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1. INTRODUCTION

Fig. 1. The Synchrophasotron and the Nu-
clotron of the Laboratory of High Energies
of the Joint Institute for Nuclear Research

Relativistic nuclear physics was
born in Dubna and Berkeley in the early
1970s. In Dubna at the Synchropha-
sotron, deuterons and then more heavy
nuclei up to the sulfur nuclei with an
energy of 4.5 GeV/nucleon were ˇrst
accelerated. At Berkeley beams of dif-
ferent relativistic nuclei, but with less
energy were also obtained. An active
research of nuclear interactions in GeV
nuclear beams was then started.

At the Joint Institute for Nuclear
Research a specialized superconduc-
tive accelerator of relativistic nuclei Å
Nuclotron, able to accelerate practi-
cally all the nuclei at an energy of
6 GeV/nucleon [1] was built (Fig. 1).

In connection with N.N.Bogoliu-
bov's anniversary we would like to re-
member how he understood the main
problem of relativistic nuclear physics.
In his talk at a general 1985 meeting
of the USSR Academy of Sciences [2]
he paid attention to the fact that over
the past years the ideas of the theory of
color quarks had started to penetrate more deeply in nuclear physics and the ma-
jor problem is to explain the nature and the basic regularities of nuclear forces
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Fig. 2. A fragment from the talk of
N.N.Bogoliubov [2]

proceeding from fundamental chro-
modynamic interactions of quarks
and gluons. Figure 2 gives a frag-
ment from Bogoliubov's talk. As
is seen from this fragment, he con-
siders that the main problem of
relativistic nuclear physics is the
search for manifestations of quark
degrees of freedom in nuclei.

Being the Director of JINR,
N.N.Bogoliubov gave constant
support to the work on the Nu-
clotron. It is known that he was
the author of the theory of super-
conductivity and he was interested
in the quantum system with length
of a quarter of kilometer. Fig-
ure 3 presents a photo on which
Academicians N.N.Bogoliubov and

A.M.Baldin are discussing the magnetic system of the Nuclotron.

Fig. 3. Academicians N.N.Bogoliubov (right) and A.M.Baldin are discussing the magnetic
system of the Nuclotron
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2. CUMULATIVE EFFECT

First experiments with the deuteron beam of the Synchrophasotron carried
out by the group of V.S.Stavinsky have resulted in the discovery of a nuclear
cumulative effect [3] predicted earlier by A.M.Baldin [4].

Fig. 4. A schematic view of the cu-
mulative effect. Two nuclei with
atomic numbers AI and AII inter-
act between them and produce an
inclusive particle 1. For the descrip-
tion of the kinematic parameters of
inclusive particle 1 it is necessary
to suppose that NI nucleons from
nucleus I participate with NII from
nucleus II

The idea of this effect consists in the fol-
lowing: collisions of relativistic nuclei result
in the production of particles in the region of
energies, forbidden for one nucleon interac-
tions. Otherwise, because the secondary parti-
cles have the momentum and energy, observed
in experiment, it's necessary to suppose that
several nucleons take part in the interaction,
i.e., it's impossible to consider that the nu-
cleons in the nucleus are quasi-free. Figure
4 gives a schematic view of the cumulative
effect.

Later on the cumulative effect was investi-
gated in detail in Dubna and in other scientiˇc
centres.

This research has resulted in the discovery
of the quark-parton structure function of the
nucleus analogous to the quark-parton struc-
ture function of the hadron. It was established
that the experimental data for all nuclei from
helium to uranium can be described by the
following approximate equation for the cross sections

σ(AIAII → h1 + . . . ) = kAn
I A

m(NI)
II exp (−NI/〈NI〉) (1)

at 0.5 ≤ NI ≤ 3.3 (cumulative region at NI > 1),

m(NI) = 2/3 + NI/3 (0.5 ≤ NI ≤ 1)
m(NI) ≈ 1 (NI > 1).

NI ≈ 0.14 characterises the sizes of a multi-quark system, from which cumulative
particles are emitted. In this way, the nuclear quark-parton structure function can
be taken as:

G(NI) ∼ exp (−NI/〈NI〉). (2)

In a more general case the cumulative effect can be realized in both nuclei
AI and AII (double cumulative effect, Fig. 4), but with smaller probability.
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3. DESCRIPTION OF INTERACTIONS OF RELATIVISTIC NUCLEI
IN FOUR-VELOCITY SPACE

A relativistic invariant description of multiple particle processes in relative
4-velocity space was suggested by A.M.Baldin [6]. This approach turned out to
be very fruitful and made it possible to obtain a number of new properties of
relativistic nuclear interactions. The process of the interaction of two nuclei can
be written as follows:

I + II → 1 + 2 + . . . (3)

where I and II are the interacting nuclei, and 1, 2, 3, . . . are the secondary
particles. Following this approach relativistic invariant quantities:

bik = −(ui − uk)2 (4)

were introduced, where ui = pi/mi, uk = pk/mk are 4-velocity particles i and k;
pi,k and mi,k are their 4-momenta and masses. The distributions of the secondary
particles as functions of bik have universal properties, which points to a common
interaction mechanism on the quark-gluon level.

An important principle introduced in 4-velocity space by A.M.Baldin, is the
correlation depletion principle (CDP) analogous to the Bogoliubov's CDP. CDP
has been suggested by Bogoliubov in statistical physics as a universal property
of the probability distributions for particle location in an ordinary space-time.
The principle is based on an intuitive idea that the correlation between largely
spaced parts of a macroscopic system practically vanishes and the distribution
is factorized. From the mathematical point of view the principle means that
probability distributions are desintegrated in independent factors (Fig. 5).

Fig. 5. Schematic view of the correlation depletion principle in four-velocity space. Cor-
relation between largely spaced parts α and β of the particle system vanishes when the
distance bαβ in four-velocity space between the centres of systems α and β tends to inˇnity.
The probability distribution which characterizes the system is factorized W → Wα · Wβ

at bαβ → ∞

This principle makes it possible to study in detail cumulative processes as
target nucleus fragmentation processes using intense proton beams as projectiles.
In this case acceleration of relativistic nuclei is found to be unnecessary.
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The second important property of relativistic nuclear interactions, which was
used in four-velocities space, is the automodelity.

The introduction of a self-similarity parameter Π [7]:

Π = min [
1
2

√
(uINI + uIINII)2] (5)

leads to the description of the invariant production cross section for an inclusive
particle in the form [8]:

E(d3σ/d3p) = C1 · A1/3+NI/3
I · A1/3+NII/3 · exp (−Π/C2), (6)

where C1 = 1.9 · 104 mb·GeV−2 · c3·st−1, C2 = 0.125± 0.002.
This equation describes a very large amount of experimental data in a wide

region of change of the cross sections (by 10 orders of magnitude) and of the
energy for different particles and interacting nuclei.

4. ASYMPTOTICS IN RELATIVISTIC NUCLEAR PHYSICS

Using the self-similarity parameter Π (5) an analytical expression was ob-
tained for the inclusive invariant cross section of production of particles, nuclear
fragments and antinuclei in relativistic nuclear collisions in the central rapidity
region [9,10].

The quantities NI and NII become measurable if we take into account the
law of conservation of four-momentum in the form

(NIm0uI + NIIm0uII − m1u1)2 = (NIm0 + NIIm0 + ∆)2, (7)

neglecting the relative motion of the remaining not detected particles. Here m0

is the nucleon mass, ∆ is the mass of the particles providing conservation of the
baryon number, strangeness and other quantum numbers. For antinuclei and K−

mesons (the case of antimatter formation) ∆ = −m1. For particles produced
without accompanying antiparticles (π mesons, jets and others) ∆ = 0.

Using condition (7) it is possible to ˇnd value (5) in the central rapidity
region (here NI = NII = N ):

Π =
1
2

√
2N2 + 2N2(uIuII) =

N√
2

√
1 + (uIuII) = N coshY, (8)

where Y is the rapidity of colliding nuclei in the c.m. system.
In the region of the rapidity of the inclusive particle y = 0 we have obtained

N = [1 +
√

(Φδ/Φ2) + 1] · [mT

m0
coshY +

∆
m0

] · [1/(2 sinh2 Y )], (9)
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where

Φ =
1

m0
· [mT coshY + ∆] · (1/2 sinh2 Y ),

Φδ = (∆2 − m2
1)/(4m2

0 sinh2 Y ), (10)

m1 Å the inclusive particle mass, mT =
√

m2
1 + p2

T Å the transverse mass.
Now we consider the asymptotic behaviour of the self-similarity parameter

with increasing interaction energy:

s/(2mImII) ≈ (uIuII) = cosh 2Y → ∞.

In the collider energy region the self-similarity parameter Π assumes the
ˇnite value

Π∞ =
mT

2m0

[
1 +

√
1 + (∆2 − m2

1)/m2
T

]
. (11)

Fig. 6. Yield of strange particles in the central
rapidity region (for y = 0) as a function of
the collision energy

As is seen from Eq. (9), the ef-
fective number of the nucleons is in-
volved in the reaction N → 0 at
coshY → ∞. In this connection, we
may say with certainty that the hopes
for obtaining dence and hot matter (in
any case, for detecting it by fast inclu-
sive particles) in ultrarelativistic nu-
clear collisions are not feasible.

The analytical representation for
Π enables us to draw the following
new conclusions:

1. There exists the limiting value
of Π described by Eq.(11).

2. For Φδ = 0 the expression for
Π is factorized and proportionality of it to the inclusive particle mass m1 makes
it possible to test in detail the self-similarity laws. From Eq.(9) it follows that
the cross section (6) exponentially quickly decreases with increasing m1. In
particular, this implies that the probability of observing even light antinuclei and
fragments in the region y = 0 is insigniˇcantly small.

3. The yield of strange particles in the central rapidity region increases with
increasing collision energy (Fig. 6).

4. The effective number of nucleons involved in the reaction decreases with
increasing coshY (9).

5. A strong factorizable dependence of Π on mT we have discovered explains
the observed mT scaling.
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The results of our calculations for AGS and SPS energy are presented in the
Table. Experimental results from Refs. 11Ä13 are also presented there.

Table

Ratios of the yields p̄/p d̄/d K−/K+

Calculation (160 A · GeV)
(the present paper) (pT = 0) 0.16 0.027 0.25
NA52 (160 A · GeV) ≈ 0.1 ≈ 0.01 ≈ 0,2
NA44 (160 A · GeV) ≈ 0.08 - ≈ 0.4

Calculation (11 A · GeV)
(the present paper) (pT = 0) 0.00039 - 0.11
E866 (11 A · GeV) ≈ 0.0003 - ≈ 0.2

Fig. 7. Predictions of production cross
section ratios for antiparticles to particles
versus laboratory collision energy

The results of our calculations are in
satisfactory agreement with experiment.

Our predictions of the ratios of the
production cross section for antiparticles
to that for particles are presented in Fig. 7.
The calculations were carried out for a
ˇxed target and energy of incident nuclei
in laboratory system.

5. CONCLUSIONS

For inclusive production cross sec-
tions for particles, nuclear fragments and
antinuclei in relativistic nuclear collisions
in the central rapidity region (y = 0)

• the analytical expression is obtained;
• the results of calculations are in agreement with available experimental

data;
• the asymptotic behaviour as a function of increasing interaction energy is

discovered;
• the predictions for RHIC and LHC energy are presented.
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