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A model for a Regge trajectory compatible with the threshold behavior required by unitarity and
asymptotics in agreement with Mandelstam analyticity is analyzed and confronted with the experi-
mental data on the spectrum of the ρ trajectory as well as those on the π−p → π0n charge-exchange
reaction. The ˇtted trajectory deviates considerably from a linear one both in the space-like and
time-like regions, matching nicely between the two.

Regge trajectories may be considered as building blocks in the framework
of the analytic S-matrix theory. We dedicate this contribution to the late
N.N.Bogolyubov, whose contribution in this ˇeld is enormous, on the occasion of
his 90th anniversary. The model to be presented is an example of the realization
of the ideas of the analytic S-matrix theory.

There is a renewed interest in the studies of the dynamics of the Regge
trajectories [1Ä3]. There are various reasons for this phenomenon.

The hadronic string model (see, e.g., [4]) was successful as a mechanical
analogy, generating a spectrum similar to that of a linear trajectory, but it fails
to incorporate the interaction between the strings. Although intuitively it seems
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clear that hadron production corresponds to breakdown of the strings, the theory
of interacting strings faces many problems. Paradoxically, the ˇnal goal of the
hadronic string theory and, in a sense of the modern strong interaction theory,
is the reconstruction of the dual (e.g., Veneziano) amplitude from the interacting
strings, originated by the former.

Nonlinear trajectories were derived also from potential models. The saturation
of the spectrum of resonances was shown [5] to be connected to a screening
quark-antiquark potential.

A relatively new development is that connected with various quantum defor-
mations, although the relation between q deformations and nonlinear (logarithmic)
trajectories was ˇrst derived by Baker and Coon [6]. q-deformations of the dual
amplitudes (or harmonic oscillators) resulted [7, 8] in deviations from linear tra-
jectories, although the results are rather ambiguous. By a different, so-called
k-deformation, the authors [3] arrived at rather exotic hyperbolic trajectories.

All these developments were preceded by earlier studies of general proper-
ties of the trajectories [9], that culminated in classical papers of the early 70ies
by E. Predazzi and co-workers [10], followed by the paper of late A.A. Tru-
shevsky [11], who were able to show, on quite general grounds, that the as-
ymptotic rise of the Regge trajectories cannot exceed |t|1/2. This result, later
conˇrmed in the framework of dual amplitudes with Mandelstam analyticity [12],
is of fundamental importance. Moreover, wide-angle scaling behavior of the dual
amplitudes imposes an even stronger, logarithmic asymptotic upper bound on the
trajectories. The combination of a rapid, nearly linear rise at small |t| with the
logarithmic asymptotics may be comprised in the following form of the trajectory:

α(t) = α(0) − γ ln (1 − βt), (1)

where γ and β are constants.
The threshold behavior of the trajectories is constrained by unitarity:

Im αn(t) ∼ (t − tn)Re α(tn)+1/2, (2)

where tn is the mass of the nth threshold. The combination of this threshold
behavior with the square-root and/or logarithmic behavior is far from trivial,
unless one assumes a simpliˇed square root threshold behavior that, combined
with the logarithmic asymptotics, results in the following form [13]

α(t) = α0 − γ ln (1 + β
√

t − tn). (3)

The next question is how do various thresholds enter the trajectory. In a
long series of papers N.A. Kobylinsky with his co-workers [14] advocated the
additivity idea

α(t) = α(0) +
∑

n

αn(t), (4)
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Fig. 1. ChewÄFrautschi plot for the six
low-lying I = 1 parity even mesons (ρ-
trajectory). The masses of the resonances
were taken from [20]

with αn(t) having only one thresh-
old branch point on the physical
sheet. The choice of the threshold
masses is another controversial prob-
lem. Kobylinsky et al. [14] assumed
that the thresholds are made only of
the lowest-lying particles (and their
antiparticles), appearing in the SU(3)
octet and decuplet Å π and K mesons
and baryons (N , eventually Σ and/or
Ξ). We prefer to include the physical
4mπ threshold, an intermediate one at
1 GeV, as well as a heavy one ac-
counting for the observed (nearly lin-
ear) spectrum of resonances on the ρ
trajectory. The masses of the latter
will be ˇtted to the data.

Figure 1 shows the ChewÄ
Frautschi plot with the trajectory (3),

(4) and four thresholds [14] included. This trajectory matches well with the scat-
tering data [16Ä18], as shown in Figs. 2,a,b,c, where ˇts to the scattering data
based on the model [19] are presented.

The construction of a trajectory with a correct threshold behaviour and Man-
delstam analyticity, or its reconstruction from a dispersion relation is a formidable
challenge for the theory. This problem can be approached by starting from the
following simple analytical model where the imaginary part of the trajectory is
chosen as a sum of terms like

Im αn(t) = γn

(
t − tn

t

)Re α(tn)+1/2

θ(t − tn). (5)

A rough estimate of Re α(tn) can be obtained from a linear trajectory adapted to
the experimental data.

We have checked this approximation a posteriori and found that it works.
It could be improved by iterating the zeroth order approximation. From the
dispersion relation for the trajectory, the real part can be easily calculated [15]

Re α(t) = α(0) +
t√
π

∑
n

γn
Γ(λn + 3/2)√
tnΓ(λn + 2)

×

× 2F1

(
1,

1
2
; λn + 2;

t

tn

)
θ(tn − t)+
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+
2√
π

∑
n

γn
Γ(λn + 3/2)
Γ(λn + 1)

√
tn 2F1

(
−λn, 1; 3/2;

tn
t

)
θ(t − tn), (6)

where λn = Re α(tn). Work in this direction is in progress.
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Fig. 2. a) Differential cross section dσ/dt [µb/GeV2] versus −t [GeV2]. The solid curves
represent the result of a ˇt with the model by Arbab and Chiu [19] using the trajectory
deˇned in Eqs. (3) and (4). Data are taken from Ref. 16. b) The same as in a, with data
taken from Ref. 17. c) The same as in a, with data taken from Ref. 18

REFERENCES

1. Burakovsky L. Å String Model for Analytic Nonlinear Regge Trajectories, hep-ph/9904322;
Brisudova M.M., Burakovsky L., Goldman T. Å Effective Functional Form of the Regge
Trajectories, hep-ph/9906293.



50 FIORE R. ET AL.

2. Filipponi F., Pancheri G., Srivastava Y. Å Phys. Rev., 1999, v.D59, p.076003.

3. Dey J., Ferreira P.L., Tomio L., Choudhury R.R. Å Phys. Lett., 1994, v.B331, p.355;
Delˇno A., Dey J., Malheiro M. Å Phys. Lett., 1995, v.B348, p.417;
Dey J., Dey M., Ferreira P.L., Tomio L. Å Phys. Lett., 1996, v.B365, p.157.

4. Barbashov B.M., Nesterenko V.V. Å Relativistic String Model in Hadron Physics (in Russian).
M.: Energoatomizdat, 1987.

5. Paccanoni F., Stepanov S.S., Tutik R.S. Å Mod. Phys. Lett., 1993, v.A8, p.549;
Kholodkov A.V. et al. Å J. Phys., 1992, v.G18, p.985.

6. Coon D.D., Yu S., Baker M. Å Phys. Rev., 1972, v.D5, p.1429.

7. Chaichian M., Gomes J.F., Kulish P. Å Phys. Lett., 1993, v.B311, p.93.

8. Jenkovszky L.L., Kibler M., Mishchenko A.V. Å Mod. Phys. Lett., 1995, v.A10, p.51.

9. Gribov V.N., Pomeranchuk I.Ya. Å Nucl. Phys., 1962, v.38, p.516.

10. Degasperis A., Predazzi E. Å Nuovo Cimento, 1970, v.A65, p.764;
Fleming H., Predazzi E. Å Lett. Nuovo Cimento, 1970, v.4, p.556.

11. Trushevsky A.A. Å Ukr. Fiz. Zh., 1977, v.22, p.353.

12. Bugrij A.I. et al. Å Fortschritte der Phys., 1973, v.21, p.427.

13. Fiore R., Jenkovszky L.L., Magas V., Paccanoni F. Å Phys. Rev., 1999, v.D60, p.116003.

14. Kobylinsky N.A., Timikhin V.Å Acta Physica Polonica, 1977, v.B9, p.149 and earlier references
therein.

15. Tables of Integral Transforms Vol. II, Ed. A. Erdelyi et al. McGraw-Hill, New York, 1953.

16. Serpukhov-CERN Collaboration Apel W.D. et al. Å Phys. Lett., 1977, v.B72, p.132; JETP Lett.,
1977, v.26, p.502; Pisma Zh. Eksp. Teor. Fiz., 1977, v.26, p.659.

17. Barnes A.V., Mellema D.J., Tollestrup A.V., Walker R.L., Dahl O.I., Johnson R.A., Ken-
ney R.W., Pripstein M. Å Phys. Rev. Lett, 1976, v.37, p.76.

18. Serpukhov-Brussels-Annecy(LAPP) Collaboration Binon F. et al.Å Z. Phys., 1981, v.C9, p.109.

19. Arbab F., Chiu C.B. Å Phys. Rev., 1966, v.147, p.1045.

20. Caso C. et al. Å Eur. Phys. J., 1998, v.C3, p.1.


