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The phenomenological approach to gravitation is discussed in which the 3-graviton interaction
is reduced to the interaction of each graviton with the energy-momentum tensor of two others.
If this is so, (and in general relativity this is not so), then the problem of choosing the correct
energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum
«tensors» of gravitational field are considered and compared in the lowest approximation. Each of
them together with the energy-momentum tensor of point-like particles satisfies the conservation laws
when equations of motion of particles are the same as in general relativity. It is shown that in
Newtonian approximation the considered tensors differ one from the other in the way their energy
density is distributed between energy density of interaction (nonzero only at locations of particles) and
energy density of gravitational field. Starting from Lorentz invariance, the Lagrangians for spin-2,
mass-0 field are considered. They differ only by divergences. From these Lagrangians by Belinfante—
Rosenfeld procedure the energy-momentum tensors are built. Using each of these tensors in 3-graviton
vertex we obtain the corresponding metric of a Newtonian centre in G approximation. Only one
of these «field-theoretical» tensors (namely the half sum of Thirring tensor and the tensor obtained
from Lagrangian given by Misner, Thorne and Wheeler) leads to correct value of the perihelion shift.
This tensor does not coincide with Weinberg’s one (directly obtainable from Einstein equation) and
gives metric of a spherical body differing (in space part of metric in the first nonlinear approximation)
from Schwarzschild field in harmonic coordinates. As a result a relativistic particle in such field
must move not according to general relativity prescriptions. This approach puts the gravitational
energy-momentum tensor on the same footing as any other energy-momentum tensor.

O6cyxn ercst (heHOMEHONOTHYECKHI MONXO K TP BUT IIMH, IPH KOTOPOM B3 MMOJEHCTBUE Tpex
ID BUTOHOB CBOIUTCH K B3 MMONEHCTBHIO K XJOTO ID BUTOH C TEH30POM ®HEPIrHH-HMIIYJIbC JBYX
oct nbHbIX. Ecnu 310 T K (1 B 00ILEH TEOPUN OTHOCHTEIBHOCTH 3TO HE T K), TO BOIPOC O IIP BUTBHOM
BBIOOPE TEH30p 9HEPIUM-UMITYIIBC CBOIUTCS K TP BHJIBHOMY BBIOOPY TPEXTP BUTOHHON BEPIIHHEI.

P ccMoTpeHBI U Ccp BHEHBI HECKOJIBKO «TE€H30POB» DHEPIUH-HMIIY/IbC TIpP BHUT IMOHHOIO MO B
HU3IIEM HenluHeiHoM npubmikennd. K KIpIid 13 HUX BMecCTe C TEH30pOM SHEPIHH-UMITYIbC TOYEU-
HBIX 4 CTHUIL yIOBJIETBOPAET 3 KOH M COXP HEHHMs, KOTZL yp BHEHMs JBUKEHHs 4 CTHIL Te Ke, YTO U B
ob1meil TeOpHH OTHOCHTENTBHOCTH.

ITok 3 HO, YTO B HBIOTOHOBCKOM MPUOIMXEHUH P CCMOTPEHHBIE TEH30PBI OTIMY IOTCA TeM, K K
IP BUT LHMOHH f IVIOTHOCTh ®HEPIUH IOAD 3/IeNAeTCd H IUIOTHOCTh ®HEPIUH B3 MMOIEHCTBUs (OTJINY-
HYyIO OT HyJIsl TONBKO T M, IJleé €CTh 4 CTHUbI) M INIOTHOCTh ®HEPIMH IP BUT LHOHHOIO MO, (hUrypH-
PYIOLIYI0 C MOCTOSTENIBHO.

C HCnoNb30B HUEM TOJIBKO JIOPEHLIEBCKOH MHB PU HTHOCTH P CCMOTPEHBI J1 ID HXH HbI (OTJIU-
4 JOIIMECs H JIMBEPreHTHBIE YiIEHbl) 10N 6e3M CCOBBIX 4 CTHML cnuH 2. M3 9THX ;arp HXH HOB
metonoM bGemund HTe-PoseHcensn IonydeHbl TEH30phl 3HEPIUU-UMITYIbC . MICIonb3ysd K XKIblid u3
HUX B TPEXIP BUTOHHBIX BEPHIMH X, MOXHO H HTH COOTBETCTBYIOIIME METPUKH HBIOTOHOBCKOIO IIEH-
1p B G2-npubmmxenun. TolbKO OIMH U3 TOCTPOEHHBIX «TEOPETUKO-TIONEBBIX» TEH30POB ( HMEHHO
NOJTyCYyMM  TeH30p THpPPUHT M TEH30p , IOJTyYEHHOrO M3 JI TP HXHU H , IpUBEJeHHOro Mu3HepoM,
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TopHOM 1 Yusepom) IpUroieH Ul Ip BUIIBHOTO OIUC HUs NPEUECCHU IEePHIeMs IUT HEThl. DTOT TeH-
30p HE COBII JI €T C TeH30poM B iiHOepr (HemocpencTBEHHO CICAYIOIIUM M3 Yp BHEHHS DUHIITEHH )
U BEleT K MeTpUKe c(hepuyeckoro Tesi , OTIMY Iowieiicd B MPOCTP HCTBEHHOM Y CTH OT IUB PLILIIb-
JIOBCKOH B I' PMOHMYECKOH CHCTeME KOOPAMH T. B pes3ynsT Te pesamusucmck A 4 CTUL JOIXKH
JIBUT ThCS B T KOM IIOJI€ UH 4e, YeM MPEeICK 3bIB eTCsl OOLIei Teopheil OTHOCUTEIbHOCTH.

B p ccM TpuB eMOM MOIXOfie P BUT LIMOHHBIH TEH30p ®HEPIUM-UMITYJIbC HMMEET TOT XK€ CT TYC,
4TO U J11000i APYroii TeH30p HEPIUH-UMITYIIBC .

1. INTRODUCTION

General relativity is a complete, elegant, and self-consistent theory. Yet
there is a necessity of obtaining gravity by field-theoretical means starting from
flat spacetime, see, e.g., [1-4]. It is widely believed that on this way even
dropping the general covariance requirement we naturally get general relativity.
It is supposed that in the lowest nonlinear approximation this is demonstrated in
detail by Thirring [2]. Yet this conclusion cannot be drawn from [2], see Sec. 2.

The energy-momentum tensor of material fields in general relativity is ob-
tained from the corresponding one without gravitational field by equivalence prin-
ciple (comma goes to semicolon). This means that general covariance dictates the
form of vertices containing material fields. Even in this case other considerations
may lead to modifications. So conformal invariance leads to Chernikov—-Tagirov
energy-momentum tensor [5]. Dropping general covariance gives more freedom
in choosing and rejecting vertices in phenomenological approach to gravitation.

Since the gravitational collapse is considered as the greatest crisis in physics
[6], the research into possible alternative theories acquire especial significance.
It is quite natural to make the first step and to consider the simplest processes
by utilizing vertices; the graviton propagator is known by analogy with electro-
dynamics.

In the lowest nonlinear approximation it is necessary to know only 3-graviton
vertex. We assume the simplest possibility: the source of graviton is the energy-
momentum tensor of two other gravitons. In higher approximations probably
other vertices will be needed. Along this path one can find out what theories are
possible without assuming general covariance and a priori restriction on vertices.
An important step in this direction was made by Thirring [1-2]. We continue
his investigation in the same approximation and restrict ourselves to point-like
classical particles as sources of gravitation. Mainly we are interested in the
simplest system consisting of a Newtonian center and test particle moving in its
field.

In general relativity classical particles move along geodesics in Riemannian
space. This is the incarnation of equivalence principle and it is more reliable
than specific equation determining the gravitational field [9]. As to the equation
determining gravitational field, it is possible to think that the phenomenological
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field-theoretical approach will lead to more complicated algorithm for getting the
field. An interesting possibility in this direction was pointed out by Schwin-
ger [10].

It is reasonable to believe together with Einstein that for some reason or
other the singular behaviour near the gravitational radius does not correspond to
reality, see §15 in A.Pais’s book [11] and Einstein paper [12]. At present the
Schwarzschild singularity is considered as fictitious by many researchers because
the geometry is nonsingular there. See however the text after (2.2.6) in [13] and
after Eq.(9.40) in [14], where they say convincingly about physical singularity.
By field-theoretical approach it is difficult to understand why in a finite system
the acceleration of a freely falling particle becomes unlimited when it nears the
horizon. Such a behaviour should be connected with the fact that according to
[15] the gravitational energy in vacuum outside the sphere of radius R goes to
—oo for R — r4. In conformity with this the energy of matter and gravitational
field inside the sphere of radius R goes to 400 in such a way that total energy
of spherical body is equal to its mass. But if a theory predicts that the absolute
value of field energy outside sphere of radius R might be greater than total energy
of a body, then the analogy with electrodynamics suggests that the concept of
external field becomes inapplicable [16]. The belief in general relativity in similar
circumstances is based upon the concept of nonlocalazability of gravitational
energy, see, e.g., §20.4 in [6]. What is more, general relativity does not need as
a rule the gravitational energy-momentum pseudotensor.

Yet for understandable reason there is a persistent desire to obtain the best
possible energy-momentum tensor in the framework of general relativity. For the
latest achievements in this field see the exellently written papers [17] and [18].

The situation changes drastically when we begin to construct gravity theory
starting from flat spacetime and assume that in 3-graviton vertex each graviton
interacts with energy-momentum tensor formed by two other gravitons. Then
the nonlinear correction to the motion of a test particle depends on the chosen
energy-momentum tensor. The latter is built from field Lagrangian, which is
not unique as one can add to it some divergence terms. This leads to different
energy-momentum tensors. They can give rise to gravitational energy densities,
which may have even different signs. The question of sign of energy density is
of interest by itself. Provided the sign turns out to be positive, one should expect
the weakening of gravitational interaction at r ~ 7, = 2G'M in comparison with
Newtonian one in order that the gravitational energy outside the sphere of radius
r were much less than the mass M of the centre. The possibility of decreasing
the interaction at small distances is suggested also by the behaviour of attraction
force between two bodies supported by Weyl’s strut, see, §35 in [19].

In order to understand in what way the various energy-momentum tensors
differ one from the other we consider the following tensors: Thirring’s [1, 2],
Landau-Lifshitz’s [16], Papapetrou—Weinberg’s [9] and tensor obtained from
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the Lagrangian given in Exercise 7.3 in [6]. The second and third tensors are
representatives of general relativity, the rest are built from Lagrangians of free
field of spin-2, mass-0 particles and symmetrized by the Belinfante—Rosenfeld
procedure, see §1 Ch.7 in [20].

In the considered approach it is suitable to subdivide the 3-graviton vertex into
three vertices in accordance with three possibilities for choosing two gravitons
out of three to form the energy-momentum tensor — the source for the third
graviton (see Sec.2). So three diagrams contribute to nonlinear correction to the
field. In contrast with this the energy-momentum tensor, figuring in the solution
of Einstein equation by iteration procedure, is so defined that the correction to
field is given simply by means of propagator, i.e., by one diagram only.

The main result of the paper is this: starting from quadratic Lagrangians
(differing by divergence terms) of spin-2, mass-0 particles, the energy-momen-
tum tensors are constructed by Belinfante—Rosenfeld procedure. It turns out that
only certain combination of these tensors (used in 3-graviton vertex) is fitted for
correct description of perihelion shift. This combination does not coincide with
Papapetrou—Weinberg tensor.

The investigation of possibilities of phenomenological approach to gravita-
tion without use of general covariance seems to us very promising. Valuable
undertaking in this direction was made in [21].

Throughout the paper we use

Juv = Nuv + huu; (1)

in Sections 2, 3, 5 n,, = diag(1,—1,—1,—1); in Sections 4, 6 and Appedix
N = diag (—1,1,1,1). In Sec.2 we use Thirring’s notation [2]; both greek and
latin indices run from O to 3.

The gravitational field is described by the symmetric tensor h,,, which
contains spin-2 and lower spins, see, e.g., [3]. The unnecessary spins (spin-1 and
one of spin-0) are excluded by Hilbert gauge:

_ 1 0
py o — (WY B — — Ko
h Vo= (h 277 h’)w Oa h h o8} h,l/ 8%”

h. 2)

2. THIRRING’S ENERGY-MOMENTUM TENSOR

Thirring was the first who attempted to synthesize field-theoretical and geo-
metrical approaches to gravitation [1,2]. He tried to do several important things.
First, to demonstrate that in the lowest nonlinear approximation the graviton inter-
acts with something physically important, namely with energy-momentum tensor
of gravitational field. Second, that this energy-momentum tensor can be built by
field-theoretical methods starting from flat spacetime. Finally, he wanted to show
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that his field-theoretical approach can be naturally brought in line with general
relativity. Yet Nature seems resists implementing Thirring final wish. To show
this we consider Thirring’s paper in some detail.

One way to obtain Thirring’s tensor is to start from general relativity La-
grangian \/—gR. If we remove terms with second derivatives of g, into diver-
gence terms and drop the latter, we get the function

G(x) = g"" (L7, T, — T, T7,), (3)

Ut vo nrs TOo
see [16, 18]. Retaining in it only quadratic in h,, terms we get

1
G(z) = Z[humh‘“”A — 2R AP 2R, PR — hah. (3a)

This is equivalent to Thirring’s Lagrangian [2]

fo1
L= [0 = 20 ™ + 20 MY — 397, (4)

Here
P = —hu/2f, Y =1,", f?=8rG, G=6.67-10"%m’/g-sec’. (5)

Thirring considers (4) as a Lagrangian of field of spin-2 massless particles.
Using 1,,,, instead of h,, is justified because then the analogy with electro-
dynamics becomes more close: 1, is analogous to vector-potential A,, and has
the same dimensionality, M +/G has the dimensionality of electromagnetic charge.
We note that the Lagrangian (4) exactly corresponds to Schwinger’s Lagrangian
[10], who uses the notation 7, = diag (—1,1,1,1) and 2h§§”’ = —hgl, = —hy,.
The canonical energy-momentum tensor following from (4), has the form

f 1 !
TV — 30“1/7680[“/7’}/ _ 5%0’680’7 _ 280“'/’6%071,,“ _ 7776 I
f ]. L. ]- v,
L= S [pun ™™ = Soae™ = 20 00™"], (6)
— 1 o
O = Vv = Yy — 577/“/1/)7 P =17, (7)

Using ¢,,,, instead of 1), is handy as many expressions become more compact
and the consequences of imposition of Hilbert gauge more clear.

Now we look for ¢, generated by energy-momentum tensor of a static
point-like mass (Newtonian center)

M
Ty= M6(x)6,00.0- (8)



10 NIKISHOV A.L

The solution of linearized Einstein equation with the source (8) is [2]

_ fM _

Puv = _h;w/zf = méuoéum huu = 4¢6u05u0a (9)
satisfying Hilbert condition (2). For one Newtonian centre ¢ = —GM/r. For
several centres m

=-G — 10
¢ Z P (10)
In terms of
_ 1 _ o
hyw = by — inuyh, h=hs,, (11)
we have
huw = 260,,, h=hs" =—4¢ = —h. (12)

The energy density of field (9) is positive

foo_ 1 2
7%= — (Vo). (13)

!
As any canonical tensor of field of particles with nonzero spin, the tensor 7°7°

ought to be supplemented to symmetric one by the spin part (see [16]):

f
978 =T 4 e, (14)
For Newtonian centre Thirring obtains

1

S 1 73
T7= ——(V$)25,00 M=
G V) 00000, T G

(V§)*d55. (15)

900

So in this case is negative

00 =~ (Vo (16)

Turning now to conservation laws of total energy-momentum we remind first
how matters stand in general relativity. There the energy-momentum tensor of

p
point-like particles T#" is connected with its counterpart in special relativity 7"
by the relation, see (33.4), (33.5) and (106.4) in [16]:

P
Vg TH=TH = Zmau“u”%(ﬂx —x4(t), u=dz"/ds, (17)
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g is determinant of g,,. In terms of 7#” the conservation laws are (see (96.1)
in [16])

1
T“u,u = [THT(UTV + hrv)],p, = Ehua,uTua- (18)

We shall see below that 77 h,,, can be interpreted as (part of) interaction energy-
momentum tensor.
As is known the equation of motion of particles in general relativity

R

is contained in conservation laws. Indeed from

T 9%, =T 7% ;4TI T ™ £ Tk 7™ =, (20)

P
taking into account that from definition of 7" 7% in (17)

p . 1 . 1 ; 1
T =59 2 (=9) /T + (—9) 2T, T}, = sgdm (2
we get _ }
7%+ T, T™ =0. (22)
This is equivalent to (19), because [9]
ek :ZW (x — X4(2)). (23)

a

Going back to field-theoretical approach, we rewrite the equation of motion of
particles (19) in the lowest approximation

d I d2 ¥ 1

Just at such movement of particles the divergence of total energy-momentum
ought to be zero, and inversely, from zero divergence follows Eq.(24). From
(23) and (24) we find

1
T, = Ehaﬁvérw — B T, (25)

This agrees with (22) and (18) in considered approximation. With the same
accuracy this can be rewritten as

1
(T7 + T, , = ihaﬁvéTaﬁ. (26)
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Using linearized Einstein equation for ¢,

1 _
SD/,U/,)\A - 57]/1,1/907)\>\ - 90)\1/,/1,)\ - 90)\/1,,1//\ - pr,uv

1
Tul/ = 771,1/ - 57711,1/77 T = 7;07 (27)
we get
f § af3,0 T 1~ Saf 1 Sraf
T Y = fo™ Tozﬂ = _§ha[3’ T = —iho{g’ T, (28)
Addind (26) and (28) we see that the total energy-momentum tensor is con-
served. Spin part of energy-momentum tensor is conserved by itself and does not
contribute to conservation laws:
77, =0. (29)
So from (26) and (28) it follows that the conserved tensor contains in itself
the interaction tensor [2]
int
T 70 =T7h,°. (30)
But it is not symmetric. In order to understand the reason we have to

consider the properties of IS’ 7% in detail despite the fact that it does not take
part in conservation laws written in the form of Eqgs. (26) and (28). According to
known rules [2,20] we have

7k — — itk ki piki (31)
ik oL o — I
I = Opap (P an's —'an"s),  L=L. (32)
ap,]g

The antisymmetric part of (31) is contained only in the last term. For it we have

_pivi (9L k(9L i oy 0L ko 0L
F™ = (a%j’i)i@ a (a%k}i)’iw ot &pww i a%k’iso i
(33)
The first two terms on the right-hand side symmetrize the interaction tensor, the
last two terms symmetrize the canonical one.

It is not seen directly from (6) and (31) that field energy-momentum tensor
67° in (14) is symmetric. This agrees with the fact that the proof of symmetry
utilizes the Euler-Lagrange equations for field which is considered as free [20].
We are interested in interacting field. So using linearized Einstein equation (27)
with source, we get

oL i ( oL ) ; e en
a a=f(TY¢"a =T o) =
(a%j’i)’iw T ’iso [T )

= f(TY9Fy — T ,) = %(T‘“"hja —T%hk,). (34)



ON ENERGY-MOMENTUM TENSORS OF GRAVITATIONAL FIELD 13

In the last equation we use the connection between v,,,, and h,,,, see (5). Substi-
tuting in (30) v — 4,0 — k, we see that the sum of (30) and (34) is symmetric.
This result retains if we start from another Lagrangian differing from Thirring’s
one in (6) by divergence because the linearized equation remains the same.

S .
One should take into account however that the symmetric part of 7' 7% can
also contain terms of interaction type. So for the Lagrangian in (6) similarly to
(34) we find

—FIE = PRI = [T = 200" + fIT "0 + T o] +
F2(07 %00 0 + @ 07 o) + 20790 i — (0T i+ 07T ) —
=27 %0 0 + 0 0i) + 205 o i (35)
As a result we get for ZS’ Ik
T Jjk _— 2[(807'17ai<;0ka 4 (pzk,aispja) _ (pza7iaspkj + SOJOM(PkO(,i _ @Jk7(yi<,01(y _
—p o+ @M o] = 20° oF o s + 2 TT . (36)

I
Here last but one term, added to T 7%, makes it symmetric. The last term can be
rewritten in terms of A, in the form, see (9) and (11), (30),

. 1 int . 1 _.
—T7%(he* — 5%’%) =-T%4 57]’%. (37)

int . .
So the symmetrization of 7 7* in (30) is reduced to its replacement by %T]kh.
This tensor is nonzero only where particles are present. For Newtonian centres
the corresponding energy density

1
570% =27 (38)

int
is positive (contrary to our intuition and) contrary to 7 °° in (30), see (12) and
(10), where h and ¢ are given for Newtonian centres.

We note that the use of linearized Einstein Eq. (27) in the expression for jg“ ik
leads to that Eq. (29) is satisfied only with considered accuracy. The presence of
interaction energy-momentum tensor means the appearance of such vertex: the
energy-momentum tensor of matter together with one of gravitons serves as a
source for other graviton, see Fig. 1.

Now we note that Belinfante—Rosenfeld procedure leads to the appearance in
gravitational energy-momentum tensor terms with second derivatives.

Thirring assumes that his tensor 87° (see (14), (6), (31)) is an analog of
energy-momentum tensor figuring in the r.h.s. of Einstein equation when iteration
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procedure is used. In other words the nonlinear correction to field is given only
by diagram (a) in Fig. 2. On this figure the short straight line has only conditional
meaning: it represents the source of gravitons, namely the
energy-momentum tensor built of two gravitons (real or virtual)
shown in Fig.2 as joining the ends of this line. The graviton
emerging from the middle of straight line is emitted or absorbed
by this source. On diagram (a) the energy-momentum tensor
is build from gravitons of Newtonian centre. On diagrams (b)

Fig. 1. The sec- ;14 (¢) one of the virtual gravitons of Newtonian centre interact

ond rank - ten- energy-momentum tensor of two other gravitons. All three
sor formed from . T e . .

diagrams in Fig.2 correspond to one Feynman diagram obtained
matter energy-

momentum ten. PY contracting the short straight line to a point.

sor and graviton
is a source for
another graviton

The contribution to nonlinear correction for field from dia-
gram (a) is easy to obtain. Indeed, from (14), (6) and (15) we
have

gk = 13k = # <¢,j¢,k - %’“(w)?) , G k=1,2,3. (39)
Using now the field equation in Hilbert gauge with 6# from (16) and (39)
T v 92 oo
Opt = —167GO*”, O = Ero V. (40)
(a) (®) (©)

Fig. 2. 3-graviton vertex. Short straight line serves only to distinguish the roles of
participating gravitons: energy-momentum tensor is formed from two gravitons joining
the straight line at its ends, this energy-momentum tensor serves as a source for graviton
emerging from the middle of the straight line. Crosses represent external field sources

we find
. = G*M? GM
% = 742, Kk =— " 'z, d):—T, i,k=1,2,3. (41)
Here easily verifiable relations
i ok ik
px'x”  20i  4a'z o1 2
v T v 2 ot (42)
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were used. The obtained h*v satisfies Hilbert condition. Going over to h,, =
hH — %nwh, we find the following nonlinear corrections

, 35,
hoo = —4¢%,  hi = —GQMQ(% o

)- (43)

r2

(2)
Index 2 in h ., indicating the order of correction in powers of G, is dropped
for brevity.
Finally from (12) and (43) we have et dich
ds® = goodt? — (1 — 26 + 3¢°) Sy da’da’ — ¢? ZEEZ T2
r
goo = 1+ 2¢ — 4¢°. (45)

The transition to spherical coordinates is given by the relations

i gk
Sapda’da® = dr? + r*(d6? + sin? dp?), M = (dr)?.

Why the nonlinear correction in (45) turns out to be negative? It will appear
later on that it is caused solely by the source (15), see Eqgs. (95) and (93a). The
sources (8) and (15) have different signs, but the corresponding fields have the
same sign. The answer is simple. The correction in (45) is only a small (and
negative) part. The larger and positive part goes for converting initially bare mass
in Newtonian potential into a dressed one, see Eq. (A9). Now the negative sign
of correction is clear: the mass of Newtonian centre at infinitely large distance
appears as M, but at finite distance the test particle feels a greater mass and
greater attraction, because (15) is negative.

The nonlinear correction —4¢? in gg in (45) is of special interest for us. The
correct value necessary to explain the perihelion shift is +2¢2. The shortest way
to see this is to use the method described in §101 in [16]. We write in spherical
coordinates

ds* = A(r)dt* — B(r)dr® — C(r)(df? + sin® Odp?).
The solution to Hamilton—Jacobi equation has the form

S =&+ Jp+S,(r), S,(r) = /B(T)[m -

Here £ and J are constants.
For nonrelativistic particle £ = m + &', &£ < m, and the main terms in
square bracket in the expression for .S, are cancelled out:

1/A(r) = 1~ =2¢(1 - ¢),
where we have assumed that A(r) = 1 + 2¢ + 2¢2.
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So we have to retain in A~1(r) terms of order ¢?, butin B(r) and 72C(r)~!
only terms of order ¢: B(r) =r"2C(r) = 1 — 2¢. Thus

-1 Ty 37'3
B)(A() ™ = 1) ~ —(1 - 20)26(1 - 6) ~ ~26(1 - 3¢) = 2 + 7%,
The leading term o< —2 in S, is
2,2
_i(JQ B 3m rg)
72 2
As explained in [16], the expansion
3m?r2 3m2r§ oS,

S,.(J? 9y = 8,(J?) —

2 2 9J?

directly leads to correct perihelion shift.
In general the motion of a particle is described by equations (cf. §4 in Ch.8
in [9])

dp B(r) (dr 2 J? I
C(T)E - ‘]A(T)7 AQ—(T) (E) + m - m =—-F. (45&)

For nonrelativistic particle only the third term on the L.h.s. of second equation in
(45a) does not contain small factor of order v2. So it requires more accurate ap-
proximation. For relativistic particle A(r), B(r) and CT(QT )
in the same approximation.

Now taking into account all 3 diagrams of Fig.2 we get instead of (44) (see
Appendix for more details and pay attention to difference in metric signature
there)

ought to be considered

ipd
ds® = (1426 + 4¢%)di* — (1 — 20 + 96%)(dx)? + 13> ——da'da?.  (45D)
r

As the nonlinear correction to ggg is twice as much as necessary, Thirring tensor
alone is insufficient.

We note here that Thirring obtained from his tensor the necessary correction.
Yet his result is objectionable as he used illdefined gauge

2772
0O2A = G—M,

472

see Eq. (83) in [2]. Namely the source of A fall of too slowly for large r and the
integral defining A, see (A8), diverges for large r’.

In the next two Sections we shall see how energy-momentum «tensors» of
general relativity differ from Thirring’s tensor.
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3. LANDAU-LIFSHITZ PSEUDOTENSOR OF ENERGY-MOMENTUM

This pseudotensor in the sense and approximation considered here is a tensor.
In the lowest approximation with the help of relation

. oo o
V=99t~ (L4 )" = B) mot = B (46)

we get from Eq. (96.9) in [16]

. 1 I . _ _ L _ . _
tzk _ e [hzk,lhlm,m _ hll7lhkm7m _ hkm,phm/p,z _ hzm,phm/p,k + hzm,phkmm_’_

1 1-

1- .- o 1= _ 1- - _
+§hpq,zhpq,k _ h,zh,k + nzk(ghmn,phpmm + ghﬂnh,m _ th%mhpq,m)]. (47)

Comparison with canonical tensor (6) shows that it is connected with ¢** by the
relation

. f. . _
tzk =T ik + sz, hik _ _2f90ik;

1 JE - L ) .
[hzk,lhln,n _ hzthknm _ hkn,phnp,z 4 hzn,phknm]. (48)

~ 167G

F’ik

From (14) we see that now in place of 7 * stands F*. But T * was a
conserved quantity, see (29). So F'¥ should rather play the role of interaction
energy-momentum tensor. Indeed, taking into account that in the considered
approximation A, satisfies the linearized Einstein equation

Bopi? = Njpn? — Njnp? + Maphgr?” = —167G Ty, (49)
we find )
ij,j _ hk’n,zr];n _ hk’n,zzzm_ _ §h,zTL_k. (50)
Now we check that coservation laws [16]
0 P -
o (=T ™+ %)) =0 (51)

are fulfilled. From (48), (28) and (50) we have
o 1 . , 1 .
t?,k’i _ _§hzq,kTL_q + hkn,zr];n o ih,zr];k. (52)

For matter energy-momentum tensor from (17) we get

(—) T™* =v=gT* ~ (1+ )T, —g~1+h. (53)
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From here 1
p . .
((—9) T zk) =T+ Eh,i
the terms of order h? being dropped. Now it follows from (25), (52) and (54)
that (51) is fulfilled. As is seen from (53) here, too, there is a tensor, which is
nonzero only where particles are located. Surprisingly it coincides with Thirring’s
interaction tensor, see (37) and text below it.
. . . int . .
Although —g Ip’ ik 4 ¢k differs from Thirring’s T4+ T * 4+ ¢ for
Newtonian centres they coincide, see Eqgs. (16) and (39).
Now we turn to Newtonian approximation. According to Problem 1 in §106
in [16] the energy density of gravitational field in this approximation is given by

T, (54)

ZJ: 90 in (13), (10). But there is also energy density of interaction p¢, where p
is density of particles. Using Poisson equation V2¢ = 47Gpu and ignoring the
problems connected with point-like nature of particles, we can write (utilizing
integration by parts)

/ ppdV = — / ﬁ(V@QdV. (55)

The density in the integrand on the r.h.s. contains now not only the energy
density of interaction, but also the proper energy density of particle’s self-field.
The density on the Lh.s. is nonzero only at particle locations, the density on the
r.h.s. is nonzero where the field is nonzero. The integration by parts deprive us the
possibility to retain the previous physical meaning of integrand. If nevertheless
we do this, then adding to (13) the energy density in the r.h.s. of (55) we get the
effective gravitational energy density in Newtonian approximation

1 2
—%(V@ : (56)

To bring this in agreement with t°° we ought, according to a foot-note in [16],

take into account the contribution from (—g) 7 %°. Let us do it. For t°° we have

o_ [ 2
9 = — = (Vo). (57)

where ¢ is the potential of Newtonian centres. Now

P h
(=) T = v=gT* = T"(1+ 5) = T" = 20, (58)

see (12). The sought for agreement will be reached only after we rewrite a la
Thirring [2] 7% in terms of observables. From (17)

0 _ s —
T —Zma 56(X x4 (t)). (59)
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In the presence of gravitational field
ds® = goodt*(1 — v?). (60)
Here v? is physical velocity, see §88 in [16]. Hence
dl‘o 1 1 hOO 2
— = ~ - —, vl 61
ds  /goo(1—v2) V1-22 2 oy

Thus after going over to the observable velocity we obtain the term

— = —p (62)

detached from 790, Equation (12) was used to get the r.h.s. Together with
corresponding term in (58) this leads to

—3up = m (Vo)?, (63)

where arrow corresponds to going over in (55) from integrand on the Lh.s. to the
integrand on r.h.s. Now the sum of (57) and (63) gives the expected (56).

The consideration of Newtonian approximation makes the following point of
view very enticing: The energy density of an isolated point-like particle should be
positive; Hilbert gauge exclude the unnecessary spins and then positivity seems
quite natural, because the presence of virtual gravitons should not make the energy
density negative. The attraction is described by interaction energy density and
so the latter must be negative. Neither Thirring tensor nor Landau-Lifshitz one
satisfies this requirement. The MTW tensor does. Unfortunately I failed to fit
this idea into existing approach to gravitation.

Using LL tensor in 3-graviton vertex we get from diagram (a) in Fig.2 the
same contribution as in the case of Thirring tensor. The contribution from all 3
diagrams of Fig.2 leads to

ds? = (1+ 2 + 4¢?)dt? — (1 — 26 + 762)(dx)? + T¢* 2 da:’da:ﬂ (63a)

4. PAPAPETROU-WEINBERG ENERGY-MOMENTUM TENSOR

Einstein equation can be recast in such a way that gravitational energy-
momentum «tensor» can be easily identified in coordinate system that goes over
to Minkowski system at large distances from gravitating bodies [9]. In the lowest
approximation this tensor has the form, see Eq.(7.6.14) in [9])

1

— o (1 (2 2) 1,2) _ 1,2
tun = 5—=l5 ,MR + n h*° RG) + R >——nu R®], R = R(12n,

(64)
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In this Section we use Weinberg notation:

v = diag (—1,1,1,1), guw = Nuw + hpws by = by, = ="M = —hlL.
(65)
Greek indices run from O to 3; latin ones, from 1 to 3. RLI,,’Q) is Ricci tensor in
the first and second approximation in powers of h,,. The indices are raised and
lowered with 7,,,. In terms of BW we get

1~ o 7 o 7 o 1 7, O 1o 1 o
R,(}y) = i(huu,a - ho'p,,l/ - hG’V,/,L ) - Znuuh,a ) R(l) = —h* o T ih,a )
66)
@ _ Lo 7 T T Loy 7 7 Vi
RHN = ih [huu,/{A+hnu,uA_hAu,mu_hp,/{,u/\]_1(h p,h,n)\"_hn h,p,l/) +
1. - 7 A A TV 1 TV 7 VT
b+ B = Ty n = ) = 3R+ ) +
o 1y 1. 1 1 v 7o 70
"'h7 (§hun,o' - thf,u - th,o',n) + ih a,u(h K + h N
- 1- - 1
houe®) + 5h,w,A(h,f’” —h, 7)) = —hoach™ L+ gh,ﬂh,n +
1oy - 1. 1. 1.
w[=PN Ry — Shh M+ =R o 0" — —h  h7), (67
+77u[4 A 8,A+4 , 3" ], (67)
(2) AV (D K 1 o Vv 30K 1_11 7,0
R =h (hm/’ A ihu)\,a ) +h o',l/h K §h a,uh’ +
1. - 3. 1. 1. -
P BT = Shyo ARTN — —hR" o\ 4 <h G 68
+2 A 4 A 9 NN + 8 s ( )
For Newtonian centre from (9)-(12) we obtain
Bpu = _BZV = _4¢6u06u07 h;w = _h,{y = _2¢5lwa
h=h" =nT = —4¢ = —h. (69)
Nonzero components of ¢, are
3 3GM? GM? ;
too = —%(V¢)2 =g tik= W(MW“Q — 14a'a"). (70)

In Hilbert gauge from equation

V2h,, = —167Gt,, (71)
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we find, cf. with (40), (42),

= 3G2M?
hoo = —

ik
— 362, hy, = —TGPM? T, (72)

r r

It is easy to check that (72) satisfies the Hilbert condition (2). In terms of h,,

we have )

551‘1@ xlmk

-1, (73)

In the expressions (71)-(73) h,, is nonlinear correction.
On the other hand, in harmonic coordinates the Schwarzschild solution has
the form [9]

hoo = —2¢%, hy = G*M?(

1+¢ 1—¢ aizk .
2 21 (1 &) 2 2 i gk 4
dr 1_¢)dt + (1 —¢)*(dx)” + 1+¢q§ = dz'dx (74)
So in the considered approximation this gives
goo = —(1+2¢ + 2¢°), (75)
TiTp
git = (1= 20)0i + ¢ (G + —5°). (76)

From (69) we have hét) = —2¢, from (73) h(%) = —2¢?, and there is agreement
with (75). As to the nonlinear correction for g;, in (73) it differs from the one in
(76) by a gauge. Really, subtracting from h;; in (73) the nonlinear part of (76),
we find

451‘1@ 8{Eifllk
4

) = 2G2M>(Ai g + Aps), As = = (77)

)
7"2

2772
G*M~( 2 "
i.e., a gauge.

Going back to tgo in (70), we note that this density is negative and does not
coincide with any density of other tensors. At the same time the equation of mo-
tion of particles is contained in the conservation laws of total energy-momentum
tensor. We shall check it in considered approximation. For gravitational part the
calculations give

1 1
% = —hY 0, T 4 Sho TH = STy — BT, (18)

The energy-momentum tensor for particles, figuring in conservation laws, has a
rather complicated form by construction [9]

ThE — nuanm—ga(ygﬂi Ipw af ~ 711, UK + hp,aTom 4 hnaTau ~
1
m THS = RIS G TO BT (79)
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From here with the considered accuracy

T :’f’ HE b B TOF 4 B g T 4 B TN (80)

So

1 1
(THE ) :’f He = 5/1”"7“’7},0 + PR T, + 5]@,,7”". (81)
Further from (53) we get

1
T He o TR, — ShaTH". (82)

Taking into account (25) we see that the r.h.s. of (81) is zero.

Now we turn to Newtonian approximation. Terms of interaction tensor are
contained in both 7/ (three last terms in the r.h.s. of (79)) and in ¢,,. From
(64), (66)—(68), using (49), which preserve its form in the notation of this Section,
we find the following terms of interaction tensor contained in #,,.:

1 z oo 1- 1-
—Ehmﬂ' — Nur (WP Tpe — ZhT) - 5hTm.

From here and the first equation in (70) we get in Newtonian approximation

too = —%(W)Q — 66Tg0. (83)

Here ¢ is the same as in (10). From (79) and (53) we get in this approximation
1
790 = (=) 2T 4 20T ~ T(1 — 31) = 2hooT™ = T+ 66T, (84)

Thus in Newtonian approximation the interaction terms in the sum of (83) and (84)
are cancelled out. The agreement with Newtonian approximation (56) is achieved
in the same way as for Landau—Lifshitz tensor: 7°° on the r.h.s. of (84) detaches
term (62), which is equivalent (in accordance with (63)) to ﬁ(V(ﬁ)Q. Together
with the first term on the r.h.s. of (83) this gives (56).

Weinberg shows in detail that his energy-momentum tensor has all required
characteristics. But this tensor does not help us to find energy-momentum ten-
sor of two gravitons as represented by straight line on diagrams of Fig.2. By
construction Weinberg’s tensor gives the gravitational field only via diagram (a)
in Fig.2. The field-theoretical description tells us that test particle is not quite
passive. It does not simply follow the command «move along geodesic» but itself
takes part in the creation of field in which it moves, see Fig.2(b, c). From this
viewpoint one can expect that, e.g., photon and graviton scatter differently on
Newtonian centre as only in the latter case all three diagrams of Fig. 2 contribute.
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5. MISNER-THORNE-WHEELER ENERGY-MOMENTUM TENSOR

In this Section it is handy for us to use again Thirring’s notation. Up to
divergence terms the Lagrangian (6) may be rewritten as [6]

1 1
L= 5@[“/,)\%0}“/7)\ - ZSO,ASOA - @HV7H<P)\V7A- (85)

The corresponding canonical energy-momentum tensor

fon_ 0L

= g ¢ L (36)
»J

acquires the form

T = Tj’“—%nj’“T ,T7% = @“””“%u’j—%s@”“@’j—2<pj””“<pua"’ T =-T=2L.

(87)
Spin part is given by (31)—(32) with substitution L — £. We dwell on differences
from Thirring’s tensor. In symmetric in jk tensor

FI 4 FF9 = (0% — 0 o) oo + (07F — 027 o0 )l o —
—20" 50" + (20%7 o* — T — I F) G + O s + 7 o™ (88)

there are no derivatives over z’. This means that in divergence Fjikﬂ' + F’”jﬂ'
there are no terms of interaction tensor. In antisymmetric in jk tensor

Fiki = (pohki _ 00 pikyoi ke iy (000 i g0ty i ik

(89)
such terms are present. Hence, using linearized Einstein equation (27) in the
expression for F™*J ; we get

—FH = [T 0 = T ) + 9% o (7o = Fa?). (90)
Terms with f together with (30) give symmetric interaction tensor in accordance

.
with (34). Other two terms on the r.h.s. of (90) supplement 7 7% to symmetric
one, see (87). So we get

) f . s . 1 ) ) . |
@ik —p ik ik — @”V’ksﬁw’j _ 5%0’1%07] _ (pja’m,@zk _ @ka,m‘w” _

ai,j

Wi — 0™ QT i+ (©F + T )t + 20" e +
+20% ok — 2097 R (ORI TR, —

)

=275 (0% o9'a)i = WL A [T 0 =TI 0). 9D

-
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From (91) and (30), using the relation between ¢,,,, and ﬁ“,, in (9), and taking
into account (34), we find

1
327G
(RO g g+ RORRI )+ (RO + BRI VR + 9B iRk 4 2R R

) int . - _ . 1-,- . . . _ .
@ik T ik = [h’“”kh,wﬂ _ Eh,kh,J _ (hj",gihzk + hkrf’mhlj)_

—QTLjU’giLki’i 4 (}_Lak,j 4 }_Laj,k)ﬁag,a _ 2njk(ﬁag,aﬁia),i _ n]kﬁ]_’_

1 : S

+§(Tkahaﬂ + T7%h,k), (92)
1
- 327G

It is easy to verify that total energy-momentum tensor consisting of (17) and (92)
is conserved. The canonical part of MTW tensor in Hilbert gauge has the form

1- - 1. - o
L [ih,whlw — th% — By AN 4] (93)

f 1 - - 1- -
Yo nv,o N WY NG T
gamG U = g hh
o7y 1 FNTIZON 1’)\’ Y8 1 YO
-n [ihl“/’)\h = Zh’ h7)\]} =T — 57’] T. (93@)

For Newtonian centres this expression coincides with Thirring’s one, see Eq. (6).

As noted earlier the nonlocal part of 28“ # is zero for Newtonian centres.
For these centres from (92) and (9), (12) we have

1

int
00 00 _
+T e

(V¢)® +2up, p=T%. (94)
For this system the MTW Lagrangian (93) coincides with Thirring’s one. The
same is true for canonical energy-momentum tensors, see (6) and (86)—(87), but
spin parts are different. It follows from (91) and (87) that for Newtonian centres
MTW spin part contributes only to interaction tensor, while Thirring’s spin part
contributes also to pure field part, see (15).

We note now that in the Hilbert gauge for static case (for Newtonian centres)
the linearized Einstein equation can be written as

V2h), = =V?h}, = —167GT,,, (95)

see (A12) below. As is seen from (93a) for this system Too = 0, i.e., there is no
contribution to hgg from diagrams of Fig. 2.

Comparing MTW and Thirring tensors in Newtonian approximation we see
that addition of divergence terms to Lagrangian leads to the change in subdivision
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of energy density between purely field part and interaction part. Using (61)—
(63) we obtain from (94) the effective gravitational energy density in Newtonian
approximation given in (56).

Returning now to contributions from diagrams of Fig.2 we find that diagram
(a) leads to

ds? = (1 4+ 2¢)dt — (1 — 26 — ¢?)(dx)? ¢2 2 e (96)

Contribution from all 3 diagrams of Fig. 2 is represented in the expression

ds® = (1 +2¢)dt* — (1 — 2¢ — 5¢?)(dx)* — 9¢2%Cldxidxi. (97)

6. DISCUSSION

We have assumed in this paper that in 3-graviton vertex each graviton inter-
acts with gravitational energy-momentum tensor formed from two other gravitons.
But in general relativity the 3-graviton vertex is given by cubic in h,, terms in
function G(z), see Eq.(3). Correcting a misprint in [22] one finds that these
terms are given by Q-e:

1
Q'yQ {7779[ af, AR Ma _h af, AR oA ha[fah’ﬁ + §h7)\h7/\] +

1

327
+haﬁ,7h 0= 20 516 + 280 5h6%P 4 (Byap + hoaq ) —
_2h7‘9;ah’a + (hva’ah,e + hea’ah,y) —hho+ 2h79’ahaﬁ”3 —

—Q(ha%ghaﬁﬂ +h9(y75ha677)}. 98)

There are no reasons to expect that Qw is conserved energy-momentum
tensor. Moreover it does not contain second derivatives and we know that the
only conserved energy-momentum tensor with this property is Landau-Lifshitz
tensor [16]. Yet (98) does not coincide with LL tensor. This is confirmed also
by the fact that (98) leads to general relativity result (73), while LL tensor leads
to (63a).

We note now somewhat unexpected fact: the half sum of LL and MTW
tensors reproduces general relativity result (76). On the other hand, the half sum
of Thirring tensor and MTW tensor gives

ds? = (1+ 2 + 202)dt? — (1 — 26 + 267)(dx)? + 2¢* 2 da:’darj (99)

This is half sum of (45b) and (97). In such space-time a relativistic particle
moves differently (in G2 approximation) from what is expected according general
relativity.
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Thus, assuming that in 3-graviton vertex each graviton interacts with energy-
momentum tensor (built by field-theoretical means) of two other gravitons, we
cannot reproduce general relativity results even in this lowest nonlinear approx-
imation. If, on the one hand, Nature chooses the 3-graviton vertex as assumed
here, then the gravitational energy-momentum tensor is specified (in considered
approximation) by the correct choice of 3-graviton vertex.

7. CONCLUDING REMARKS

Though general covariance was not assumed, the gauge invariance is of
course retained [2,10]. For this reason the weak gravitational waves in flat space
are described as in general relativity. All considered tensors give the same
energy-momentum tensor for the plane gravitational wave. There are no a priori
reasons to believe that field-theoretical approach will give the same result as
general relativity. It seems that there is still much to be done to synthesize the
geometrical and field-theoretical aspects of gravitations.

I wish to thank V.I.Ritus, I.V.Tyutin, and S.L.Lebedev for useful discussions
and D.E.Ivanov for collaboration in evaluating the contribution from diagrams
(b) and (c) in Fig.2. I am also grateful to V.N.Pervushin for careful reading the
manuscript and suggestions to improve it.

8. APPENDIX

Using 7, = diag (—1,1,1,1) we give here some details of calculating h,,.
We utilize the expression

hy = /d4x’DWp(, (x — 2")tP7 ('), (A1)

where graviton propagator

D,u,l/p(r(x - xl) = Pp,l/po’-DJr(x - x/)’ (AQ)
i d3p .
D.(2) = oz [ Gk espilex—"l). (43)
1
Pp,upa - 5(77;1,,0771/0' + nuanup - nuunpa)~ (A4)

The polarization factor P, ,, satisfies the relations

1 _
" Prvpe =tpe — §npgt =tpos PuvpeT? =Ty,
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1 - _

0 Pupo TP = Ty = ST = 19Ty = 0T, (A5)

The scalar factor D (z) has the representation

1 ) 1
D =5 ()= —— A6
Jr(x) Ar Jr(x ) (271_)2 (EQ -I-Z'E’ ( )
and possesses the property
7

e’} dT 1
Jarsix =< - 55 | G w0

— 00

For spherically symmetric body we have to deal with integrals of the kind

() =

1 d3x’
dt'Ds e~ 2l = 1 [ ’
/ A ] /x? +x2 —2x-x
L[ 112 / > ’o ’
:;/ dr'r p(r)—l—/ dr'r’ p(r"). (A8)
0 T

By the way it is seen from here that the derivative of Newtonian potential over r
is determined only by the mass inside sphere of radius r. Assuming in (A8) that
p =z, we get

L/ ’,02 / / 10 / 1 1
- + —c|l—=—-—). A
r/5 dr'r""p(r") ; dr'r’'p(r') = ¢ 5 72 (A9)

Hence the divergent part at small 7’ appears only in the term, which is absorbed
by mass renormalization.
So the source (13) generates the field

hoo = 1677G/d4x'D+(a: — 2 )Too(2') = —¢*. (A10)
The arrow shows that the divergent part is included in mass renormalization. The

r.h.s. of (A10) can be obtained also from the solution of wave equation derived
2
from (A10) by action of the operator 92 = V2 — 2 and taking into account that

1 2
~0?’Dy(x — ') = 6(x — '), VQT—Q =1 (A11)

We note also that

hyw = 167TG/d4x'D+(x — 2T (7). (A12)
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Now we shall indicate how to obtain the contribution from diagram (b) in Fig. 2.
(The diagram (c) contributes as much as (b) and diagram of Fig. 1 is irrelevant
to finding terms in g,,.) First of all we remark that some terms in energy-
momentum tensor are not symmetric in h forming the tensor. Such terms ought
to be symmetrized. For example the third term on the r.h.s. of (36) should be
rewritten as

_Z@QB,aﬂ@vé = _@aﬁ,aﬁ@vé - 9070900(5,&/3- (A13)

This is important because the left ¢ will always be considered (for the case
of diagram (b)) as «contained» in propagator and the right ¢ as originating
from Newtonian centre. Moreover the second term in the r.h.s. of (A13) may
be dropped as ¢ coming from Newtonian centre satisfies Hilbert condition (2).
Rewritten in terms of h (see (7) and (5)) the first term on the r.h.s. of (A13) has
the form

6 s = 5 B gl — hahog — Zmoh b+ Tioh.o®hl

(A14)

Now we consider the contribution from the first term in the r.h.s. of (A14).
Dropping temporarily the constant factor we have to evaluate the integral

[ @ 1Dppla = )b ) @), (A15)
The last h represents the graviton of Newtonian centre. This graviton interacts

with the source, given by first term in the r.h.s. of (A14). Using (A2), (A4) and
(69) we come to integrals

Ty = _/d4x’[D+(fc — )] w* ('),

/ 3Dy (z — o)) (') = — 2 (a). (A16)

The first equation in (Al1l) was used in the last equation in (A16). The first
integral in (A16) is treated as follows. Integrating by parts we get

L = / 2D, (x — 3')] u26(2)6 0 (). (417)

As ¢(z) is independent of 2%, v = 0 does not contribute. For the same reason
1 = 0 also does not contribute. Indeed for p = 0 we integrate over x’ % and get
the factor

D"r(x - J)/)|t£ = Oa
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see (A6). Thus we replace i and v by 7,5 = 1,2, 3. Integrating (A17) over 2'°

we obtain
2M? 1 1\ 1
Ii»:G /d3x’ 8.7 2 8,— —. (A18)
A ox'? |x — x| ox'tr ) r

Here we have used (A7) and expression for ¢, see text before Eq.(10). Now
writing

1 01 1 0 1
R W (419)

and again integrating by parts we find

G*M? 1 9% 1
I, =- d3a’ _— . A20
g 4m / ! |x — x| 9z "9z ' (420)

Using relations

- Lopd Lopd -
(iz) ST (—2” +5ﬂ) (A21)
r (3

’ A 6 4 r2

and again twice integrating by parts we get
G*M? . '8 1
Iij = — Al ) —2 | v? =
/ 47 / v < r +7"’2 |x — x'|

xizd 6y
= G2M? (—2r—4 + r—,j) = 60" — 21’00 ;. (A22)

Finally restoring all factors we find that the contribution from the first term
in (Al14) is
— 41,9 + 81, (A23)

The divergent integral

J— / Ao’ D (z — ') (V2(x'))(a'),

appearing in some terms, is cancelled out in final result.
At last we show how to obtain the finite part of the integral

B 1 32z — x’25ij
16 :
(A24)

Jij = /d4a:’D+(m—m’)¢7ij(x')¢(x') = G2M2/

dr |x — x'| r
Utilizing relation
r26;; — 3x'al

2 2
G,

VQIij ((E) =
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and (cf. (42))

o2 <§x1x] B 5ij> _ dij BRI
4 rt 472

4 r6
we find that the finite part of I;; is

3 ;i
Zr%,md - qub?. (A25)

The essential part of this Appendix machinery is checked up by obtaining the
expression (73) starting from (98). Calculation of ggp can be made by much
easier method suggested by Schwinger, see [10] and [21]. This method uses more
fully Hilbert condition and it is helpful for controlling some of our calculation.
For example it is clear from this method that (A13) does not contribute to hgo.
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