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The present status of theoretical description of deep inelastic scattering of leptons on protons with
the account of radiative corrections (RC) in the leading and next-to-leading approximations is reviewed.
For the process ep → epγ along with RC coming from emission of virtual, soft and additional hard
photons, there has been considered a e+e−-pair production in the leading approximation. The
Compton tensor with a heavy photon in the case of longitudinally polarized electron is presented. A
cross section for a special experimental set-up with the tagging of additional hard photon is given to the
nonleading order. A similar consideration is carried out for a cross channel, namely, electronÄpositron
annihilation into hadrons with emission of a hard photon by initial leptons. Details of calculations are
given in Appendices.

„ ´ µ¡§µ· ¸µ¢·¥³¥´´µ£µ ¸µ¸ÉµÖ´¨Ö É¥µ·¥É¨Î¥¸±µ£µ µ¶¨¸ ´¨Ö ¶·µÍ¥¸¸µ¢ £²Ê¡µ±µ´¥Ê¶·Ê£µ£µ
· ¸¸¥Ö´¨Ö ²¥¶Éµ´µ¢ ´  ¶·µÉµ´ Ì ¸ ÊÎ¥Éµ³ · ¤¨ Í¨µ´´ÒÌ ¶µ¶· ¢µ± (��) ¢ ²¨¤¨·ÊÕÐ¥³ ¨ ¸²¥-
¤ÊÕÐ¥³ §  ²¨¤¨·ÊÕÐ¨³ ¶·¨¡²¨¦¥´¨ÖÌ. „²Ö ¶·µÍ¥¸¸  ep → epγ ´ ·Ö¤Ê ¸ �� µÉ ¨§²ÊÎ¥´¨Ö
¢¨·ÉÊ ²Ó´µ£µ, ³Ö£±µ£µ ¨ ¦¥¸É±µ£µ ¤µ¶µ²´¨É¥²Ó´µ£µ ËµÉµ´  ¢ ¢¥¤ÊÐ¥³ ¶·¨¡²¨¦¥´¨¨ É ±¦¥ · ¸-
¸³µÉ·¥´µ µ¡· §µ¢ ´¨¥ ¤µ¶µ²´¨É¥²Ó´µ° e+e−-¶ ·Ò. �·¨¢¥¤¥´ ±µ³¶Éµ´µ¢¸±¨° É¥´§µ· ¸ ÉÖ¦¥²Ò³
ËµÉµ´µ³ ¤²Ö ¸²ÊÎ Ö ¶·µ¤µ²Ó´µ-¶µ²Ö·¨§µ¢ ´´µ£µ Ô²¥±É·µ´ . „²Ö ¶µ¸É ´µ¢±¨ µ¶ÒÉ  ¸ ¤¥É¥±É¨·µ¢ -
´¨¥³ ¤µ¶µ²´¨É¥²Ó´µ£µ ¦¥¸É±µ£µ ËµÉµ´  ¶·¥¤¸É ¢²¥´µ ¸¥Î¥´¨¥ ¸ ÊÎ¥Éµ³ ´¥²¨¤¨·ÊÕÐ¨Ì ¶µ¶· ¢µ±.
�´ ²µ£¨Î´Ò¥ ·¥§Ê²ÓÉ ÉÒ ¤ ´Ò ¤²Ö ±·µ¸¸-± ´ ²  Å e+e−- ´´¨£¨²ÖÍ¨¨ ¢  ¤·µ´Ò ¸ ¨§²ÊÎ¥´¨¥³
¦¥¸É±µ£µ ËµÉµ´  ´ Î ²Ó´Ò³¨ ²¥¶Éµ´ ³¨. ‚ ¶·¨²µ¦¥´¨ÖÌ ¶·¨¢µ¤ÖÉ¸Ö ¤¥É ²¨ ¢ÒÎ¨¸²¥´¨°.

1. DEEP INELASTIC SCATTERING

Deep inelastic scattering (DIS) is one of the powerful tools in investigating
a nucleon nature. It has played a key role to form our modern understanding
of the substructure of hadrons. A number of experiments were performed at
CERN, DESY, SLAC and elsewhere since the discovery of the proton structure
in the late sixties. These experiments have provided very precise data in a
wide kinematical region [1]. Renewed interest to the DIS was revived after
measurement of the proton spin structure by EMC [2] (see also the review [3]).
Till now the inclusive, semiinclusive and exclusive processes with both polarized
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and unpolarized particles are widely investigated in many laboratories around the
world.

Last years measurements of the observable quantities in DIS have the ten-
dency to decrease both statistical and systematical errors comparing with the
previous ones. Since radiative effects can give a substantial contribution to mea-
sured quantities the modern level of data analysis in experiments on DIS requires
careful consideration of the QED radiative effects which can give substantial
contribution to measured quantities. Usually a hard radiated photon cannot be
registered in a detector. As is well understood the corrections due to soft photons
and loop effects cannot be separated from observables in principle. Hence their
contribution has to be calculated theoretically and subtracted from observed data.
That's a reason why the calculation of radiative corrections is a very important
ˇeld of theoretical particle physics.

Depending on the four-momentum transfer squared, Q2, and the energy trans-
fer, ν, there are three basic channels for lepton scattering on nuclei: elastic, qua-
sielastic, and inelastic processes. In the case of elastic scattering (ν = Q2/2MA,
where MA is a nuclear mass) leptons are scattered on a nucleus leaving the latter
in its ground state. Quasielastic scattering (ν ∼ Q2/2M , where M is a nucleon
mass) corresponds roughly to direct collisions with the individual nucleons inside
the nuclei. Inelastic scattering starts to appear when the pion threshold is reached
(ν ≥ Q2/2M +mπ, where mπ is a pion mass). At the Born level both Q2 and ν
are ˇxed completely by measuring the scattering angle and the energy (momen-
tum) of scattered lepton. However at the level of radiative corrections, in the case
of presence of real radiated photons, ˇxation is removed and the four-momentum
of radiated photon has to be included in a kinematical variable calculation. Such
elastic, quasielastic and inelastic processes with radiation of a real photon are
known as radiative tails from the elastic (σel) and the quasielastic (σq) peaks and
from the continuous spectrum (σin) hereafter called shortly elastic, quasielastic
and inelastic radiative tail.

The total radiative correction at the lowest order is obtained as a sum of these
contributions together with loop corrections (σv) coming from effects of vacuum
polarization and exchange by an additional virtual photon,

σrad.corr = σin + σq + σel + σv. (1)

The lowest order radiative corrections in DIS on unpolarized proton target
were ˇrst calculated by Mo and Tsai [4]. In this paper the integration region
over the real photon phase space is divided into two parts by introducing an
inˇnitesimal parameter. For values less than this parameter the integrals can be
calculated analytically after some additional assumptions (arguments of structure
functions are independent of photon momentum, only the leading power of photon
energy is kept). The dependence on this unphysical inˇnitesimal parameter is a
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shortcoming of this approach. A covariant formalism was developed in [5] in
order to avoid the difˇculties mentioned. The formulae of the lowest order RC are
free of any approximation and rather compact, but are not visible as much as in the
ˇrst approach. One of the shortcomings is the nonpositively deˇned expressions
for inelastic radiative tail that make it unusable for Monte Carlo simulation of
radiative processes. The excellent review of the model independent lowest order
RC within this method can be found in [6]. Both approaches are widely used in
practice. There are papers in which they were compared numerically [7, 8] and
even analytically [9].

A complete set of the results for RC on unpolarized targets was obtained
in [10]. The method was developed for the case of polarized proton and nuclear
targets in [11,12]. QED correction to DIS cross section in the leading approxima-
tion was calculated in [13]. A lot of papers were devoted to electroweak radiative
effects. We draw ones attention to the papers [14Ä17] in which the correction
was calculated within a framework of electroweak theory basically for HERA
kinematics. All cited papers were devoted to inclusive DIS. RC in the processes
of semiinclusive and exclusive DIS electroproduction cannot be reduced to the
inclusive case due to additional tensorial structures entering hadronic tensor and
different phase space possible for hard radiated photon. Explicit results for these
processes are given in papers [18Ä21]. Also we note papers [22Ä24] for RC to
elastic and quasielastic ep scattering.

There is one more important task for theoreticians dealing with RC, namely
a creation of computer tool which provides the procedure of accounting for RC
to experimental data. One of the ˇrst codes applied in experiments on DIS at
CERN were FERRAD [25] and TERAD [10] which were constructed on the basis
of results of two discussed approaches, respectively. An exhaustive review of
different codes can be found in [26]. We note recently developed codes gathering
the best features and many years experience of data analysis. The Monte Carlo
generator HERACLES [27] and semianalytical code HECTOR [28] are used in
experiments at HERA. The code POLRAD 2.0 [29] and Monte Carlo generator
RADGEN [9] are currently used in polarization experiments at CERN, DESY,
SLAC and JLAB. For semiinclusive and exclusive cases the codes DIFFRAD [19]
and HAPRAD [21] are intensively exploited. We note also the paper [30] where
the approach to estimate a systematical error due to RC in polarized DIS is given.

Thus, we can conclude that the radiative correction of the lowest order is a
well deˇned quantity. The open points here are basically related with a model
dependent correction like a contribution of box diagrams or with generations to
multiparticle measurements.

The next important step both from theoretical and experimental points of view
is to take into account the second order radiative correction. So far, there are only
approximate results even for model independent RC. Quite often results obtained
by different authors are in disagreement and the quality of the approximations
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made is not analyzed. The main approach here is the leading log approximation
or put another way Å the method of structure functions [31,32]. Explicit results
for inclusive higher order radiative correction within this approach were obtained
in [13]. Correction to such a quite general quantity as the Compton tensor with
heavy photon was discussed in [33]. If not to count a simple exponentiation
formula, the higher order effects are not included in the procedure of RC ac-
counting to experimental data. It is in the contradiction with currently performed
experiments on Bhabha and eē annihilation where deeply analyzed second order
correction is embedded into the standard scheme of data analysis.

The present review is just devoted to the consideration of different aspects
of a theory of higher order effects in DIS. As such, it has something to do
with the description of various sources of quantum corrections to the process.
This way a very important second order contribution comes from elastic and
quasielastic radiative tail. The kinematics is not trivial here and requires a careful
consideration. These points and explicit results are discussed in Sec. 1.1. Very
interesting measurements that allow one to obtain results for kinematical regions
unreachable in normal DIS are experiments with photon tagging. RC come
from higher order effects and are discussed in Sec. 1.2. Polarization effects for
radiative processes can be considered in a quite general way by calculating the so-
called Compton tensor for a heavy fermion. These results generalizing the ones
obtained in [33] for unpolarized case are discussed in Sec. 1.3. And in Sec. 1.4,
the hadronic cross section in eē annihilation with tagged photon is given.

1.1. QED Correction to Radiative Tail from Elastic Peak in DIS. Numeri-
cal analysis of the elastic radiative tail shows that its contribution is very important
and can exceed the main measured process at the Born level. Therefore the next
step is to calculate QED correction to the elastic radiative tail with the maximal
possible accuracy. So far only the leading correction to elastic radiative tail due
to double bremsstrahlung, which is part of the total second order correction, was
treated numerically [16, 29] and the attempt to calculate the correction exactly
was done in [34].

The structure of the cross section of elastic radiative tail is the following

σERT ∼
∫

Q2
h min

dQ2
hK(Q2

h, Q2, W 2)F2(Q2
h), (1.1.1)

where Q2
h is a momentum square transferred to hadronic system, and Q2 and

W 2 are leptonic kinematical variables measured. The quantity K is a kinematical
factor known exactly and F is a nuclear form factor. Due to rapid fall of the
form factor squared as a function of Q2

h the main integration region is close to
the lower integration limit. In papers [16, 35] this fact was used to construct
an approximation, where Q2

h is considered as a small parameter of order of the
proton mass squared. In this paper we will also use this approximation to analyze
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the correction to elastic radiative tail. The application of Sudakov technique will
allow us to obtain compact explicit formulae for processes considered. The ˇrst
effect which has to be considered is the one-loop correction and the emission
of additional real photon. We will analyze both of them at leading and next-to-
leading levels. Another effect contributing to the cross section is a lepton pair
creation. We will calculate it in the leading log approximation.

Obtaining a second order correction to deep inelastic scattering is the main
motivation of this part. However our results can be used in other cases. For
instance, they can be considered as a radiative correction in measurements with
hard photon detected in coincidence with scattered lepton (see [36], for exam-
ple), that allows one to reach kinematical regions otherwise unreachable. That
is why we do not concretize our notation usually used in DIS but instead try
to keep it as general as possible. In the next section we introduce our notation
and obtain results for the cross section of single bremsstrahlung using Sudakov
technique. In Section 1.1.2. we give results for one-loop corrections. Double
bremsstrahlung and contributions due to pair production are considered in Sec-
tions 1.1.3. and 1.1.4. and ˇnal remarks are given in Section 1.1.5. Some
technical details are discussed in Appendices.

1.1.1. Single Bremsstrahlung. We study the process

e(p1) + p(p2) → e(p′1) + γ(k1) + p(p′2), s = 2p1p2,

Q2
h = −(p2 − p′2)

2, Q2 = 2p1p
′
1, k2

1 = 0, (1.1.2)

p2
1 = p

′2
1 = m2, p2

2 = p2′

2 = M2, q2 = −O2
h ,

in the kinematical region

s � Q2 > Q2
h ∼ M2, 2p2p

′
1 ∼ s. (1.1.3)

The expression for differential cross section in Born approximation looks (details
are given in Appendix A):

2ε′1
d3σγ

0

d3p′1
=

4α3

π2

∫
d2q

(q2 + Q2
min)2

1
1 − b

ΦγΦprot, (1.1.4)

with b = 2p2p
′
1/s the energy fraction of the scattered electron. We imply the

Sudakov parameterization of the 4-momenta in the problem (see Appendix A).
Note that due to the gauge invariance condition

qρJ (1)
ρ ≈ (αqp2 + q⊥)ρJ (1)

ρ = 0, (1.1.5)

the quantity Φγ is constructed out of (1/s)p2J
(1) which may be rearranged as

follows:
1
s
pµ
2J (1)

µ = − s

s1
|q|eµ

q J (1)
µ , eq =

q
|q| , (1.1.6)

s1 = sαq = (p′1 + k1)2 + q2 − m2.
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Thus Φγ vanishes for small q2. The explicit expression for Φprot is found to be

Φprot = 2(F 2
1 +

q2

M2
F 2

2 ). (1.1.7)

For Φγ we have (we refer for further details to Appendix A):

Φγ =
(1 − b)2b(1 + b2)q2

n1n
, (1.1.8)

with

n = (p′
1 − bq)2, n1 = (p′

1 − q)2. (1.1.9)

Another fact is that both Φγ/q2 and Φprot do not vanish in the limit of small
momentum transfer |q|, thus providing the logarithmic enhancement upon per-
forming the Q2

h ≈ q2 integration (WeizséackerÄWilliams approximation). Indeed,
the quantity Q2

min entering the cross section is a small quantity,

Q2
min = M2

(
Q2

(1 − b)s

)2

� M2. (1.1.10)

For completeness we put the phase volume of the scattered electron in terms of
Sudakov variables:

d3p′1
2ε′1

=
db

2b
d2p′

1, Q2 = 2p1p
′
1 =

p
′2
1

b
. (1.1.11)

Note that the requirement Q2 > Q2
h provides the absence of singularities while

doing an integration over d2q.

1.1.2. Virtual and Soft Photon Emission Contribution. The correction coming
from the emission of virtual and soft photons (in the cms reference frame) can
be drawn out of paper [33], in which the radiative corrections to the Compton
tensor were calculated

2ε′1
d3σB+V +S

d3p′1
= 2ε′1

d3σγ
0

d3p′1

[
1 +

α

2π
ρ̃ +

+
α

4π

1
1 + b2

(
τ11 + b(τ12 + τ̃12) + b2τ̃11

)]
, (1.1.12)
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with

ρ̃ = 2(L − 1)(2 ln∆ − ln b) + 3Lh − ln2 b −

− 9
2
− π2

3
+ 2Li2

(
cos2

θ

2

)
, (1.1.13)

L = ln
Q2

m2
, Lh = ln

Q2
h

m2
,

∆ =
∆E

E
, Li2(x) = −

x∫
0

ln(1 − y)
y

dy.

The Born cross section after substitution of Eq. (1.1.8) into Eq. (1.1.4) and neglect
of subleading terms becomes

2ε′1
d3σγ

0

d3p′1
=

4α3

π2

∫
d2qq2

(q2 + Q2
min)2

(1 − b)(1 + b2)
b(Q2)2

Φprot,

where ∆E, E are the upper bound on the undetectable soft photon energy, and
the energy of the initial electron, respectively; θ is the angle in the laboratory
reference frame between the initial and the scattered electron momenta. Somewhat
cumbersome functions τij are explicitly given in Appendix D. It should be noted
that they do not contain any large logarithms but include the quantity Q2

h which
is small in our approximation. If one keeps only nonzero terms in the expansion
over Q2

h, then

1
2

(
τ11 + b(τ12 + τ̃12) + b2τ̃11

)
=
[
3 log

Q2

Q2
h(1 − b)

− 1
]
×

×(1 + b2) + 4b log(1 − b) + [b2 + (1 − b)2] ×

×
[
log2 (1 − b)

b
+ π2

]
+ [1 + (1 − b)2] log2(1 − b) +

+(3 − 2b) log b. (1.1.14)

The logarithms log Q2
h cancel out exactly in the sum of (1.1.14) and ρ̃.

1.1.3. Two Hard Photons Emission Contribution. We will consider now the
process of two hard photons emission:

e(p1) + p(p2) → e(p′1) + γ(k1) + γ(k2) + p(p′2). (1.1.15)

The relevant contribution to the cross section looks

2ε′1
d3σ

d3p′1
=

α4

8π4

∫
d2q

(q2 + Q2
min)2

dx1d2k1

x1x2
ΦγγΦprot,

Q2
min = M2

(s1

s

)2

, s1 = (p′1 + k1 + k2)2 , (1.1.16)
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with the expression for Φprot given earlier. The explicit form of Φγγ can be
found in Appendix B. The integration over d2k1 may be performed using the
integrals given in Appendix C.

Concerning the region Q2
h � Q2, the result is found to be ∗

Φγγ = 16q2

{
Q2

s2
1

[
s2
1(1 + b2)
d1d2d′1d

′
2

+
d2
1 + d

′2
1

bs2
1d2d′2

+
d2
2 + d

′2
2

bs2
1d1d′1

]
−

− 2
Q4

(1 + P12)
[
m2

d2
1

x2
2(b

2 + (1 − x1)2)
b(1 − x1)3

+ (1.1.17)

+
m2

d
′2
1

x2
2b

2(1 + (1 − x2)2)
(1 − x2)3

]}
with the notations introduced

s1 =
k2

1

x1
+

k2
2

x2
+

p
′2
1

b
, di =

1
xi

(m2x2
i + k2

i ), (1.1.18)

d′i =
1

xib
[m2x2

i + (xip′
1 − bki)2],

where x1,2 are the energy fractions of hard photons, x1 + x2 + b = 1. Besides
we use the relations

k1 + k2 + p′
1 = 0 , 2qp′1 = s1b , s1 = 2qp1 = sαq.

An integration over d2k1 may be performed analytically and to a logarithmic
accuracy it boils down to∫

d2k1

π

[
1
d1

;
1
d2

;
1
d′1

;
1
d′2

]
= L
[
x1; x2;

x1

b
;
x2

b

]
. (1.1.19)

The resulting contribution (again to a logarithmic accuracy) takes the following
form ∫

d2k1Φγγ =
16πq2L

b(Q2)2
(1 + P12)x2

2 ×

×
[(

1 +
1

(1 − x1)2
+

b2

(1 − x2)2

)
(1 + b2) +

+
b2

(1 − x1)4
+

b4

(1 − x2)4

]
, (1.1.20)

∆ < xi < 1 − b − ∆.

∗Upon applying the crossing transformation to the amplitude of eē annihilation to γγγ presented
in paper [37].
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Carrying out the integration of Eq. (1.1.17) over k1 and x1 to a next-to-leading
accuracy we obtain for the contribution to the differential cross section coming
from emission of two hard photons

2ε′1
d3σγγ

d3p′1
=

2α4

π3

∫
d2q

(q2 + Q2
min)2

q2(TLL + TNLO)
b(Q2)2

Φprot, (1.1.21)

where the leading and next-to-leading contributions read

TLL = (L − 1)[4(1 − b)(1 + b2) ln
1 − b

∆
+

+ (1 − b)(1 − b2) ln b − 2
3
(1 − b)(7 − 2b + 7b2)],

TNLO = −1
2

b4 + 6b2 + 1
1 + b

log2 b −

− 1
3
(3 − b2)(3 − b) log b + (1.1.22)

+
8
3
(1 − b)(b2 + b + 1) log(1 − b) −

− (1 − b)
[
1
3
(15b2 − 2b + 15) +

+ 2
(

Li2(b) −
π2

6

)
b4 + 6b2 + 1

1 − b2

]
.

There are two possible experimental set-ups we concern with: the ˇrst one
in which a recoil proton is registered, and the second Å pure inclusive set-up Å
with only a ˇnal lepton observed. Deˇnitely, NLO contribution obtained can be
counted valid only for the former experimental set-up, while in the latter case one
can use the expression given above only to an LL accuracy.

The general answer for the cross section in Born approximation with the
lowest order correction to the leading approximation is a sum of the contribu-
tions coming from virtual and real soft photons emission given above as well as
from two hard photons emission and is free from dependence on the auxiliary
parameter ∆.

The graphs given below illustrate behavior featured by the complete QED RC
contribution to the cross section of DIS as well as the comparative contributions
of the LL, NLO terms and of the correction due to pair production.

1.1.4. Contribution of Lepton Pair Production. Consider now the hard pair
production process that takes place at the same order of perturbation theory as
the two hard photons emission. In the same way we may conclude that the soft
pair case as well as the case of double collinear kinematics does not contribute
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to the radiative tail. Therefore we may consider only semicollinear kinematics of
hard pair production of which there exist two different mechanisms [38]. One of
these is the two-photon mechanism of pair creation. An electron from that pair
having momentum p′1 is detected in experiment and the scattered electron moves
close to the initial electron direction. This kinematics permits us to apply the
WeizséackerÄWilliams approximation,

2ε′1
d3σ

(1)
pair

d3p′1
=

2α4

π3

∫
d2q

(q2 + Q2
min)2

q2L

b(Q2)2
Φprot ×

× dβ−
(1 − β−)4

((1 − β− − b)2 + b2)(1 + β2
−), (1.1.23)

s1 = Q2 1 − β−
β+

, b + β− + β+ = 1.

The second mechanism is characterized by the bremsstrahlung mechanism of
pair creation, with an electron from a pair to be detected. Leaving details to
Appendix E let us present here the result

2ε′1
d3σ

(2)
pair

d3p′1
=

2α4

π3

∫
d2q

(q2 + Q2
min)2

q2L

(Q2)2
Φprot ×

×
b(1 + β2

−)dβ−

(1 − β−)4
[(1 − b − β−)2 + b2], (1.1.24)

s1 = Q2 1 − β−
bβ−

.

The integration over β− can be performed analytically with additional as-
sumption that Q2

min has no β− dependence. The result for the sum of these
contributions is found to be

2ε′1
d3σpair

d3p′1
=

2α4

π3

∫
d2q

(q2 + Q2
min)2

q2L(1 + b2)
b(Q2)2

Φprot ×

×
(

1 − b + 2(1 + b) log b +
4
3b

(1 − b3)
)

. (1.1.25)

1.1.5. Discussion. In this part the correction to radiative tail from elastic peak
is studied in the kinematics when a ˇnal lepton is measured. Using Sudakov tech-
nique the contributions of loops (1.1.12), double photon bremsstrahlung (1.1.21)
and a pair production (1.1.23,1.1.24) are calculated.
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In this section we analyze obtained contributions numerically. Both the
relative contributions of the processes considered and the total correction to the
lowest order process are investigated within kinematical conditions of experiments
on electron DIS at TJNAF and DESY (both for HERA and for HERMES). It is
convenient to deˇne the following quantities:

δ =
σL + σN + σp

σ0
, δL,N,p =

σL,N,p

σ0
. (1.1.26)

Here σ0 stands for the cross section of radiative tail from elastic peak (1.1.4).
Other σ's constitute the next order results. The quantity σp is a direct sum of two
mechanisms of pair creations (1.1.23,1.1.24), whereas σL and σN are the leading
(including mass singularities terms log(Q2/m2)) and next-to-leading (independent
of leptonic mass) terms. They are obtained upon summing up expressions given
in Eqs. (1.1.12) and (1.1.21) after cancellation of infrared divergence.

The relative radiative correction to elastic radiative tail is important practically
everywhere. The modern level of data analysis and very high experimental
accuracies achieved in current experiments on DIS require that a generalization
of standard radiative correction procedure be made in order to include a second
order radiative correction. An extremely interesting region where the correction
considered is important is actually high y domain. Remind, that this one (up to
y ∼ 0.95) is under investigation at TJNAF.

The main contribution to a second-order radiative correction comes from the
effect of pair creation. Asymptotical behavior of σp for small b = 1 − y is 1/b2

whereas the other cross sections feature only 1/b behavior. That is in fact a
reason of the large correction in the region of high y. In the paper presented this
particular contribution is calculated in the leading approximation only, therefore a
study of the correction, induced by a pair production, at the next-to-leading level
is highly desirable.

The relative contribution of the next-to-leading correction σN is not small
with respect to the leading log contribution σL. In the region of large y the relative
contribution σN/σL does not exceed 5%, whereas for small y it can reach as much
as 20Ä30%. From the other hand the next-to-leading contribution completely ˇxes
all uncertainties of leading log approximation thus leaving unknown only terms
proportional to lepton mass squared and Q2

h, which is effectively small due to
behavior of form factors.

1.2. Tagged Photon with Next-to-Leading Accuracy. The radiative correct-
ions to deep inelastic electron proton scattering due to hard real photon emission
are very important in certain regions of the HERA kinematic domain. In fact,
the initial-state collinear radiation leads to a reduction of the projectile electron
energy and therefore to a shift of the effective Bjorken variables in the hard
scattering process as compared to those determined from the actual measurement
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of the scattered electron alone. Therefore, radiative events

e(p1) + p(P ) → e(p2) + γ(k) + X + (γ), (1.2.1)

are to be carefully taken into account [4, 6, 39].
On the other hand, measuring the energy of the photons emitted very close to

the incident electron beam direction [40Ä43] permits one to overlap the kinemati-
cal region of photoproduction (Q2 ≈ 0) and the DIS region with small transferred
momenta (about a few GeV2) within the high energy HERA experiments. Fur-
thermore, these radiative events may be used to independently determine the
proton structure functions F2 and F1 (and therefore FL) in a single run without
lowering the beam energies [36,41]. Preliminary results of an F2 analysis using
such radiative events were recently presented by the H1 collaboration [44].

Our aim is to calculate the radiative corrections to neutral current deep in-
elastic events with simultaneous (exclusive) detection of a hard photon emitted
very close to the direction of the incoming electron beam (θγ = p̂1k ≤ θ0 ≈
≈ 5 · 10−4 rad). In the case of the HERA collider, the experimental detection of
photons emitted in this very forward direction is actually possible due to the pres-
ence of photon detectors (PD) that are part of the luminosity monitoring system
of ZEUS and H1.

Let us brie�y review the kinematics for the process under consideration. As
the opening angle of the forward photon detector is very small, and since we
will only consider cross sections where the tagged photon is integrated over the
solid angle covered by this photon detector, we can parameterize these radiative
events using the standard Bjorken variables x and y, that are determined from the
measurement of the scattered electron,

x =
Q2

2P · (p1 − p2)
, y =

2P · (p1 − p2)
V

, Q2 = 2p1 · p2 = xyV, (1.2.2)

with V = 2P · p1, and the energy fraction z of the electron after initial state
radiation of a collinear photon,

z =
2P · (p1 − k)

V
=

ε − k0

ε
, (1.2.3)

where ε is the initial electron energy, and k0 is the energy seen in the forward
photon detector.

An alternative set of kinematic variables that is especially adapted to the case
of collinear radiation, is given by the shifted Bjorken variables [41],

Q̂2 = −(p1 − p2 − k)2, x̂ =
Q̂2

2P · (p1 − p2 − k)
, ŷ =

P · (p1 − p2 − k)
P · (p1 − k)

.

(1.2.4)
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The relations between the shifted and the standard Bjorken variables read [41]:

Q̂2 = zQ2, x̂ =
xyz

z + y − 1
, ŷ =

z + y − 1
z

. (1.2.5)

The cross section under consideration in the Born approximation, integrated
over the solid angle of the photon detector (0 ≤ θγ ≤ θ0, θ0 � 1), then takes the
following form:

z

y

d3σBorn

dx dy dz
=

1
ŷ

d3σBorn

dx̂ dŷ dz
=

α

2π
P (z, L0)Σ̃, (1.2.6)

where

Σ̃ = Σ(x̂, ŷ, Q̂2) =
2πα2(−Q̂2)

Q̂2x̂ŷ2
F2(x̂, Q̂2)

[
2(1 − ŷ) − 2x̂2ŷ2 M2

Q̂2
+

+
(

1 + 4x̂2 M2

Q̂2

)
ŷ2

1 + R

]
,

P (z, L0) =
1 + z2

1 − z
L0−

2z

1 − z
, R = R(x̂, Q̂2) =

(
1+4x̂2 M2

Q̂2

)
F2(x̂, Q̂2)

2x̂F1(x̂, Q̂2)
−1,

α(−Q̂2) =
α

1 − Π(−Q̂2)
, L0 = ln

(
ε2θ2

0

m2

)
, Q̂2 = 2zp1 · p2 = 2zε2Y (1 − c),

Y =
ε2

ε
= 1 − y + xy

Ep(1 + βp)
2ε

, c = cos (p̂1p2),

x̂ =
Q̂2

2P · (zp1 − p2)
=

zεY (1 − c)
zEp(1 + βp) − Y Ep(1 + βpc)

, βp =
√

1 − M2/E2
p ,

ŷ =
2P · (zp1 − p2)

zV
=

z(1 + βp) − Y (1 + βpc)
z(1 + βp)

. (1.2.7)

The quantities F2 and F1 are the proton structure functions, M and m are the
proton and electron masses, respectively. In the cross section (1.2.6) we take
into account terms proportional to M2/Q̂2, which may be important at low
Q2. Note that the neglect of Z-boson exchange and γÄZ interference is a good
approximation, because we are interested mostly in events with small momentum
transfer Q̂2.∗ The energies of the initial and ˇnal electron, of the tagged photon

∗The corresponding Born cross section including contributions from the Z can be found in
Ref.42.
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and of the initial proton (ε, ε2, k0, and Ep) are deˇned in the laboratory reference
frame (i.e., the rest frame of HERA detectors). The cross section (1.2.6) agrees
with [41, 42]. Also note that we explicitly included the correction from the
vacuum polarization operator Π(−Q̂2) in the virtual photon propagator. The aim
of our work is to calculate the higher order QED radiative corrections for this
process in the leading and next-to-leading logarithmic approximation.

Here we will restrict ourselves to the model independent QED radiative cor-
rections related to the lepton line, which form a complete, gauge invariant subset
for the neutral current scattering process. The remaining source of QED radia-
tive corrections at the same order, such as virtual corrections with double photon
exchange and bremsstrahlung off the partons are more involved and model depen-
dent, they will be considered elsewhere. Our approach to the calculation of the
QED corrections is based on the utilization of all essential Feynman diagrams that
describe the observed cross section in the framework of the used approximation.
The same approach was used recently for the calculation of the QED corrections
for the small angle Bhabha scattering cross section at LEP1 [45].

This part is organized as follows. Section 1.2.1 is devoted to the corrections
related with emission of virtual and soft real photons in the hard collinear photon
emission DIS process. In Sec. 1.2.2 we consider the radiative corrections due to
emission of two hard photons in the collinear kinematics (where we distinguish
between the cases when both photons are emitted close to the initial electron
direction and the case when one of the photons is emitted along the initial and the
other one along the scattered electron direction) and the semicollinear kinematics,
where the additional hard photon is emitted at a large angle. Section 1.2.3 collects
the results obtained and discusses two experimental cases: an exclusive set-up,
that assumes that a bare electron can be measured, and a calorimetric one. The
Appendices are devoted to details of the calculation.

1.2.1. Virtual and Soft Photon Emission Corrections. In order to calculate the
contributions from the virtual and soft photon emission corrections, we start from
the expression for the Compton scattering tensor with a heavy photon [33,46],

Kµν = (8πα)−1
∑
spins

M eγ∗→e′γ
µ (M eγ∗→e′γ

ν )∗, (1.2.8)

where Mµ is the matrix element of the process of Compton scattering

γ∗(−q) + e(p1) → γ(k) + e(p2), (1.2.9)
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and the index µ describes the polarization state of the virtual photon. This tensor
is conveniently decomposed as follows:

Kµν =
1
2
(Pµν + P ∗

νµ), (1.2.10)

Pµν = g̃µν(Bg +
α

2π
Tg) + p̃1µp̃1ν(B11 +

α

2π
T11) +

+ p̃2µp̃2ν(B22 +
α

2π
T22) +

α

2π
(p̃1µp̃2νT12 + p̃2µp̃1νT21),

g̃µν = gµν − qµqν

q2
, p̃1µ = p1µ − qµ

p1 · q
q2

,

p̃2µ = p2µ − qµ
p2 · q
q2

, p1 = q + p2 + k.

The expressions for the quantities Bij corresponding to the Born approximation
are ∗:

Bg =
1
st

[
(s + u)2 + (t + u)2

]
− 2m2q2

(
1
s2

+
1
t2

)
, B11 =

4q2

st
− 8m2

s2
,

B22 =
4q2

st
− 8m2

t2
, s = 2p2 · k, t = −2p1 · k, u = (p2 − p1)2,

q2 = s + t + u, p2
1 = p2

2 = m2, k2 = 0.

(1.2.11)

The one-loop QED corrections are contained in the quantities Tij , whose explicit
expressions are given in [33, 46]. Here we have to integrate them over the solid
angle of the emitted photon corresponding to the shape of the photon detector. We
need to keep only the terms singular in the limit θγ → 0, since after integration
the constant terms contribute only proportional to θ2

0 ∼ 10−6 and can be safely
neglected. Another simpliˇcation comes from the fact that we need only the
symmetric (and real) part of the tensor K . This way, by using typical integrals∫

dΩk

2π

1
t

= − L0

2ε2(1 − z)
,

∫
dΩk

2π

m2

t2
=

1
2ε2(1 − z)2

, (1.2.12)

and using the expressions given in Appendix F we obtain the following expression
for the Compton tensor integrated over the angular part of the photon phase space:∫

dΩk

2π
Kµν =

(
−Q2

l gµν + 4zp1µp1ν

) 1
2ε2(1−z)

[(
1 +

α

2π
ρ

)
P (z, L0)−

α

2π
T

]
,

∗We have already dropped those terms that vanish in the high-energy limit when one integrates
over any ˇnite region of photon phase space.
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ρ = 4 ln
λ

m
(LQ − 1) − L2

Q + 3LQ + 3 ln z +
π2

3
− 9

2
, (1.2.13)

T =
1 + z2

1 − z
(A ln z + B) − 4z

1 − z
LQ ln z − 2 − (1 − z)2

2(1 − z)
L0 + O(1),

A = −L2
0 + 2L0LQ − 2L0 ln(1 − z), B =

(
ln2 z − 2Li2(1 − z)

)
L0,

LQ = ln
Q2

m2
, Li2(x) = −

x∫
0

dy

y
ln(1 − y) .

The quantity λ, which enters into the expression for ρ, is a ˇctitious photon mass.
In the construction of the total expression for the tensor Kµν we replaced

qµ = qν = 0, p2µ,ν = zp1µ,ν , bearing in mind the gauge invariance of hadronic
tensor [47],

Hµν =
4π

M

(
W2(xh, Q2

h)P̃µP̃ν − M2W1(xh, Q2
h)g̃µν

)
, (1.2.14)

xh =
Q2

h

2P · qh
, P̃ν = Pν − qhν

P · qh

q2
h

.

Here we imply qh = q, Q2
h = −q2.

Consider now the process with emission of a soft photon in addition to the
emission of the hard one, which hits the PD. We imply the condition that the
energy of the soft photon should be less than some small quantity δε (in the
centre-of-mass system). In straightforward calculations, starting from Feynman
diagrams, some care is to be paid in the evaluation of integrals over the phase
volume of the soft photon, as some contributions are crucially dependent on
the correlation between our two small parameters ∆ = δε/ε and θ0. In our
particular case θ0 � ∆ � 1, the result coincides with the one obtained using the
approximation of classical currents for soft photons. The total effect for the sum
of contributions of virtual and soft photon emission consists in the replacement
of the quantity ρ by ρ̃ in Eq. (1.2.13) (see Eq. (45) in [33,46]):

ρ → ρ̃ = 2(LQ − 1) ln
∆2

Y
+ 3LQ + 3 ln z − ln2 Y − π2

3
− (1.2.15)

− 9
2

+ 2Li2

(
1 + c

2

)
.

The ˇnal expression for the virtual and soft photon emission corrected tagged
photon cross section has the form

z

y

d3σV S

dx dy dz
=
( α

2π

)2

[P (z, L0)ρ̃ − T ] Σ̃ . (1.2.16)
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1.2.2. Double Hard Bremsstrahlung. Consider now the emission of an extra
photon with the energy more than δε. For the calculation of the contributions
from real hard bremsstrahlung, which in our case correspond to double photon
emission with at least one photon seen in the forward detector, we specify three
speciˇc kinematical domains: i) both hard photons strike the forward photon
detector, i.e., both are emitted within a narrow cone around the electron beam
(θ ≤ θ0); ii) one hard photon is tagged by the PD, while the other is collinear

to the outgoing electron (θ2 = k̂2p2 ≤ θ′0); and ˇnally iii) the second photon is
emitted at large angles (i.e., outside the deˇned narrow cones) with respect to both
incoming and outgoing electron momenta. We denominate the third kinematical
domain as a semicollinear one. The contributions of the regions i) and ii) contain
leading terms (quadratic in the large logarithms L0, LQ), whereas region iii)
contains formally nonleading terms of order L0 ln(1/θ2

0), which, however, give a
contribution numerically larger than the leading ones since εθ0/m � 1/θ0.

The calculation beyond the leading logarithmic approximation may be per-
formed using the results of a paper of one of us [48]. The contribution from the
kinematical region i) (with both hard photons being tagged), has the form (see
Eq. (Π 6) from [48]):

z

y

d3σγγ
i

dx dy dz
=

α2

8π2
L0

[
L0

(
P

(2)
Θ (z) + 2

1 + z2

1 − z

(
ln z − 3

2
− 2 ln ∆

))
+

+ 6(1−z)+
(

4
1−z

−1−z

)
ln2 z − 4

(1 + z)2

1 − z
ln

1 − z

∆

]
Σ̃ + O(1). (1.2.17)

Here we use the notation P
(2)
Θ (z) for the Θ part of the second order term of

the expansion of the electron nonsinglet structure function,

D(z, L) = δ(1 − z) +
α

2π
P (1)(z)L +

1
2

( α

2π

)2
P (2)(z)L2 + . . . (1.2.18)

P (i)(z) = P
(i)
Θ (z)Θ(1 − z − ∆) + P

(i)
δ δ(1 − z), ∆ → 0 ,

P
(1)
Θ (z) =

1 + z2

1 − z
, P

(1)
δ =

3
2

+ 2 ln ∆,

P
(2)
Θ (z) = 2

[
1 + z2

1 − z

(
2 ln (1 − z) − ln z +

3
2

)
+

1
2
(1 + z) ln z − 1 + z

]
.

The parameter ∆ serves as the infrared regularization parameter.
The contribution of the kinematical region ii) to the observed cross section

depends on the event selection; in other words, on the method of measurement
of the scattered particles.
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In the case of exclusive event selection, when only the scattered electron is
detected, while the photon that is emitted almost collinearly (i.e., within a small
cone with opening angle 2θ′0 around the momentum of the outgoing electron)
goes unnoticed or is not taken into account in the determination of the kinematical
variables, we have (see Π8 from [48])

z

y

d3σγγ
ii

dx dy dz
=

α2

4π2
P (z, L0)

ymax
2∫

∆/Y

dy2

1 + y2

[
1 + (1 + y2)2

y2
(L̃ − 1) + y2

]
Σs,

Σs = Σ(xb, yb, Q
2
b), (1.2.19)

where

L̃ = ln
(

εθ′0
m

)2

+ 2 lnY, y2 =
x2

Y
, Y =

ε2

ε
, ymax

2 =
2z − Y (1 + c)

Y (1 + c)
,

xb =
xyz(1 + y2)

z − (1 − y)(1 + y2)
, yb =

z − (1 − y)(1 + y2)
z

, Q2
b = Q2z(1 + y2) .

(1.2.20)

More realistic (from the experimental point of view) is the calorimetric event
selection, when only the sum of the energies of the outgoing electron and photon
can be measured if the photon momentum lies inside the small cone with opening
angle 2θ

′

0 along the direction of the ˇnal electron. In this case we ˇnd

z

y

d3σγγ
ii,cal

dx dy dz
=

α2

4π2
P (z, L0)

∞∫
∆/Y

dy2

(1 + y2)3

[
1 + (1 + y2)2

y2
(L̃ − 1) + y2

]
Σ̃ =

=
α2

4π2
P (z, L0)

[
(L̃ − 1)

(
2 ln

Y

∆
− 3

2

)
+

1
2

]
Σ̃. (1.2.21)

In the last equation we used the relation

Σs =
1

(1 + y2)2
Σ̃, (1.2.22)

which is valid for the calorimetric set-up.
Consider at last the semicollinear region iii). The relevant contribution may

be calculated using the quasireal electron method [49]:

z

y

d3σγγ
iii

dx dy dz
=

α

2π
P (z, L0)

2α

π

∫
d3k2

ω2

α2(Q2
sc)

Q4
sc

Iγ , Iγ = Bρσ(zp1, p2, k1)
Hρσ

8π
.

(1.2.23)
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The quantity Bρσ(zp1, p2, k1) is obtained from equation (1.2.11), where it is
necessary to set m = 0. After some algebraic transformations we obtain

Iγ =
1
st

[
F2(xsc, Q

2
sc)

(
M2

Q2
sc

xscG − V
[
xsc(z2 + (1 − y)2)V +(1 − y)(zQ2−s)−

− z(zQ2 − t)
])

− GF1(xsc, Q
2
sc)

]
, G = z2Q4 − 2st + Q4

sc , (1.2.24)

xsc =
Q2

sc

V (z + y − 1) − 2P · k2
, s = 2p2 · k2, t = −2zp1 · k2,

Q2
sc = zQ2 − s − t.

The angular integration in Eq. (1.2.23) is to be performed over the whole phase
space, excepting the small cones along directions of motion of the initial and
scattered electrons that correspond to the kinematic regions i) or ii). The result
(for details see Appendix G) has the form:

z

y

d3σγγ
iii

dx dy dz
=
( α

2π

)2
P (z, L0)

[ xt
2∫

∆

dx2

x2

z2 + (z − x2)2

z(z − x2)
ln

2(1 − c)
θ2
0

Σt +

+

xs
2∫

∆

dx2

x2

1 + (1 + y2)2

1 + y2
ln

2(1 − c)
θ
′2
0

Σs + Z

]
, (1.2.25)

Σt = Σ(xt, yt, Q
2
t ),

The logarithmic dependences on the infrared regulator ∆ and on the angles θ0,
θ′0 are fully contained in the ˇrst two terms on the r.h.s., whereas the quantity
Z represents an integral over the whole photon phase space of a well-behaved
function, and it is free from collinear and infrared singularities. Its explicit
expression is given in Appendix G.

The upper limits of the x2 integration in (1.2.25) read

xt
2 = z − Y (1 + c)

2
, xs

2 =
2z − Y (1 + c)

1 + c
, (1.2.26)

and the arguments of Σt are

xt =
xy(z − x2)

z − x2 + y − 1
, yt =

z − x2 + y − 1
z − x2

, Qt = Q2(z − x2). (1.2.27)
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An explicit expression for xm, which is relevant for the calculation of Z, is given
in Appendix G.

The formulae given above (see Eqs. (1.2.7), (1.2.16), (1.2.17), (1.2.19) or
(1.2.21), and (1.2.25)) provide the complete answer for the leading and subleading
contributions up to the second order of perturbation theory. The total sum of
virtual, soft, and hard additional photons emission corrections to the radiative
DIS cross section does not depend on the auxiliary parameter ∆ = δε/ε, as it
should be.

1.2.3. Results for Different Experimental Set-Ups. The sum of the contribu-
tions of the leading and next-to-leading corrections at order α2, which are given
explicitly in the expressions (1.2.16), (1.2.17), (1.2.19) or (1.2.21), and (1.2.25),
may be written in the form

z

y

d3σ

dx dy dz
=
( α

2π

)2

(Σi + Σf ) . (1.2.28)

The ˇrst term Σi is independent of the experimental selection of the scattered
electron and has the form:

Σi =

{
1
2
L2

0P
(2)
Θ (z) + P (z, L0)

[
1 − 16z − z2

2(1 + z2)
+
(
3−2 lnY +

4z

1 + z2

)
ln z+

+ ln2 Y − 2Li2(z) + 2Li2

(
1 + c

2

)
− 2(1 + z)2

1 + z2
ln (1 − z) +

+
1 − z2

2(1 + z2)
ln2 z

]}
Σ̃ + P (z, L0) Σ̃ ln

2(1 − c)
θ2
0

[ u0∫
0

du

u
(1 + (1 − u)2)×

×
(

Σt

(1 − u)Σ̃
− 1

)
−

1∫
u0

du

u
(1 + (1 − u)2)

]
+ P (z, L0)Z, (1.2.29)

u =
x2

z
, u0 =

xt
2

z
,

where Z is given in Appendix G and the remaining notations are as above (see
(1.2.17), (1.2.24), and (1.2.26)).

The second term in (1.2.28), denoted Σf , however, does explicitly depend
on the event selection. It corresponds to the emission of a hard photon by the
scattered electron. In the exclusive set-up, when only the scattered bare electron
is measured, while the photon that is emitted close to the ˇnal electron's direction
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is ignored, this contribution reads

Σf = Σexcl
f = P (z, L0)

xs
2/Y∫
0

dy2

[(
1 + (1 + y2)2

y2
(LQ+ lnY −1) + y2

)
1

1+y2
×

×Θ
(

y2 −
∆
Y

)
+ (LQ + lnY − 1)δ(y2)

(
2 ln

∆
Y

+
3
2

)]
Σs. (1.2.30)

In this case the parameter θ′0, that separated the kinematic regions ii) and iii),
only plays the role of an auxiliary one; it has already cancelled in the above
expression for the cross section.

As we will see below, this situation is quite different for the experimentally
more realistic, calorimetric set-up, when the detector cannot distinguish between
events with a bare electron and events when the electron is accompanied by a hard
photon emitted within a small cone with opening angle 2θ

′

0 around the direction
of the scattered electron. For this case we obtain

Σf = Σcal
f = P (z, L0)

[
1
2
Σ̃ + ln

2(1 − c)
θ
′2
0

∞∫
0

dy2

y2

1 + (1 + y2)2

1 + y2
×

×
(

ΣsΘ(ymax
2 − y2) −

Σ̃
(1 + y2)2

)]
. (1.2.31)

For the calorimetric event selection the parameter θ
′

0 is a physical one and the
ˇnal result therefore does depend on it. However, the mass singularity that is
connected with the emission of the photon off the scattered electron is cancelled
in accordance with the KinoshitaÄLeeÄNauenberg theorem [50].

Note that the case of a coarse detector for the scattered electron, i.e., θ
′

0 ∼
∼ O(1), agrees at the level of leading logarithms with the result of paper [51],
that was obtained in the approximation of absence of emission along the scattered
electron. Our result disagrees with the result of Bardin et al. [42] on the radiative
corrections, as they neglected the interference of the emission of two photons;
see [51] for a detailed discussion.

We note in conclusion that the set of Feynman diagrams considered here is
gauge invariant and model independent but not complete. We have neglected the
contributions with two virtual photons exchanged between electron and the target
that appear at the same order of perturbation theory, as well as the interference
with the contributions when the second photon is emitted by the hadronic side.
However, the description of this part is deˇnitely model dependent. The details
and the numerical estimates may be found in [52].
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1.3. Compton Tensor with Heavy Photon in the Case of Longitudinally
Polarized Fermion. Here we shall restrict our consideration to the part of the

Fig. 1. The Born-level Feynman dia-
grams

Compton tensor, which contains the degree
of polarization of the initial electron [53].
Our aim is to calculate soft and virtual QED
radiative corrections to the tensor. The cor-
rections are important for modern precise
experiments in DIS. Possible applications
of our results will be considered in Con-
clusions.

Let us consider the process (see Fig. 1)

γ∗(q) + e(p1) −→ γ(k1) + e(p2), (1.3.1)

q2 < 0, k2
1 = 0, p2

1 = p2
2 = m2, p1 + q = p2 + k1,

where m is the electron mass.
The Compton tensor is deˇned as

Kρσ = (8πα)−2ΣM eγ∗→eγ
ρ (M eγ∗→eγ

σ )∗. (1.3.2)

Here the matrix element M describes the Compton scattering process (1.3.1),

Mρ = M0ρ + M1ρ = ū(p2)Oρµu(p1)eµ(k1),

Oρµ = O(0)
ρµ +

α

4π
O(1)

ρµ , O(0)
ρµ = γρ

p̂2 − q̂ + m

t
γµ + γµ

p̂1 + q̂ + m

s
γρ,

s = 2p2k1, t = −2p1k1. (1.3.3)

Quantities O
(0)
ρµ and O

(1)
ρµ take into account the lowest and the ˇrst orders of

perturbation theory, respectively. Here and in what follows, we use the following
notation for scalar products of 4-vectors:

â = γµaµ, ab = aµbµ = a0b0 − ab,

and the polarization vector of the real photon is eµ(k1).
1.3.1. Radiative Corrections. Calculating the ˇrst order correction, we as-

sume that all kinematical invariants of the process are large in comparison with
the electron mass square:

s ∼ −t ∼ −u ∼ −q2 � m2, u = −2p1p2, q2 = s + t + u. (1.3.4)

So, we will neglect the electron mass in all places, where it is possible. Note that
for the unpolarized case in [33] the mass was taken into account.



QED EFFECTS OF HIGHER ORDERS IN DIS 513

The Compton tensor, deˇned in (1.3.2), is hermitian:

Kρσ = K∗
σρ. (1.3.5)

We shall separate the contributions, associated with the electron polarization:

Kρσ = K0
ρσ +

α

4π

(
K1

ρσ + K1∗
σρ

)
, (1.3.6)

K0
ρσ = Bρσ + ξP 0

ρσ , K1
ρσ = Tρσ + ξP 1

ρσ ,

where ξ is the degree of the initial electron polarization. Quantities Bρσ and Tρσ

correspond to the case of unpolarized electron,

Bρσ = Bg g̃ρσ + B11p̃1ρp̃1σ + B22p̃2ρp̃2σ, (1.3.7)

Bg =
1
st

[(s + u)2 + (t + u)2] − 2m2q2

(
1
s2

+
1
t2

)
,

B11 =
4q2

st
− 8m2

s2
, B22 =

4q2

st
− 8m2

t2
.

The new variables

g̃ρσ = gρσ − qρqσ

q2
, p̃1ρ = pρ

1,2 −
p1,2q

q2
qρ (1.3.8)

provide the explicit fulˇllment of gauge conditions: qρK
ρσ = 0, qσKρσ = 0.

Quantity Tρσ has a rather cumbersome form, it is given in [33].
For the case of the most general form of the electron polarization vector

u(p)ū(p) = (p̂1 + m)(1 − ξγ5â) (1.3.9)

one obtains (see also [11,12])

P 0
ρσ = 4m

{
(p1qρσ)

qa − 2p2a

st
+ (p2qρσ)

[
qa

t2
+

p2a

t

(
1
s
− 1

t

)]
+

+ (qaρσ)
[
q2

st
− 1

s
− 1

t
− m2

(
1
s2

+
1
t2

)]}
, (1.3.10)

where we used the notation

(abcd) ≡ iεαβγδa
αbβcγdδ. (1.3.11)

The above object obeys the Shouten identity:

(abcd)ef = (fbcd)ae + (afcd)be + (abfd)ce + (abcf)de. (1.3.12)
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In this part we shall consider only the case of longitudinally polarized
fermion:

u(p1)ū(p1) = p̂1(1 − ξγ5). (1.3.13)

This is the most interesting case for physical applications. In the Born approxi-
mation we obtain

Pρσ = ξ

[
P 0

ρσ +
α

4π
P 1

ρσ

]
, (1.3.14)

P 0
ρσ = P 0t

ρσ + P 0s
ρσ =

2
st

[
(u + t)(p1qρσ) + (u + s)(p2qρσ)

]
.

Here and below the upper indices t and s denote the contributions of Feynman
diagrams with real photon emission from the initial and ˇnal electron lines,
respectively. Using the explicit expressions for P 0t,s

ρσ , it is easy to check the
following relations:

qρP
0
ρσ = qσP 0

ρσ = 0, (P 0s,t
σρ )∗ = P 0s,t

ρσ , P 0s,t
ρσ qρ = 0, P 0s,t

ρσ qσ 	= 0, (1.3.15)

P 0t
ρσ =

1
st

[
4(p1p2qσ)(p1ρ + p2ρ) +

+ 2(t − s)(p1p2ρσ) + 2(s + u)(p2qρσ)
]
,

P 0s
ρσ =

1
st

[
−4(p1p2qσ)(p1ρ + p2ρ) +

+ 2(s − t)(p1p2ρσ) + 2(s + t)(p1qρσ)
]
.

(1.3.16)

Note now, that we may consider only a half of the full set of eight one-
loop Feynman diagrams. Namely, we take the t-type diagrams with real photon
emission from the initial electron line (Fig. 2). To get the ˇrst order correction,
we multiply the amplitudes of the one-loop graphs by the Born ones. The whole
contribution (including the impact of the rest four one-loop diagrams) can be
obtained, using the rearrangement (Ĥ) and hermitization (Ĥ) operators:

P 1
ρσ = (1 + Ĥ)(1 − P̂ )(P a,b + P 1c + P 1d)ρσ + P soft

ρσ , (1.3.17)

where the operators are deˇned as follows:

P̂F (ρ, σ, p1, p2, q, s, t) = F (ρ, σ, p2, p1,−q, t, s), Ĥaρσ = a∗
σρ . (1.3.18)
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Fig. 2. One-loop virtual Feynman diagrams with photon emission by the initial electron

Note, that P̂P 0s,t
ρσ = −P 0t,s

ρσ . The last term in Eq.(1.3.17) describes the contribu-
tion, coming from emission of an additional soft photon [33]:

P soft
ρσ = P 0

ρσδsoft, (1.3.19)

δsoft = − 4πα

16π3

∫
d3k

ω

(
p1

p1k
− p2

p2k

)2

=

=
α

π

[
(Lu − 1) ln

m2(∆ε)2

λ2ε1ε2
+

1
2
L2

u − 1
2

ln2 ε1

ε2
− π2

3
+ Li2

(
1 +

u

4ε1ε2

)]
,

Lu = ln
−u

m2
, Li2(z) = −

1∫
0

dx

x
ln (1 − zx).

Here ∆ε is the maximal energy of soft photon; quantities ε1,2 = p0
1,2 are the

energies of the initial and the ˇnal electrons in the laboratory reference frame (in
the rest reference frame of the target).

Considering the matrix elements of the Feynman graphs Fig. 2,a,b, we get

(Ma
σ + M b

σ)(−i(4απ)2)−1 =
α

2π
ū(p2)γσ

[
mN1

(
ê − k̂1

p1e

p1k1

)
+ N2k̂1ê

]
u(p1),

N1 =
1

2(t + m2)

[
1 − t

t + m2
Lt

]
, (1.3.20)

N2 =
1

2(t + m2)
− 2t2 + 3m2t + 2m4

2t(t + m2)2
Lt +

m2

t2

[
−Li2

(
1 +

t

m2

)
+

π2

6

]
.

One can see that only the structure in front of coefˇcient N2 survives in the limit
m → 0. Really, the trace of the product of Dirac matrices, associated with N1,
has an odd number of matrices and gives an extra power of the mass. We would
like to note that in the case of photon emission at small angles (which is not
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under consideration now) the situation with the limit m → 0 is more subtle and
requires a special investigation (see [54], for instance).

After a simple algebraic transformation we get

P a,b
ρσ = 2

2Lt − 1
st

[2(p1p2qσ)p2ρ + (u + s)((p2qρσ) − (p1p2ρσ))]. (1.3.21)

The remaining contributions (see Fig. 2,c,d) are

P 1c
ρσ =

1
t

∫
d4k

iπ2

1
a0a2aq

1
4
Tr {p̂2γλ(p̂2−k̂)γσ(p̂2−q̂−k̂)γλ(p̂2−q̂)γµp̂1γ5Õ

0
ρµ}

(1.3.22)

and

P 1d
ρσ =
∫

d4k

iπ2

1
a0a1a2aq

1
4
Tr {p̂2γλ(p̂2−k̂)γσ(p̂2−q̂−k̂)γµ(p̂1−k̂)γλp̂1γ5Õ

0
ρµ} ,

(1.3.23)

where

a0 = k2 − λ2, a1 = k2 − 2p1k,

a2 = k2 − 2p2k, aq = (p2 − q − k)2 − m2. (1.3.24)

The matrix Õ0
ρµ differs from O0

ρµ (see Eq. (1.3.3)) by the reversal order of
gamma matrices. Using the Table of integrals given in [53], one can perform the
integration over the loop momentum in the right-hand sides of the expressions
for P 1c, P 1d, and obtain the total expression for the Compton tensor. Its explicit
form is given below.

Now we concentrate on the terms, which contain infrared singularities. There
are three sources of them. The ˇrst one is the renormalization constant

Z1 = 1 − α

2π

(
1
2
LΛ + 2 ln

λ

m
+

9
4

)
, LΛ = ln

Λ2

m2
, (1.3.25)

which is required to remove the ultraviolet divergence of the vertex function,
appearing in P 1c. The next source is a part of the box contribution P 1d, which
comes from scalar loop integrals. Really, for the Feynman diagram Fig. 2,d the
infrared terms are associated with the integral

I =
∫

d4k

iπ2

1
a0a1a2aq

=

=
1
tu

[
2Lu ln

m

λ
− L2

q + 2LtLu − π2

6
− 2Li2(1 − q2

u
)
]
,

Lq = ln
−q2

m2
, Lt = ln

−t

m2
.

(1.3.26)
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The third source is the emission of additional soft photons, which was considered
above. The infrared singularities are cancelled out in the total sum.

Let us consider the contribution from one-loop corrections

P t
ρσ = (P a,b + P 1c + P 1d)ρσ. (1.3.27)

Extracting the leading logarithmic terms and infrared singularities, we can present
it as follows:

P t
ρσ = P 0t

ρσ

[
−L2

u − 4(Lu − 1) ln
m

λ
+ 3Lu

]
+ Rt

ρσ. (1.3.28)

After the hermitization and rearrangement operations, and adding the soft
photon contribution, we come to the result

Pρσ = P 0
ρσ

{
1 +

α

π

[
(Lu − 1) ln

(∆ε)2

ε1ε2
+

3
2
Lu − 1

2
ln2 ε2

ε1
−

− π2

3
+ Li2(cos2

θ

2
)
]}

+
α

4π
Rρσ. (1.3.29)

Quantities Rt
ρσ and Rρσ collect nonleading terms. They are free from infrared

singularities.
Tensor Rt

ρσ can be presented in the form

Rt
ρσ = A(2qσρ) + B(1qσρ) + C(12qσ)p1ρ + D(12qσ)p2ρ +

+ E(12qσ)qρ + F (12σρ). (1.3.30)

The coefˇcients A − F have a rather cumbersome form, we do not present them
here. Note only that they obey the condition

Cp1q + Dp2q + Eq2 − F = 0, (1.3.31)

because of gauge invariance in respect to index ρ.
The rearrangement operation gives

(1 − P̂ )Rt
ρσ = (A + B̃)(2qσρ) + (B + Ã)(1qσρ) + (C − D̃)(12qσ)p1ρ +

+ (D − C̃)(12qσ)p2ρ + (E + Ẽ)(12qσ)qρ + (F + F̃ )(12σρ) ≡
≡ A1(1qσρ) + A2(2qσρ) + B1(12qσ)p1ρ + B2(12qσ)p2ρ +
+ C1(12qσ)qρ + F1(12σρ). (1.3.32)

Tests of the gauge invariance is an important check of our calculations:

qρ(1− P̂ )Rρσ = B1(12qσ)p1q +B2(12qσ)p2q +C1(12qσ)q2 +F1(12σq) = 0,

qσ(1 − P̂ )Rρσ = F1(12qρ) = 0. (1.3.33)
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These conditions yield

F1 = 0, C1 = −B1
p1q

q2
− B2

p2q

q2
,

B1p1ρ + B2p2ρ + C1qρ = B1p̃1ρ + B2p̃2ρ , (1.3.34)

p̃1ρ = p1ρ − p1q

q2
qρ , p̃2ρ = p2ρ −

p2q

q2
qρ .

We checked these relations by straightforward calculations.
The last step is the hermitization, which gives

Rρσ = (1 + Ĥ)(1 − P̂ )Rt
ρσ =

= (A1 + A∗
1)(1qσρ) + (A2 + A∗

2)(2qσρ) +

+ (12qσ)[B1p̃1ρ + B2p̃2ρ] − (12qρ)[B∗
1 p̃1σ + B∗

2 p̃2σ], (1.3.35)

where

A1 =
2
st

[
2u(2s− u)

a
Lqu +

4us

a

(
u

a
Lqu − 1

)
+

ub

c
+

2u2 + us − s2

c
Lsq +

+
usb

c2
Lsq−2cζ(2)−2cLtu+(2s − c)Lqu−

uc

s
G+
(

ub

t
+ c

)
G̃+5c−2s

]
,

B1 =
2
st

[
8u

a

(
1 −
(

u

a
+ 1
)

Lqu

)
+

6t

b
Lqt +

2(u2 − 2s2 − su)
cu

Lsq +

+
2b

c

(
1 +

s

c
Lsq

)
+

2
s
(2c − s)Ltu +

(
−2 − 4c2

st
− 12b

t
− 4s2

ut

)
Lqu +

+
4b2

tu
Lsu +

(
−2 +

2uc

s2
− 2t

s

)
G +
(

2b

t
+

2b2

t2

)
G̃ + 6

]
,

G = (Lq − Lu)(Lq + Lu − 2Lt) −
π2

3
− 2Li2

(
1 − q2

u

)
+ 2Li2

(
1 − t

q2

)
,

A2 = (s ↔ t)A1, B2 = −(s ↔ t)B1, G̃ = (s ↔ t)G. (1.3.36)

Note, that the above expressions are free from kinematical singularities. Really,
in the limits a → 0, b → 0, and c → 0 the quantities are ˇnite. The symmetry
between A1, B1 and A2, B2 takes place due to the initial symmetry between p1

and p2 in the traces.
1.3.2. Conclusions. Thus we calculated the part of the leptonic tensor, pro-

portional to the degree of the initial longitudinal polarization. This tensor de-
scribes Compton scattering with one off-shell photon, which is related to a certain
target. The main results of the paper are presented by Eqs.(1.3.29),(1.3.35).
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The calculation allows one to obtain corrections, coming from one-loop ef-
fects, to quantities observable in different polarization experiments. Let us con-
sider for deˇniteness the task of calculation of α2 order radiative correction in
polarized deep inelastic scattering. The results for the lowest order QED correc-
tion for nucleon and nuclear targets can be found in Refs. 11, 12. Both the Born
cross section (σBorn) and the cross section at the level of radiative corrections
(σRC) can be split into unpolarized and polarized parts:

σBorn,RC = σunp
Born,RC + ξbξtσ

pol
Born,RC , (1.3.37)

where ξb and ξt are polarization degrees of the beam and target. The correction
to asymmetry (A = σpol/σunp)

∆A =
σpol

RCσunp
Born − σunp

RC σpol
Born

σunp
Born(σunp

Born + σunp
RC )

(1.3.38)

is usually not large because of mutual cancellation of large factorizing terms. It
is clear, that when a relatively small correction is obtained as a difference of two
large terms, the radiatively corrected cross section has to be calculated with the
most possible accuracy, and a special attention has to be paid to nonfactorizing
terms like (1.3.36). The kinematical regions with very high y (y ∼ 0.9) can
be reachable in the current polarization experiments in DIS [55, 56]. In this
region radiative corrections to the cross section are comparable with the Born
cross section. Basically, it comes from the contributions of radiative tails from
elastic and quasielastic peaks. This calculation ˇrstly allows one to obtain the
contribution of these tails with taking into account loop effects in the next-to-
leading approximation.

Strictly speaking, the total QED correction ∼ α2 to spin asymmetry
Eq.(1.3.38) includes also contributions of double bremsstrahlung, lepton pair pro-
duction and two-loop virtual corrections. The latter does not change kinematics
of the general process, it can be easily derived using the results of Ref. 57. The
leading contribution of two-loop corrections is factorized in front of the Born
cross section, and it is exactly cancelled in the numerator of (1.3.38). Contrary,
the radiative process has a different kinematics; and it is of particular interest in
experiments. So, the elastic and quasielastic radiative tails, which have relatively
large cross section, provide an important correction to polarized and unpolarized
DIS. The contributions of double bremsstrahlung and lepton pair production can
be calculated using analytical or Monte Carlo approach. We note that there are no
infrared divergences in the case of correction to elastic and quasielastic radiative
tails, so the integral over two photon phase space can be calculated straightfor-
wardly (using Monte Carlo methods, for example). The corresponding corrections
will be considered elsewhere.
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Now new methods of experimental data processing, when experimental in-
formation about spin observables is extracted directly from polarized parts of
cross sections (difference of observed cross sections with opposite spin conˇgu-
rations) [58], are actively developing. It makes new requirements for an accuracy
of radiative correction calculations. We note that there is no any cancellation of
leading contributions in this case, and factorizing terms in (1.3.28) give the basic
contribution.

From the other hand, our result can be used as a contribution to the ˇrst order
radiative correction to radiative polarized DIS, when radiated photon is tagged in
calorimeter. Radiative events cover a much wider region of kinematical variables,
so the detection of hard photons, for example, in deep inelastic scattering can
provide additional physical information [41, 59] about structure functions in the
region unreachable in current experiments. Note that radiative events are used
also for luminosity measurements in experiments at HERA.

There is one particular phenomenon. Note, that P
(1)
ρσ contains not only the

imaginary part, but also a certain real part, which comes from the imaginary parts

of A1 and B1. The multiplication of this real part of P
(1)
ρσ with the ordinary

symmetrical part of the hadronic tensor will give rise to a one-spin azimuthal
asymmetry for the ˇnal electron [60]. The asymmetry is proportional to the
degree of polarization of the initial electron. It is small (few percent) because of
the extra power of αQED and the absence of large logarithms.

Here we considered the typical kinematical case when the photon can be
resolved. The kinematical situation when photon is emitted close to initial or the
scattered electron directions was considered in paper [61].

1.4. Hadronic Cross Sections in Electron-Positron Annihilation with Tag-
ged Photon. Let us consider now the cross channel to DIS with hard photon
tagging process Å the initial state radiation of hard photon in the single virtual
photon high-energy e+e−-pair annihilation into hadrons [62].

1.4.1. Introduction. Experiments with tagged photons, radiated from the
initial state in electronÄproton and electronÄpositron collisions, can become par-
ticularly attractive. The reason is that these radiative processes will permit one
to extract information about the ˇnal states at continuously varying values of the
collision energy. To investigate deep inelastic scattering the authors of Ref. 41
suggested to use radiative events instead of running colliders at reduced beam
energies. The method takes advantage of a photon detector (PD) placed in the
very forward direction, as seen from the incoming electron beam. The effective
beam energy, for each radiative event, is determined by the energy of the hard
photon observed in PD. In fact, radiative events were already used to measure the
structure function F2 down to Q2 ≥ 1.5 GeV2 [36, 63]. The speciˇc theoretical
work concerns the evaluation of QED radiative corrections (see Secs. 1,2) to the
radiative Born cross section. With an accurate determination of the cross sections
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and of the possible sources of background we believe that the use of radiative
events may become particularly useful to carry investigations at various present
and future machines.

The important role of the initial state radiation in the process of electronÄ
positron annihilation was underlined in a series of papers by V.N. Baier and
V.A. Khoze [64], where the radiative process was studied in detail in the Born
approximation. In these papers the mechanism of returning to a resonant region
was discovered. This mechanism consists in the preferable emission of photons
from the initial particles, which provides a resonant kinematics of a subprocess.
A utilization of radiative events can become a common type of investigations at
various machines.

In this part we derive explicit formulae for the spectrum of tagged photons.
The calculations are performed having an accuracy of the per-mille order as
an aim. Formulae can be used at electronÄpositron colliders to investigate, for
instance, hadronic ˇnal states at intermediate energies. A measurement of the
total hadronic cross section at low energies is essential for high precision test of
the Standard Model particularly for a precise determination of the ˇne structure
constant αQED(MZ) and of the muon anomalous magnetic moment (g − 2)µ.
The largest contribution to the errors for these quantities comes from the large
indetermination still present on the measurement of the total hadronic cross section
in electronÄpositron annihilation at the centre-of-mass energies of a few GeV. We
will consider here the radiatively corrected cross section for the electronÄpositron
annihilation process

e−(p1) + e+(p2) −→ γ(k) + H(q), k = (1 − z)p1 , (1.4.1)

where H is a generic hadronic state. The hard photon hitting the photon detector
has a momentum k and an energy fraction 1−z with respect to the beam energy. In
the following we assume that the photon detector is placed along the electron beam
direction, and has an opening angle 2θ0 � 1, such that ε2θ2

0 � m2, with m the
electron mass, and ε the beam energy. To evaluate the process with an accuracy
of the per mille requires a careful investigation of the radiative corrections. This
part is organized as follows. In Section 1.4.2 we consider the cross section of
the process (1.4.1) in the Born approximation. We give formulae suitable to
study as differential distributions in hadronic channels, as well as the total (in
terms of quantity R) and inclusive (in terms of hadron fragmentation functions)
hadronic cross sections. In Sec. 1.4.3 we calculate separate contributions into
radiatively corrected cross section of process (1.4.1) within the nextÄtoÄleading
accuracy. In Sec. 1.4.3.1 the contribution due to virtual and soft photon emission
is investigated. In Sec. 1.4.3.2 the case, when additional hard photon hits a
photon detector is considered. In Sec. 1.4.3.3 the contribution due to hard photon
emission, which does not hit a photon detector, is derived. In Sec. 1.4.4 we sum
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up all the contributions and give the ˇnal result. In Conclusion we summarize
the results and give some numerical illustrations.

1.4.2. The Born Approximation. In order to obtain the Born approximation
for the cross section of the process (1.4.1), when the PD is placed in front of
electron (positron) beam, we can use the quasireal electron method [49]. It gives

dσ(k, p1, p2) = dWp1(k)σ0(p1 − k, p2), (1.4.2)

where dWp1(k) is the probability to radiate photon with energy fraction 1 − z
inside a narrow cone with the polar angle not exceeding θ0 � 1 around the
incoming electron, and dσ0 is the differential cross section for the radiationless
process of electronÄpositron annihilation into hadrons at the reduced electron
beam energy. The form of both, dWp1(k) and σ0(p1 − k, p2) is well known:

dWp1 (k) =
α

2π
P1(z, L0)dz , P1(z, L0) =

1 + z2

1 − z
L0 −

2z

1 − z
,

L0 = ln
ε2θ2

0

m2
. (1.4.3)

We need further the general form of the lowest order cross section σ0 for the
process e+(z1p2) + e−(zp1) → hadrons boosted along the beam axis (p1):

σ0(z, z1) =
8π2α2

q2|1 − Π(q2)|2
∫

T (q)dΓ(q), T (q) =
LρσHρσ

(q2)2
, (1.4.4)

Lρσ =
q2

2
g̃ρσ + 2z2p̃1ρp̃1σ, dΓ(q) = (2π)4δ(q −

∑
qj)
∏ d3qj

2εj(2π)3
,

q = zp1 + z1p2 , q2 = sz1z,

g̃ρσ = gρσ − qρqσ

q2
, p̃1ρ = p1ρ − p1q

q2
qρ , (1.4.5)

where q is the full 4-momentum of ˇnal hadrons, qj is 4-momentum of an
individual hadron, s = 2p1p2 = 4ε2 is the full centre-of-mass energy squared,
and Hρσ is the hadronic tensor. The vacuum polarization operator Π(q2) of
the virtual photon with momentum q is a known function [65] and will not be
speciˇed here.

The tensors Hρσ and Lρσ obey the current conservation conditions once
saturated with the 4-vector q. The differential cross section with respect to the
tagged photon energy fraction z can be obtained by performing the integration on
the hadrons phase space. It takes the form

dσ

dz
=

α

2π
P1(z, L0) σ0(z, 1). (1.4.6)
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Each hadronic state is described by its own hadronic tensor. The cross section
in Eqs. (1.4.2) and (1.4.4) is suitable for different uses and, as mentioned above,
it can be used to check different theoretical predictions.

The sum of the contributions of all hadronic channels by means of the relation∑
h

∫
HρσdΓ = fh(q2)g̃ρσ , (1.4.7)

can be expressed in terms of the ratio of the total cross section for annihilation
into hadrons and muons R = σh/σµ. For the µ+µ− ˇnal state we get

fµ =
q2

6π
K(q2), K(q2) =

(
1 +

2m2
µ

q2

)√
1 −

4m2
µ

q2
,

and so,

fh(q2) =
q2R(q2)

6π
K(q2). (1.4.8)

Substituting this expression into the right-hand side of Eqs. (1.4.2) and (1.4.4)
results in the replacement σ0(z, z1) = R(q2)4πα2K(q2)/(3q2).

In experiments of semiinclusive type one ˇxes an hadron with 3-momentum
q1, energy ε1 and mass M in every event and sum over all the rest. In this case
instead of Eq. (1.4.7) we will have (similarly to the Deep Inelastic Scattering
(DIS) case [51,52,66]):∑

h′

∫
HρσdΓ = H(1)

ρσ

d3q1

2ε1(2π)3
,

H(1)
ρσ = F1(η, q2)g̃ρσ − 4

q2
F2(η, q2)q̃1ρq̃1ρ, η =

q2

2qq1
> 1 , (1.4.9)

where we have introduced two dimentionless functions F1(η, q2) and F2(η, q2)
in a way similar to the DIS case.

By introducing the dimentionless variable λ = 2qq1/(2zp1q1), we can write
the corresponding cross section for radiative events in e+e− annihilation in the
same form as in the case of deep inelastic scattering with a tagged photon [51,
52,66]:

dσ

dz
=

α2(q2)
2π

α

2π
P1(z, L0)Σ(η, λ, q2)

1
(q2)2

d3q1

ε1
,

Σ(η, λ, q2) = F1(η, q2) +
2F2(η, q2)

η2λ2

(
λ − 1 − M2

q2
η2λ2

)
. (1.4.10)
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1.4.3. Radiative Corrections. For the radiative corrections (RC) to the cross
section (1.4.6) we will restrict ourselves only to terms containing second and ˇrst
powers of large logarithms L, and omit terms which don't contain them, i.e., we
will keep leading and next-to-leading logarithmic contributions. We will consider
in Section 3.1 the contribution from one-loop virtual photon as well as from the
emission of soft real ones. In 3.2 we will discuss the double hard photon emission
process.

1.4.3.1. C o r r e c t i o n s D u e t o V i r t u a l a n d R e a l S o f t P h o t o n s.
The interference of Born and oneÄloop contributions to the amplitude of the
initial state radiation in annihilation of e+e− into hadrons can be obtained from
the analogous quantity of hard photon emission in electronÄproton scattering [51,
52, 66]. We do that by using the crossing transformation. For the contribution
coming from the emission of real soft photons a straightforward calculation gives:

dσS

dσ0
=

α

π

[
2(Ls − 1) ln

m∆ε

λε
+

1
2
L2

s −
π2

3

]
,

Ls = ln
s

m2
= L0 + Lθ, Lθ = ln

4
θ2

, (1.4.11)

where λ is the photon mass, ∆ε is the energy carried by the soft photon. The
sum of the two contributions is free from infrared singularities. It reads

dσV +S =
8π2α2

s|1 − Π(q2)|2
α

2π
[ρBρσ(q) + Aρσ(q)]

Hρσ(q)dΓ(q)
(q2)2

α

4π2

d3k

ω
,

(1.4.12)

where

ρ = 4(Ls − 1) ln ∆ + 3Lq −
π2

3
− 9

2
, Lq = Ls + ln z, ∆ =

∆ε

ε
� 1,

(1.4.13)

where k and ω are the 3-momentum and the energy of the hard photon respec-
tively. The tensors Aρσ and Bρσ have a rather involved form. The ˇrst can
be obtained from the corresponding expressions of Refs. 13, 33. The tensor Bρσ

coincides with the one of the Born approximation. In the kinematical region
where the hard photon is emitted close to the initial electron direction of motion
one has

Bρσ =
2
z

(
1 + z2

y1(1 − z)
− 2m2z

y2
1

)
Lρσ(q), Aρσ =

2
q2

AgLρσ(q), q = zp1 + p2,

(1.4.14)
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where tensor Lρσ is given in Eq. (1.4.4), y1 = 2kp1, and quantity Ag reads

Ag =
4zsm2

y2
1

Ls ln z +
s

y1

[
1 + z2

1 − z
(−2Ls ln z − ln2 z + 2Li2(1 − z)+

+2 ln
y1

m2
ln z) +

1 + 2z − z2

2(1 − z)

]
, Li2(x) = −

∫ 1

0

dt
ln (1 − tx)

t
. (1.4.15)

Further integration over the hard photon phase space can be performed within the
logarithmic accuracy by using the integrals∫

d3k

2πk0

[
1
y1

,
m2

y2
1

,
ln(y1/m2)

y1

]
=
[
1
2
L0,

1
2(1 − z)

,
1
4
L2

0 +
1
2
L0 ln (1 − z)

]
dz.

The ˇnal expression for the Born cross section corrected for the emission of soft
and virtual photons has the form

dσB+V +S

dz
= σ0(z, 1)

[
α

2π
P1(z, L0) +

(
α

2π

)2

(ρP1(z, L0) + N)
]
,

N = −1 + z2

1 − z

[
(L0 + ln z) ln z − π2

3
+ 2Li2(z)

]
L0 − 2P1(z, L0) ln

θ2
0

4
+

+
1 + 2z − z2

2(1 − z)
L0 +

4z

1 − z
L0 ln z. (1.4.16)

1.4.3.2. T w o H a r d P h o t o n s T a g g e d b y t h e D e t e c t o r. If an
additional hard photon emitted by the initial-state electron hits the PD, we can-
not use the quasireal electron method and have to calculate the corresponding
contribution starting from Feynman diagrams.

We can use double hard photon spectra as given in Ref. 67 for annihilation
diagrams only and write the cross section under consideration as follows

dσH
c1

dz
= σ0(z, 1)

(
α

2π

)2

L0

1−z−∆∫
∆

dx

ξ

[
γτ

2
L0 + (z2 + (1 − x)4)×

× ln
(1−x)2(1−z−x)

zx
+zx(1−z−x)−x2(1−x−z)2−2τ(1−x)

]
,

ξ = x(1 − x)2(1 − z − x), γ = 1 + (1 − x)2, τ = z2 + (1 − x)2. (1.4.17)
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Here the variable x under the integral sign is the energy fraction of one hard
photon. The quantity 1 − z − x is the energy fraction of the second hard photon
provided that their total energy fraction equals 1 − z. We write the index c1 in
the left-hand side of Eq. (1.4.3) to emphasize that this contribution arises from
the collinear kinematics, when the additional hard photon is emitted along the
initial electron with 4-momentum p1.

The integration in the right-hand side of Eq. (1.4.3) leads to the result

dσH
c1

dz
= σ0(z, 1)

(
α

2π

)2
L0

2

{[
P

(2)
Θ (z) + 2

1 + z2

1 − z

(
ln z − 3

2
− 2 ln∆

)]
L0 +

+ 6(1 − z) +
3 + z2

1 − z
ln2 z − 4(1 + z)2

1 − z
ln

1 − z

∆

}
, (1.4.18)

where the quantity P
(2)
Θ (z) represents the so-called Θ term of the second-order

electron structure function:

P
(2)
Θ (z) = 2

1 + z2

1 − z

(
ln

(1 − z)2

z
+

3
2

)
+ (1 + z) ln z − 2(1 − z). (1.4.19)

1.4.3.3. A d d i t i o n a l H a r d P h o t o n E m i t t e d O u t s i d e P D. If an
additional hard photon, emitted from the initial state, does not hit the PD situated
in the direction of motion of the initial electron we distinguish the case when it
is emitted in the direction close, within a small cone with angle θ′ � 1, to the
direction of the initial positron. In this case we obtain:

dσH
c2

dz
=

α

2π
P1(z, L0)

∫ 1−δ/z

∆

α

2π
P1(1 − x, L′)σ0(z, 1 − x)dx, (1.4.20)

where L′ = Ls + ln (θ′2/4), δ = M2/s, and M2 is the minimal hadron mass
squared. We suppose that z ∼ 1.

We have introduced the additional auxiliary parameter θ′ � 1 which, together
with θ0, separates collinear and semicollinear kinematics of the second hard
photon. Contrary to θ0, which is supposed to determine the PD acceptance, θ′

will disappear in the sum of the collinear and semicollinear contributions of the
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second photon. This last kinematical region gives

dσH
sc

dz
=
( α

2π

)2

P1(z, L0)
∫

d3k1

2πω3
1

16π2α2

(1 − c2)z2
T (c, z, x),

T (c, z, x) =
∫

Hρσ(q2)dΓ(q2)
s(q2

2)2|1 − Π(q2
2)|2

[
s

2
((z − x2)2 + z2(1 − x1)2)gρσ +

+ 2(z(1 − x1) − x2)(z2p1ρp1σ + p2ρp2σ)
]
,

x1 =
x

2
(1 − c), x2 =

x

2
(1 + c),

q2 = zp1 + p2 − k1, c = cos k̂1p1. (1.4.21)

The phase volume of the second photon is parametrized as:

∫
d3k1

2πω3
=

x̂∫
∆

dx

x

2π∫
0

dφ

2π

1−θ2
0/2∫

−1+θ′2/2

dc, x̂ =
2(z − δ)

1 + z + c(1 − z)
. (1.4.22)

Explicitly extracting the angular singularities we represent this expression as

dσH
sc

dz
=
(

α

2π

)2

P1(z, L0)

[
Σsc(z) + ln

4
θ2
0

z−δ∫
∆

dx

x

z2 + (z − x)2

z2
×

×σ0(z − x, 1) + ln
4

θ′2

1−δ/z∫
∆

dx

x
(1 + (1 − x)2)σ0(z, 1 − x)

]
, (1.4.23)

Σsc =
8π2α2

z2

1∫
−1

dc

x̂∫
∆

dx

x

[
T (c, z, x)− T (1, z, x)

1 − c
+

T (c, z, x) − T (−1, z, x)
1 + c

]
.

1.4.4.4. C o m p l e t e Q E D C o r r e c t i o n a n d L e a d i n g L o g a r i t h m i c
A p p r o x i m a t i o n. The ˇnal result in the order O(α) for radiative corrections
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to radiative events can be written as follows:

dσ

dz
=

α

2π
P1(z, L0)σ0(z, 1)(1 + r) =

α

2π
P1(z, L0)σ0(z, 1) +

(
α

2π

)2

×

×
{

L0

(
1
2
L0P

(2)(z) + G

)
σ0(z, 1) + P1(z, L0)

[ 1−δ/z∫
0

C1(x)σ0(z, 1 − x)dx +

+Lθ

z−δ∫
0

C2(z, x)σ0(z − x, 1)dx + Σsc

]}
, (1.4.24)

where the last term is deˇned by Eq. (1.4.3) and

C1(x) = P1(1 − x, Ls)Θ(x − ∆) + (Ls − 1)(2 ln ∆ +
3
2
)δ(x),

C2(z, x) =
z2 + (z − x)2

z2x
Θ(x − ∆) + (2 ln ∆ +

3
2
− 2 ln z)δ(x),

G(z) =
1 + z2

1 − z
(3 ln z − 2Li2(z)) +

1
2
(1 + z) ln2 z −

− 2(1 + z)2

1 − z
ln (1 − z) +

1 − 16z − z2

2(1 − z)
+

4z ln z

1 − z
. (1.4.25)

In order to include the higher order leading corrections to the tagged photon
differential cross section and to show the agreement of our calculation with
the well-known DrellÄYan representation for the total hadronic cross section at
electronÄpositron annihilation [31]

σ(s) =

1∫
δ

dx1

1∫
δ/x1

dx2 D(x1, αeff)D(x2, αeff)σ(x1x2s), (1.4.26)

where the electron structure functions include both nonsinglet and singlet parts

D(x1, αeff) = DNS(x, αeff) + DS(x1, αeff), (1.4.27)

it is convenient to introduce the quantity

Σ = D(z, ᾱeff)

1∫
δ/z

dx1

1∫
δ/zx1

dx2 D(x1, α̃eff)D(x2, α̂eff)σ0(zx1, x2). (1.4.28)
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Note that the shifted cross section in Eq. (1.4.26) has just the same meaning as
in Eq. (1.4.4): σ(x1x2s) = σ0(x1, x2).

The structure functions [68,69] entering RHS of Eq. (1.4.27) are

DNS(x, αeff) = δ(1 − x) +
∞∑

n=1

1
n!

(
αeff

2π

)n

P⊗n
1 (x), (1.4.29)

DS(x, αeff) =
1
2!

(
αeff

2π

)2

R(x) +
1
3!

(
αeff

2π

)3[
2P1 ⊗ R(x) − 2

3
R(x)
]
,

(1.4.30)

where

P1(x) = lim
∆→0

{
1 + x2

1 − x
Θ(1 − ∆ − x) +

(
3
2

+ 2 ln∆
)

δ(1 − x)
}

,

R(x) = 2(1 + x) ln x +
1 − x

3x
(4 + 7x + 4x2),

P⊗n
1 = P1(x) ⊗ · · · ⊗ P1(x)︸ ︷︷ ︸

n

, P1(x) ⊗ P1(x) =

1∫
x

P1(t)P1

(
x

t

)
dt

t
,

and the effective electromagnetic couplings in the RHS of Eq. (1.4.28) are

ᾱeff = −3π ln

(
1 − α

3π
L0

)
,

α̃eff = −3π ln

(
1 − α

3π Ls

1 − α
3π L0

)
,

α̂eff = −3π ln
(

1 − α

3π
Ls

)
. (1.4.31)

At ˇxed values of z (z < 1) the quantity Σ deˇnes the leading logarithmic
contributions into differential cross section for the events with tagged particles.
That corresponds to only Θ terms in the expansion of the structure function
D(z, ᾱeff) before the integral sign in Eq. (1.4.28). If we consider photonic
corrections (as do in the previous sections), it is needed to restrict ourselves to
the nonsinglet part of the electron structure functions and with the ˇrst order
terms in the expansion of all effective couplings, namely:

ᾱeff → αL0, α̃eff → αLθ, α̂eff → αLs. (1.4.32)
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It is easy to see that in this case the leading contribution into differential cross
section (1.4.3) can be obtained as an expansion of the quantity Σ(z < 1) by the
powers of α, keeping the terms of the order α2 in the production of D functions.

If we want to include the contribution due to e+e−-pair (real and virtual)
production it is required [70] to use both nonsinglet and singlet structure functions
and effective couplings deˇned by Eq. (1.4.31). Note that the insertion into
consideration of higher order corrections rises additional questions about concrete
experimental conditions concerning registration of events with e+e− pairs.

The total hadronic cross section in e+e− annihilation can be obtained by
integration of quantity Σ over z

σ(s) =

1∫
δ

dz D(z, ᾱeff)

1∫
δ/z

dx1

1∫
δ/zx1

dx2 D(x1, α̃eff)D(x2, α̂eff)σ(zx1x2s).

(1.4.33)

We can integrate the expression in the right side of Eq. (1.4.33) over the variable
z provided the quantity zx1 = y is ˇxed

1∫
δ

dz D(z, ᾱeff)

1∫
δ/z

dx1 D(x1, α̃eff) =

1∫
δ

dz

1∫
y

dy D(z, ᾱeff)×

×D

(
y

z
, α̃eff

)
=

1∫
δ

dy D(y, ᾱeff + α̃eff), ᾱeff + α̃eff = α̂eff . (1.4.34)

Using this result and deˇnition of α̂eff we indicate the equivalence of the DrellÄ
Yan form of the total cross section as given by Eq. (1.4.26) and the representation
of the cross section by Eq. (1.4.33).

Let us show now that D functions in expression for the quantity Σ have
effective couplings as given by Eq. (1.4.31). By deˇnition the nonsinglet electron
structure function satisˇes the equation [71]

D(x, s, s0) = δ(1 − x) +
1
2π

s∫
s0

ds1

s1
α(s1)

1∫
x

dz

z
D(z)D

(
x

z
,
s1

s0

)
, (1.4.35)

where α(s1) is the electromagnetic running coupling

α(s1) = α

(
1 − α

3π
ln

s1

m2

)−1

,
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and s0(s) is the minimal (maximal) virtuality of the particle, which radiates
photons and e+e− pairs.

The structure function D(z, ᾱeff) describes the photon emission and pair pro-
duction inside narrow cone along the electron beam direction. In this kinematics
s0 = m2, s = ε2θ2

0 . The corresponding iterative solution of Eq. (1.4.35) has the
form (1.4.29) with αeff = ᾱeff . The structure function D(x1, α̃eff) describes the
events, when emitted (by the electron) particles escape this narrow cone. In this
case s0 = ε2θ2

0, s = 4ε2. The corresponding solution of Eq. (1.4.35) gives the
structure function with αeff = α̃eff . At last, the structure function D(x2, α̂eff)
is responsible for the radiation off the positron into the whole phase space. In
this case s0 = m2, s = 4ε2. Therefore we obtain D function with αeff = α̂eff .
The analogous consideration can be performed for the singlet part of structure
functions.

When writing the representation (1.4.33) for the total cross section we, in
fact, divide the phase space of the particles emitted by the electron on the regions
inside and outside the narrow cone along electron beam direction. Therefore we
can use this representation to investigate the events with tagged particles in both
these regions. As we saw before the differential cross section for events with
tagged particles inside the narrow cone is deˇned by the quantity Σ(z < 1). In
order to obtain the corresponding differential cross section for events with tagged
particles outside this narrow cone we have to change the places of ᾱeff and α̃eff in
expression for Σ(z, 1). This follows from the symmetry of representation (1.4.33)
relative such change.

1.4.4. Conclusion. In sum, the formulae (1.4.34),(1.4.28) are the main results
of this part.

Thus we calculated the cross section of e+e− annihilation with detection of a
hard photon at small angles with respect to the electron beam. The general struc-
ture of a measured cross section, from which one should extract the annihilation
cross section σ0, looks

σ = σ0

[
a1

α

π
L + b1

α

π
+ a2

(
α

π

)2

L2 + b2

(
α

π

)2

L + c2

(
α

π

)2]
+ O(α3),

(1.4.36)

where L denotes some large logarithm. We calculated the terms a1, b1, a2, b2 and
some contributions to c2. The generalized formula (1.4.28) allows one to involve
the leading terms of the order O(α3L3). In this way our formulae provide high
theoretical precision.

Similar formulae can be obtained for an experimental set-up by tagging a
deˇnite hadron. By using e+e− machines such as BEPS, DAΦNE [72], VEPP,
CLEO, SLACÄB/factory and others with luminosities of order 1033 cm2 · s−1,
one is in principle able to scan, by measuring the initial state radiation spectrum,
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the whole energy region of hadron production with an effective luminosity of the
order of 1031 cm2 · s−1. Let's hope that further study would be pursuing on these
issues from experimental as well as from theoretical point of view.

2. OUTLOOK

Results given in Sections 1.1 and 1.3 could be applied to elastic and quasi-
elastic scattering off nuclei. Among possible there are channels with nuclei got
excited or even broken apart.

At the moment a tagged photon set-up in DIS as well as annihilation channels
(Sections 1.2, 1.4) are of some perspective to high-energy physics in testing QED
(SM) predictions for effects induced by virtual corrections. The formulae given
here guarantee the theoretical error to fall down to 0.1%.

We did not touch the problem of evaluation of Z, W bosons contribution,
which was considered elsewhere, as well as that of double-photon exchange be-
tween a lepton and nucleon and a real photon emission by a nucleon (nuclei).
The latter has not been investigated in detail up to now. An almost thorough
numerical analysis of the RC to DIS was given in the papers cited in the intro-
duction. Nevertheless, the results presented in the review could be used to create
more advanced MC generators with accounting for RC at 0.1% level of accuracy.
To the moment this programme has been carried out only partially.

APPENDIX A. DETAILS OF MATRIX ELEMENT CALCULUS:
THE CASE OF SINGLE PHOTON BREMSSTRAHLUNG

Using the Sudakov decomposition of the 4-vectors in the problem

p′1 = α′
1p̃2 + bp̃1 + p′1⊥, k1 = α1p̃2 + x1p̃1 + k1⊥,

q = p2 − p′2 = αqp̃2 + βqp̃1 + q⊥,

p′2 = α′
2p̃2 + β′

2p̃1 + p′2⊥, v⊥p1 = v⊥p2 = 0,

p̃1 = p1 − p2
m2

s
, p̃2 = p2 − p1

M2

s
, (A.1)

we have excluded parameters α1, α
′
1, βq using the on-shell conditions

p
′2
2 − M2 = −sβq(1 − αq) − q2 − αqM

2 = 0,

p
′2
1 = sbα′

1 − p
′2
1 = 0, k2

1 = sx1α1 − k2
1 = 0, (A.2)
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besides

Φprot =
1
s2

Sp {(p̂′2 + M)Γρ(p̂2 + M)Γ̃σpρ
1p

σ
1},

Γρ = F1(q2)γρ +
σµρq

µ

2M
F2(q2). (A.3)

Here F1,2(q2) are the Dirac and Pauli form factors of a proton. For Φγ we have:

Φγ = − 1
s2

Sp {p̂′1Oµp̂1Õ
µ},

Oµ = p̂2
p̂1 − k̂1

−2p1k1
γµ + γµ

p̂′1 + k̂1

2p′1k1
p̂2, (A.4)

and then

q2 = −Q2
h = − 1

1 − αq
[q2 + M2α2

q ] ≈ −[q2 + Q2
min], (A.5)

with Q2
min given in the text. The matrix element

M =
1
q2

J (1)
σ ū(p′2)Γρu(p2)gρσ, (A.6)

using the Gribov representation for the metric tensor

gρσ = gρσ
⊥ +

(
2
s

)
(p̃ρ

2p̃
σ
1 + p̃σ

2 p̃ρ
1) ≈

(
2
s

)
p̃σ
2 p̃ρ

1, (A.7)

may be put in a form

M =
2s

q2

(
1
s
pσ
2J (1)

σ

)(
1
s
ū(p′2)Γρu(p2)p

ρ
1

)
. (A.8)

Note that each expressions in the parentheses on the r.h.s. of Eq. (A.8) do not
depend on s in the limit s → ∞. The expression for Φγ may be transformed
using the following reduced expression

Oµ = x1

[
sbγµ

(
1
n
− 1

n1

)
+

1
n1

bγµq̂p̂2 −
1
n

γµp̂2q̂

]
,

x1 = 1 − b. (A.9)

to take the form given in Eq. (1.1.8).
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APPENDIX B. DETAILS OF MATRIX ELEMENT CALCULUS:
THE CASE OF DOUBLE PHOTON BREMSSTRAHLUNG

Let's ˇrst demonstrate that the matrix element of the process

γ∗(q) + e(p1) → e(p′1) + γ(k1) + γ(k2) (B.1)

is explicitly proportional to q for small values of the latter, which is in fact the
requirement of gauge invariance with respect to the virtual photon. The matrix
element is described by six diagrams. With regard to the gauge invariance this
set can be separated out to the two subsets in each of which the gauge condition
is satisˇed independently. Introducing the photon-permutating operator P12 we
bring the matrix element to the form:

M = (1 + P12)Q , Q = M1 + M2 + M3 , (B.2)

where

M1 =
1

dd1
ū(p′1)p̂2(p̂1 − k̂1 − k̂2 + m) ×

× ê∗2(p̂1 − k̂1 + m)ê∗1u(p1) , (B.3)

M2 =
1

d1d′2
ū(p′1)ê

∗
2(p̂1 − k̂1 + q̂ + m)p̂2 ×

× (p̂1 − k̂1 + m)ê∗1u(p1) , (B.4)

M3 =
1

d′d′2
ū(p′1)ê

∗
2(p̂1 − k̂1 + q̂ + m) ×

× ê∗1(p̂1 + q̂ + m)p̂2u(p1) , (B.5)

and

d = d1 + d2 −
1

x1x2
(x1

�k2 − x2
�k1)2,

d′ = d′1 + d′2 +
1

x1x2
(x1

�k2 − x2
�k1)2.

The permutation operator P12 for the photons acts the following way

P12f(k1, e1; k2, e2) = f(k2, e2; k1, e1) , P2
12 = 1.

The quantity Q is gauge invariant regarding the virtual photon k since all
permutations of this photon have been taken into account. Therefore Q is pro-
portional to q⊥ in the limit of q⊥ → 0. Indeed, making use of the relations

Q = p2µQµ , qµQµ = (αq p̃2 + q⊥)µQµ = 0 , (B.6)
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we immediately obtain (neglecting the small contribution βqpµQµ ∼ 1/s)

Q = −q⊥µ

αq
Qµ . (B.7)

Then transform the quantities Mj to such a form that the noticed low q⊥
behavior is present in their sum Q explicitly. The reason is that in this case all
individual large (compared to q⊥) contributions are mutually cancelled. The ˇrst
step is to use the Dirac equations p̂1u(p1) = mu1, ū(p′1)p̂

′
1 = mū(p′1) and to

rearrange the amplitudes Mj of Eq. (B.3),

M1 = ū(p′1)

{
sβ′

1

d1
ê∗2(p̂1 − k̂1 + m)ê∗1 −

− 1
d1

p̂2q̂ê
∗
2(p̂1 − k̂1 + m)ê∗1

}
u(p1) ,

M2 = ū(p′1)

{
+

s(1 − x1)
d1d′2

ê∗2(p̂1 − k̂1 + m)ê∗1 −
1
d′2

ê∗2p̂2ê
∗
1 +

+
1

d1d′2
ê∗2q̂p̂2(p̂1 − k̂1 + m)ê∗1

}
u(p1) , (B.8)

M3 = ū(p′1)

{
s

d′d′2
ê∗2(p̂1 − k̂1 + m)ê∗1 +

s

d′d′2
ê∗2q̂ê

∗
1 +

+
1

d′d′2
ê∗2(p̂

′
1 + k̂2 + m)ê∗1q̂p̂2

}
u(p1) .

From these formulae it can be noted that the last terms in M1,M2,M3, up to
terms of the order of

m2

E2
, θ2 ,

m

E
θ ,

are proportional to q⊥,

ˆ̃p2q̂ = ˆ̃p2(αq
ˆ̃p2 + βq p̂ + q̂⊥) = ˆ̃p2q̂⊥ = −q̂ˆ̃p2 . (B.9)

Next, one can see that the sum of the ˇrst three terms in Eqs. (B.8) is also
proportional to q⊥ since (for more details see [73])

A ≡ b

d1
+

1 − x1

d1d′2
+

1
d′d′2

, A|q⊥→0 = 0 . (B.10)
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Finally we consider the sum of the second terms of the quantities M2,M3 given
in Eqs. (B.8). Using the relations ( [73], Eq.(21)) and

(p′1 + k1 + k2)2 = (p1 − k)2 = m2 − k2 − sαk ,

one immediately gets

−
ˆ̃p2

d′2
+

s(αq
ˆ̃p2 + q̂⊥)
d′d′2

=
sq̂⊥
d′d′2

+
ˆ̃p2q

2

d′d′2
. (B.11)

Therefore, from Eqs. (B.9), (B.10), (B.11) it is clearly seen that the property
illustrated by Eq. (B.7)

(M1 + M2 + M3) |q⊥→0 = 0

is evidently satisˇed and consequently the quantity Q =
∑3

j=1 Mj became a sum
of terms explicitly proportional to q⊥,

Q = ū(p′1)
{

As ê∗2(p̂1 − k̂1 + m)ê∗1 −

− 1
d1

ˆ̃p2q̂⊥ê∗2(p̂1 − k̂1 + m)ê∗1 −

− q2

d′d′2
ê∗2ê

∗
1
ˆ̃p2 +

s

d′d′2
ê∗2q̂⊥ê∗1 +

+
1

d1d′2
ê∗2q̂⊥ˆ̃p2(p̂1 − k̂1 + m)ê∗1 +

+
1

d′d′2
ê∗2(p̂

′
1 + k̂2 + m)ê∗1q̂⊥ˆ̃p2

}
u(p1) . (B.12)

Calculating the contribution of the trace Sp{p′1Qp1Q̃} we neglect masses
whose contribution to the quantity Φγγ may be restored using the general pre-
scription [37]. The corresponding correction has the form:

∆mΦγγ = (1 + P12)
{
−4m2

d
′2
1

x2
2y1(1 + y2

1)
(1 − x2)2

×

× q2

(q − y1p′
1)2(q − p′

1/b)2
−

− 4m2

d2
1

β2
2z1(1 + z2

1)q
2

(q − p′
1)2(p

′
1 − (1 − β2)q)2

}
, (B.13)

where

y1 =
1 − x2

b
, β2 =

x2

1 − x1
, z1 =

b

1 − x1
.
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APPENDIX C. EVALUATION OF 2-DIMENSIONAL INTEGRALS

The azimuthal integration may be performed making use of the following
equality:

J12...n =
1
2π

2π∫
0

dφ
∏

i

[ai + bi cos (φ − φi)]−1 =

=
n∑

k=1

1
rk

n∏
j �=k

bk

bkj + irk sin (φk − φj)
, (C.1)

with

ri =
√

a2
i − b2

i , |ai| > |bi|,

bij = biaj − bjai cos (φi − φj).

It is curious to note that the absence of the imaginary part provides an interesting
algebraic identity. For n = 2, n = 3 it looks

J12 =
1

d12
(
b1

r1
b12 +

b2

r2
b21), d12 = a2

12 − r2
1r

2
2 ,

a12 = a1a2 − b1b2 cos (φ1 − φ2),

J123 =
b2
1

r1

a12a13 − r2
1a23

d12d13
+

b2
2

r2

a21a23 − r2
2a13

d12d23
+

+
b2
3

r3

a31a32 − r2
3a12

d31d32
. (C.2)

This form is convenient for a subsequent integration over dk2
1.

APPENDIX D. NLO CONTRIBUTIONS FROM VIRTUAL
AND SOFT PHOTON EMISSION

To avoid the misprints we use here the notations of the paper [33]

s = d′1, t = −d1, u = −Q2,

s + t + u = q2, f̃(s, t) = f(t, s), a = s + t,

b = s + u, c = u + t. (D.1)



538 AKUSHEVICH I., KURAEV E., SHAIKHATDENOV B.

The quantities τij encountered in the text (see Eq. (1.1.12)) may be written as

τ11 = −G

(
1 +

u2

s2

)
− G̃

(
2 +

b2

t2

)
+ 2
[
b2

st
+

2u

a
+

+
2
a2

(u2 − bt)
]
lqu +

b2

tc2
(2c + t)lqs +

2u − s

s
lqt +

+
1
q2

[
4
a
(bt − u2) − 4u − 2q2 + t − b2

c

]
,

τ12 =
c

s2
(u − s)G +

1
t2

(uq2 − st)G̃ − 2
[
uq2

st
+

2u − s + t

a
+

+
2
a2

(u2 − cs)
]
lqu +

2c + t

c2

(
s − u

t
q2
)

lqs −

− c

bs
(2u − s)lqt +

1
q2

[
4
a
(u2 − cs) + 8u + 3t − s +

2
c
us

]
, (D.2)

and the additional notations look

lqu = ln
q2

u
, lqs = ln

−q2

s
, lqt = ln

q2

t
, lut = ln

u

t
,

G = lqu(lqt + lut) + 2Li2

(
1 − t

q2

)
−

−2Li2

(
1 − q2

u

)
− 2Li2(1). (D.3)

APPENDIX E. SEMICOLLINEAR KINEMATICS OF PAIR CREATION

The matrix element in the kinematics (1.1.2) may be put in a form (we extract
the coupling constant):

M (1) =
1
q2
1

JνIµgµν , Jν = ū(p−)γνu(p1), (E.1)

where the current I describes a pair production by the photon with momentum
q1 off a proton. Using the Sudakov form of the 4-vectors p− and q with basic
4-vectors p1 and p2,

p− = α−p̃2 + β−p̃1 + p−⊥, q = αq p̃2 + βqp̃1 + q⊥,

the representation of the metric tensor

gνµ = gνµ⊥ +
2
s
p2νp1µ
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and the gauge condition

Iq = I(βqp1 + q⊥) = 0, βq + β− = 1,

we obtain for the matrix element squared and summed over spin states of electron:∑
|M (1)|2 =

1
(q2

1)2

[
−2q2

1I
2 +

8
β2

q

(
p−I
)2
]
. (E.2)

To calculate the quantity I2, we again present it in the form

I = eq1I = eµ
q1

eν
q

2s|�q|
q2s1

p2ρYρū(p′1)Oµνv(p+),

s1 = (p2 + q1)2, Yρ = ū(p2)Γρu(p′2). (E.3)

The phase volume is transformed the way to take the following form

dΓ4 = (2π)−8 1
8sβ−β+b

d2qd2p−dβ−. (E.4)

Using ∑
|ū(p′1)Oµνv(p+)eµ

q1
eν

q |2 = 8
[

b

β+
+

β+

b

]
,

we obtain the result for the cross section given in the text.
For the kinematics of bremsstrahlung mechanism the matrix element has the

form

M (2) =
1
k2
1

IµJνgµν , k1 = p+ + p′1. (E.5)

Here it is convenient to use alternative basis vectors of Sudakov parameterization

p+ = α+q + b+p̃′1 + p+⊥, k1 = a1q + b1p̃
′
1 + k1⊥,

gµν = gµν⊥ +
2
s̃
qνp

′µ
1 , k2

1 =
p2

+ + m2b2
1

b1 − 1
> 0. (E.6)

Quite the same manipulations give∑
|M (2)|2 = 2k2

1I
2 − 8

b2
1

(
k1I
)2

.

Performing the integration over d2(p+)⊥ to a logarithmic accuracy and expressing
the parameter b1 in terms of the standard Sudakov decomposition with basic 4-
vectors p1, p2

b1 =
1 − β−

b
,

we immediately obtain the result given in the text.
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APPENDIX F

In this section we collect the results of the angular integration of the deˇnite
structures of the Compton tensor in [33,46]. Using integrals similarly to (1.2.12)
and retaining only terms that contain at least one large logarithm L0 or LQ, we
obtain

2ε2

Q2
l

∫
dΩk

2π
Tg = −ρ

[
1 + z2

(1 − z)2
(L0 − 1) + 1

]
+

1 + z2

(1 − z)2
[A ln z + B] −

− 4z

(1 − z)2
LQ ln z − 2 − (1 − z)2

2(1 − z)2
L0,

2ε2

∫
dΩk

2π
T11 =

4z

(1 − z)2
ρL0 −

2z(1 + (1 − z)2)
(1 − z)4

(A ln z + B) −

− A
z(3 − z)
(1 − z)3

+
2L0

(1 − z)3

(
z(8z − 3)

1 − z
ln z + 2z + z2

)
,

2ε2

∫
dΩk

2π
T22 = ρ

(
4z

(1 − z)2
L0 −

8
(1 − z)2

)
+

16
(1 − z)2

ln zLQ −

− 2z(1 + 2(1 − z)2)
(1 − z)4

(A ln z + B) − A
3z − 1

z(1 − z)3
+ (F.1)

+
2L0

z(1 − z)3

(
1 + 4z(z2 + z − 1)

1 − z
ln z + z3 − z2 + 4z − 1

)
,

2ε2

∫
dΩk

2π
T21 =

2z2

(1 − z)4
(A ln z + B) +

3z − 1
(1 − z)3

A +

+
2L0

(1 − z)3

(
−1 + 4z − 4z2 − 4z3

1 − z
ln z − 2z2 − 2z + 1

)
,

2ε2

∫
dΩk

2π
T12 =

2z(2 − z)
(1 − z)4

(A ln z + B) +
3 − z

(1 − z)3
A +

+
2L0

(1 − z)3

(
3 − 8z

1 − z
ln z − 1 − 2z

)
,

where ρ, A, and B are given by Eq. (1.2.13). It is remarkable to see that the
relation ∫

dΩk

2π

[
4zTg + Q2

l (T11 + z2T22 + zT12 + zT21)
]

= 0 (F.2)

is fulˇlled, leading to the factorization of the virtual corrections in Eq. (1.2.13).
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APPENDIX G

To perform the angular integration in (1.2.23) we ˇrst represent the integrand
in the form

ε2α2(Q2
sc)Iγ

Q4
sc

=
F (t1, t2)

t1t2
, (G.1)

where t1,2 = (1 − c1,2)/2, c1,2 = cos θ1,2, and θ1,2 are the angles between
nontagged photon momentum k2 and the momenta of the initial and the scattered
electrons. Note that F (t1, t2) behaves regularly for t1 → 0 or t2 → 0. This can
be easily seen by considering the limiting cases for the quantity Iγ .

For the case t → 0, which corresponds to the second photon being emitted
close to the direction of the incoming electron, one obtains from Eq. (1.2.24)

Iγ |t→0 =
Q2

x2t
(z2 + (z − x2)2)

[
xtF2(xt, Q

2
t )×

×
(

M2

Q2
t

− 1 − y

x2y2(z − x2)

)
− F1(xt, Q

2
t )

]
, (G.2)

while for the case s → 0, corresponding to the second photon being almost
collinear to the ˇnal electron,

Iγ |s→0 = −Q2z

y2s
(1 + (1 + y2)2)

[
xbF2(xb, Q

2
b)×

×
(

M2

Q2
b

− 1 − y

x2y2z(1 + y2)

)
− F1(xb, Q

2
b)

]
, (G.3)

see Eqs.(1.2.20) and (1.2.27) for the notation. The r.h.s. of Eq. (G.1) is easily
seen to be

ε2α2(Q2
sc)I

γ

Q4
sc

∣∣∣∣
t→0

=
1

t1t2

a

16πx2
2

z2 + (z − x2)2

z(z − x2)
Σ(xt, yt, Q

2
t ), (G.4)

ε2α2(Q2
sc)I

γ

Q4
sc

∣∣∣∣
s→0

=
1

t1t2

a

16πx2
2

1 + (1 + y2)2

1 + y2
Σ(xb, yb, Q

2
b), (G.5)

where a = (1 − cos θ)/2.
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For the phase space of the photon we use the following representation:∫
d3k2

ω2
= ε2

∫
x2 dx2 dΩ2 = 4ε2

∫
x2 dx2

∫
dt1 dt2√

D
Θ(D),

D = (t2 − y−)(y+ − t2), y± = t1(1 − 2a) + a ± 2
√

a(1 − a)t1(1 − t1).
(G.6)

The region of integration is determined by the conditions

σ1 < t1 < 1, σ2 < t2 < 1, D > 0, σ1 =
θ2
0

4
, σ2 =

θ
′2
0

4
. (G.7)

Using the substitution

t2 → t2(t1, u) =
(a − t1)2(1 + u2)

y+ + u2y−
, (G.8)

and the identity

1∫
σ1

dt1

1∫
σ2

dt2
F (t1, t2)
t1t2

√
D

Θ(D) =
π

a

[
F (a, 0) ln

a

σ2
+ F (0, a) ln

a

σ1

]
+

+ 2

∞∫
0

du

1 + u2
lim
η→0

[ 1∫
η

dt1
t1|t1 − a| (F (t1, t2) − F (a, 0)) +

+

a∫
η

dt1
t1a

(F (a, 0) − F (0, a))

]
, (G.9)

which is valid for σ1, σ2 � a, we obtain for Z from Eq. (1.2.25) the following
expression:

Z = −4(1 − c)
zQ2

∞∫
0

du

1 + u2
lim
η→0

[ 1∫
η

dt1
t1|t1 − a| ×

×
xm∫
0

dx2

x2
(Φ(t1, t2(t1, u)) − Φ(a, 0)) +

a∫
η

dt1
t1a

xm∫
0

dx2

x2
(Φ(a, 0) − Φ(0, a))

]
,

(G.10)
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where

Φ(t1, t2) =
α2(Q2

sc)stI
γ

Q4
sc

∣∣∣∣∣
c1=1−2t1, c2=1−2t2(t1,u), c=1−2a

. (G.11)

The upper limit of the x2-integration, xm, may be deduced from [42]. It has the
form

xm =
z(e + p) − ∆m − Y (e + z) − (p − z)Y c

z + e − Y + (p − z)c1 + Y c2
, e =

Ep

ε
,

p =
Pp

ε
, ∆m =

(M + mπ)2 − M2

2ε2
. (G.12)

This ˇnally leads to Eq. (1.2.25).
It is important to note that while calculating Z one encounters neither collinear

nor infrared singularities.
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