Z_m. This is an ideal I-space, $X_I = Z_m$. On this space we introduce a metric ρ_m corresponding to the hierarchic structure between neurons in chain N having an I-state x: two I-states x and y are close with respect to ρ_m if initial (sufficiently long) segments of x and y coincide. If $x = (\alpha_0, \ldots, \alpha_M, \ldots)$, $y = (\beta_0, \ldots, \beta_M, \ldots)$, and $\alpha_0 = \beta_0, \ldots, \alpha_k - 1 = \beta_k - 1$, but $\alpha_k \neq \beta_k$, then $\rho_m(x,y) = \frac{1}{m^k}$. Such a metric is well known in number theory. This is an ultrametric: the strong triangle inequality

$$\rho_m(x,y) \leq \max[\rho_m(x,z), \rho_m(x,y)] \quad (8)$$

holds true. This inequality has the simple I-meaning. Let N, M, L be HCNs having I-states x, y, z, respectively. Denote by $k(N,M)$ ($k(N,L)$ and $k(M,L)$) length of an initial segment in chains N and M (N and L and M and L) such that neurons in N and M have the same level of exciting. Then it is evident that

$$k(N,M) \geq \min[k(N,L), k(L, M)]. \quad (9)$$

But this gives inequality (8). As in the every metric space, in (Z_m, ρ_m) we can introduce balls, $U_r(a) = \{x \in Z_m : \rho_m(a, x) \leq r\}$ and spheres $S_r(a) = \{x \in Z_m : \rho_m(a, x) = r\}$ (with centre at $a \in Z_m$ of radius $r > 0$). There is one to one correspondence between balls and associations. Let $r = \frac{1}{p}$ and $a = (a_0, a_1, \ldots, a_{t-1}, \ldots)$. The $U_r(a) = \{x = (x_0, x_1, \ldots, x_{t-1}, \ldots) : x_0 = a_0, x_1 = a_1, \ldots, x_{t-1} = a_{t-1}\} = A_{a_0a_1\ldots a_{t-1}}$. The space of associations X_A coincides with the space of all balls. The space of ideas I_{ID} is the space which elements are families of balls.
I-dynamics on \mathbb{Z}_m is generated by maps $f: \mathbb{Z}_m \to \mathbb{Z}_m$. We are interested in maps which belong to the class $\mathcal{A}(\mathbb{Z}_m)$. They map a ball onto a ball: $f(U_r(a)) = U_r'(a')$. To give examples of such maps, we use the standard algebraic structure on \mathbb{Z}_m. We study mathematical models for p-adic numbers [4]. Let $f(x) = x^n$, $n = 2, 3, 4, \ldots$. Then f belongs to the class $\mathcal{A}(\mathbb{Z}_m^*)$, where $\mathbb{Z}_m^* = \mathbb{Z}_m \setminus \{0\}$. Hence associations are transformed into associations and each monomial map generates dynamics of associations as well as ideas.

4. Stochastic Model. Deterministic I-model (3)–(6), does not provide the right description of complex I-processes. It seems that a new I-state depends not only on the previous I-state, but also on a choice of a new map $f: X_I \to X_I$ (to perform a new iteration). What is a basis of such a game? The contemporary level of neurophysiologic research is not sufficient to obtain the definite answer to this question. One of possibilities is that randomness of I-evolution of cognitive systems has the same origin as randomness of evolution of quantum systems. Such a viewpoint is very attractive (despite rather speculative character of cognitive quantum arguments). However, in this paper we shall consider classical random models which generalize the deterministic model of section.

Suppose that τ has N different I-processors π_1, \ldots, π_N, with dynamical functions f_z, $z = 1, 2, \ldots, N$. The τ uses different blocks for processing of an I-state. At each instant of time $t = 0, 1, \ldots, \tau$ chooses some processor π_t and performs a new iteration:

$$x_{n+1} = f_z(x_n).$$

(10)

How does τ choose a sequence of processes $\pi_{z_1}, \pi_{z_2}, \ldots, \pi_{z_{n+1}}, \ldots$? The simplest model is a model of the deterministic* choice:

$$z_{n+1} = g(z_n).$$

(11)

However, such a system τ will exhibit rather simple I-behaviour. A τ whose choice mechanism is used ruled by a deterministic law (11) could not change its thinking blocks depending on the previous I-state x_n.

Higher level I-systems do not just perform «algorithms» (11). Their choice depends essentially on the previous I-state x_n:

$$z_{n+1} = g(z_n, x_n).$$

(12)

On the next level of complexity τ uses a random selection mechanism:

$$z_{n+1} = g(z_n, x_n, \omega),$$

(13)

*However, we do not follow ideas of Turing. A choice function need not be a recursive function. So it need not be performed by a Turing machine. Such a choice function can have a hardware realization which totally differs from the hardware of ordinary computers.
where ω is a «choice parameter». This is a random evolution. Here the implicit value $g(z, x, \omega)$ is not so important. I-dynamics of τ is statistical dynamics:

$$x_{n+1}(\omega) = f_{x_{n+1}}(x_n(\omega)).$$

(14)

Here a value $x_{n+1}(\omega)$ of a new I-state of τ depends on a choice of ω.

A chance parameter ω can also evolve with time: $\omega = \theta \omega$, where $\theta : \Omega \rightarrow \Omega$ is a law of evolution and Ω is a space of chance parameters.

Roughly speaking τ does not try to «find a right decision» for each triply (z, x, ω); τ tries only to control its behaviour statistically. So statistical I-behaviour is determined by probabilities, namely conditional probabilities, $P(x_{n+1} = y | previous)$, to obtain at the next step an I-state y on the basis of information about previous information states.

One of the distinguishing features of random dynamics (15), (16) is that such a stochastic process is in general non-Markovian. We recall that a stochastic process (chain) $\{x_n(\omega)\}_{n=0}^{\infty}$ has a Markov property if

$$P(x_{n+1} = y | x_n = k, x_{n-1} = v, \ldots, x_0 = \lambda) = P(x_{n+1} = y | x_n = n).$$

(17)

Here the probability of obtaining a new state $x_{n+1} = y$ depends only on the previous state $x_n = n$ of the system (and it does not depend on the evolution $x_0 = \lambda, \ldots, x_{n-1} = v$). A detailed mathematical investigation demonstrated that Markov property of random evolution (15), (16) depends strongly on the initial I-state $x_0 = \lambda$ and the structure of random evolution law θ. For some θ I-dynamics is Markovian for any choice of $x_0 = \lambda$. Such a cognitive system τ does not use a memory on a long range evolution to create a new I-state $x_{n+1} = y$. Here the previous I-state $x_n = k$ determines (but, of course, only statistically) the next state $x_{n+1} = y$. Moreover, some θ (the so-called Bernoulli process) induces an I-dynamics which does not have even one step memory: $P(x_{n+1} = y | x_n = n) = P(y)$. Here the randomness of θ is so strong that stochastically destroys even one step memory. However, the most interesting feature of dynamics (15), (16) is that, for a wide class of θ, a τ can demonstrate Markovian as well as non-Markovian behaviour depending on the initial I-state $x_0 = \lambda$. Some I-states λ are proceeded with one step memory, but other are proceeded with the long range memory. In the latter case to determine $x_{n+1} = y$, τ uses all information which was collected in the previous I-evolution, $x_0 = \lambda, x_1 = q, \ldots, x_{n-1} = v, x_n = w$. Another
interesting feature of this model is that Markovness of I-evolution depends on the base m of the coding system.

If, for each z, a map f_z belongs to the class $A(X_I)$, then random I-dynamics (15), (16) induces I-dynamics:

$$A_{n+1} = f_{z_{n+1}}(A_n)$$

(18)

of random associations $A_n = A_n(\omega)$. I-dynamics (18) induces automatically I-dynamics $J_{n+1} = f_{z_{n+1}}(J_n)$ of random ideas, $J_n = J_n(\omega)$.

REFERENCES