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We present an inductive algebraic approach to the systematic construction and classification
of generalized Calabi—Yau (CY) manifolds in different numbers of complex dimensions, based on
Batyrev’s formulation of CY manifolds as toric varieties in weighted complex projective spaces
associated with reflexive polyhedra. We show how the allowed weight vectors in lower dimensions
may be extended to higher dimensions, emphasizing the roles of projection and intersection in their
dual description, and the natural appearance of Cartan—Lie algebra structures. The 50 allowed extended
four-dimensional vectors may be combined in pairs (triples) to form 22 (4) chains containing 90 (91)
K3 spaces, of which 94 are distinct, and one further K 3 space is found using duality. In the case of
CY3 spaces, pairs (triples) of the 10270 allowed extended vectors yield 4242 (259) chains with K3
(elliptic) fibers containing 730 additional K3 polyhedra. A more complete study of CY3 spaces is
left for later work.

H ocHoBe ¢opmynupoBku b TeipeB Muoroo6p 3uii K 1 6u—5o (KS) K K TOpH4ecKMX MHO-
JKECTB BO B3BEIICHHBIX KOMIUIEKCHBIX NPOSKTUBHBIX MPOCTP HCTB X, CCOLMUPOB HHBIX C pehIeKCHB-
HBIMH TIOJIUBP MM, IPENJIOXeH HHAYKTHBHBIA JIreOp MYECKHil MOAXO[ K CHCTEM THYECKOMY IIOCTpoe-
HHIO M KJ1 CCU(UK UM 0000LIEeHHBIX MHOTrooOp 3uid K5 s p 37IM4YHBIX KOMIUIEKCHBIX P 3MEPHOCTEN.
ITox 3 HO, K K JOMYCTUMbIE BECOBbIE BEKTOPHI B HU3LINX P 3MEPHOCTSIX MOTYT OBITh P CIIMPEHBI IS
BBICIIMX P 3MepHOCTeil. IIpu »TOM OTMEUeH pONb HNPOEKTHPOB HHUS U IepecedeHs B HX Iy JbHOM
OIIC HUH U €CTECTBEHHOE MosiBIeHne Jrebp nueckux cTpykryp K pr H —JIu. IlaThaecat qomycTuMBIX
P CIIMPEHHBIX YETBIPEXMEPHbBIX BEKTOPOB MOTYT ObITh CKOMOMHHPOB HbI B I1 PbI (TPOUKH), (hOPMUPYIO-
mue 22 (4) nenouku, comepx mmue 90 (91) K 3-mpocTp HCTB, M3 KOTOPHIX 94 SBIAIOTCS OCOOBIMY,

onHO K 3-mpocTp HCTBO H XOMHUTCS C HCHOJNBb30B HUEM Iy JIbHOCTU. B ciyd e mpoctp Hete CY3
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n pel (Tpoiiku) m3 10270 HOMyCTUMBIX P CIIMPEHHBIX BEKTOPOB 1 10T 4242 (259) nenouek ¢ K3
(IUTMITUYECKUMU )-P CCIOGHUSIMH, cofepX mumu 730 nononHutensHbix K 3-nonusapos. Bonee mon-
Hoe n3ydenne C'Y3-mpocTp HCTB OyneT NpUBENEHO B credyomei p Gore.

1. INTRODUCTION

One of the outstanding issues in both string theory and phenomenology is
the choice of vacuum. Recent dramatic advances in the nonperturbative under-
standing of strings have demonstrated that all string theories, thought previously
to be distinct, are in fact related by various dualities, and can be regarded as
different phases of a single underlying theory, called variously M and/or F' the-
ory [1]. This deeper nonperturbative understanding does not alter the fact that
many classical string vacua appear equally consistent at the perturbative level.
However, the new nonperturbative methods may provide us with new tools to un-
derstand transitions between these classical vacua, and perhaps eventually provide
a dynamical criterion for deciding which vacuum is preferred physically [2, 3].

Consistent string vacua are constrained by the principles of quantum me-
chanics applied to extended objects. At the classical level, these are expressed
in the conformal symmetry of the supersymmetric world-sheet field theory. Con-
sistent quantization of the string must confront a possible anomaly in conformal
symmetry, as manifested in a net nonzero central charge of the Virasoro algebra.
Early studies of the quantum mechanics of extended objects indicated that strings
could not survive in the familiar dimension D = 3 + 1 of our space-time. The
way initially used to cancel the conformal anomaly was to choose appropriately
the dimension of the ambient space-time, for example, D = 25+ 1 for bosonic
strings and D = 9 + 1 for the supersymmetric and heterotic strings.

This suggested that the surplus n = 6 real dimensions should be compactified.
The simplest possibility is on a Calabi—Yau manifold [4], which is defined by the
following conditions:

e It has a complex structure, with N = 3 complex dimensions required
for the D = 9+ 1 — 3 + 1 case of most direct interest, though all the cases
N =1,2,3,4, ... have some interest.

e [t is compact.

o It has a Kihler structure.

e It has holonomy group SU(n) or Sp(n), e.g., SU(3) in the N = 3 case.

It has subsequently been realized that one could compactify on an orbifold [5],
rather than a manifold, and also that generalized heterotic strings could be formu-
lated directly in D = 3+ 1 dimensions, with extra world-sheet degrees of freedom
replacing the surplus space coordinates. More recently, the nonperturbative for-
mulation of the theory in eleven or twelve dimensions, as M or F' theory, has
opened up new possibilities [6]. However, Calabi—Yau compactifications con-
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tinue to play a key role in the search for realistic four-dimensional string models,
motivating us to revisit their classification.

One of the most important tools in the investigation of such complex mani-
folds is the feature that their singularities are connected with the structure of Lie
algebras. Kaluza was the first to attempt to understand this circumstance, and used
this idea to embark on the unification of all the gauge interactions known at that
time, namely electromagnetism and gravitation. These ideas were subsequently
extended to non-Abelian gauge theories, and string theory can be regarded as the
latest stage in the evolution of this programme.

The three-complex-dimensional CY manifolds can be situated in a sequence
of complex spaces of increasing dimensions: two-real- (one-complex-)dimensional
tori 15, the two-complex-dimensional K3 spaces, the three-complex-dimensional
CY3 themselves, four-complex-dimensional C'Yy, etc., whose topological struc-
ture and classification become progressively more complicated. Their topologies
may be described by the Betti-Hodge numbers which count the numbers of dis-
tinct one-, two-, three-dimensional, ... cycles (holes,...). The topological data of
the different CY manifolds determine their physical properties, such as the dif-
ferent numbers of generations NN, (which are related to the Euler characteristics
of C'Y3 spaces), etc. This emphasizes the desirability of approaching system-
atically the problem of their classification and the relations between, e.g., C'Y3
manifolds with different values of the Euler characteristic and hence the number
of generations IV;. Since some nonperturbative tools now exist for studying tran-
sitions between different CY manifolds, one could hope eventually to find some
dynamical criterion for determining N.

The topologies and classification of the lower-dimensional spaces in this se-
quence are better known: although our ultimate objective is deeper understanding
of CY3 spaces, in this paper we study as a warm-up problem the simpler case
of the two-complex-dimensional K3 hypersurfaces. These are of considerable
interest in their own right, since, for example, they may appear as fibrations
of higher-dimensional CY,, spaces. It is well known that any two K3 spaces
are diffeomorphic to each other. This can be seen, for example, by using the
polyhedron techniques of Batyrev [7] discussed in Sections 2 and 3, to calculate
the Betti-Hodge invariants for all the K3 hypersurfaces corresponding to the k4
vectors we found. It is easy to check that Batyrev’s results yield the same Euler
number 24 for all K3 manifolds [8].

The quasi-homogeneous polynomial equations (hereafter called CY equa-
tions) whose zeroes define the CY spaces as hypersurfaces in complex projective
space are defined (2.6), (2.7), (2.8), (2.9) by projective vectors k, whose compo-
nents specify the exponents of the polynomials. The number of CY manifolds is
large but finite, as follows from the property of reflexivity introduced in Section
2. The central problem in the understanding of classification of these manifolds
may be expressed as that of understanding the set of possible projective vectors
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k = (k1,... ,knt1), the corresponding Lie algebras and their representations.
More precisely, the classification of all CY manifolds contains the following
problems:

e To study the structure of the K3, C'Y3, ... projective vectors k,, in particular, to
find the links with the projective vectors of lower dimensions: D =n—1,n—2, ...
e To establish the web of connections between all the projective vectors k,, of
the same dimension.

e To find an algebraic description of the geometrical structure for all projective
vectors, and calculate the corresponding Betti-Hodge invariants.

e To establish the connections between the projective vectors k,,, the singular-
ities of the corresponding CY hypersurfaces, the gauge groups and their matter
representations, such as the number of generations, N,.

e To study the duality symmetries and hypermodular transformations of the pro-
jective vectors k.

In addition to the topological properties and gauge symmetries already men-
tioned, it is now well known that string vacua may be related by duality symme-
tries. This feature is familiar even from simple compactifications on S; spaces
of radius R, which revealed a symmetry: R — 1/R [9]. In the case of compact-
ifications on tori, there are known to be S, 7T, and U dualities that interrelate five
string theories and play key roles in the formulations of M and F' theories [10].
Compactifications on different types of CY manifolds have also been used exten-
sively in verifying these string dualities [10]. For example, in proving the duality
between type-II A and type-II B string theories, essential use was made of the
very important observation that all CY manifolds have mirror partners [7,11-15].
Thus, duality in string theory found its origins in a duality of complex geometry.

Further information about string/M/F' theory and its compactifications on CY
manifolds can be obtained using the methods of toric geometry. The set of homo-
geneous polynomials of degree d in the complex projective space C'P" defined by
the vector k11 with d = k1 + ...k, 1 defines a convex reflexive polyhedron *,
whose intersection with the integer lattice corresponds to the polynomials of the
CY equation. Therefore, instead of studying the complex hypersurfaces directly,
one can study the geometry of polyhedrons. This method was first used to look
for the solutions of the algebraic equations of degree five or more in terms of rad-
icals [16]. Thus, the problem of classifying CY hypersurfaces is also connected
with the problem of solving high-degree polynomial equations in terms of radi-
cals. The solutions of quintic- and higher-degree algebraic equations in terms of
radicals may be expressed using elliptic and hyperelliptic functions, respectively.
Specifically, it is known that CY manifolds may be represented using double-
periodic elliptic or multi-periodic hyperelliptic functions [17]. These functions

*The notion of a reflexive polyhedron is introduced and defined in Section 2.
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The Genealogical Geometry Tree

Double chains Triple chains Four-chains Five-chains cy,

L

4242 double chains 6 259 triple chains 6 four-chains / CY;
. 4 . .
22 double chains 4 triple chains K3
95 vectors
2

3 vectors: (1,1,1), (1,1,2), (1,2,3) Torus

1
(1,1) Circle

0
(1) Point
Origin

Fig. 1. The genealogical tree of reflexive projective vectors in different dimensions up to
d=14

have therefore been used to describe the behaviour of strings, and they should
also be used to construct the ambient space-time in which strings move.

We embark here on a systematic classification of K3 manifolds, as a prelude
to a subsequent classification of C'Y5 manifolds, based on their construction in
the framework of toric geometry. Within this approach, CY manifolds and their
mirrors are toric varieties that can be associated with polyhedra in spaces of var-
ious dimensions. We propose here an inductive algebraic-geometric construction
of the projective vectors k that define these polyhedra and the related K3 and CY
spaces. This method has the potential to become exhaustive up to any desired
complex dimensionality d = 1,2,3,4,5,6, ... (see Figure 1), limited essentially
by the available computer power. As a first step in this programme, we present
in this article a construction of K3 spaces, which is complete for those described
by simple polynomial zeroes, and in principle for K3 spaces obtained as the
complete intersections of pairs or triples of such polynomial zero loci. In the
construction of projective vectors corresponding to hypersurfaces without an in-
tersection with one internal point, the duality between a complex manifold and its
mirror (which does contain an intersection) plays an important role. We discuss
here also aspects of the C'Y3 construction that are relevant for the classification
of K3 spaces. We also indicate already how one may generate C'Y3 manifolds
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with elliptic fibrations or K3 fibers. More aspects of our C'Y3 construction are
left for later work.

To get the flavour of our construction, which is based on the formalism
reviewed in Sections 2 and 3 [7] and is discussed in more detail in Sections 4 et
seq., consider first C'P! space. Starting from the trivial unit «vector» k; = (1),
we introduce two singly-extended basic vectors

K = (0,1), k¥ = (1,0), 1.1)

obtained by combining k; with zero in the two possible ways. The basic vectors
(1.1) correspond to the sets of polynomials

"y = {m}p=m1): p ki =d=1,

2oy = {py} = (1,m): py kK =d=1, (1.2)

respectively. The only polynomial common to these two sequences is xy, which
may be considered as corresponding to the trivial «vector» k; = (1). Consider
now the composite vector ko = (1, 1), which can be constructed out of the basic
vectors (1.1), and is easily seen to correspond to the following three monomials
of two complex arguments (x,y):

{J)Q,x-y, y2} = “|i=17273 = {(250)7(151)7(()’2)} =
{(1a_1)a(070)a(_1a+1) }a (13)

plici2s = plici2s — 1

where we have used the condition: pt-ko = p1-14po -1 = d = 2, corresponding
to p ' - ko = 0, and we denote by d the dimensionality of the projective vectors.
It is convenient to parametrize (1.3) in terms of the new basis vector e = (—1, 1):

Nl|i=1,2,3 = (e)|iz1,2,3 = {(—1),(0),(+1) } xe. (1.4)

The three points (2,0), (1, 1), (0,2) (or —1, 0, +1) corresponding to the composite
vector ko = (1, 1) may be considered as composing a degenerate linear polyhedron
with two integer vertices {(2,0), (0,2)} (£1) and one central interior point (1,1)
(0). As we see in more detail later, this polyhedron is self-dual, or reflexive as
defined in Section 2.

To describe CY7 spaces in C P2 projective space, via the analogous projective
vectors kg = (1,1,1),(1,1,2), (1,2, 3), that are associated with the corresponding
polynomial zero loci, one may introduce the two following types of extended
vectors: the doubly-extended basic vectors

k{* =(0,0,1), (0,1,0), (1,0,0) (1.5)
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obtained by adding zero to the two-dimensional basic vectors (1.1) in all possible
ways, and the three simple extensions of the composite vector ko = (1,1):

k5" = (0,1,1), (1,0,1), (1,1,0). (1.6)

Then, out of all the extended vectors (1.5) and (1.6) and the corresponding sets of
monomials, one should consider only those pairs (triples) whose common mono-
mials correspond to the composite vector ko = (1,1) (to the unit vector) which
produces the reflexive linear polyhedron with three integer points (a single point).
The condition of reflexivity restricted to the extended vector pairs (triples), ...
will also be very important for constructing the closed sets of higher-dimensional
projective vectors (again reflexive).
For example, consider one such ‘good’ pair,

k§* = (0,1,1) < k{* = (1,0,0), 1.7)
with the corresponding set of monomials,

{2™ ¥’} = p=(m,2,0),
{z"y -z} = pu=(Mn,11),
{272’} = p=(p,0,2),
p k= 2, (1.8)

and
{x-yk-zl} = p=(1,k1),
pokeT = 1. (1.9)

The common action of these two extended vectors, (0,1,1) and (1,0,0), gives as
results only the following three monomials:

{z-y* 2y 22 -2°}) =
U|i=1,2,3 = {(1,2,0)7 (1,1,1)7 (1,0,2)} =
pli=123 -1 = {(0,1,-1), (0,0,0), (0,-1,1)} =
eliz123 = {(-1), (0), (1)} (1.10)

which correspond to the C P! case. Such pairs or triples may be termed «reflex-
ive» pairs or triples, because of the vertices e|;=1,2 3 above a generate (degenerate)
reflexive polyhedron.

Such pairs, triples and higher-order sets of projective vectors k; may be used
to define chains of integer-linear combinations, as explained in more detail in
Subsection 4.1:

m1k1+m2k2+... (111)
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We use the term eldest vector for the leading entry in any such chain, with
minimal values of m,mq, ... In the above case, there are just two distinct types
of «reflexive» pairs: {(0,0,1),(1,1,0)} and {(0,1,1),(1,0,1)}, which give rise
to two such chains: {(1,1,1),(1,1,2)} and {(1,1,2), (1,2,3)}. There is only
one useful «reflexive» triple: {(0,0,1),(0,1,0),(1,0,0)} defining a non-trivial
three-vector chain. Together, these chains can be used to construct all three
projective ko vectors. The second possible «reflexive» triple {(0,1,1),(1,0,1),
(1,1,0)} produces a chain that consists of only one projective ks vector: (1,1,1).

In addition to the zero loci of single polynomials, CY spaces may be found
by higher-level contructions as the intersections of the zero loci of two or more
polynomial loci. The higher-level C'Y; spaces found in this way are given in the
last Section of this paper.

In the case of the K 3 hypersurfaces in C'P? projective space, our construction
starts from the five possible types of extended vectors, with all their possible
Galois groups of permutations. These types are the triply-extended basic vectors
with the cyclic Cy group of permutations,

kS = (0,0,0,1): |Cy| =4, (1.12)

the doubly-extended composite vectors with the D3 dihedral group of permuta-
tions,

kS = (0,0,1,1): |Ds| =6, (1.13)

and the following singly-extended composite vectors with the cyclic Cy, alternat-
ing A4 and symmetric Sy groups of permutations, respectively:

kgz — (071’171): |C4| :47 (114)
k5" = (0,1,1,2): |A4| =12, (1.15)
k" = (0,1,2,3): |Sy| = 24. (1.16)

The A4 and Sy groups of permutations can be identified with the tetrahedral 7" and
octahedral O rotation groups, respectively. Combining these 50 extended vectors
in pairs, we find 22 pairs whose common actions correspond to reflexive polyhedra
in the plane. These give rise to 22 chains (lattices parametrized by two positive
integers), which together yield 90 k4 vectors based on such extended structures,
that are discussed in more detail in Section 5. In addition, there exist just
four triples constructed from the 10 extended vectors (0,0,0,1) + permutations
and (0,0,1,1) 4+ permutations whose common actions give a unique reflexive
polyhedron on the line: (—1),(0),(+1). The corresponding four triple chains
(lattices parametrized by three positive integers) yield 91 k4 vectors, as discussed
in Section 6. As also discussed there, it turns out that most of the k4 vectors
obtained from the triple combinations are already included among those found
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in the double chains, so that the combined number of distinct vectors is just 94.
The total number of vectors is, however, 95 (see Table 1), because there exists,
in addition to the above enumeration, a single vector ks = (7, 8,9, 12) which has
only a trivial intersection consisting just of the zero point. This can be found
within our approach using the nontrivial projection structure of its dual, which
is an example of the importance of duality in our classification, as discussed in
Section 7.

To find all CY manifolds, and thereby to close their algebra with respect
the duality between intersection and projection that is described in more detail in
Sections 3 and 4, one must consider how to classify the projective structures of
CY manifolds. Some of the 22 chains are dual with respect to the «intersection-
projection» structure, but more analysis is required to close the CY algebra. As
discussed in Section 7, it is useful for this purpose to look for the so-called in-
variant directions. To find all such invariant directions in the case of K3 spaces,
one should consider all triples selected from the following five extended vectors:
(0,0,0,1),(0,0,1,1),(0,1,1,1),(0,1,1,2),(0,1,2,3), and their possible permu-
tations, whose intersections give the following five types of invariant directions
defined by two monomials:

¢ = {(1,1,1,1) — (0,1,1,3)}, a = 1, 2,

w5 = {(1,1,1,1) — (0,0,0,3)}, a = 1, 2, 3, 4,

5 = {(1,1,1,1) — (0,0,1,3)}, a = 1,2, 3,4,

5y = {(1,1,1,1) — (0,0,0,4)}, a = 1,2, 3,4,

my = {(1,1,1,1) — (0,0,1,4)}, a = 1, (1.17)

and the following three types of invariant directions defined by three monomials:

75 = {(0,2,1,1) = (1,1,1,1) = (2,0,1,1)}, a=1,2,
7% = {(0,0,1,2) — (1,1,1,1) — (2,2,1,0)}, a=1,2,3, 4,
mg = {(0,0,0,2) = (1,1,1,1) = (2,2,2,0)}, a=1,2,3,4, (1.13)

respectively. Each double intersection of a pair of extended vectors from one of
these triples gives the same «good» planar polyhedron whose intersection with
the plane integer lattice Z5 has just one interior point.

By this method, one can classify the projective vectors by projections, finding
78 projective vectors which can be characterized by their invariant directions.
Taking into account the projective vectors with intersection-projection duality
that have already been found by the double-intersection method, one can recover
all 95 K3 projective vectors, including the exceptional vector (7,8,9,12) that
was not found previously among the double and triple chains.
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Table 1: The algebraic structure of the 95 projective vectors characterizing K3 spaces. The
numbers of points/vertices in the corresponding polyhedra (their duals) are denoted by N/V
(N*/V™), and their Picard numbers are denoted by Pic (Pic*). In each case, we also list the
double, triple chains and projective chains where the corresponding /'3 vector may be found

N k4 N |N*|V |V™|Pic|Pic* Double chains Triple chains| Projective chains

1] (1,1,1,1) |35] 5 (4] 4]1]19 I,VII, X, XII I s, T4, TG

2| (1,1,1,2) [34]| 6 |6| 5 |2|18| I,IV,XI,XIV I,IT | 71,73, 75, 76, 77

31 (1,1,1,3) [39] 6 |4] 4|1 19 IV, XX I,1IT s

4| (1,1,2,2) |30| 6 |4| 4 |4]18 II IV, X, I,I1,1V Ty, TG, T
XXI, XXII

50 (1,1,2,3) [31] 8 |7| 6 | 4|16 IV,XI,XIII,XV 1,11, T, Ty, TG, T

6| (1,1,2,4) [35]| 7 |4| 4|3 |18| IV,V,VI, XVI | I,II,IIT s

71 (1,1,3,4) [33] 9 |5|5 |4 16 XI,XVII 1,11 o, TG

8| (1,1,3,5) |36 9 |5| 5 (3|17 V,XVIII 1,111 s

9| (1,1,4,6) 39| 9 |4] 4 |2]18 V,XIX I,IIT

10| (1,2,2,3) |24| 8 |6| 5| 7|16 | VII,VIII, XI, I,II,IV | ., 73, 74, 7
XV, XXII

11] (1,2,2,5) (28] 8 |4] 4|6 18 V,IX,XVI I,IIT s

12| (1,2,3,3) |23 8 |6| 5 | 8|16 | IT, III, XIV, XV I,IT T, o, T

13| (1,2,3,4) |23|11|7]| 6|8 13 XII,XIII, 1,1V T, T3, T
XV, XXII

14| (1,2,3,5) 24|13 (8| 7|8 | 12| XIII,XIV,XV II T, Ty, TS, T

15| (1,2,3,6) |27| 9 |a| 4| 7|16 |VI, XV, XVI, XX | II,III s

16| (1,2,4,5) |24|12|5| 5 | 8 | 14 |XVII, XXI, XXII| II,IV 1, o

17| (1,2,4,7) |27|12]5]| 5| 7] 15 XVI,XVIII 17 s

18| (1,2,5,7) |26|17]6| 6 | 8| 12 XVII II 1, o

19| (1,2,5,8) |28|14|5| 5|7 14 XVI,XVIII II1 s

20| (1,2,6,9) |30|12|4| 4 |6 |16 XVI, XIX IIT

21| (1,3,4,4) |21]| 9 |4]| 4 |10] 16 II,VIII 1,11 Too, 77

22| (1,3,4,5) |20|15|7| 7 [10] 10 XIIT,XIV II o

23| (1,3,4,7) |22|17|6]| 6 10| 10 XIIT II Ty, T

24| (1,3,4,8) [24|12|5| 5|9 14 VI, IX I1,I11 s

25| (1,3,5,6) |21]15|5| 5 [10] 12 III, XVII IT

26| (1,3,5,9) |24]|15|5| 5 |9 |13 XVIII, XX 17 s

27((1,3,7,10) (24|24 |4 | 4 |10| 10 XVII 11 T2

28| (1,3,7,11) [25(20|5| 5 | 9 | 11 XVIII II7 T8

29| (1,3,8,12) (27|15 |4| 4 | 8 | 14 XIX III

30| (1,4,5,6) |19|17|6] 6 [11] 9 VIII, XIII IT s

31| (1,4,5,10) |23| 13 4| 4 |10] 14 VI 11,111 s

32| (1,4,6,7) [19/20|6| 6 |11| 9 XVII 11

33| (1,4,6,11) |22 20 |6 6 [10] 10 IX,XVIII IIT

34| (1,4,9,14) 24|24 [4| 4 |10] 10 XVIII III s

35((1,4,10,15)|25| 20 | 5| 5 | 9 | 11 XIX II1

36| (1,5,7,8) |18 24 |5]| 5 12| 8 XVII 11

37| (1,5,7,13) (21|24 |5| 5 |11 9 XVIII II7

38((1,5,12,18) (24| 24 |4 | 4 |10] 10 XIX IIT

39| (1,6,8,9) |18 24 |5]| 5 [12] 8 XVII IT

40| (1,6,8,15) [21| 24 |5| 5 [11| 9 XVIII IIT

41((1,6,14,21) (24|24 |4 | 4 |10| 10 XIX III

42] (2,2,3,5) |17 11 |5]| 5 [11] 14 VIIT, XTI 1,11 T4, 6, T

43| (2,2,3,7) |19/ 11|5]| 5 10| 16 V,IX I,1IT s

44| (2,3,3,4) 15| 9 4| 4 |12] 16 IIT,VII,XXI LIV |mwy, ma, w3, w4, 76

45| (2,3,4,5) (13|16 | 7| 7 (13| 9 | XII, XIV, XXII | II,IV 1, T3, TS, T

46| (2,3,4,7) 14|18 |6 6 [13]| 10 VIII,XIV II L, T3, T4, T, T

47| (2,3,4,9) 16|14 |5 5 [12] 13 IX,XVI, XX 17 s

48| (2,3,5,5) 14|11 |6| 5 |14] 14 II 11T o, Ty

49| (2,3,5,7) |13|20|8]| 8 14| 6 XIII IT s, 75, T

50| (2,3,5,8) |14]|20|6| 6 |14 7 XIIT 17 Ty, T

51| (2,3,5,10) |16] 14 |5 | 5 [13] 12 VI 11,111 s

52| (2,3,7,9) [14|23|6| 6 |14| 8 XVII 11 T2
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Table 1: (cont.)

R ky N |N*|V|V™|Pic|Pic Double chains Triple chains| Projective chains
53| (2,3,7,12) |16 20 | 5| 5 [13] 10 XVIIT IIr _—

54| (2,3,8,11) |15] 27 |4 | 4 |14] 8 XVII i1 i~

55| (2,3,8,13) |16 23 5| 5 [13] 9 XVIIT IIr s
56((2,3,10,15) (18 18 |4 | 4 |12 12 XIX 117

57| (2,4,5,9) |13|23 4| 4 |14] 10 VIIT T 1, T4, T
58] (2,4,5,11) |14] 19 | 5| 5 |13] 11 IX,XVI I1I s

59| (2,5,6,7) |11 23|55 [15] 7 VIIT 7 ™3, Ta, T
60| (2,5,6,13) |13 23 |5 5 [14] 9 X 11T s

61| (2,5,9,11) |11|32 |6 | 6 |16] 4 XVII T —

62| (2,5,9,16) [13[29|5| 5 |15| 6 XVIII 117 T8
63[(2,5,14,21)|15| 27 [4| 4 |14] 8 XIX I1I

64| (2,6,7,15) |13| 23 |4| 4 [14] 10 X IIT s

65| (3,3,4,5) |12|12 |5 5 |14] 14 III I o, w3, 5, TG
66| (3,4,5,6) |10|17|6| 6 |15| 9 11, XTI, XXI v 1, o, T3
67| (3,4,5.7) | 9|24|7| 8 |16] 4 X1V T s, s, T
68| (3,4,5,8) |10/ 22|66 16| 7 VIIT 1 ™1, 3, T4, 77
69| (3,4,5,12) [12| 18 [5| 5 15| 10 IX, XX IIT s

70| (3,4,7,10) |10| 26 |5| 6 | 17| 3 XTIT T P
71| (3,4,7,14) |12| 18 | 5| 5 |16] 10 VI IT, 11T 8
72|(3,4,10,13)|10| 35 |5| 5 [17| 3 XVII 11 )
73((3,4,10,17)|11| 31 |6 | 6 |16] 4 XVIIT IIT —
74((3,4,11,18) 12| 30| 4| 4 | 16| 6 XVIII I1I s
75)(3,4,14,21)|13| 26 5| 5 [15| 7 XIX 117

76| (3,5,6,7) |9 |21|5| 5 |16] 8 III -
770(3,5,11,14)| 9 [ 30 |4 | 4 |18] 2 XVII 1 .
78((3,5,11,19)|10(35 | 5| 5 |17] 3 XVIIT IIr —
791(3,5,16,24)|12| 30 (4| 4 [16| 6 XIX 111

80| (3,6,7.8) | 9|21]4| 4 |16] 10 III 1, o, s, A
81| (4,5.6,9) | 8|26|5|6 17| 4 X1V T 5, w4, T, T
82| (4,5,6,15) |10| 20 5| 5 [16] 9 XX IIr s

83| (4,5,7,9) | 7|32|5| 6 18] 2 I w3, 77
84| (4,5,7,16) |9 |27 |5| 5 [17] 6 X IIr s
85((4,5,13,22)[ 9 (394 | 4 |18]| 2 XVIII 117 T8
86((4,5,18,27)(10(35|5| 5 |17| 3 XIX 117

87| (4,6,7,11) | 7|35 |4 4 18] 3 VIII II w4, T, T
88| (4,6,7,17) | 8 |31 |5 5 [17| 4 X 11T s

89| (5,6,7,9) | 6|30|5|6 |18 2 III o, 3, s
90| (5,6,8,11) | 6 |39 | 4| 4 |19]| 1 T s, 7
91| (5,6,8,19) | 7|35 |5| 5 | 18] 2 X IIr 8
92|(5,6,22,33)| 9 | 39 |4 4 [18] 2 XIX IT1

93| (5,7,8,20) | 8 |28 |4 4 |18] 6 1T s
94((7,8,10,25)| 6 | 39 | 4| 4 |19] 1 III —

95| (7,8,9,12) | 5 |35 |4| 4 |19]| 1 T

Section 8 of this paper contains a systematic description how various gauge
groups emerge associated with singularities in our construction of K3 spaces [18].
These are interesting because of their possible role in studies of F’ theory. Since
this may be regarded as a decompactification of type-11 A string, understanding of
duality between the heterotic string and type-II A string in D = 6 dimensions can
be used to help understand the duality between the heterotic string on 72 and F
theory on an elliptically-fibered K 3 hypersurface [19]. The gauge group is directly
defined by the ADE classification of the quotient singularities of hypersurfaces.
The Cartan matrix of the Lie group in this case coincides up to a sign with
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the intersection matrix of the blown-down divisors. There are two different
mechanisms leading to enhanced gauge groups on the F'-theory side and on the
heterotic side. On the F-theory side, the singularities of the CY hypersurface give
rise to the gauge groups, but on the heterotic side the singularities can give an
enhancement of the gauge group if «small» instantons of the gauge bundle lie on
these singularities [20]. This question has been studied in terms of the numbers
of instantons placed on a singularity of type GG, where G is a simply-laced group.
Studies of groups associated with singularities of K3 spaces are also interesting
because elliptic CY,, (n = 3,4) manifolds with K3 fibers can be considered to
study F-theory dual compactifications of the Fg x Fg or SO(32) string theory.
To do this in toric geometry, it is possible to consider the K3 polyhedron fiber as
a subpolyhedron of the C'Y,, polyhedron, and the Dynkin diagrams of the gauge
groups of the type-I1A string (F'-theory) compactifications on the corresponding
threefold (fourfold) can then be seen precisely in the polyhedron of this K3
hypersurface. By extension, one could consider the case of an elliptic C'Y; with
CY3 fiber, where the last is a CY hypersurface with K3 fiber. We give in
Section 8 several detailed examples of group structures associated with chains of
K3 spaces, which our algebraic approach equips us to study systematically.

Finally, Section 9 provides a brief discussion of C'Y3 manifolds and describes
how additional CY spaces can be constructed at higher levels as the intersections
of multiple polynomial loci. This discussion is illustrated by the examples of
higher-level C'Y; and K3 spaces obtained via our construction of lower-level
K3 and CY3 spaces. We find, for example, 7 new polyhedra describing C'Y;
spaces given by «level-one» intersections of pairs of polynomial loci, and three
new «level-two» polyhedra given by triple intersections of polynomial loci. In
looking for higher-level K3 spaces, we start from 100 types of extended vectors
in five dimensions, corresponding to 10270 distinct vectors when permutations are
taken into account. We find that these give rise to 4242 two-vector chains of C'Y3
spaces, 259 triple-vector chains and 6 quadruple-vector chains. Analyzing their
internal structures, we find 730 new K3 polyhedra at level one, of which 146 can
be obtained as intersections of polynomials corresponding to simple polyhedra
(points, line segments, triangles and tetrahedra). A complete characterization of
higher-level K3 spaces given by multiple intersections of polynomial loci lies
beyond our present computing scope, and we leave their further study to later
work.

2. CALABI-YAU SPACES AS TORIC VARIETIES

We recall that an n-dimensional complex manifold is a 2 - n-dimensional
Riemannian space with a Hermitean metric

ds® = g5-dz'-dz’ : gij=g;5=0, g =0y 2.1)
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on its n complex coordinates z;. Such a complex manifold is Kéhler if the (1,1)
differential two-form

]. . i _3
QO = §-z-gi3-dz AdZ, (2.2)

is closed, i.e., d©2 = 0. In the case of a Kihler manifold, the metric (2.1) is
defined by a Kéhler potential:

B 82K(zi,23)

o 25 23
Jij 0240zI 23)

The Kéhler property yields the following constraints on components of the Cristof-
fel symbols:

i, =T =T, =0,

ik
I, =T, =g"°- %, (2.4)
yielding in turn the following form
R;. = _ar% (2.5)
K 027

for the Ricci tensor.

Since the only compact submanifold of C™ is a point [21], in order to
find nontrivial compact submanifolds, one considers weighted complex projec-
tive spaces, CP"(ki, kg, ..., knt1), which are characterized by (n + 1) quasi-
homogeneous coordinates 21, ..., 2,41, With the identification:

(Z1, ey Zng1) ~ ()\kl TR L Zn41)- (2.6)

The loci of zeroes of quasi-homogeneous polynomial equations in such weighted
projective spaces yield compact submanifolds, as we explain in more detail in
the rest of Section 2, where we introduce and review several of the geometric
and algebraic techniques used in our subsequent classification. Other compact
submanifolds may be obtained as the complete intersections of such polynomial
zero constraints, as we discuss in more detail in Section 9.

2.1. The Topology of Calabi-Yau Manifolds in the Polyhedron Method.
A CY variety X in a weighted projective space CP"(k) = CP"(k1, ..., knt1) is
given by the locus of zeroes of a transversal quasi-homogeneous polynomial @
of degree deg (p) = d, with d = Y77 k; [7,13-15,21-29]:

X = Xq(k) = {[z1, ..., xny1] € CP"(k)|p(x1, ... Tnt1) = 0}. 2.7
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The general polynomial of degree d is a linear combination
p=> cpzt (2.8)
m

of monomials z#* = x4 24?...2!" " with the condition:

p-k =d 2.9)

We recall that the existence of a mirror symmetry, according to which each
Calabi—Yau manifold should have a dual partner, was first observed pragmatically
in the literature [11-14,27]. Subsequently, Batyrev [7] found a very elegant way
of describing any Calabi—Yau hypersurface in terms of the corresponding Newton
polyhedron, associated with degree-d monomials in the CY equation, which is the
convex hull of all the vectors p of degree d. The Batyrev description provides a
systematic approach to duality and mirror symmetry.

To each monomial associated with a vector p of degree d, i.e., u-k = d,
one can associate a vector ' = p — eg : €9 = (1,1,...,1), so that p -k =0.
Using the new vector p , hereafter denoted without the prime ('), it is useful to
define the lattice A:

A={pecZ n-k=0} (2.10)

with basis vectors e;, and the dual lattice A* with basis e;, where €7 - ¢; = ij.
Consider the polyhedron A, defined to be the convex hull of {u € A : p; >
—1,Vi}. Batyrev [7] showed that to describe a Calabi—Yau hypersurface®, such
a polyhedron should satisfy the following conditions:

e The vertices of the polyhedron should correspond to the vectors g with
integer components.

e There should be only one interior integer point, called the centre.

e The distance of any face of this polyhedron from the centre should be
equal to unity.
Such an integral polyhedron A is called reflexive, and the only interior point of
A(ky 4+ ...+ ky41 = d) may be taken as the origin (0, ...,0). Batyrev [7] showed
that the mirror polyhedron

AN ={rvelN v -p>-1Vue A} (2.11)

of any reflexive integer polyhedron is also reflexive, i.e., is also integral and
contains one interior point only. Thus Batyrev proved the existence of dual pairs
of hypersurfaces M and M’ with dual Newton polyhedra, A and A*.

*I.e., with trivial canonical bundle and at worst Gorenstein canonical singularities only.
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Following Batyrev [7], to obtain all the topological invariants of the K3, CY 3,
etc., manifolds, one should study the reflexive regular polyhedra in three, four,
etc., dimensions. For this purpose, it is useful to recall the types of polyhedra and
their duality properties. In three dimensions, the Descartes—Euler polyhedron for-
mula relates the numbers of vertices, Vg, the number of edges, /N7 and numbers
of faces, Ns:

1— No+ Ny — Ny, +1=0. (2.12)

This formula yields:
1-4+6-4+1=0
1-8412-6+1=0
1-6+12-8+41=0 {4,3} : Octahedron

1-204+30-12+1=0 {5,3} : Dodecahedron
1—-12+30—-20+1=0 = {3,5}: Icosahedron (2.13)

{3,3} : Tetrahedron

=
= {3,4} : Cube
=
=

in the particular cases of the five Platonic solids, with the duality relations 7T,
C—0,D 1

As we shall see later when we consider the K3 classification, it is interesting
to recall the link between the classification of the five ADE simply-laced Cartan—
Lie algebras and the finite rotation groups in three dimensions, namely, the
cyclic and dihedral groups and the groups of the tetrahedron, octahedron (cube)
and icosahedron (dodecahedron): G = C,, D,,T,O, I, corresponding to the
Ay, D, series and the exceptional groups E¢ 7 g, respectively [30]. Any cyclic
group C), of order n may be represented as the rotations in a plane around an
axis Oz through angles (2-m - 7)/n for m =0,1,2,...,n — 1. This symmetry is
realized by the group of symmetries of an oriented regular n-gon. The dihedral
group D,, consists of the transformations in C,, and in addition n rotations
through angles 7 around axes lying in planes orthogonal to Oz, crossing Ox and
making angles with one another that are multiples of (2 -x)/n. This group has
order 2 -n. In the case of three-dimensional space, there are three exceptional
examples T', O, I of finite groups, related to the corresponding regular polyhedra.
The order of the corresponding G is equal to the product of the number of the
vertexes of the regular polyhedra with the number of edges leaving the vertex:

IT| = |A4] = 12,
O] = [Sa] = 24,
11| = |As| = 60. (2.14)

The dual polyhedron, whose vertices are the midpoints of the faces of the corre-
sponding polyhedron, has the same group of symmetry, G,;. The finite groups
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of orthogonal transformations in three-dimensional space do not consist only of
rotations. It is remarkable to note that every finite group of rotations of three-
space that preserves the sphere centred at the origin can be interpreted as a
fractional-linear transformation of the Riemann sphere of a complex variable.

Finally, we recall that all K3 hypersurfaces have the following common
values of the topological invariants: the Hodge number h;; is 20, the Betti
number by, = 22, and we have

Pic=hyy—(U(A) —4- > I'(6) < 20 (2.15)
e

for the Picard number, where [(A) is the number of integer points in the polyhe-
dron and I’(0) is the number of integer interior points on the facets.

In the case of the CY3 classification, a corresponding important role will be
played by the structure and the duality properties of the four regular polyhedra
known in four-dimensional Euclidean space [31]. The Descartes—Euler formulae
for these cases become:

1-54+10-104+5-1=0
1-16+32-244+8—-1=0
1-8+24-32+16—-1=0
1-244+96-96+24—-1=0
1—-600+1200—-7204+120—-1=0
1—-1204 720 —-12004600—-1=0

{3, 3,3} : Pentahedroid
{3,3,4} : Hypercube
{4,3,3} : 16-hedroid
{3,4,3} : 24-hedroid
{3,3,5} : 120-hedroid
{5,3,3} : 600-hedroid

A

(2.16)

with the duality relations P« P, H<«16-hedroid, 24-hedroid«24-hedroid,
120-hedroid«600-hedroid.

We do not discuss these relations further in this paper, but do recall that each
mirror pair of CY spaces, Mcy and Mg+, has Hodge numbers that satisfying the
mirror symmetry relation [7,15]:

hi1(M) = hg_11(M"),
ha_11(M) = hyi(M*). 2.17)

This means that the Hodge diamond of Mg is a mirror reflection through a
diagonal axis of the Hodge diamond of Mcvy. The existence of mirror symmetry
is a consequence of the dual properties of CY manifolds. A pair of reflexive poly-
hedra (A, A*) gives a pair of mirror CY manifolds and the following identities
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for the Hodge numbers for n > 4:

hi1(A) = hg_11(A%) =
= (&) —@d+2)— > IO+
codim®*=1
+ M oorene, (2.18)
codim©®*=2
hii (&%) = he—11(D) =
= UA)—(d+2) - Y l(O)+
codim©®=1
+ ) re)re, (2.19)
codim©®=2
hpi= Y. 1(©):1(©), 1<p<d-1. (2.20)

codim®*=p+1

Here, the quantities [(©) and I’(©) are the numbers of integer points on a face
© of A and in its interior, and similarly for ©* and A*. An [-dimensional face
O can be defined by its vertices (v;, = ... = v;, ), and the dual face defined by
0* ={me A*: (m,v;,)=,....,= (m,v;, ) = —1} is an (n — — 1)-dimensional
face of A*. Thus, we have a duality between the [-dimensional faces of A
and the (n — [ — 1)-dimensional faces of A*. The last terms in (2.18), (2.19)
correspond to the «twisted» contributions, and the last term corresponds to d = 4.
In this case, if the manifold has SU(4) group holonomy, then hy o = hi9 = 0,
and the remaining nontrivial Hodge number hs 5 is determined by:

h272 = 2[22 + 2h171 + h371 — h271]. (221)

Some further comments about C'Y3 spaces are made in Section 9.

2.2. The Web of CY Manifolds in the Holomorphic-Quotient Approach to
Toric Geometry. It is well known that weighted projective spaces are examples
of toric varieties [32]. The complex weighted projective space C'P™ can be
defined as

_ -0

Pn
C o

(2.22)
with the action C*:

(1, 0oy Tnp1) = Wz, Nt ) N € O\ (2.23)
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The generalization of the projective space C'P™ to a toric variety can be expressed
in the following form:
c"r — Zs

U = W, (2.24)
where, instead of removing the origin, as in the case of a simple projective space,
here one removes a point set Zs;, and one takes the quotient by a suitable set of
C* actions. Thus, to understand the structure of certain geometrical spaces in the
framework of toric geometry, one must specify the combinatorical properties of
the Zys, and the actions C*.

In the toric-geometry approach, algebraic varieties are described by a dual
pair of lattices M and N, each isomorphic to Z™, and a fan ¥* [32] defined
on Ng, the real extension of the lattice N. In the toric-variety description,
the equivalence relations of projective vectors can be considered as diagrams in
the lattice IV, in which some vectors v; satisfy linear relations (see later some
examples in P%(1,1,1), P%(1,1,2), P%(1,2,3) projective spaces). The complex
dimension of the variety coincides with the dimension of the lattice N. To
determine the structure of a toric variety in higher dimensions d > 2, it is useful
to introduce the notion of a fan [32,33]. A fan X* is defined as a collection of
r-dimensional (0 < 7 < d) convex polyhedral cones with apex in 0, with the
properties that with every cone it contains also a face, and that the intersection
of any two cones is a face of each one.

In the holomorphic-quotient approach of Batyrev [7] and Cox [29], a single
homogeneous coordinate is assigned to the system Uy of varieties, in a way
similar to the usual construction of P". This holomorphic-quotient construction
gives immediately the usual description in terms of projective spaces, and turns
out to be more natural in the descriptions of the elliptic, K3 and other fibrations
of higher-dimensional CY spaces.

One can assign a coordinate 2z, : K = 1,..., N to each one-dimensional cone
in 3. The integer points of A* N [NV define these one-dimensional cones

(1}1,...,1}]\/‘) :El* (225)

of the fan >*. The one-dimensional cones span the vector space Np and satisfy
(N — n) linear relations with nonnegative integer coefficients:

> ku =0, K >0 (2.26)
1
These linear relations can be used to determine equivalence relations on the space

CN\Zs«. A variety Us- is the space C\Zs- modulo the action of a group
which is the product of a finite Abelian group and the torus (C*)(N="):

(21, ey 2n) ~ (WS 21,y AB 2, G =1,.., N —n. (2.27)
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The set Zy« is defined by the fan in the following way:

s = U((zl, e 2N)|z = 0,Vi € 1), (2.28)
I
where the union is taken over all index sets I = (i1, ..., %) such that (v, ..., v;,)

do not belong to the same maximal cone in X*, or several z; can vanish simul-
taneously only if the corresponding one-dimensional cones v; are from the same
cone. It is clear from the above definitions that toric varieties can have often
singularities, which will be very important for understanding the link between the
topological properties of Calabi—Yau hypersurfaces and Cartan—Lie algebras: see
the more systematic discussion in Section 8. The method of blowing up (blowing
down) these singularities was developed in algebraic geometry: it consists of re-
placing the singular point or curve by a higher-dimensional (lower-dimensional)
variety. The structure of the fan ¥* determines what kind of singularities will
appear in Calabi—Yau hypersurfaces. For example, if the fan X* is simplicial,
one can get only orbifold singularities in the corresponding variety [33].

The elements of ¥ are in one-to-one correspondence with divisors

D,, = Us;,, (2.29)

which are subvarieties given simply by z; = 0. This circumstance was used [34]
to give a simple graphic explanation of Cartan-Lie algebra (CLA) diagrams,
whose Coxeter number could be identified with the intersections of the divisors
D,,.

Two divisors, D, and D,,, can intersect only when the corresponding one-
dimensional cones v; and v; lie in a single higher-dimensional cone of the fan
>*. The divisors D,, form a free Abelian group Div (Ux~). In general, a divisor
D € Div (Ux-) is a linear combination of some irreducible hypersurfaces with
integer coefficients:

gD =) a;-D,,. (2.30)

If a; > 0 for every 4, one can say that D > (. For a meromorphic function f
on a toric variety, one can define a principal divisor

(f) = > ordp,(f) - Di, (2.31)

where ordp, (f) is the order of the meromorphic function f at D;. One can further
define the zero divisor (f)o and the polar divisor (f)in¢ of the meromorphic
function f, such that

(f) = (flo = (f)int- (2.32)
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Any two divisors D1, Do are linearly equivalent: Dy ~ Do, if their difference is
a principal divisor, D1 — Do = (f) for some appropriate f. The quotient of all
divisors Div (Ux+) by the principal divisors forms the Picard group.

The points of A N M are in one-to-one correspondence with the monomials
in the homogeneous coordinates z;. A general polynomial is given by

N

o= > cen][am (2.33)
l

meEANM =1

The equation p = 0 is well defined and g is holomorphic if the condition
(v,m) 2 =1 VI (2.34)

is satisfied. The c,, parametrize a family Ma of CY surfaces defined by the zero
locus of p.

2.3. Three Examples of C'Y; Spaces. As discussed in Section 1, three
CY7 spaces may be obtained as simple loci of polynomial zeroes associated
with reflexive polyhedra. For a better understanding of the preceding formalism,
we consider as warm-up examples the three elliptic reflexive polyhedron pairs
A; and A}, which define the CY; surfaces P?(1,1,1)[3], P?(1,1,2)[4], and
P?(1,2,3)[6]*. The first polyhedron A; = A(P?(1,1,1)[3]) consists of the
following ten integer points:

2 = o= (=1,2),

T2t = /JéI) = (-1,1),

2z = ,uéI) = (-1,0),

= i) = (-1,-1),

yt = ud = (0,1),

ryz = p§’ = (0,0),

oty = i = (0,-1),

e = ui) = (1,0),

o = ) = (1,-1),

v =y = (2,-1) (2.35)

*Here and subsequently, we use the conventional notation for such surfaces in n-dimensional
projective space: P™(k1, ko, ...)[k1 + k2 + ...].
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and the mirror polyhedron A} = Projective vector k= (1,1,1) [3]
= A*(P?(1,1,1)[3]) consists of one interior 5 5 A
point and three one-dimensional cones: : .
o’ = (0,1),
v = (1,0),
WP = (—1,-1) (2.36)
3 = , . .

We use as a basis the exponents of the fol-
lowing monomials:

(=1,1,0), CONGS)=10 N(S*) = 4

§=9/2 S§*=3/2
(_1’ 0, 1)’ (2.37) Dual pair of triangles S and S*

yQZ — e

y22 — €2

where the determinant of this lattice coin-
cides with the dimension of the projective
vector k = (1,1,1) (see Figure 2):

Fig. 2. The dual pair of reflexive
plane polyhedra defined by the projec-
tive vector (1,1,1) with N(S) = 10

o _ and N(S*) = 4 integer points, re-
det{es, ez, €0} = dim(k) =3, (2.38) spectivély.)SL(Q,Z) transformations
produce an infinite number of dual-
pair triangles, conserving the areas
S =9/2 and S* = 3/2, respectively

where eq is the unit vector (1,1,1).

For this projective vector there exist 27
possibilities of choosing two monomials for
constructing the basis. Of course, all these bases are equivalent, i.e., they are
connected by the SL(2, Z) modular transformations:

a b
Lij = (c d)’

where a,b,c,d € Z and ad — bc = 1. For the mirror polyhedron obtained from
this vector, the basis should correspond to a lattice with determinant three times
greater than (2.38), namely nine, for example:

e = (_1527_1)7
e; = (—1,-1,2), (2.39)

with
det{el, €q, eo} = dlm(k) = 9, (240)

where e is again the unit vector (1,1,1).
To describe this toric curve, one should embed it in the toric variety

P? = (C*\0)/(C\0), (2.41)
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where the equivalence relation
(z1,22,23) ~ (Az1, Az, Ax3) for A € C\0 (2.42)
is a consequence of the equation:

(1 (1

g gl g5 0l =0, (2.43)

where the ¢; = 1, i = 1,2, 3 are the exponents of A\. The corresponding general
polynomial describing a CY surface is (setting z; = x;):
o1 = x‘f -+ x% -+ x§ + x12223 + x%xg =+
+ J)%JT3 + x%xl + 1‘31‘3 + m%xl + x%mg, (2.44)
and the Weierstrass equation can be written in the following form:

vz =a4a-x-y> + b2 (2.45)

Projective vector k= (1, 1, 2) [4]

where we have set 1 = x,x0 = y, 23 = 2.
The second dual pair of triangle polyhe-

dra A;;r = A(P%(1,1,2)[4]) and its mirror

A%, = A*(P?(1,1,2)[4]) have nine points

y' = " = (-1,2),
wt = i = (-1,1),
x2y2 — M(H) (—-1,0),
Py = uf" = (-1,-1),
ot = i = (-1,-2),
: : : yQZ g M(H) = (0,1),
N )
Dual pair of triangles S and §* 222 = ud" = (0,-1),
2 = P = (1,0, (246)

Fig. 3. The dual pair of reflexive plane
polyhedra defined by the projective
vector (1,1,2) with N(S) = 9 and
N(S*) = 5 integer points, respec-
tively. SL(2, Z) transformations pro-

and five points, respectively (see Figure 3).
We use as a basis the exponents of the
following monomials:

duce an infinite number of dual-pair 9 _
triangles, conserving the areas S = 4 = er=(-1,-11),
and S™ = 2, respectively vz = ey = (-1,1,0), (2.47)
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where the determinant of this lattice coincides with the dimension of the projective
vector k = (1,1, 2):

det {el,eg,eo} = dlm(k) = 4, (248)

where e is again the unit vector (1,1,1).
To get the mirror polyhedron with five integer points, four on the edges and
one interior point, one should find a basis with lattice determinant twice (2.48),

namely eight, for example:

€ = (_17_171)a
ey = (—2,2,0). (2.49)

The following four points define four one-dimensional cones in X1 (A%;):

o’ = (1,0),

v = (=1,0),

v = (=1,-1),

o = (=1,1). (2.50)

Using the linear relations between the four one-dimensional cones, the corre-
sponding (C*)? is seen to be given by (z; = x;):

(X15 X25 X3, X4) = (A®X1, AX2,s X3, 1X4), (2.51)

and the general polynomial has the following nine terms:

OII = X5X3 T X3XaX4 T X3X3XG + XBNsXi + XXi +
+ 0 x1IX2XE F X1XeXaX4 + Xixexd + X3 (2.52)

in this case.

The vectors k = (1,1,1) and k = (1, 1,2) have three common monomials
and a related reflexive segment-polyhedron, corresponding to the projective vector
ko = (1,1) of CP'. This circumstance can be used further in the construction
of the projective algebra in which these two vectors appear in the same chain.

The last C'Y; example involves the plane of the projective vector k= (1,2, 3),
whose polyhedron Ar;; = A(P?%(1,2,3)[6]) and its mirror partner A%, =
= A*(P?(1,2,3)[6]) both have seven self-dual points, and one can check the
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Projective vector k= (1, 2, 3) [6] existence of the following six one-dimen-
sional cones (see Figure 4):

2 = 5”” = (1,0),
2yt = o = (-1,0),
1z = é =(0,1),
= o = (-1, ),
rty = é =(-1,1),
20 = " = (-1,2). (253)
N(S) =7 NS =17 We use as a basis the exponents of the fol-
§=3 §=3 lowing monomials:
Self-dual pair of triangles S and S*
22 = e =(-1,-1,1),
Fig. 4. The self-dual pair of reflexive 3 — es = (2,—1,0) (2.54)
plane polyhedra defined by the pro- o
jective vector (1,2,3) with N(S) = where the determinant of this lattice coincides

= 7 and N(S7) = 7 integer points. ith the dimension of the projective vector
SL(2, Z) transformations produce an . _ (1,2,3):
) ? M

infinite number of the dual-pair trian-
gles, conserving the areas S = 3 and det{e1,es,ep} = dim(k) =6. (2.55)
S* = 3, respectively
As in the case of the two projective vectors
k = (1,1,1) and k = (1,1,2), the vectors
k = (1,1,2) and k = (1, 2, 3) also have three common monomials, corresponding
to the reflexive segment polyhedron described by the vector ky = (1,1) in CP!
projective space. Hence these vectors will appear in the second chain of the plane
projective algebra.

Thus one can see that, with these three plane projective vectors, k = (1,1, 1),
k=(1,1,2), k = (1,2, 3), one finds only triangle reflexive polyhedra intersecting
the integer planar lattice in 10 +4*, 9+ 5%, 7+ 7* points. Of course, on the plane
one can find other reflexive polyhedra, whose intersection with the integer plane
lattice will give new C' P! surfaces corresponding to different polygons with more
than three vertices, such as a reflexive pair of square and rhombus. These new
figures can be obtained using the techniques of extended vectors.

In the following, we will go on to study reflexive polyhedron pairs in three-
dimensional space. The corresponding general polynomial can be expressed in
terms of six variables, and contains seven monomials:

2 2, .22 2 2,23 2.3
QIIr = 2123t 2523252525 + 2122252525 + 252,25 +

2,2, 3.4 ,2,3,4.6
+ 252324252 + 252525 2¢ + 212223242526 (2.56)
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The C** action is determined by the following linear relations:

vyzz) i vélm —0,

2v§111) I UZ(LIII) + véIII) =0,

U§IH) 4 UéHI) i UELHI) =0,

3U§IH) I 21}‘(1111) n Uénz) -0 (2.57)

between the elements of ¥1(Aj;;), and is given by
(21, 22, 23, 24, 25, 26) — (MPVP’ 21, A2g, vag, jwp’za, pzs, pzg).  (2.58)

One can introduce the following birational map between P?(1,2,3)[6] and Us-:

2223 = y3, (2.59)
z§z225 = yg’, (2.60)
z%zgzgzg =95 (2.61)

Then, a dimensionally-reduced example of a CY manifold embedded in a toric
variety is described by the weight vector & = (1,2, 3) and the zero locus of the
Weierstrass polynomial

o=y + Y5 + Y3 + yiyeys + yive + yivs + vivs. (2.62)

The elliptic Weierstrass equation can be written in the weighted projective space
P2(1,2,3)[6] as

V=3 +a-z-2* +0b-2° (2.63)
with the following equivalence relation
(z,y,2) ~ (Nx, X3y, \2), A e C\0 (2.64)

in this case.

These examples illustrate how toric varieties can be defined by the quotient
of C*\Zs, and not only by a group (C\0)*~™. One should divide C*\Zx
also by a finite Abelian group G(v1, ..., vk ), which is determined by the relations
between the D,,, divisors. In this case, the toric varieties can often have orbifold
singularities, C¥\G. For example, the toric variety defined by (2.63) looks near
the points y = z =0 and = = z = 0 locally like C?\Z, (related to the SU(2)
algebra) and C?\Z3 (related to the SU(3) algebra), respectively, as seen in
Figure 5.
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The fan for P(1, 2, 3) The fan for the blow-up of P(1, 2, 3)

o o ZJ), f o o o (e] o o U}f‘ o

[e] [e] [¢]

(o] o] o

[e] [¢] [¢]

e} e} (e}
v~ SU(2)

(v, 0,) = SUQ3)

Fig. 5. The toric variety P(1,2,3) with two orbifold singularities at the points y = z = 0
and z = z = 0 can be blown up by extra divisors D(v,) and D(vs), D(v:), respectively

3. GAUGE GROUP IDENTIFICATIONS FROM TORIC GEOMETRY

3.1. Calabi-Yau Spaces as Toric Fibrations. As discussed in Section 2,
any Calabi—Yau manifold can be considered as a hypersurface in a toric variety,
with a corresponding reflexive polyhedron A with a positive-integer lattice A,
associated with a dual polyhedron A* in the dual lattice A*. The toric variety is
determined by a fan ¥*, consisting of the cones which are given by a triangulation
of A*. A large subset of reflexive polyhedra and their corresponding Calabi—Yau
manifolds can be classified in terms of their fibration structures. In this way, it is
possible, as we discuss later, to connect the structures of all the projective vectors
of the one dimensionality with the projective vectors of other dimensionalities,
and thereby construct a new algebra in the set of all «reflexive» projective vectors
that gives the full set of C'Yy hypersurfaces in all dimensions: d = 1,2, 3, ...

In order to embark on this programme, it is useful first to review two key op-
erations, intersection and projection, which can give possible fibration structures
for reflexive polyhedra [34]:

e There may exist a projection operation 7 : A — A,,_, where A,,_j is an
(n — k)-dimensional sublattice, and 7(A) is also a reflexive polyhedron, and

e there may exist an intersection projection .J through the origin of a reflexive
polyhedron, such that J(A) is again an (n —[)-dimensional reflexive polyhedron,
and

e these operations may exhibit the following duality properties:

(A) & J(AY)
J(A) & II(AY). 3.1)
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For a reflexive polyhedron A with fan ¥ over a triangulation of the facets of A*,
the CY hypersurface in variety Oy, is given by the zero locus of the polynomial:

N
o= X T[T @2

wEANM i=1

One can consider the variety Uy, as a fibration over the base Uy, with generic
fiber Uxy,.,. This fibration structure can be written in terms of homogeneous
coordinates. The fiber as an algebraic subvariety is determined by the polyhedron
Afper C Ay, whereas the base can be seen as a projection of the fibration along
the fiber. The set of one-dimensional cones in Xi,,4e (the primitive generator of
a cone is zero or v;) is the set of images of one-dimensional cones in Xcvy (with
primitive generator v;) that do not lie in Ngper. The image Yy a5 of Xy under
II: Noy — Npase gives us the following relation:

Mv; = ) -9, (3.3)

if IIw; is in the set of one-dimensional cones determined by v, 7"{ € N, otherwise
=0
;=0.

Similarly, the base space is the weighted projective space with the torus
transformation:

Gty Bg) ~ NG Fy, AN Eg), j=1,.,N 7, (3.4)

where the I;;; are integers such that ) j lz;f v; = 0. The projection map from the
variety Uy, to the base can be written as

- Tl
# =]}, (3.5)
J
corresponding to the following redefinitions of the torus transformation for z;:

O:d — N7 a, Yk ol i =0 (3.6)
In the toric description of K3 surfaces with elliptic fibers, denoted by A*gper,
one can consider the following divisors: Dfper, Dsections Dv, and D,,. The last
pair of divisors correspond to lattice points of A* that are «above» or «below»
the fiber, respectively. Let us consider the case when all divisors D,,, (or D,,)
shrink to zero size. In this case, there appears a K3 hypersurface with two point
singularities, which belong to the ADE classification. The process of blowing up
these singularities gives the primordial & 3 manifold, and its intersection structure
is given by the structure of the edges. The Cartan—Lie algebra (CLA) diagrams
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of the gauge groups that appear when the exceptional fibers are blown down to
points are nothing but the edge diagrams of the upper and lower parts of A*
without vertices, respectively. A simple well-known example with elliptic fiber
and with base P! is given by the following Weierstrass equation for the fiber:

yP=a3 + f(z1,22) - x- 24+ g(z1, 22) - 28, (3.7)

where the coefficients f(z1, 22), g(21, 22) are functions on the base.

In the following parts of this Section, we discuss some examples of K3
spaces from our general classification, and explain the identification of their
corresponding gauge groups.

3.2. Examples of K3 Toric Fibrations with J = II Weierstrass Structure.
As a first example, we consider the case of the elliptic K3 hypersurface with
elliptic fiber P?(1,2,3)[6] defined by the integer positive lattice with basis (we
explain this lattice basis later in terms of our algebraic description):

e -m n 0 0
e2 = —2 —2 ]. O )
es3 -1 -1 -1 1

where we consider the following 12 pairs of integer numbers (m,n) which are
taken from the numbers: 1,2,3,4,5,6,

{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,5) (3,4), (4,5), (5,6)}.

With this choice of the pairs, the basis above determines a self-dual set of 12
projective k4 vectors:

m=1,n=1 = ky=(1,1,4, 6)[12], < (5,6,22,33)
m=1,n=2 = ky=(1,2,6, 9)[18], < (3,5,16,24)
m=1,n=3 = ky=(1,3,8, 12)[24], <> (2,5,14,21)
m=1,n=4 = kg =(1,4,10,15)[30], < DI
m=1n=5 = ky=(1,5,12,16)[36], <= self-dual
m=1n=6 = ky=(1,6,14,21)[42], <= self-dual
m=2n=3 = ky=(2,3,10,15)[30], <= self-dual
m=2n=5 = ky=(2,5,14,21)[42], < (1,3,8,12)
m=3n=4 = ky=(3,4,14,21)[42], < DI’
m=3n=5 = ky=(3,5,16,24)[48], < (1,2,6,9)
m=4,n =5 = kg =(4,5,18,27)[54], « DI
m=5n=6 = ky=(506,2233)[66], = (1,1,4,6).  (3.8)
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Later this set will emerge as the intersection-projection symmetric X IX chain
(J = II) of our algebraic classification. In this example, one can see that the
projective vectors corresponding to the tetrahedra produce a self-dual set. We
also show in (3.8) the duality relations between six other vectors and some of the
vectors from Table 1.

However, three of the projective vectors in (3.8), ks = (1,4,10,15)[30],
(3,4,14,21)[42] and (4, 5,18, 27)[54], correspond to polyhedra with five vertices,
and their duals can be found among higher-level K3 spaces. They are found
by double intersections (DI) among the five-dimensional extensions of the K3
vectors shown in Table 1:

ks = (1,4,10,15)[30] F2i {k¢" = (0,1,6,8,15)[30]} [
[{kE™ = (6,1,0,14,21)[42]},
ks = (3,4,14,21)[42] B {k&" = (2,1,0,6,9)[18]} )
(k™ = (0,1,2,4,7)[14]},
ky = (4,5,18,27)[54] L {ke” = (1,0,1,4,6)[12]} )
(k" = (0,1,1,3,5)[10]} (3.9)

as discussed in more detail in Section 6.
The ascending Picard numbers for polyhedra in this chain include:

(A(P?(1,6,14,21)[42]) : ® = 24(24%), Pic = 10(10%)
~ (A(P3(1,5,12,18)[36]) : R = 24(24%), Pic = 10(10%)
C (A(P3(1,4,10,15)[30]) : X = 25(20%), Pic = 9(11%)
C (A(P3(1,3,8,12)[24]) : ® = 27(15%), Pic = 8(14%)
C (A(P3(1,2,6,9)[18]) : R = 30(12%), Pic = 6(16%)
C (A(P3(1,1,4,6)[12]) : R = 39(9), Pic = 2(18%) C ......... (3.10)

In the case of the mirror polyhedron chain, there is the inverse property:
A*(P3(1,6,14,21)[42]) corresponds to the maximal member of the set of mirror
polyhedra. These Picard numbers are listed in Table 1, together with those of the
other K3 spaces.

In the chain (3.8), the mirror polyhedra, A*, have an intersection plane Hj, .
through the interior point which defines an elliptic-fiber triangle with seven integer
points, P%(1,2,3)[6] (see Figures 6,7):

Afper = A" () Hiper- (3.11)
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The dual pair of projective vectors k= (1, 1,4, 6) [12] and k= (5, 6, 22, 33) [66]

u? e : ; :
m 3 7 invariant monomials

u?
¥*yu
Xyzu
23
x2y222
xtytz
x6y0

The dual pair of reflexive polyhedra S and S*: %g)*):jgg Zggl)::lzz

Fig. 6. The dual pair of reflexive planar polyhedra defined by the eldest projective
vector (1,1,4,6) with N(S) = 39 and the youngest projective vector (5,6,22,33) with
N(S*)=9 integer points (marked by circles), respectively. SL(3, Z) transformations pro-
duce an infinite number of dual pairs of tetrahedra, conserving the volumes Vol (S) = 12,
Vol (S*) = 6, respectively

By mirror symmetry in the polyhedron A, a projection operator 7 can be defined:
m: M — M,_1, where M,,_; is an (n—1)-dimensional sublattice, such that 7w(A)
is a reflexive polyhedron in M,,_;. This reflexive polyhedron also consists of
seven points, so it is self-dual. Also, one can find a planar intersection H through
A and through the interior point, which also produces the reflexive polyhedron
with seven points, namely the fiber P2(1,2, 3)[6] (see Figures 6,7):

Asier = A (1) Hiiver- (3.12)

The dual pair of tetrahedra A(P3(1,1,4,6)[12]) and A(P3(5, 6,22, 33)[66]) con-
sist of 39 and 9 points, respectively, as seen in Figure 6. They are the biggest and
smallest polyhedra in the chain (3.8), and all other tetrahedra in this chain can
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The self-dual projective vectors k= (1, 6, 14, 21) [42] and k= (2, 3, 10, 15) [30]

2

7 Weierstrass monomials

x*2 N(S1)=N(S1%) =24

The self-dual reflexive polyhedra S1 and S2: V(S1)=W(S1) =7
N(S2)=N(S2*)=18
V(82)=V(S2*)=5

Fig. 7. The self-dual polyhedra in the chain XIX determined by projective vector (1,6,14,21)
with N(S1) = 24 and vector (2,3,10,15) with N(S2) = 18 integer points, respectively.
SL(3, Z) transformations produce an infinite number of dual pairs of tetrahedra, conserving
the volumes Vol (S1) = 7 and Vol (52) = 5, respectively

be found in this Figure. This contains, in particular, the two self-dual polyhedra
A(P3(1,6,14,21)[42]) and A(P3(2,3,10,15)[30]) consisting of 24 + 24* and
18 + 18* points, respectively, as seen in Figure 7:

(anv 1)7 (07 ]-7 _1)7 (_17 _27 _1)7 (6a _2a _1)a
(0,0,1), (0,1,-1), (=2,-2,-1), (3,—-2,—1). (3.13)

We now consider the intersection of the three-dimensional polyhedron
A(P3(1,6,14,21)[42]) with the two-dimensional plane H through the interior
point. The intersection of this plane with the polyhedron, H () A, forms a reflex-
ive polyhedron fiber P?(1,2,3) with seven points. The equation of this plane in
canonical coordinates j1, 2, 3 is: mq = 0. The fiber consists of the following
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polyhedron points:

vg = (0,0,0),

v = (0,-1,0),

vy = (0, O_)

vz = (0,1, 1),

v = (0,0,-1),

vy = (0,—1 —1),

vs = (0,2, —1). (3.14)

Here and subsequently, the components of the vector corresponding to the fiber
are underlined.

With respect to this fiber, the base is one-dimensional: P!, and its fan
F5 consists of the divisors corresponding to the interior point and two divisors
corresponding to two rays, Ry = +e; and Ry, = —e;, with directions from
the point (0, —2,—1) to the point (6, —2, —1) and from the point (0, —2,—1) to
(—1,—2,—1), respectively. The points of 7' (R;) (i.e., the points projected onto
R; by 7p) for the rays R;, (i =1 = 4,7 =2 = —) are of the form (+...,b,¢),
where (0,b, ) is the point of the fiber.

The 16 points of 7T]§1(R1) are listed in Table 2: they correspond to the
divisors D,,,, which produce the Fg algebra [34]. Also, from this Table one can
easily read the Coxeter numbers/weights. There is only one point in ﬂgl(Rg),
namely

o = (-1,-2,-1) (3.15)

which therefore does not correspond to any nontrivial group.

Table 2. The points of 75" (R1)

Coxeter # véi) véi) vii) vfli) v(()i)
1 (1,-2,-1) | (1,=1,-1)| (1,=1,0) | (1,0,=1) | (1,0,0)
2 (2,-2,-1) | (2,-1,-1) | (2,-1,0) | (2,0, 1) | — — —
3 (3,—2,-1)|(3,-1,-1)|(3,-1,0)| ——— | ———
4 (4,-2,-1) | (4,-1,-1)| ——— | === | ===
5 (5,-2,-1)| ——-— -— - - | ===
6 6,-2,-1)| ——— -—— —-——— | ==
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3.3. Example of Gauge-Group Identification. Consider again the toric
variety determined by the dual pair of polyhedra A(P3(1,1,4,6)[12]) and its
dual A* shown in Figure 6. The mirror polyhedron contains the intersection H*
through the interior point, the elliptic fiber P?(1,2,3). For all integer points
of A* (apart from the interior point), one can define in a convenient basis the
corresponding complex variables:

vy = (0,-2,-3) — 21,

vy = (0,—1,-2) — 2o,

vy = (0,=1,—-1) — z3,

vy = (0,0,—1) — 24, (3.16)
vo = (0,0,0),

ve = (0,1,0) — 26,

vy = (0,0,1) — 27,

and

(3.17)
Vg = (LM) — 29
There are some linear relations between integer points inside the fiber:
v1 + 2vg + 3vr = 0,
vy + vg + 2-v7 = 0,
vz +vg + v7 = 0,
v +ve +v7 =0 (3.18)
and also the following relation between points in A*:
vg + vg + 4vg + 6vy = 0. (3.19)

The polyhedron A(P3(1,1,4,6)) contains 39 points, which can be subdivided
as follows. There are seven points in the fiber P?(1,2,3), determined by the
intersection of the plane mi1 + 2mo + 3ms = 0 and the positive integer lattice.
This plane separates the remaining 32 points in 16 «left» and 16 «right» points.

These «left» and «right» points define singularities of the E3, and Eg,, types,
respectively, which may be illustrated as follows. The plane
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H(A) = my + 2mg + 3mg contains the following seven points:

tr=(5,=1,—1) — (2529) - (21232373,

to = (3,0,=1) — (2529) - (21232374%0);

ts = (2,=1,0) — (2529) - (2{23232421),

ta=(1,1,-1) — (2323) - (21232320 25), (3.20)
ts = (0,0,0) — (z829) - (22523 27),

te = (1,2, —1) — (222323),

tr7 =(—-1,-1,1) — (232%)

The Weierstrass equation for the FEg, group based on the polyhedron
A(P3(1,1,4,6)) can be written in the form:

23422 (a8 2828 + o 28) +

2t - zg- (af 2825 + af =5 + ol 2z + afV25) +
2 ] ot o 0 oD )
=224 a1 2¢27 28 + 27 (aSP 222d + 0P 2528, (3.21)

The second Weierstrass equation for the Eg, group can be obtained from this
equation by interchanging the variables desrcibing the base: zg <> z9*. The
Weierstrass triangle equation can be presented in the following general form,
where we denote z; = z, 27 = ¥t

y2—|—a1'x'y+a3-y:x3+a2~x2+a4'x+a6, (3.22)

where the a; are polynomial functions on the base. The Weierstrass equation can
be written in more simplified form as:

V=23 +z-f+g, (3.23)

with discriminant
A = 4f3 4+ 274°. (3.24)

In the zero locus of the discriminant, some divisors D; define the degeneration
of the torus fiber.

In addition to the method [34] described above, there is a somewhat different
way to find the singularity type [35]. As we saw in the above example, the

*The coefficients a; correspond to the notations of [35].
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polynomials f and g can be homogeneous of orders 8 and 12, respectively,
with a fibration that is degenerate over 24 points of the base. For this form
of Weierstrass equation, there exists the ADE classification of degenerations of
elliptic fibers. In this approach, the type of degeneration of the fiber is determined
by the orders of vanishing of the functions f, g and . In the case of the general
Weierstrass equation, a general algorithm for the ADE classification of elliptic
singularities was considered by Tate [36]. For convenience, we repeat in Table 3
some results of Tate’s algorithm, from which one can recover the Fs x Eg type
of Lie-algebra singularity for the (1,1,4,6) polyhedron.

Table 3. Lie algebras obtained from Tate’s algorithm [36]: a;.x, = a;/c"

Type Group k(a1) | k(a2) | k(as) | k(as) | k(as) | Ek(A)
Io — 0 0 0 0 0 0
I — 0 0 1 1 1 1
I SU(2) 0 0 1 1 1 1
I3 Sp(2k) 0 0 k k 2k 2k
I3 SU(2k) 0 1 k k 2% 2%
Iieir | SUQE+1) | 0 1 ko k+1|26+1|2%+1
111 SU(2) 1 1 1 1 2 3
1V, SU(3) 1 1 1 2 3 4
e G 1 1 2 2 3 6
I SO(10) 1 1 2 3 5 7
s | SO(4k +1) 1 1 k E+1 2k 2k +3
I3;_3 | SO(4k +2) 1 1 k E+1|2k+1|2k+3
I372, | SO(4k + 3) 1 1 E+1|k+1|264+1|2k+4
Ip_5 | SO(4k +4) 1 1 E+1|k+1|26+1|2k+4
v ns Fy 1 2 2 3 4 8
v=e Es 1 2 2 3 5 8
IIr- Er 1 2 3 3 5 9
Ir- Es 1 2 3 4 5 10

4. THE COMPOSITE STRUCTURE OF PROJECTIVE VECTORS

We now embark in more detail on our construction of the projective vectors
k which determine CY hypersurfaces, as previewed briefly in the Introduction
and based on the polyhedron technique and the concept of duality [7] reviewed
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in Section 2. We develop this construction inductively, studying the structure of
these vectors initially in low dimensions and then proceeding to higher ones.

4.1. Initiation to the Dual Algebra of CY Projective Vectors. Our starting
point is the trivial zero-dimensional «vector»,

ky = (1), 4.1

which defines the trivial self-dual polyhedron comprising a single point, with the
simplest possible associated monomial:

z = =1= 4 =(0). (4.2)

The next step is to consider the only polyhedron on the line R' which is also
self-dual, and whose intersection with the integer lattice on the line contains three
integer points:

py = (=1), gy = (0), py = (+1). (4.3)
The projective vector corresponding to this linear polyhedron is
ko = (17 1); 4.4)

which can be constructed from the k; vector, by the following procedure.
We extend the vector k; to a two-dimensional vector in C'P;, by inserting a
zero component in all possible ways:

k™ = (0,1
' ©.1) (4.5)
ke = (1,0).

The following monomials correspond to these «extended» vectors:

= (v,1) = ¥
vy . (4.6)
po=(1L¢ = x-y
with the arbitrary integer numbers v, £. From all the possible k pairs:

(ke;c’ N kegc/)7 (ke:c” N kex”), (ke;c’ N ke:c”), 4.7)

we select only those whose intersections give a reflexive polyhedron. In this

. . . . . . ’
simple two-dimensional case, only a single pair is so selected, namely k{* and
1’
ke;c .
&

ke (k™ =1, (4.8)
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and the reflexive polyhedron comprises just a single point. The correspond-
ing monomial is x - y, whose degree is unity for both variables: deg, =1 and
deg, = 1. ,

We now introduce a second operation on these «extended» vectors k -,
which is «dual» to the intersection, namely the «sum» operation:

ki |k =k = (0,1) + (1,0) = (1,1). (4.9)
In this simple case, one has three quadratic monomials:

? = = (2,0) = pf = (-1);
zoy=p2 = (1,1) = ph = (0); (4.10)
y? = s = (0,2) = ph = (+1).

If a projective vector is multiplied by a positive integer number m € Z, it still
determines the same hypersurface. Therefore, we should also consider sums of
such vectors, characterized by two positive integer numbers, m, n:

m-k* 4+ n- ke (4.11)

It turns out that, in order to get a reflexive polyhedron with only one interior
point, the numbers m and n have to be lower than certain maximal values: Mmpax
and nyax, respectively. In our first trivial example, we find that

Mmax = 1, Nmax = 1. (4.12)

In general, the set of all pairs (m,n) with m < mmpax and n < nyax generate a
«chain» of possible reflexive polyhedra, which happens to be trivial in this simple
case.

Following the previous procedure, to construct all possible vectors on the
plane we should start from two vectors, k; and ks, «extended» to dimension
three in C'P, space:

’ /

ks = (0,0,1), k§*" = (0,1,0), k{* = (1,0,0),

" . o (4.13)

k2 = (05171)5 kgx = (17150)7 kgx = (15071)
The next step consists in finding all possible pairs of these three-dimensional
vectors whose intersection gives the only reflexive polyhedron of dimension two,
which corresponds to the polyhedron projective vector ko = (1,1). Only two
pairs (plus cyclic permutations) satisfy this constraint:

[kixl(oa 0, 1)] ﬂ [kgxﬁ(lv L O)] = [k2(1a 1)]J (4.14)
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and
(k5™ (0,1, 1)] () [k5™" (1,1,0)] = [ka(1,1)],. (4.15)
In these two cases, the corresponding monomials are:

(E2'Z:>/1,1:(2,0,1) = (_]‘)’
v oz =3 =(0,2,1) = (+1),

and
$2 : 22 = 1= (270a2) = (_]‘)’
voy-z= = (1,1,1) = (0), (4.17)
y2 = p3 = (072a0) = (+1)ﬂ

respectively. These lead to the two following chains:

I, k(1) = 1-K* + 1.k = (L,1,1); m=1,n=1,
k3(2) = 2-k% 4+ 1.k = (1,1,2: m=2,n=1,
Mmax = dim (K" ) =2, npax = dim (k§° ) = 1 (4.18)

and

II. ks(2) = 1-k +1-k%" = (1,1,2: m=1,n=1,
ks(3) = 2-k§ 4+ 1.k = (1,2,3); m=2,n=1,
Mmax = dim (K§") =2, nmax = dim (k§" ) = 2. (4.19)

Where the eldest vectors are given on the first lines of the two preceding equations,
and we note that the vector (1,1,2) is common to both chains.

It turns out that, also in higher dimensions, some k vectors are common to
more than one chain. Thus it is possible to make a transition from one chain to
another by passing through the common vectors. The algebra of projective vectors
with the two operations [ and | should be closed under duality symmetry:

J = 1, (4.20)

where the symbols J and II denote two dual conjugate operations: intersection
and projection, respectively. In this way, all vectors k4 can be found. This
structure underpins the idea of a web of transitions between all Calabi—Yau
manifolds.
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4.2. General Formulation of Calabi—Yau Algebra. In the spirit of the simple
constructions of the previous subsection, we can also construct the corresponding
closed k4 algebra in the case of K3 hypersurfaces. However, before giving the
results, we first briefly formulate a theorem underlying the construction of a k41
projective vector, determining an associated reflexive d + 1-dimensional polyhe-
dron and CY, hypersurface, starting from kg projective vectors, which determine
a d-dimensional reflexive polyhedron with one interior point and a corresponding
CY,_1 hypersurface. This theorem underlies our systematic inductive algebraic
construction of CY manifolds.

The theorem is based on two general points:

e First: from the vector k4, we construct the «extended» vectors kg‘jrl using
the rule:

—1 . X
(+) ko= (k1,eka) 2= K55 = ki, oy 07, o Kg). 4.21)

e Second: we consider only those pairs of all possible «extended» vectors,
k;ﬁ_(f) and kfﬁ(f ) with 0 < 4,7 < d, whose intersection gives the reflexive poly-
hedron of dimension d with only one interior point. We denote this operation
by:

() kS N KEY = kals. (4.22)

The statement of the theorem is:

e If by the rule (*) one can get, from the projective k; vector, a set of
«extended» vectors k;fr(l), 0 < i < d, and for any pair of such «extended» k;fr(f)-
vectors the conditions (**) are fulﬁlled, then the sum of these two «extended»
vectors will give an eldest projective vector k411, which determines a reflexive
polyhedron with only one interior point.

e Two finite positive integer numbers, Nyax, Mmax € £+, exist such that
any linear combination of two vectors kd H(n m), with integer coefficients
M < Mmax; N < Nmax produce a CY hypersurface. We call «chain» the set
of vectors generated by any such pair of «extended» vectors:

p-kily(nom) =m kG + kg,

) ; (4.23)
kd’-jH( 1) = kd’_j‘_l(eld).

o The intersection of the vector k7, (m,n) with the vector k{’ +1 is equal

z(j).
d+1 -

;7 (m, )] (K] = [k (m, )] (KG). (4.24)

to the intersection of this vector with the vector k%"
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We can also formulate a converse theorem:

e If one can decompose a reflexive projective vector k41 as the sum of
two reflexive projective vectors k:1 41 and kg 4 1» then there exists the intersection
of the vector kg1 with either of these two vectors, which defines a projective
vector ky and a reflexive polyhedron with only one interior point.

The above theorem provides a description of all C'Yy 1 hypersurfaces with
d-dimensional fibers in terms of two positive-integer parameters. Similarly, one
can also consider the intersections of three (or more) «doubly-extended» vectors
k;ﬁ_(i), kfﬁ(i/), kfﬁ(i”) (by «doubly-extended» we mean that they may be obtained
by inserting two zero components in ky_; vectors). One should check that this
intersection gives a reflexive polyhedron in the d — 2 space:

KGNSS TS ) = kol (4.25)

In this way, one may obtain a 3,4, ..., < d positive-integer parameter description
of the (d + 1)-dimensional polyhedra with (d — 1), (d — 2), ...-dimensional fiber
sections:

pkapr=m -k 4o kTG 4 kGG (4.26)
Finally, one can obtain additional lists of k41 vectors by using three «extended»
vectors, kgxr, kéﬂ kffj (and similarly using four k", etc.), and a special algebra
of summing these vectors only if the following three conditions are fulfilled:

LG ] (&5 = (ka1

2.0k ] (k'] = [ka-1]7, (4.27)

1"

3.1k ] (ki ] = [kaal; -

In this way, one may obtain a complete description of the positive-integer lattice
which defines all reflexive k vectors.

5. TWO-VECTOR CHAINS OF K3 SPACES

We now embark on a parametrization of the k4 vectors defining K3 hyper-
surfaces with fiber sections. Our description of K3 hypersurfaces is based on
the above understanding of the composite and dual structure of the projective ky
vectors. As already mentioned, we find a link between this structure and the finite
subgroups of the group of rotations of three-space, namely the cyclic and dihedral
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groups and the symmetry groups of the Platonic solids — the tetrahedron, the
octahedron-cube and the icosahedron-dodecahedron:

e C,:n =123, .. — the cyclic group of finite rotations in the plane
around an axis «1» by the angles o = 27/n;
e D, :n=234,..— the dihedral group, comprising all these rotations

together with all the reflections of a second axis «n» lying in this plane, which is
orthogonal to the axis «1», and producing with respect to each other the angle «/2;

e T — the finite group of the transformations leaving invariant the regular
tetrahedron, with 12 parameters;

e O — the finite group of the transformations leaving invariant the regular
cube and octahedron, with 24 parameters;

e | — the finite group of the transformations leaving invariant the regular
icosahedron and dodecahedron, with 60 parameters.

We use the polyhedron technique introduced in the previous Section, taking
into account all its duality, intersection and projection properties to study the
projective-vector classification of K3 spaces.

5.1. Two-Dimensional Integer Chains of K3 Hypersurfaces. In the K3
case, as already foreshadowed in the Introduction, the classification can start from
a basis of five types of «extended» vectors. We recall that the structure of the
three «planar» projective vectors ks = (1,1,1),(1,1,2),(1,2,3) can easily be
understood on the basis of the doubly-extended vector k§** = (0,0,1) and the
singly-extended vector k§”" = (0,1, 1). The structure of the underlying composite
vector ko = (1,1) is also obvious. The full list of K3 projective vectors is
obtainable from the algebra of the following five extended vectors: the maximally-
extended vector of the form

k&' = (0,0,0,1) (5.1)
with its 4 cyclic permutations, the doubly-extended dihedral vector of the form
kSt = (0,0,1,1) (5.2)

with its 6 dihedral permutations, the singly-extended tetrahedral vector of the
form
kS = (0,1,1,1) (5.3)

with its 4 cyclic permutations, the extended octahedral vector of the form
k&' = (0,1,1,2) (5.4)
with its 12 permutations, and finally the extended icosahedral vector of the form
k$* = (0,1,2,3) (5.3)

with its 24 permutations, for a total of 50 extended vectors.
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Using the algebra of combining pairs of these 50 extended k' vectors, we
obtain 90 distinct k4 vectors in 22 double chains with a regular planar k-gon
intersection: k£ > 3 with only one interior point, as seen in Table 1. Combining
three extended k* vectors, we obtain four triple chains with self-dual line-segment
intersection-projections and one interior point, which contain 91 distinct vectors,
of which only four ky vectors are different from the 90 vectors found previously,
as also seen in Table 1. Of course, there are some vectors which have a regular
planar k-gon in their intersection and no line-segment intersection. Further, as we
see later in Section 7, there is just one vector, k4 = (7,8, 9, 12), which has only
a single point intersection, i.e., the intersection consists of the zero point alone,
and can be determined by the intersection-projection

J(A) = TI(AY),  TI(A) « J(AY) (5.6)

duality, where the polyhedra A and A* determine a dual pair of K 3 hypersurfaces.
We recall that the sum of the integer points in intersection, J(A), and in projec-
tion, II(A*), is equal to 14 =4+ 10,54+ 9,6+ 8,7+ 7,8+ 6,9+ 5,10 + 4 for
the plane intersection-projection and 6 = 3 + 3 for the line-segment intersection-
projection. This duality plays a very important role in our description. Eleven of
the 22 two-vector chains found previously satisfy directly the following condition:

J(A™) = TII(A") = A",
IMA™) = JA™)=A""1, (5.7)

which means that the number of integer points in the intersection of the polyhedron
(mirror polyhedron) forming the reflexive polyhedron of lower dimension is equal
to the number of projective lines crossing these integer points of the polyhedron
(mirror). The projections of these lines on a plane in the polyhedron and a plane
in its mirror polyhedron reproduce, of course, the reflexive polyhedra of lower
dimension. Only for self-dual polyhedra one can have

J(A") =TI(A") = II(A™") = J(A™) = A"~ = A", (5.8)

namely the most symmetrical form of these relations.

Following the recipe presented as our central Theorem in Section 4, we
present Table 4, which lists all the k4 projective vectors derived from pairs of
extended vectors of lower dimension, which fall into the 22 chains listed. In each
case, we list the maximum integers m,n in the chains, which are determined
by the dimensions of the extended k; vectors. This Table includes all the 90
projective k4 vectors found using our construction. All of these k4 vectors define
K 3 hypersurfaces which could be obtained using the Z" symmetry coset action®.

*They may also be used to construct higher-level C'Y7 spaces as the intersections of polynomial
loci, as discussed in Section 9.
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Table 4. The 22 chains of K3 obtained using pairs of k4 projective vectors. The number
of K3 spaces in each chain is denoted by NV

Chain k; Nk; A, Al | K(K3) =m -ki+n-k; [>m+> n| max(m,n) | N
1 (0001) N(1110)| (10,4) (n,n,n,m) 1-m+4+3-nm=1,n=3|3
IV |(0001) (M (1120) (9,5) (n,n,2n, m) 1-m+4-nm=1,n=4|4
XV |(0001) N(1230) (7,7) (n,2n,3n,m) 1-m+4+6-nm=1,n=6|6
X (0011) N(1100) (9,5) (n,n, m,m) 2-m+2-nm=2n=2|4
XI |(0011)N(1101) (9,5) (n,n,m,m+n) 2-m+3-nim=3,n=2|6
\%4 (0011) N(1102) (9,5) (n,n, m,m + 2n) 2-m+4-nm=4,n=2|6
XXITI |(0011) N(1210) (7,7) (n,2n,m + n,m) 2-m+4-nm=3,n=3|6
XVI |(0011) N (1203) (7,7) (n,2n,m, m + 3n) 2-m+6-nm=6,n=2{9
11 (0111) N(1011)| (10,4) (n,m,m+n,m+n) |3-m+3-nm=3,n=3|4
XIIT |(0111)(N(1012) (8,6) (n,m,m+n,m+2n) |3-m+4-nlm=4,n=3|9
IIT |(0111) (N (3012)| (4,10) Bn,m,m+n,m+2n) |3-m+6-nm=6,n=29
XVII [(0111) (N(1023) (7,7) (n,m,m+2n,m+3n) [3-m+6-nlm=6,n=3[12
VI |(0112)N(1012) (9,5) (n,m,n+m,2m+2n) |4-m+4-n{m ,n=4|6
VIIT |(0112)((1120) (5,9) (n,m+mn,m+2n,2m) (4-m+4-n =3,n= 9
VII |(0112) (N (2110) (9,5) 2n,m+n,m+mn,2m) |[4-m+4-n{m=3,n 3
XVIII|(0112)((1023) (7,7) (n,m,m+2n,2m+3n) |4-m+6-n|m=06,n=4|16
X1V |(0112)N(2130) (6,8) 2n,m+n,m+3n,2m) [4-m+6-n =5n= 8
IX [(0112)N(2103) (5,9) 2n,m+n,m,2m+3n) [4-m+6-n|m=6,n= 3|12
XIX |(0123) (N (1023) (7,7) (n,m,2m +2n,3m +3n)|6-m +6-n|m=6,n=06|12
XX |[(0123) (N (2103) (7,7) 2n,m+n,2m,3m+3n)|6-m+6-n|m=3,n=23|12
X XTI |(0123) N (3120) (7,7) Bn,m+n,2m+2n,3n) |6 - m+6-nlm=2n=2|14
XII |((0123) (N (3210) (5,9) Bn,m+2n,2m+n,3m)|6 - m+6-n\m=2,n=2| 4

For illustration, we give in Table 5 the eldest vectors in each chain, i.e.,
the first members of all 22 chains, which have m = 1,n = 1. As one can see,
some vectors are common to more than one chain. Using our understanding of
the origins of the intersections, and duality, we can classify these 22 chains in
five classes, as indicated by the groupings in Table 5, which correspond to the
intersections, as indicated.

It should be noted, however, that the above doubly-extended vector structure
does not exhaust the full list of possible K3 projective vectors. The projective

vectors

) (4,5,7.9),
) (5,6,8,11),
ka)os = (5,7,8,20),
) (
) (

7,8,10,25),
7,8,9,12)

©
gt
I

(5.9)
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Table 5. The eldest vectors k; in the 22 K3 chains which have m =n =1

Chain d k; k; (A, A%) | (A, Afyg)

I d=1-m+3:n (n,n,n,m) (1,1,1,1)| (35,5) (10,4)
II |[d=3-m+3-n| (nmm+nm+n) |[(1,1,2,2)| (30,6) (10,4)
IIT |d=3-m+6-n| (3n,m,m+n,m+2n) |(1,2,3,3)| (23,8) (4,10)

IV |d=1-m+4-n (n,n,2n,m) (1,1,1,2)| (34,6) | (9,5)
\% d=2-m+2-n (n,n,m,m) (1,1,1,1)| (35,5) (9,5)
VI |d=2-m+3-n (n,n,m,m+n) (1,1,1,2)| (34,6) (9,5)
VII |d=2-m+4-n (n,n, m, m + 2n) (1,1,1,3)| (39, 6) (9, 5)
VIII [d=4-m+4-n| (n,m,m+n,2m+2n) ((1,1,2,4)| (35,7) (9,5)
IX |d=4-m+4-n| 2n,m+n,m+n,2m) |(1,1,1,1)| (35,5) (9,5)
X d=4-m+4-n| (n,m+n,m+2n,2m) |(1,2,2,3)| (24,8) (5,9)
XI |d=4-m+6-n| (2n,m+n,m,2m+ 3n) [(1,2,2,5)| (28,8) (5,9)
XII |d=6-m+6-n|(3n,m+ 2n,2m+n,3m)|(1,1,1,1)| (35,5) (5,9)

XIII |d=3-m+4-
XIV |d=4-m+6-

3

(n,m,m+n,m+2n) |(1,1,2,3)| (31,8) (8,6)
2n,m+n,m+ 3n,2m) [(1,1,1,2)]| (34,6) (6,8)

3

XV |[d=1-m+6-n (n,2n, 3n,m) (1,1,2,3)| (31,8) (7,7)
XVI |[d=2-m+6-n (m,n, 2n, 3n + m) (1,1,2,4)| (35,7) (7,7)
XVII|d=3-m+6-n|(n,m,m+2n,,m+3n)|(1,1,3,4)] (33,9) (7,7)
XVIII|d=4-m+6-n| (n,m,m+2n,2m + 3n) |(1,1,3,5)| (36,9) (7,7)
XIX |d=6-m+6-n|(n,m,2m + 2n,3m + 3n)|(1,1,4,6)| (39,9) (7,7)
XX |d=6-m+6-n|(2n,m+n,2m,3m +3n)|(1,1,1,3)| (39,6) (7,7)
XXI |d=6-m+6-n|(3n,m+n,2m + 2n,3m)|(2,3,3,4)| (15,9) (7,7)

XXIT|d=2-m+4-n (n,2n,m + n,m) (1,1,2,2)| (30,6) (7,7)

have no planar reflexive polyhedron intersections, and therefore were not included
in this list. To obtain most of the additional k4 vectors (5.10), one must consider
chains constructed from three extended vectors of the type k°* = (0,0,1) and
ke* = (0, 1, 1), with all possible permutations, having in the intersection the line-
segment polyhedron consisting of three integer points. All these chains will be
J1 —1II; self-dual: J; =1I; = 3. It is easy to see that only four different such
triple chains can be built, as discussed in Section 6. These chains are much longer
than the previous two-vector chains, although their total number, 91, is also less
than the full number of all K3 vectors. The projective vectors

(ks)12 = (3,5,6,7),
(ks)13 = (3,6,7,8),
(ka)1a = (5,6,7,9), (5.10)
(K4)os = (7,8,9,12)
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are not involved in these chains. However, the union of the doubly-extended and
triply-extended vector chains gives a total of 94 k4 projective vectors. Only the
ky, = (7,8,9,12) vector has just a point-intersection structure, and is not found
by either the double- or triple-vector constructions, as discussed in more detail in
Section 7.

To preview how it arises, note that, by J — II duality, we know that to
k = (1,1,1,1), which has three intersection planes (1,1,1) with ten points, there
must correspond a k which has three different 7w projections with four points.
Since it should have a nontrivial projection structure, namely a four-point planar
polyhedron with one interior point in three independent directions, its external
points should satisfy the following condition:

1
Z{Ml + My + M3 + M4} = My = (1,1,1,1). (5.11)

In three-space, these points can only be taken as:

M, = (47 1a070)a M, = (0537 150)7

5.12
M3 = (0705470)) M4 = (0507053) ( )

One can easily check that this polyhedron has three projections: 7z, Tyy, Tag,
with four points giving the (1,1, 1) planar polyhedron. The four points M; (5.12)
give the exceptional vector k = (7,8,9,12). By projection, one can see that the
five integer points of this polyhedron produce the (1,1, 1) planar polyhedron with
four points.

5.2. Invariant Monomials and the J — II Structure of Calabi-Yau Equat-
ions. The experience provided by working with K 3 hypersurfaces can aid in the
classification of Calabi—Yau manifolds. Also for this more complicated case, one
should use the duality conditions: one must be prepared to study the intersection
structures of polyhedra and their mirrors and/or to study the projection structures
for polyhedra and mirror polyhedra.

This «intersection-projection» structure of the k4 vectors from doubly-, triply-
and quadruply-extended vectors allows us to introduce the concept of invariant
monomials in the CY equations. These invariant monomials are homogeneous
under the action of the extended vectors, i.e., if

2 =Nz 5 =1,2,3,..., (5.13)
then
2P = N gl = \di g (5.14)

where d; = dim (kj"”) and j =1,2,3,... is the number of extended kj* vectors.
The invariant monomials, g;, correspond to the reflexive polyhedra produced by
the invariant set W;,, which is the same for all the chains.
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These extended vectors can be formed from the following five familiar types
of projective vectors of lower dimensions:

k; = (0,0,1),
ky = (0,1,1), (5.15)
ks = (1,1,1), ks = (1,1,2), ks = (1,2,3).

A chain of k4 projective vectors can be generated from the linear sums of extended
vectors, for example, for j = 1,2 one can get:

ki(m,n) =m-k§* + n-k5*
(5.16)
if k5% (k5" = {pi : pi € Sinv }-

The invariant monomials are universal for all the k4 vectors in this chain.

To construct the k4 vectors determining K3 hypersurfaces, i.e., determin-
ing the corresponding polyhedra with the property of reflexivity, one has to
give a correct set of invariant monomials. We have constructed the 22 sets
of invariant monomials corresponding to the doubly-extended vector structures
among the k, projective vectors. In this case, these sets of the invariant mono-
mials give in the intersection reflexive polyhedra of lower dimensions. The
number of invariant monomials for this doubly-extended vector structure is
given by

31 = 1 +4x2+ 22, (5.17)

where the last number corresponds to the Betti number for K3 hypersurfaces:
be = 22. The structure of the k4 projective vectors obtained from the triply-
extended vectors, namely k¢* = (0,0,0,1) and k** = (0,0,1, 1), is given by the
following four types of invariant monomials:

Ty, :(2,0,1,1), (0,2,1,1), (1,1,1,1, Pzouytozou,xoyz-u,

2 2

U, (2,2,1,0), (0,0,1,2), (1,1,1,1, Yyt iz, zeut, Xy 2,

w2y

(5.18)

) ) )=
) ) )= a’

U, 0 (2,2,2,0), (0,0,0,2), (1,1,1,1,) = 2% -y - 22 v, 2y -2 u,
) ) )= a’

Uy, 0 (2,0,0,2), (0,2,2,0), (1,1,1,1,

The four chains corresponding to these sets of invariant monomials are (see
Tables 4,5,6, and 7):
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ky(¥p,)=M-(1,1,0,0)+ N -(0,0,1,0) +
+L-(0,0,0,1) = (M,M,N, L),
ky(Uyp,)=M-(1,0,0,1)+ N-(0,1,0,1) +
+L-(0,0,1,0) = (M,N,L,M + N),
ky(Prrr,) =M -(1,0,0,1)+ N -(0,1,0,1) +
+L-(0,0,1,1)=(M,N,L,M + N + L),
ky(Pry,) = M -(1,0,1,0) + N - (0,1,0,1) +
+L-(0,0,1,1)=(M,N,M +L,N + L). (5.19)
In these chains®, the sets of projective vectors are subject to the following addi-
tional projective restrictions:
ky(Uy,)-er =
ky(Vrr,)-err =
ky(Urrr,) - errr =
ki(Vrv,) ey =

er =(-1,1,0,0),

err =(-1,-1,0,1),

errr =(—1,-1,-1,1),

, ey =(1,-1,-1,1). (5.20)

o o oo

Corresponding to these chains, the following triple intersections

SOk (K =V, Yiry, Brrr,, Urvs,. (5.21)

have the above-mentioned invariant monomials.

The K3 algebra has the interesting consequence that all the {1 + 4 + 22}
invariant monomials that give «good» planar reflexive polyhedra in the 22 two-
vector chains also can be found by triple constructions. Therefore it is interesting
to list now the 22 types of invariant monomials whose origin is also connected
with the triple intersections of all types of projective vectors, the triply-extended
vectors k§* = (0,0,0,1), the doubly-extended vectors k§* = (0,0,1, 1), and the
singly-extended vectors, k§* = (0,1,1,1),(0,1,1,2),(0, 1,2, 3).

These monomials, zH, are invariant under action of the extended vectors

ke - 1 = dim (kS7),
kS - = dim (k57), (5.22)
K - g = dim (k¢7).

*There is in fact another «good» triple intersection of the extended vectors (1,1,0,0),
(0,0,1,1), (0,0,0,1), but the chain I; = (M, M, N, N + L) it produces has the same three invari-
ant monomials, (0,2,1,1)+(2,0,1,1)+(1,1,1, 1) as the I3 chain, which includes all its projective
vectors.
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The directions of the possible projections II are determined* by the degenerate
monomial (z-y-z-u) = p=(1,1,1,1) and by the exponents of the following
22 invariant monomials, p = (1, p2, (3, f4):
3,0,0,0), (3,1,0,0), (3,1,1,0),(3,2,0,0),
3,2,1,0), (3,3,0,0), (3,3,1,0),
4,0,0,0), (4,1,0,0),(4,1,1,0), (4,2,0,0),
4,2,1,0),(4,3,0,0), (4,3,1,0), (4,4,0,0), (4,4,1,0),
6,0,0,0), (6,1,0,0), (6,2,0,0), (6,3,0,0),
6,4,0,0), (6,6,0,0), (5.23)

~—~ o~ |~ |

where the underlines pick out those triple intersections where the intersections of
pairs of vectors also specify reflexive polyhedra, which will be important later.
The four other types of possible projections were already defined above.

The algebraic-geometry sense of (J,II)(A) « (II, J)(A*) duality for K3
hypersurfaces can be interpreted through the invariant monomials: the list of
the invariant monomials for the two-extended-vector classification and the list of
all of the three-extended-vector classification are the same, and the total number
of them is equal to 31 =144 x 24 22. The J(A, A*) — II(A*, A) duality
can be interpreted at a deeper level for J = II chains: the invariant monomials
are identical for corresponding CY equation and for its mirror equation. The
projection—projection structure gives additional information about the form of the
corresponding CY equation. For example, this structure determines the subset
of monomials corresponding to the invariant monomials. As a result, the homo-
geneous CY equation can be written in according in terms of the intersection—
projection structure of the projective k vectors:

J II

plz) = DA™ {3 ah, 2o =0, (5.24)

1 p

Here the z™0 are the invariant monomials which are defined by intersection
structure, the vector e'! is the direction of the projection, and the n, are integer
numbers.

6. THREE-VECTOR CHAINS OF K3 SPACES

As already mentioned, one can find additional chains of K3 projective vectors
k4 if one considers systems of three extended vectors of the type k{* = (0,0,0,1)

* Additional constraints on the invariant monomials are given in Section 7, reducing their number
t09=1+3+5.
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Table 6. The 18 K3 hypersurfaces in the three-vector chain I3: k = (M, M,N,L) =
=M-(1,1,0,0) + N -(0,0,1,0) + L - (0,0, 0, 1). Here and subsequently, the symbol
N in the first column denotes the location of the corresponding vector in Table 1. The
numbers in the last columns indicate their locations in the corresponding chains

R M|M|N|L|Md|@a) |1 |m|Iv|v|VvIiI|X|XI|III
Jay | - | - |- -1| - - w10 99 9 |9] 9| -
A | - | - | -]-] - - 44|55 |5 5 |5] 5| —
A | - - == - - — || = |- 9 |- -] -
Jay | = | = =|-| - - —la|l == 5 |- -1-

1 11|11 |4 ] B | 1] -] —-|-]1 1| - | —

2 11 1|26 | G,6% |2 -1 -] - |-]1 -

3 111|316 ]| ®B,6|3|-|-|1] - |~-]-1]-

4 1122|066 | —-]|1]2|-|—-12]-1]-

5 1123 M| 6L, | -|-|3|-|-1|-]2]-

6 11248 | @™ |- -|4a|2| - |-]-1]-

7 11349 ]| B39 | -|-|-|-|-1|-1]4]| -

8 11|35 |@mo| 36,9 | -| - -3 - |-|-1] -

9 1146 |[12| 39,9 | —-|-|-1|5]| - |-|-1] -

10 2 |2 |1 |3 | ® | @8)|—-|-|-1]-|2|-|3]-

11 2 |2 | 1|5 |@oj| 288) |- |- -1]4a| - | -| -1 -

42 2 |2 |3 |s ||l | - |- == - 1-|5 | -

43 2 |2 |3 |7 ||| - |- 16| — || -1 -

12 3|3 |1 |2|m@ | @8)|-|2|-]|-|-1-|-1-

44 3|3 |2|a|n2| @59 || - -1-| 3 || -1 -

65 3|3 |a|s|nps @) |- |- - |-| - 1

21 4 a1 3|2l e | -3 -1|-|-1-|-1-

48 5 |5 |23 |@s | @41 —|4a| - |- - 1-|-1-

and k§* = (0,0,1, 1), which have in their intersections only three integer points
or only three invariant monomials. As also already remarked, there are only four
different chains, corresponding to the four kinds of invariant monomial triples.
We have also commented that these new chains yield only four additional K3
vectors, whilst the remaining vector, ks = (7,8,9,12), can be constructed out of
four extended vectors, as discussed in the following Section. The relationship
between the two- and three-vector constructions, and their substantial overlap, is
the subject of this Section.

6.1. The Three-Vector Chain I3: k, = (M, M, N, L). In this chain, the
dimension (d = 2M + N + L) and the eldest vector is kejq = (1,1, 1, 1), whose
invariant monomials are (2,0, 1,1) + (0,2, 1, 1). The relations between this three-
vector chain and the previously-discussed two-vector chains can easily be found.
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We consider the first three vectors in Table 6, which also form the two-vector
chain I:

I : m:- (17 ]" 0) : (07 0’07 ]‘) = (m’m’m’n) -
M=N=m= [dim]{(0,0,0,l)} =1, (6.1)
L=n < [dim]{(1,1,1,0)} = 3.

Similarly, one can consider four vectors (2,2,1,1), (3,3,1,2), (4,4,1,3), and
(5,5,2,3), which form the two-vector chain II:

II: ,1,1,0) + n-(1,1,0,1) = (m+n,m+n,m,n) —
m \ [dlm]{(1717071)}:37
n < [dim]{(1,1,1,0)} = 3,

M=m+n < 6.

m - (1
N= 6.2
I (6.2)

The four vectors (1,1,2,1), (1,1,2,2), (1,1,2,3), and (1, 1,2,4) from the two-
vector chain IV have the following relations with this triple chain:

IvV: m-(1,1,2,0) + n-(0,0,0,1) = (m,m,2m,n) —
M =m < [dim]{(0,0,0,1)} =1,
N =2m =2,
L=n < [dim]{(1,1,2,0)} =

(6.3)

The six vectors (1,1,1,3), (1,1,2,4), (1,1,3,5), (1,1,4,6), (2,2,1,5), and
(2,2,3,7) in Table 6 correspond to the two-vector chain V:

V: m-(1,1,0,2) + n-(0,0,1,1) = (m,m,n,2m+n) —
M =m < [dim]{(0,0,1,1)} = 2,
N =n < [dim]{(1,1,0,2)} = 4,
L=2m+n <=38.

(6.4)

The next three vectors (1,1,1,1), (3,3,2,4), and (2,2, 1, 3) from the two-vector
chain V' II have the following connection to this triple chain:

VII: m-(1,1,2,0) + n-(1,1,0,2) = (m+n,m+n,2m,2n) —
M=m+n < 4,
N =2m < 4,
L=2n < 4.

(6.5)
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Two vectors (1,1,1,1) and (1,1,2,2) correspond to the two-vector chain X:
X: m-(1,1,0,0) + n-(0,0,1,1) = (m,m,n,n) —
M=m < 2,
(6.6)
N=n < 2,
L=n < 2.

Finally, the values of M, N, L of the five projective vectors (1, 1,1,2), (1,1,2,3),
(1,1,3,4), (2,2,1,3), and (2,2, 3,5) correspond to the fact that they are also from
the two-vector chain X I:
XI: m-(1,1,0,1) + n-(0,0,1,1) = (m,m,n,m+n) —
M=m < 2,
N =n < 3,
L=m+n < 5.

6.7)

6.2. The Three-Vector Chain I75: kg = (M, N,L, M + N). In this chain,
shown in Table 7, the dimension d = 2M + 2N + L, there is a symmetry:
M < N, the eldest vector keg = (1,1,1,2), and the invariant monomials are
(2,2,1,0)+(0,0,1,2). Comparing this chain with the previous two-vector chains,
one can see clearly the possible values of M, N, L for the projective vectors
(M,N,L,M + N). For example, if one compares the four vectors (1,1,2,2),
(1,2,3,3), (1,3,4,4), and (2,3,5,5) in this triple chain with their structure in
the two-vector chain /1, one finds the following relations:

Ir: m-(1,0,1,1) + n-(0,1,1,1) = (myn,m+n,m+n) —
M =m < [dim]{(0,1,1,1)} =3,
N =n < [dim]{(1,0,1,1)} =3,
L=m+n < 6.

(6.8)

Similarly, we find the following relations between the values of M, N, L in the
triple chain and the values of m,n for double chains:
w: m-(1,1,0,2) + n-(0,0,1,0) = (m,m,n,2m) —
M =N =m < [dim]{(0,0,1,0)} =1, (6.9)
L=n < [dim]{(1,1,0,2)} = 4.

Vi: m-(1,0,2,1) + n-(0,1,2,1) = (m,n,2m+2n,m+n) —
M =m < [dim]{(0,1,2,1)} =4,
N =n < [dim]{(1,0,2,1)} =4,
L=2m+2n < 8.

(6.10)
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VIII:

X1

XIIT:

XIV .

XV

XVII:

XXII:

m-
M
N =
L=

m-(1,0,2,1) + n-(1,1,0,2) = (m+n,n,2m,m+ 2n) —
M=m+n <8,

N =n < [dim]{(1,0,2,1)} = 4, 6.11)
L =2m < 2[dim]{(1,1,0,2)} = 8.

m(lvoalvl) + n(Ov]-aOv]-) = (m7n7m7m+n) -
M=m < [din}{(0,1,0,1)} =2,

N =n < [dim]{(1,0,1,1)} = 3, (6.12)
L=m.
(1,0,2,1) + n-(0,1,1,1) = (m,n,2m+n,m+n) —
—m < [dim}{(0,1,1,1)} =3,
n < [dim]{(1,0,2,1)} =4, (6.13)
2m +n.

m-(1,0,2,1) + n-(1,2,0,3) = (m+n,2n,2m,m+ 3n) —

M =m+n,

N =2n < 2[dim]{(1,0,2,1)} =8, (6.14)
L =2m < 2[dim]{(1,2,0,3)} = 12.

m-(1,2,0,3) + n-(0,0,1,0) = (m,2m,n,3m) —
M =m < [dim]{(0,0,1,0)} =1,
N =2m < 2[dim]{(0,0,1,0)} = (©.15)
L =n < [dim]{(1,2,0,3)} = 6.
m-(1,2,0,3) + n-(0,1,1,1) = (m,2m+n,n,3m+n) —
M =m < [dim]{(0,1,1,1)} =
N =2m +n, (6.16)
L=n < [dim]{(1,2,0,3)} = 6.
m-(1,0,2,1) + n-(0,1,0,1) = (m,n,2m,m+n) —
M =m < [dim]{(0,1,0,1)} = 2,
n < [dim]{(1,0,2,1)} =6, ©17
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Table 7. The 45 K3 hypersurfaces in the /I3 chain: k = (M, N,L,Q = N + M) =
=M -(1,0,0,1) + N -(0,1,0,1) + L - (0,0, 1,0)

RIM|N|L|Q| [ | (AA")|IIT|IV|VI|VIII|XI|XIII|XIV|XV|XVII|XXII
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6.3. The Three-Vector Chain [715: kg = (M,N,L,M + N + L). In this
chain, shown in Table 8, the dimension d = 2M + 2N + 2L, there is M« N+ L
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symmetry, the eldest vector kqq = (1,1, 1,3), and the invariant monomials are
(2,2,2,0)+ (0,2,2,2). We see in the Table the appearance of the following
two-vector chains

V: m-(1,1,0,2) + n-(0,0,1,1) = (m,m,n,2m+n) —
M =N =m < [dim]{(0,0,1,1)} = 2, (6.18)
L=n < [dim]{(1,1,0,2)} = 4.
Vi: m-(1,0,1,2) + n-(0,1,1,2) = (m,n,m+n,2m+ 2n) —
M=m < [dim]{(0,1,1,2)} = 4, 619)
N =n < [dim]{(1,0,1,2)} = 4, '
L=m+n.
IX: m-(1,0,1,2) + n-(0,2,1,3) = (m,2n,m+n,2m+ 3n) —
M=m < [di 0,2,1,3)} =6,
m < [diml{(0.2,1,3) 620
N =2n < 2[dim}{(1,0,1,2)} =8,
L=m-+n.
XVIi: m-(1,0,2,3) + n-(0,1,0,1) = (m,n,2m,3m+n) —
M =m < [dim]{(0,1,0,1)} =2, 621)
N =n < [dim]{(1,0,2,3)} =6, '
L =2m.
XVIII: m-(1,0,1,2) + n-(0,1,2,3) = (m,n,m+ 2n,2m + 3n) —
M =m < [dim]{(0,1,2,3)} = 6,
N =n < [dim]{(1,0,1,2)} = 4, (6.22)
L =m+2n.
XIX: m-(1,0,2,3) + n-(0,1,2,3) = (m,n,2m+ 2n,3m+ 3n) —
M =m < [dim]{(0,2,1,3)} =6,
N =n < [dim]{(1,0,2,3)} = 6, (6.23)
L=2m+ 2n.
XX: m-(201,3) +n-(0,2,1,3 (2m,2n,m +n,3m + 3n) —

) =
M =2m < 2[dim]|{(0,2,1,3)} =
N =2n < 2[dim]{(2,0,1,3)} =1
L=m+n.

12,
2, (6.24)
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Table 8. The 48 K 3 hypersurfaces in the 1115 chain: k = (M,N,L,Q = N+ M+L) =
=M-(1,0,0,1) + N -(0,1,0,1) + L - (0,0, 1,1)

R|M|N|L|Q|[d]| @A) |V |VI|IX|XVI|XVIIT|XIX | XX
== -1-1 - J(A) 91 9 | 5 7 7 7 7
— — | == = | =a%) |55 | 9 7 7 7 7
[ER R Ry R R ™) | =] 9 | — = 7 7 7
— -] =-]=-| = JaYy | - | 5 | — - 7 7 7
311 (1] 1 ]3] 16 396 |1 1
6 | 11|24 B |G, |21 1

8 | 1| 1] 3|5 | @0l (369% |3 1

9 | 1| 1] 4|62 (39,9 |4 1
1122|500 (288 |5 1 2

51|23 6]|[@2| (27,9 2 3 2
12| 4] 7| 14| (27129 4 2

191 |25 | 8] [16 | (28,14%) 5 3

20| 1| 2|6 | 9|18 ] (3012 6 2

24| 1| 3| 4| 8 |[16]] (24,12%) 3| 3

26| 1| 3| 5 | 9|18 ] (24,15%) 4

28 | 1| 3 | 7 | 11| [22] | (25,20%) 8

20| 1| 3| 8 |12 [24] | (27,15%) 3

31| 1| 4| 5 |10][20 | (23,13%) 4

33| 1| 4|6 |11][22 ] (22,20%) 5 5

34| 1| 4| 9 |14 [28] ]| (24,24%) 9

35| 1| 4 | 10|15 | [30] | (25,20%) 4

37| 1| 5| 7 |13][26] | (21,24%) 6

38| 1| 5 | 12|18 | [36] | (14,18%) 5

40| 1|6 | 8 |15 [30 | (21,24%) 7

a1 | 1 | 6 | 14 | 21 | [42] | (24,24%) 6

a3 | 2 | 2| 3| 7|14 ] (19,11%) | 6 2

ar | 2 | 3| 4 | 9| [18 | (16,14%) 4 7 3
51| 2| 3| 5 |10][20] | (16,14%) 5

53| 2 | 3| 7 |12 [24] | (16,20%) 11

55 | 2 | 3| 8 | 13| [26] | (16,23%) 10

56 | 2 | 3| 10|15 | [30] | (18,18%) 7

58 | 2 | 4 | 5 | 11| [22] | (14,19%) 6

60 | 2| 5| 6 |13][26] | (13,23%) 7

62| 2 | 5| 9 |16 (32| (13,29%) 14

63| 2 | 5 | 14 | 21 | [42] | (15,27%) 9

64| 2 | 6 | 7 |15 [30] | (13,23%) 9

69 | 3 | 4| 5 |12 [24] | (12,18%) 8

71| 3 | 4|7 |14][28 | (12,18%) 6

73| 3 | 4 | 10| 17| [34 | (11,31%) 13

74 | 3 | 4 | 11| 18] [36] | (12,30%) 12

75 | 3 | 4 | 14| 21 | [42] | (13,26%) 8

78 | 3 | 5 | 11| 19| (38 | (10,35%) 15

79| 3 | 5| 16| 24 | [48] | (12,30%) 10

82| 4 | 5| 6 |15 [30] | (10,20%) 4
84| 4 |5 | 7 |16] 32| (9,27%) 10

85 | 4 | 5 | 13|22 [44] | (9,39%) 16

86 | 4 | 5 | 18 | 27 | [54] | (10,35%) 11

88 | 4 | 6 | 7 |17 [34] | (8,31%) 11

91| 5 | 6 | 8 |19 [38] | (7,35%) 12

92 | 5 | 6 | 22|33 [66] | (9,39%) 12

93| 5 | 7| 8 |20][40] | (8,28%)

94 | 7 | 8 | 10|25 [50] | (6,39%)
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6.4. The Three-Vector Chain /V5: ky = (M, N, M + L, N + L). In this
case (see Table 9), we have the dimension d = 2M + 2N + 2L, the eldest vector
kea = (1,1,1,1), and the invariant monomials are (2,0, 0,2) + (0,2,2,0). This
three-vector chain includes the following vectors form the two-vector construction:

VII: m-(2,1,1,0) + n-(0,1,1,2) = (2m,m+n,m+n,2n) —

M =2m < 4,
(6.25)
N=m+n < 4,
L=n—-—-m2>0
X: m-(1,1,0,0) + n-(0,0,1,1) = (m,m,n,n) —
M=m < 2,
(6.26)
N=m < 2,

L=n—-m > 0.

XIT: m-(3,2,1,0) + n-(0,1,2,3) = (3m,2m+n,m+ 2n,3n) —

M = 3m,
N =2m+n, (6.27)
L =2n-—2m,

(m,n) =(1,2), (2,1); (1,1), (1,4), (4,1), (2,5), (5,2).

XXI: m-(1,2,3,0) + n-(1,2,0,3) = (m+n,2m+ 2n,3m,3n) —
M =m,
N = 2m, (6.28)
L=

(m,n) = (1,1),(1,2), (2,1); (1,5), (5,1), (4,5), (5,4).

XXII: m-(1,0,2,1) + n-(0,1,0,1) = (m,n,2m,m+n) —
M =m < [dim]{(0,1,0,1)} = 2,
N =n < [dim]{(1,0,2,1)} =4,

L=m.

(6.29)
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Table 9. The 8 K3 hypersurfaces in the IV3 chain: k = (M, N, M + L,N + L) =
=M-(1,0,1,0) + N - (0,1,0,1) + L - (0,0, 1,1)

R|M|N|M+L|N+L| [d | (AA% |VIT|X | XIT|XXI|XXIT

S (S - — | g 7 o]l 5 7 7
S (S - | x| 7 |5 o 7 7
- -1 - — - — m(A) — — 5 7 —
- = |- - - - J(A¥) - =19 7’ -
111 1 1 M| 655 | 1 | 1| 1 - -
4|11 2 2 6 | 30,60 | — | 2| - 1 1
101 ]2 2 3 8 | 4,8 | 2 | -| - - -
131 1 2 3 4 [10] | (23,11%) — — 2 — 2
16 | 1 2 4 5 [12] | (24,12%) — — — 2 3
44| 2 | 3 3 4 |no| @as9) | 3 |- - 3 -
45| 2 | 3 4 5 |4 ]@s69] — | —| 3 - 4
66| 3 | 4 5 6 |ng|aoiry| — | -] 4 4 -

7. THE DUAL K3 ALGEBRA FROM FOUR-DIMENSIONAL
EXTENDED VECTORS

As discussed in the Introduction, the enumeration of K3 reflexive polyhedra
obtained at level zero from pairs of projective vectors (Section 5) and triples
(Section 6) is not quite complete. The one remaining example, corresponding to
ks = (7,8,9,12), can be found using the intersection—projection and duality prop-
erties outlined in Section 3, as we now discuss. This method can be used to build
projective-vector chains using the rich projective structure of K3 vectors. For
example, one can construct a chain with, as youngest vector, ky = (7,8, 10, 25),
which is dual to the eldest vector ks = (1,1,1,3) contained in the triple chain
I115. Similarly, one can consider other cases, e.g., building a chain with youngest
vector ky = (5,6, 8,11), contained in the triple chain /3.

7.1. The Dual 7 Projective-Vector Structure of K3 Hypersurfaces. We
obtained in Section 6, as an interesting application of the K3 algebra, all the
1 + (4 x 2) + 22 invariant monomials of the 22 double-intersection K3 chains
via the triple intersections of K3 extended vectors. These invariant monomials
correspond to particular directions relative to the reflexive polyhedra, which can
be used to find the projection structures of the vectors. In particular, they can be
used to find all the projective vectors which have no planar-intersection structure
at all. Because of duality, their polyhedra have sufficient invariant directions that
the projections on the corresponding perpendicular planes give reflexive planar
polyhedra. Examples include the youngest vectors which are dual to the eldest
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vectors as well as other relations in the corresponding chain, e.g., as we shall
see, the remaining K3 vector (7,8,9,12) is dual to (1,1,1,1), (7,8,10,25) is dual to
(1,1,1,3), etc.

To understand this more deeply, we consider triple chains built using a

special subalgebra of the four-dimensional extended vectors: k;z(i) =(0,0,0,1),
(0,0,1,1), (0,1,1,1), (0,1,1,2), and (0, 1,2, 3), with all possible permutations.

We consider triples kgx(i’j D) of these vectors with the property that each pair

(i,7),(4,0), (1,%) gives a reflexive planar polyhedron:
[kgm(l)] m [kgi(J)] — [k3] (71)

We note that the triple intersections of these triples of extended vectors always
define an invariant direction, 7v. In some cases, the triple intersection contains
just two monomial vectors, and 7 is simply defined by their difference:

k5O kT K5™) = 7 = {1 — o), (7.2)

where py = (1,1,1,1) is the basic monomial zHot! = .y 2 - u. These cases
are listed in Table 10.

These pairs of invariant monomials correspond to directions 7;=p,— 4, in
the exponent/monomial hyperspace given by the following vectors gy,

Table 10. Triples of k3:°* vectors giving invariant directions wy = py — p, defined
by pairs of monomials. Also indicated are the sizes of the corresponding polyhedra A
and the two-vector chains to which they belong

w0 ker® K" RSP Ay [ Ay | Ay, iy monom |y

w1 0,0,1,1) [(1,2,0,1) | (1,2,1,0) | 7xxrr | 9vr |7xxrr| #*-z-u | (3,0,1,1)
w2 | 0,0,1,1) | (1,2,0,3) | (1,2,3,0) | 7xvr |7xxr| Txvr | «®-z-u | (3,0,1,1)

x| 0,1,1,1) [ (1,0,1,1)|(1,1,0,1)| 1077 | 1077 | 10ss ud (0,0,0,3)
2
w1 (0,1,1,1) |(1,0,1,1) | (1,3,0,2) | 1071 | 4711 |7Txvir u? (0,0,0,3)
2
w1 0,1,1,1) |(1,0,3,2) | (1,3,0,2) | Txvrr | Txxr | Txvir u® (0,0,0,3)
w1 0,1,1,1) [(3,0,1,2) | (3,1,0,2) | 4111 | Txrx | 4rr ud (0,0,0,3)
= (1,1,1,0) [(0,1,2,1) [ (2,1,0,1) | 8xsr7 | 9vrr | 8xrar | % -uw  |(0,3,0,1)
Tfém (1,1,1,0) {(0,1,2,1) [(2,1,0,3) | 8xrrr |6xrv | 4111 y2 (0,3,0,1)
=3 | (1,1,1,0) {(0,1,2,3) | (2,1,0,3) | 4111 | Txx | 45 v¥u | (0,3,0,1)
7";4> (0,1,2,1) {(1,2,3,0) [(2,1,0,3) | 7xvirr | 5x11 | 6x1Vv y2 (0,3,0,1)
=M (0,1,1,2) {(1,0,1,2){(1,2,1,0)| 9vi | 9vir | Bviir y? (0,0,4,0)
71'4(;2) (0,1,1,2) |(1,2,1,0) | (2,0,1,1) | 5vrrr |5vrrr| bdvirr y* (0,0,4,0)

= 1(1,0,1,2,)](1,2,0,3) | (1,2,3,0) | 5rx | 7xx1| 6x1v 2ty | (4,1,0,0)
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N =1,2,3,4,5:
p = (3,0,1,1),
py = (0,0,0,3),
ps = (0,3,0,1), (7.3)
ny = (070a470)a
s = (471a070)a

as can be seen in Table 10.

In other cases, the triple intersections contain three points which form a
degenerate linear polyhedron, which also defines a unique direction 7w determined
by three points, one of which () corresponds to the origin:

KT ORI G™) = v =y — po} = {po — ), (14)

as seen in Table 11.

It is easy to see that five of the invariant monomials from Table 10 produce
a reflexive three-dimensional polyhedron. For example, from o, p5, pt4, and ps
one obtains the following exceptional vector whose associated polyhedron has no
intersection substructure:

o -ka = d=ki + ko + ks + ks, =0,2,3,4,5,
ke = (7,8,9,12)[d = 36], (1.5)

Table 11. Triples of k5” vectors defining directions 7 determined by three invariant
monomials

T‘_E\L;) kgw(z) kgw(]) kgw(p) A‘,m Aij AJM By w_

w1 1(0,0,1,1) | (1,1,0,1) | (1,1,1,0) | 9x; 1077 | 9x7r [(0,2,1,1)](2,0,1,1)
w2 1(0,0,1,1) | (1,1,0,2) | (1,1,2,0) | 9y vrir 9v  (0,2,1,1)| (2,0,1,1)
w0 10,1,1,1) | (1,0,1,1) | (1,1,0,2) | 1077 |8xrrr | 8xrrr | (0,0,1,2) | (2,2,1,0)
= (0,1,1,1) | (1,0,2,1) | (1,1,0,2) | 8xrr1 | B5virr | 8xrr |(0,0,1,2) | (2,2,1,0)
w8 1(0,1,1,1) | (1,0,2,1) | (1,2,0,3) | 8x1rr | 6x1v | Txvrr | (0,0,1,2) | (2,2,1,0)
=M (0,1,2,1) | (1,0,2,1) | (1,1,0,2) | 9vr |5virr| Svrrr |(0,0,1,2) | (2,2,1,0)

=1 1(0,1,1,2) | (1,0,1,2) | (1,1,0,2) | 9vs 9y 9v; | (0,0,0,2) | (2,2,2,0)
w2 1(0,1,1,2) | (1,0,1,2) | (1,2,0,3) | 9vs 5:x | 7xvirr | (0,0,0,2) | (2,2,2,0)
7";;3) (0,1,1,2) | (1,0,2,3) | (1,2,0,3) | Txvrrr | Txx | 7xvrrr |(0,0,0,2) | (2,2,2,0)
M 10,1,1,2) [ (2,0,1,3) | (2,1,0,3) | 5:x | 7xix | 5rx |(0,0,0,2) | (2,2,2,0)
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where we used the constraint

1
uo=1-(u2+u3 + py + ps). (7.6)

Thus duality enables us to identify the missing 95th K3 vector, which was not
generated previously in our systematic study of the two- and three-vector chains.
We recall that they contain totals of 90 and 91 vectors, respectively, of which
only 94 were distinct.

Similarly, using these invariant monomials, one can find the rest of the
exceptional k4 vectors, (3,5,6,7), (3,6,7,8), (5,6,7,9) which were not included
in the triple chains, together with (3,4,5,6). They have intersection polyhedra
that are not linear. These other exceptional k, vectors are defined as follows

“a'k4:da a:071a273a3/7

ks = (3,5,6,7)[d = 21], (7.7)

where again the following constraint has been used

(g + pg +opy +opy) =
0,1) + (0,0,0,3) +(1,0,3,0) +(0,3,1,0),

1
N0—4
= (3,1,
and

“(y'k4:da a=0,1,2,3,4,

ks = (3,6,7,8)[d = 24], (7.8)

with the constraint:

(g py T+ ops o) =
1,1) + (0,0,0,3) + (1,0,3,0) + (0,4,0,0).

1
Ko = 4
= (3,0,
We also find

/‘l’a'k4:da a:2a373/a57

kq = (5,6,7,9)[d = 27, (7.9)

where the following constraint also has been used

(g 4 py + py +ops) =
0,3) + (0,3,0,1) +(0,1,3,0) + (4,0,1,0),

Mo =

1
4
= (0,0,
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and

B ki=d, a=1,2,33,

(7.10)
ks = (3,4,5,6)[d = 18],

where the following constraint also has been used

po =~ (g + po + p3 + p3) =

1
4
=(3,1,1,0) + (0,0,0,3) + (1,0,3,0) +(0,3,0,1).

7.2. Projective Chains of K3 Spaces Constructed from 7 Vectors. Using
the invariant directions found in the previous Subsection, one can construct new
triple chains:

p-[kalmy = m - kO 4 . k0 4 g ke (7.11)

each corresponding to a direction 7 determined by an intersection of invariant
monomial pairs. Each good projective vector in such a chain, determined by an
invariant direction, contains the monomial/projective direction in its polyhedron.
With respect to this direction, the polyhedron is projected onto a «good» planar
reflexive polyhedron. If the projective vector appears in several different chains,
its polyhedron will have «good» projections corresponding to each of these chains.
This property can be used to make a classification by their projections of the
projective vectors and their reflexive polyhedra. One finds that 78 projective K3
vectors out of 95 have such projective property. Taking into account the rest of
the vectors which already were known from double-intersection J = II-symmetric
chains, one can recover all 95 projective K3 vectors.

The distribution of the 3-dimensional set of positive-integer numbers m, n, r
depends on the dimension of the three extended vectors d(® = °_{k&""},,
i = 1,2,3, participating in the construction of the chain, can have some «blank
spots», corresponding to «false vectors» which do not correspond to any reflexive
polyhedron. The origin of this phenomenon is connected with the structure of
Calabi—Yau algebra, i.e., some of the projective vectors have different expansions
(double-, triple-,...) in terms of the extended vectors. So, for example, if a vector
is forbidden in two-vector expansions, it should also be forbidden in triple-, etc.,
expansions, which is what we call a false vector. The self-consistency of the
algebra entails the absences of some combinations of integer numbers m,n, 7,
even though all of them are below their maximum values. We already have met
and discussed this phenomenon in the classification of triple-vector chains.
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Table 12. Extended vectors k4 in the chain 7r(21) with II = 4 with: Q -k = (N+
+L, M+L,M+NM+N+L)=M-(0,1,1,1)+ N-(1,0,1,1)+ L-(1,1,0,1) and
d = 3M + 3N + 3L, whose youngest vector is Kyoung = (7, 8,9, 12)

X ks [det] | M | N | L|(A,A%) | TI— J* | Chain
95| (7,8,9,12) | [36] | 5 | 4 | 3| (5,35) |4—10]| -

89| (5,6,7,9) | [27] | 4 | 3|2 (6,30) | 4—10 | III
80| (3,6,7,8) | [24] | 5 | 2| 1] (9,21) | 4—10 | III
76| (3,5,6,7) | [21] | 4 | 2 | 1| (9,21) | 4—10 | IIT
66 | (3,4,5,6) | [18] | 3 | 2| 1] (10,17) | 4—10 | III
65| (3,3,4,5) | [15] | 2 | 2| 1] (12,12) | 4—10 | III
44| (2,3,3,4) | 24 | 2 | 1| 1] (7,26) | 4—10 | III

As seen in Table 10, one can give examples of triple intersections giving just
one good vector which has three different projections with II = 4:

il o (Y el o [V alpor = (3,5,6,7)[21],
k] e N (k4] e N kil = (3,6,7,8)[24],
k] e N ka0 N Kilpor = (5,6,7,9)[27). (7.12)

Moreover, the exceptional vector, which has four different projections with 1T = 4,
is given by the intersection of four such chains, i.e.:

k] e ﬂ[kﬂﬂ-g) m[kzx]ﬂpf) ﬂ[kz;]ﬂ-él) = (7,8,9,12)[36]. (7.13)

To understand this in more detail, we consider one chain with projection II = 4,

which is determined by the invariant direction 71'51). The vectors of this chain are

represented as linear combinations with positive-integer coefficients, M, N, L, of
the following three projective vectors, taken from the third line in Table 10:
k4(7ré1)) = M- (Oa 1,1, 1) +N- (17 0,1, 1) +L- (1a 1,0, 1) =
= (N+ L M+L M+ N,M+ N + L). (7.14)
The basis is constructed out of the exceptional invariant monomials determining

the 7r directions. Projecting on the perpendicular plane gives us planar reflexive
polyhedra, so the third basis vector

es=(—-1,-1,-1,2) = (0,0,0,3). (7.15)

is common to all the chains discussed in this Subsection.
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Table 13. The K3 hypersurfaces in chain /77 with intersection J = 4: k(II1I) =
= Bn,m,m+nm+2n) =m-(0,1,1,1) + n-(3,0,1,2), d = 3m + 6n with level
l=m+ My Mmax = 67nmax =2

N[ ki[dim] A(J = 4) A*(I1 = 10) (11, J*)

12| (3,1,2,3)[9] 23 = 4L +4; + 15r| 8" =3} +475 + 15 (10, 4%)
44((3,2,3,0)[12]| 15 =71 + 4y +4r | 9" =4 +35+2% [(9,57);(7,7)
25((6,1,3,5)[15]|21 = 16 + 47 4+ 1| 15* =7 + 75 + 1% (7,7%)
65((3,3,4,5)[15]| 12 =4, + 4y +4g | 12 =15 + 105 + 1% | (4,10)
66(3,4,5,6)[18]| 10 = 2, + 4y + 4 | 17" =8} + 35 + 6% (7,7)
76/(3,5,6,7)[21]| 9=1, +4, +4r | 21" =113 +35+ T | (4,10)
80((3,6,7,8)[24]| 9=1p 4+ 4y +4r |21 =12} +35+6% |  (4,10)
89((6,5,7,9)[27]| 6 =15 44y +1r |30" =17% + 35 + 10%|  (4,10)

Looking at the distribution of allowed integers, M, N, L, we see «blank
spots» such as M = N = L = 1, corresponding to the «false vector» (2,2,2,3),
which is forbidden by the double-vector classification: it would require m = 2 in
the chain (2,2,2,3) =m-(1,1,1,0) + n-(0,0,0, 1), but actually myax = 1 for
this chain. Also, all the polyhedra corresponding to these projective vectors have
the other invariant directions 71':(32) — (1,0,3,0) with IT = 4 and should produce
the following triple-vector expansion chain:

ky(wl) = M-(0,1,1,1)+ N-(1,0,1,2) + L - (3,2,1,0) =

(7.16)
=(N+3L,M+2L M+ N+ L, M+ 2N).
Projecting on the perpendicular plane to the vector
e; =(0,-1,2,-1) = (1,0,3,0) (7.17)

gives us planar reflexive polyhedron with 4 points. This chain is a little longer
and contains other projective vectors. Similarly, one can find using the other

projective directions, wfla) and ﬂ'él), two new triple expansion chains. Together

these four invariant directions, Wga), 1 = 2,3,4,5, with the constructions of the
corresponding triple projective chains contain 40 projective vectors (see Table 1).

One can compare the projection set, ﬂél) and IT = 4, with the double-vector-
intersection chain with J = 4. It is interesting to note that six vectors from the
projective chain shown in Table 12 also appear in the I1I-intersection chain with
J = 4 shown in Table 13. Conversely, the chain shown in this latter Table has
just two vectors: (3,1,2,3),(1,3,5,6) that are not contained in Table 12. The

intersection structure of the I/ chain shown in Table 13 is obtained from the
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following two vectors:

ke(IIT) = m-(0,1,1,1) +n-(3,0,1,2) =
= (3n,m, m + n, m + 2n), (7.18)
1<m<6, 1<n<2

The corresponding four invariant monomials are

uy = (0,0,0,3) = u?,

ud = (1,0,3,0) = z - 23,

s = (2,3,0,0) = 22 - 43, (7.19)
uy = (LL,L,1) =2 y-2-u,

and the corresponding basis can be chosen in the form

€ = (Oa —m—"n,m, 0)7
e; = (0,—-1,2,—1), (7.20)
e3 = (_17_17_172)'

The canonical expression for the determinant of this lattice is
det(e1,e2,e3,e0) =3-m + 6-n=d, (7.21)

where e = (1,1,1,1).

7.3. Example of a J,II = 10 Double-Intersection Chain. To see another
aspect of mirror symmetry and duality, consider the /I chain with intersection
J(A) =T1I(A) =10 and J(A*) =II(A*) =4 shown in Table 14. The decom-
position of this chain is in terms of the following two vectors:

kg =m-(0,1,1,1)+n-(1,0,1,1) =
=(n,m, m+n,m+n), (7.22)
1<m<3, 1<n<3

The basis of the lattice in which the polyhedral intersection with the set of
positive-integer points corresponds to Table 14 is the following:

e = (_m7na 07 0))
€y = (_L _]-a 170)a (723)
€3 = (_15_15071)5

and the corresponding determinant is

det(el,eg,eg,eo) =3-m+ 3-n=d, (7.24)
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Table 14. The K3 hypersurfaces in chain 7/ with intersection J = 10: k(II) =
= (n,mym+nm+n) =m-(0,1,1,1)+ n-(1,0,1,1) with d =3m +3n, ¢g=1,
Mmax = 37 Nmax = 3

X[ ki[dim] A(J = 10) A*(TT = 4) (I1, J*)
4| (1,1,2,2)[6] |30 =10 + 105 + 10r | 6* =1} +4% + 15 | (10,4%)
12| (1,2,3,3)[9] | 23=10L + 105 +3r | 8 =3} +4% + 1% | (10,4%)
(10,4)
(10,4%)

21| (1,3,4,4)[12] | 21 =101 + 10y + 1r | 9* =4} + 4% + 1%
48 | (2,3,5,5)[15] | 14=3L+ 10, +1p | 11* =4} + 4% + 3%

where eg = (1, 1,1, 1) again. The ten corresponding invariant monomials are:

IJ’O (3 370 O)
3= (2,2,1,0)= 2,
ps = (11,20)$xyz
IJ’O (0 073 O)
0 =1(2,2,0,1 -,
Mo = (2, )= (7.25)
ps = (1,1,1, 1):>a: Y- z-u,
/1’0 (0 072 1)
ps = (11,02):>xyu
uy =(0,0,1,2) = z - u?
1e° = (0,0,0,3) =
For the vector ky = (1, 1,2,2), one can consider the basis
= (-3,3,0,0),
e = (—1,-1,1,0), (7.26)
€3 = (_15 _1507 1)
with determinant 18, in which the dual pair of polyhedra:
1, + 10 + 15 =12,
L SR (7.27)

45 4 A% 4 Ay =12"

both contain 12 points and 12 mirror points, respectively.
7.4. Example of a Chain with IT = 5 and Eldest Vector k, = (7, 8,10, 25).
Now we present in Table 15 a projective chain with II = 5, constructed from

the invariant direction Wél) with the invariant monomials (0,0, 0,2) + (2,2, 2,0).
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The 14 projective vectors of this chain are represented as linear combinations
with positive-integer coefficients, M, N, L, Q, Q = 2,1, of the following three
vectors:

Q- ka(w")

M-(0,1,1,2)+ N -(1,0,1,2) + L-(1,1,0,2) =
=(N+L,M+L M+N,2-M+2-N+2-L).
(7.28)

Projecting on the perpendicular plane gives us planar reflexive polyhedra, so the
third basis vector

€3 = (_17_17_171) = (070a072) (7.29)

is common to all the chain discussed in this Subsection.

There can be constructed additional three chains, 77552’3’4), with the same
invariant direction, (0,0,0,2), (2,2,2,0), and the same youngest vector, but with
the different triple intersections and therefore with the different projective chains.
Together one can find inside all of four projective chains, wéa), a=1,2,3,4,a
total of 33 projective vectors (see Table 1).

Table 15. The K3 hypersurfaces in the ﬂél) chain with projection II = 5 related
tothe /X with J =5 Q-k=(N+L M+L, M+ N, 2M + 2N +2L) =
M-(0,1,1,2)+N-(1,0,1,2)+L-(1,1,0,2) with d = 4M + 4N + 4L, kea = (1,1, 1, 3)
Kyoung = (7,8,10,25), Q =2 or 1

N ky [det] | M | N | L | Q| (AA") | II—J* | chain
94 | (7,8,10,25) | [50] |11 |9 [ 5| 2] 6,30 | 5—9 | -
93 | (8,7,5,20) | [40] | 2 | 3|5 | 1] (828) | 5-9 | -
o1 | (56,819 | [38] | 9 | 7|3 | 2| (7.35") | 5-9 | IX
88 | (7,6,4,17) [34] 9 5 13| 2 (8,31%) 5-9 IX
84 | (4,57,16) | [32 | 4 | 3| 1| 1] (92r) | 5-9 | IX
82 | (4,5,6,15) [30] 7 5131 2| (10,207) 5-9 11X
69 | (3,4,512) | 48 | 3 | 2| 1] 1] (7,35 | 5-9 | IX
64 | (2,6,7,15) [30] 6 301 2| (13,239 5-9 IX
60 | (2,5,6,13) | [26] | 9 | 3 | 1| 2] (1323) | 5-9 | IX
58 (2,4,5,11) [22] 7 3 1| 2 | (14,19%) 5-9 IX
A7 | (23,49 | 36 | 5 | 3| 1|2 92) | 5-9 | IX
43 (2,2,3,7) [14] 3 3 1| 2 | (19,11%) 5-9 IX
1| (1,225 | 20 | 3 |1 |1]|2]| @515 5-9 | IX
3 L3 |n2 | 1| 1]1]2] 396 | 5-9 | IX
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It is interesting to note that the chain ﬂél) has 11 k4 vectors with II = 5 in
common with the 71X ; chain where J = 5, whose structure is obtained from the
following two vectors:

ks(IX) = m-(0,1,1,2)+n-(2,1,0,3) =
= (2n,m + n, m, 2m + 3n), (7.30)
1<m<6, 1<n<4
The chain IX of ks projective vectors with the structure 5;-A < 9=—a is

presented in Table 16. The lattice determinant and the basis are given by the
following expressions:

e; = (0,—m,m +n,0),
ey (—1,2,—2,0)7 (7.31)
€3 = (_17_17_171)a

and
det(el,eg,eg,eo) =4-m+ 6-n=d, (7.32)

where eg = (1,1,1,1).
The possible values of m and n for this chain are also determined by the
dimensions of the extended vectors, d(k®*(?)) = 6 and d(k°*()) = 4, with the

Table 16. The K3 hypersurfaces in the chain /X: k=(2n,m+n,m,2m+3n)=
= m-(0,1,1,2) + n - (2,1,0,3) with d=4m + 6n, Mmax = 6,Mmax = 3 and
Kea = (1,2,2,5)[10]

N k[dim] A(J =5) A*(II=9) (A, A%)
11 | (2,2,1,5)[10] | 28 =71 + 55 + 16& 8 =37, +4c + 1 (10"
43 | (2,3,2,7)[14] 199=TL,+5;+7r 11" =1, +95+ 1r (5m,9.)
24 (4,3,1,8)[16] 24 =35, + 55 + 16r 12* =17, +55 +6Rr (51‘[,9J)
33 | (6,4,1,11)[22] | 22=11 +554+16r | 20" =1L 4+ 55+ 14r | (7o € 9u)
47 | (2,4,3,9)[18] 16 =7 4+ 55 +4r 14 =6, + 75+ 1r (7o € 9n)

58 2,5,4,11)[22] | 14=T7 + 55+ 2R 19" =91 + 95+ 11r (5m,97)
60 | (6,5,2,13)[26] | 13=14+5;4+7r | 23" =1L +95+13r (5m1,9.)
69 4,5,3,12)[24] | 12=3rL 4+ 55 +4r 18" =6 + 75+ 5r (7o € 9n)

84 4,7,5,16)[32] 9=3rL+5;,+1r 27" =13, + 95 + 5r ( )
88 6,7,4,17 [34] 8=15+55+2r 31" =91, +9;5; +13r (51‘[,9J)
( )

( )

( )

( )

64 | (2,7,6,15)[30] | 13=7, +5,+1r | 23° =13, + 9, +1r | (5m.9s)
( )

( )

91 | (6,8,5,19)[38] | 7=9.+5,+1r | 35" =16, + 7, + 12z
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additional constraint n,.x = 3 < dim (0,1, 1,2) (see Table 16):

p-ks(IX) = m-(0,1,1,2) + n-(2,0,1,3),
p=1—->1<m<6,1<n<3 (7.33)

The 5 invariant monomials for this chain are the following:

= (1,4,0,0) = z -y,

”(2)_(2725270) = $2'y2'22,

us =(3,0,4,0) = 3. 24, (7.34)
“3:(17]-;171) = T Y- -z-u,

s =(0,0,0,2) = u?

7.5. Example of a J = II = 9 Chain. To see another aspect of mir-
ror symmetry and duality, we now consider the chain VI with intersection
J(A) =1I(A) =9 and J(A*) =II(A*) = 5 shown in Table 15, which is con-
structed from the extended vectors k! = (0,1,1,2) and k/ = (1,0, 1,2). In this
case, duality gives very simple connections between the numbers of integer points
in the dual polyhedron pair, as seen in Table 17.

The canonical basis for chain VI is:

e = (_m7na 07 0))
es = (—1,-1,1,0), (7.35)
€3 = (_1)_1)_1’1)

with the following restriction on the determinant
det(e1,e2,e3,e0) =4-m + 4-n=d, (7.36)
where eg = (1,1,1,1).

Table 17. The K3 hypersurfaces in the chain VI: k(VI) = (n,m,m+n,2m+2n) =
=m-(0,1,1,2) +n-(1,0,1,2)

N K4 A(J =9) A*(IT = 5) Am, A*;
6 | (1,1,2,4)[8] |35=130+9yn+13r | 7" =1} +55, + 1% | (9m,7,5.m)
15| (2,1,3,6)[12] | 27 =5,4+9,n+13r | 9" =17 +55., +4% | ( )
24| (3,1,4,8)[16] | 24 =21 + 91 +13r | 12° =1} + 501, +6r | (91,7,57,m)
31| (4,1,5,10)[20] | 23 =11 + 9y + 135 | 13* =15 + 5.5 + Tr | (91,5, 5,11
24 | (3,2,5,10)[20] | 16=2L +9,n+5r | 14* =3} +5f., +6% | ( )
71| (3,4,7,14)[28] | 12=2, +9sn+1r |18 =75 + 55, +6% | ( )

9,7, 5,11

11,7, 57,11

9,7, 5,11
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The possible values of m and n for this chain are determined by the dimen-
sions of the extended vectors, without any unexpected puzzles:

p-ky(VI) = m-(0,1,1,2) + n-(1,0,1,2),

p=1—=1<m<4 1<n</4, (7.37)
and the following:

po = (4,4,0,0) = z* o

“O*(S 37]-;0) = $3y327

”O - (25 27250) = xQ : y2 ' 2:27

uo=(1,1,3,0) = xz-y-2°

pd=(0,0,4,0) = z* (7.38)

us=1(2,2,0,1) = 22-9% u,

ph=(1,1,1,1) = =x-y-z-u,

us=1(0,0,2,1) = 2% u,

uy = (0,0,0,2) = u®

are the 9 invariant monomials W;,, for this chain.

Analogously, one can consider the projective chain n§“>(H = 5) with the
youngest vector (5,6,8,11), and compare it with the double-intersection chain
VIII, constructed from the extended vectors k(VIII) = m - (0,1,1,2) +n -
(1,1,2,0); (d = 4dm + 4n. mmax = 3, Nmax = 4), kaa = (1,2, 3,2)[8]. Among
the 95 K3 projective vectors, 26 have such an invariant-direction structure, and
therefore can be found in corresponding projective chains (see Table 1).

8. K3 HYPERSURFACES AND CARTAN-LIE ALGEBRA GRAPHS

We discuss in this Section more details of the emergence of Cartan-Lie
algebra graphs in our construction of CY spaces.

8.1. Cartan-Lie Algebra Graphs and the Classification of Chains of Pro-
jective Vectors. As we commented already in the Introduction and in Section 2,
the structure of the projective ky vectors in 22 chains leads to interesting relations
with the five classical regular dual polyhedron pairs in three-dimensional space:
the one-dimensional point, two-dimensional line segment and three-dimensional
tetrahedron, octahedron-cube and icosahedron-dodecahedron. There are also in-
teresting correspondences with the Cartan—Lie algebra CLA graphs for the five
types of groups in the ADEg 7 g series: see Figure 8. The CLA ;1 graphs, which
can be seen in the polyhedra of the corresponding k4 projective vectors, follow
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G ke Lm

J NS J

cyclic — (0, 0,0, 1) — 4!
dihedral — (0,0, 1, 1) > D!

kg G

{ {

. «(0,0,0, 1)« cyclic

. <« (0,0,1, 1) « dihedral
tetrahedral — (0, 1,1, 1) > Eé <« (0,1, 1, 1) « tetrahedral
octahedral — (0, 1, 1,2) —> E; <« (0,1, 1, 2) < octahedral

<« (0,1, 2,3) « icosahedral

icosahedral —» (0, 1,2, 3) —> Eé

Fig. 8. [Illustration of the Cartan-Lie algebra diagram classification of the
22(= [13 + 1] 4+ 8") chains of K3 polyhedra shown in Table 18. Here G denotes the
cyclic, dihedral, tetrahedron, octahedron-cube, and icosahedron-dodecahedron subgroups of
SU(2), L/R denote left/right integer points and CLA ; diagrams, J, — the type of inter-
section, and the k3 are all the possible planar vectors. We find rmaxy, = 17 of Tmaxg = 17
for the Ai series, and rmaxy, = 16 or rmaxr = 16 for the Di series. In the example shown
here, one can see the polyhedron with the projective vector: k4 = (1,1, 3,4)[9]

completely the structure of the five possible extended vectors:

k&'t =(0,0,0,1) « A,
k%" =(0,0,1,1) « D,
k&t =(0,1,1,1) « Eg, (8.1)
kgt =(0,1,1,2) « E,
k"t =(0,1,2,3) « E;s.

We give in Table 18 the ADE structures and the C' D ; diagrams of all the eldest
K3 projective vectors from the 22 double chains. An illustration is given in
Figure 8, and the rest of this Section discusses the examples of chains XV to
XTX, illustrating the power of our systematic approach.

8.2. The K3 Chain XV with Graphs in the Eél) — Agl) Series. Here we
give the list of ky vectors which can be constructed from the Weierstrass vectors
ks = (1,2,3) and k; = (1), shown as chain XV in Table 19. The number of k4
vectors in this chain is determined by the positive-integer numbers: m = 1,n < 6,
according to the dimensions of the corresponding component k.
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Table 19. The K3 hypersurfaces in the chain XV: k = (m,2-m,3-m,n) = m -
(1,2,3,0) +n-(0,0,0,1): d = 6m + ny, Mmax = 1, tmax = 6, keia = (1,2, 3,1)[7]

R |m,n k[d] A(J=T) Group A*II=T7)

501,11 (1,2,3,1)[7) |31=8.+7s+16r | ALY, | 8 =1} + 65 + 15
10] 121,232 [24=100+7,+7: | AV, | 8" =37 +45 +13
12 1,3 | (1,2,3,3)[9] |23 =120 + 75 +4r | AL, | 8 =4} + 35 + 1%
13| 1,4 |(1,2,3,4)[10] |23 = 141 + 75 +2r | ASY, [11° =35 + 35 + 13
14 1,5 | (1,2,3,5)[11] |24 = 161, + 75+ 1r | ALY, |13 =97 + 35 + 1%
15| 1,6 | (1,2,3,6)[12] |27 =19, + 75 + 1r | A, | 9 =57 +35 + 13

The basis for this chain, see Figure 9, can be written in the the following
form:
e; = (—n,0,0,m),
ex = (—2,1,0,0), (8.2)
e; = (—3,0,1,0).

The determinant of this canonical basis coincides, of course, with the dimensions
of the k4 vectors:

det (e1,e2,e3,e0) =6-m + 1-n =d, (8.3)

where ep = (1,1,1,1). The decomposition of this chain is again determined by
the dimension of the extended vectors d(k**()) = kfx(z) + k;x(z) + kgx(z) + kfc(z),
as seen in Table 19:
ky(XV)=m-(1,2,3,0) 4+ n-(0,0,0,1),
m =1, 1<n <6 (8.4)

L<— J, — R

Fig. 9. The Aél)L — Eél)R graph from the eldest (1,2, 3,1)[7] polyhedron in chain XV:
31=8L + 75+ 16Rr
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The seven invariant monomials corresponding to this chain are:

=(6,0,0,1) = a5-u,
uo_(4,1,0,1) = 2t y-u,
ue=(2,2,0,1) = z2-9% u,
ne=1(00,3,0,1) = ¢°-u, (8.5)
uof(SO,l,l) = 3.2,
=(1,1,1,1) = z-y-z-u,
uo—(O 0,2,1) = 2%-u.

Considering the dual pairs for these vectors, one can see that the singularities of

the eldest vector ky = (1,2, 3, 1) correspond to some graphs of the Aél)L — Eél)R
series, as seen in Figure 9. For instance, if one looks at the integer points in
the edges of the polyhedron on the left (right) side of the intersection by the
hyperplane k? = (0, 1,2, 3), one sees graphs with A(Gl)L and Eél)R Lie algebras.
Going to the last minimal k = (1,2, 3, 6) of this chain, we find that the right graph

degenerates and left points reproduce Agll) with the maximum possible rank in
this chain. Thus, the six k vectors in this chain produce the following graphs in
the A series: Aél), A(71), Aél), Aél),A%), Agll).

8.3. The K3 Chain XV with Graphs in the E{") — D, Series. The basis
for the chain shown in Table 20 is

€ = (—m,n,0,0),
es = (0,-2,1,0), (8.6)
e3 = (_17_17_171)5

with
det (e1,e2,e3,e0) =6-m + 2-n =d, (8.7)

where g = (1,1,1,1) again. The decomposition of this chain is completely
determined by the dimensions of the vectors shown in Table 20:

p-ky(XVI) = m-(0,1,2,3) + n-(1,0,0,1),
p=1" — 1<m<21<n<6,
p=2 — m=n =2 (8.8)
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Table 20. The K3 hypersurfaces in the chain XVI: k = (n,m,2m,3m + n) =
m(O, 1,2, 3)—|—n(1, 0,0, 1): (d =6m + 2”), Mmax = 2, Nmax = 6, Kea = (17 1,2, 4)[8]

N k[d] A(J=T) Group A*(II=T7) (II(A), J(A™))
6| (1,1,2,4)[8] |35 =16 + 75+ 12r| Dsr | 7" =1} + 56 + 1% (9,5%)
11](2,1,2,5)[10] | 28 = 71 + 7y + 145 | Dor | 8" =15 +45 +35 | (10,4%)
15 (3,1,2,6)[12] | 27 =45 4+ 75 + 16r | D1or| 9" =17 + 40 + 4% (9,5%)
17)(4,1,2,7)[14] [ 27 = 21 + 75 + 18r | Dur |12 = 15 + 45+ T | (7,77)
19] (5,1,2,8)[16] [ 28 = 1, + 7y + 14 | Diog| 14" =1} +45 + 9% | (7,77)
20| (6,1,2,9)[18] | 30 = 11, + 7y + 225 | Disr [12* = 1} + 45 + T | (7,77
47)(3,2,4,9)18] | 16 =4, + 7, +55 | — |14" =35 + 55+ 65| (7,7%)
58((5,2,4,11)[22]| 14 =11 + Ty +6r | — [19 =35 + 45 +12% (5,97

y’(l) = (2a670a0) = xQ : yGa

ﬂ37(2ﬂ471)0) = x2~y4'z,

ﬂg - (2a 272a0) = xQ : y2 : 227

uy=(2,0,3,0) = 2?23 (8.9)
u8=(1,3,0,1) = z-y-u,

ugz(l,l,l,l) = T-y-z-u,

uh=(0,0,0,2) = u’

The example of the Eél)L — Dgp graph associated with the eldest (1,1,2,4))[8]
polyhedron in Table 20 is shown in Figure 10.

L«— J, —> R

1

1
ES DX
3 1
0 o o o o o °
246 5432 1 2222 21

Fig. 10. The Eél)L — Dsr graph from the eldest (1,1,2,4)[8] polyhedron in the chain
XVI:33=161+ 75+ 10r
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8.4. The J = Il Symmetric Chain XV /] with Exceptional Graph Eg x Eg.
We show in Table 21 the projective vectors constructed from k§* = (0,1,1, 1) and
k5® = (1,0,2,3). In this case, the number of points in the maximal polyhedron
with m =n =1 can easily be calculated: 33 = (10)r, + (7)int + (16)g. The
«right» 15z + 1 points form the graph for the affine Eél) Lie algebra, as shown
in Figure 11:

6=14+1+14+1+1+1 = {(Po)1 + (Pu)2 + (Pu)s +
+  (Pry)a + (Poy)s + (Puy)s ),

3=3 = {(P, . .)s}h (8.10)
=

6=4+2 = {(Boorep)s t (Boya)t

’
7 8

The «left» points in this polyhedron, 9;, + 1, correspond to the Eél) affine series
with the Coxeter numbers:

3=1+1+1 = {(le)l + (sz)Q + (sz)S}v
3=2+1 = {(P, )2+ (P}, (8.11)
3=2+1 = {(P, )2+ (P}

Table 21. The K3 hypersurfaces in the chain XV II: k = (n,m,m + 2n,m + 3n) =
=m-(0,1,1,1) +n-(1,0,2,3): d = 3m + 6n, max(m,n) = (6,3)

X K[d] A A*
(1,1,3,4)[9] | 33=10L + Tyen + 16 | 9" =15 + Th_, + 1%

16 | (1,2,4,5)[12] | 24 =100 4+ Tymn+Tr | 12 =45 + Tho, + 15

25 | (1,3,5,6)[15] | 21 =101 + Ty +4r | 15" =75 +Th_y + 15
32 | (1,4,6,7)[18] | 19=10L +Tsu+2r | 20" =12} + Ty + 15
36 | (1,5,7,8)21] | 18 =101 + 7y—u+1r | 24" =167 + Ty + 1%
39 | (1,6,8,9)[24] | 18 =101 + 7y +1r | 24" =16} + Th_y + 15
18 | (2,1,5,7)[15] | 26 =3p +Tsen + 165 | 17" =1} + Th—s + 9%

27 | (3,1,7,10)21] | 24 =17 +Ty—ni+ 165 | 24" =1} + 75, + 165
52 | (2,3,7,9)21] | 4=3.+T/—n+4r | 23" =T; + Ty + 9%

54 | (3,2,8,11)[24] | 15=10+Tsu+7r | 27" =4 + i, + 165
61 | (2,5,9,11)27] | 11 =1, +7s-u+3r | 32° =95 + i, + 165
72 | (3,4,10,13)[30] | 10=17 +7s-uu+2r | 35" =12} + Th_, + 163,
77| (3,5,11,14)[33] | 9=1r+7su+1r | 39" = 16} + T, + 165
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For mmax = d(k(1,2,3)) = 6 and nmin = 1, the corresponding polyhedron con-
tains 18 points: 18 = (10) + (7)int + (1)g. Conversely, for muyi, = 1 and
Nmax = 3 = dim(k(1,1,1)), the self-dual vector k = (3,1,7,10) has 24 inte-
ger points: 24 = (1)1, + (7)int + (16)g. Finally, the polyhedron with m =5
and n =3 contains the minimal possible number of integer points, namely
9= (1)z + (7)int + (1)g. This minimal vector (3,5, 11,14)[33] is the dual con-
jugate of the vector k = (1,1,4,6)[12].
The canonical basis of the chain shown in Table 21 is:

e = (_m7 n, 07 0))
ey = (—2,—1,1,0), (8.12)
€3 = (_1a07_171)a

with
det (e1,e2,e3,60) =3-m + 6-n =d, (8.13)
where eg = (1,1,1,1). The possible values of m and n for this chain are

determined in the standard way from the dimensions of the extended vectors,
d(k®*()) = 6 and d(k°*()) = 3, as seen in Table 21:

p-ky(XVII) = m-(0,1,1,1) + n-(1,0,2,3),
p=1" — 1<m<6, 1<n<3,
p=2 — m=n=2,
p=3 — m=n=23. (8.14)

The seven invariant monomials corresponding to this chain are the following:

uh = (6,3,0,0,) = a5.93

pa=(4,2,1,0,) = az*-y? 2,

uo=(2,1,2,0,) = 2%-y-z,

uo = (0,0,3,0,) = 2% (8.15)
uo=(3,2,0,1,) = 2%-4%-u,

uS=01,1,1,1,) = z-y-z-u

uh=(0,1,0,2,) = y-u?

and the corresponding Eél)L — Eél)R graph associated with the eldest (1,1, 3,4)
[9] polyhedron in chain XV IT is shown in Table 22 and Figure 11.
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Table 22. The group singularities of the dual pairs of elliptic polyhedra in chain XV II

P?(k) H(A) H(A™) | GL(A) | Gr(A) | GL(AY) | Gr(AT)
(1,1,3,4) | m1+ma+ms =0 | mi =0 Es Es | SU) | su()
(1,2,4,5) | mi+ma2+m3=0|mi=0 Es F, G2 SU(1)
(1,3,5,6) | mi+m2+m3=0|mi=0 Es Go Fy SU(1)
(1,4,6,7) | mi+ma2+m3=0|mi=0 Es SU(2) E~ SU(1)
(1,5,7,8) | mi+ma+ms=0|mi=0| Es |SUQ1) | Es | SU(1)
(1,6,8,9) | mi+ma2+m3=0|mi=0 Es SU(1) Eg SU(1)

L+«— J, — R

Eg Eq

L 3

2

! !
o—o o oo o—0 0 o 0 o 0o o
12 32 1 1 2 3 4 56 4 2

Fig. 11. The Eél)L - Eél)R graph associated with the eldest (1, 1, 3,4)[9] polyhedron in
chain XVII: 33 =101 + 75 + 16r

8.5. The J = II Symmetric Chain X V' /1] with Exceptional Graph E7 x Ex.
This chain can be built from the vectors k§*" = (0,1, 1,2) and k§*" = (1,0,2,3),
with positive integers m < 6 and n < 4. The maximal (m = n = 1) polyhedron
in this chain is again completely determined by the dimensions 4 and 6 of the
projective vectors k$*" and k§*’, respectively:

36 = (13)L + (7)J:1‘[ + (16)3. (8.16)

The «right» 15z + 1 and «left» 127 + 17 points produce the graphs for the
affine Eél) and E§1) Lie algebras, respectively, as seen in Figure 12. The vector
k = (3,4,9,14)[28] is self-dual with Eél) graphs for the dual polyhedron pair.
The «minimal» vector k gives the following set of integer lattice points in the
polyhedron:

D+ (TNine + (R =9. (8.17)
The canonical basis for the chain shown in Table 23 is:
€ = (_ma n, Oa 0)7
ey = (—2,-1,1,0), (8.18)
€3 = (_17 _17 _17 1))
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Table 23. The K3 hypersurfaces in the chain XV III: k = (n,m,m+2n,2m+3n) =

=m- (071,1,2)+n~ (17072,3): d=4m+6n, Mmax :67nmax =4

N

k[d]

A

A*

8

(1,1,3,5)[10]

36 = 13L + 7j=n + 16Rr

9" =1} + Thoy + 1k

17
26
33
37
40
19
28
34
55
53
74
73
62
78
85

(1,2,4,7)[14]

(1,3,5,9)[18]
(1,4,6,11)[22]
(1,5,7,13)[26]
(1,6,8,15)[30]

(2,1,5,8)[16]
(3,1,7,11)[22]
(4,1,9,14)[28]
(3,2,8,13)[26]
(2,3,7,12)[24]
(4,3,11,18)[36]
(3,4,10,17)[34]
(2,5,9,16)[32]
(3,5,11,19)[38]
(4,5,13,22)[44]

NN NN

27T=13L+7;=n+7r
24 =13 4+ 7j=n1 + 4r
22 =13 4+ 7j=n1 + 2r
21 =13+ 7j=n+ 1r
21 =13 4+ 7j=nn + 1r
28 =5 + Tj=n + 16r
25 =214+ 75=n + 16r
24 =11 4+ 7y=n1 + 16R
16 =2, +75=n1+Tr
16 =5 + 7= +4r
12=1L +75=nn +4r
11 =2 4+ 75=n1 + 2r
13=5L+7;=n+1r
10=2L +7j=n +1r
9=1r+7j=n0 + 1r

12 =47 + Th—y + 1%
15% =75 4+ They + 15
20% = 125 + Ty + 1%
24* = 167 + Ty + 1%
24* = 165 + Ty + 1%
14* =17 + Th—y + 6%
20" =13 + Thoy + 125
24* =13 + T, + 163
23% =43 + Ty + 125
20" =7y 4+ Th—y + 6k
30 =75 + Ty +16%
31" =127 + Thoy + 125
29* = 167, + Tr—y + 6%
35" = 167 + Tr—y + 125
39* =167 + Tg—s + 16%

with

The possible values of m and n for this chain fill up the dimensions of the

det (e1,e2,e3,1)=4-m + 6-n = d.

extended vectors d(k°*()) = 6 and d(k°*()) = 4, as seen in Table 23:

p-ky(XVIII) =

p=1" —

p=2 — m=n=2,
p=3 — m=n=23,
p=4 — m=n=4.

m-(0,1,1,2) + n-(1,0,2,3),
1<m<6, 1<n<4,
(8.20)

(8.19)
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L<— J, — R

El El
i .
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1 23 43 21 1 23 45 6 4 2

Fig. 12. The E;UL - Eél)R graphs associated with the (1, 1, 3,5)[10] polyhedron in chain
XVIII: 36 =131 + 75 + 16r

Table 24. The group singularities of the dual pairs of elliptic polyhedra in chain XV II1

P?(k) H(A) H(A™) | GL(A) | Gr(A) | GL(AY) | Gr(AT)
(1,1,3,5) | mi+ma2+2m3 =0 | mj = Er Es SU(1) | SU(1)
(1,2,4,7) | m1+m2+2ms =0 | m] = Er Fy Go SU(1)
(1,3,5,9) | m1+ma+2msg=0|mi = Er G» Fy SU(1)

(1,4,6,11) | my +mo +2ms =0 | m} E. | su@ | B | suq)
(1,5,7,13) | mi+ma2+2m3 =0 | mi =0 Er SU(1) Eg SU(1)
(1,6,8,15) | m1 +ma +2ms =0 |mi=0| E; |SUQ)| Es | SU(1)

The seven invariant monomials corresponding to this chain are the following:

uh=(6,4,0,0,) = a4,

ui=(4,3,1,0,) = at-y3. 2

e =1(2,2,2,0,) = a%-y? 2%

up=(0,1,3,0,) = y-2° (8.21)
s =(3,2,0,1,) = Yo u

uS=(1,1,1,1,) = z-y-z-u,

pi=1(0,1,0,2,) = y-u’

The E;l) L= él) r graph associated with the eldest (1,1,3,5))[10] polyhedron

in chain XV III can be seen in Table 24 and Figure 12.

8.6. Chain X7X with (7;,7r;) Weierstrass Triangle Fibrations. We now
consider the chain X7X of ky projective vectors with Fg; and Fsgp graphs.
This chain starts from the m = n = 1 polyhedron, which is left-right symmet-
ric with respect to the intersection P?(1,2,3). This polyhedron P3(1,1,4,6)
contains 39 = 16y, 4 (7) = + 16 integer points: see Table 25 and Figure 13.
The minimal vector k = (5, 6,22, 33)[66] is the dual conjugate of the eldest vec-
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Table 25. The K3 hypersurfaces in the J =1I symmetric chain X7X with
k = (n,m,2m + 2n,3m + 3n) = m-(0,1,2,3) + n - (1,0,2,3): d = 6m + 6n,
Mmax — 67 Nmax = 6’ keld = (17 17 47 6) [12]

N ks AJ=T1=T1) Al =J=7)

9| (1,1,4,6)[12] |39=160 + Ty—n+ 165 | 9" =1} +Ti_s + 15
20| (1,2,6,9)[18] | 30 =161 + Ty—n +7r | 12 =4} + Th_y + 15
29| (1,3,8,12)[24] | 27 =161 + Ty—ni +4r | 15" =7} + They + 15
35| (1,4,10,15)[30] | 25 =161 + Ty—m +2r | 20" =12} + Tf—, + 1}
38| (1,5,12,18)[36] | 24 =161 + Ty—ni + 1r | 24" = 16} + Tf—,; + 1}
41 (1,6,14,21)[42] | 24 =161 + Ty—n +1r | 24" =16} + Tf—, + 1}
56 | (2,3,10,15)[30] | 18 = 7o +Ty—n+4r | 18 =7i + Ty +4r
75| (3,4,14,21)[42] | 13=4L +Ty—u+2r | 26" =12} +Th_; + TR
63| (2,5,14,21)[42] | 15 =T, +Ts—n+1r | 27" =16} + Th_, + 45
79| (3,5,16,24)[48] | 12 =4r 4+ Tj—n+1r | 30" = 16} + T, + Th
86 | (4,5,18,27)[54] | 10 =21 + Ty—m + 1r | 35" = 16} + T, + 125
92| (5,6,22,33)[66] | 9=1p+7/—n+1r |39" =16} + T, + 16}

tor k = (1,1,4,6)[12], the vector k = (1,6, 14,21)[42] is self-dual, and its dual
pair of K3 polyhedra yield the self-dual Eél) graph.
The basis of the chain shown in Table 25 is the following:

e; = (—m,n,0,0),
es = (—2,-2,1,0),w (8.22)
e; = (—1,-1,—-1,1),
with
det (e1,e2,e3,e0) =6-m + 6-n =d, (8.23)

where ep = (1,1,1,1). The possible values of m and n for this chain are com-
pletely determined by the dimensions of the vectors d(k°*(/)) = 6 and d(k**(")) =
= 6 (see Table 25):

p-ki(XIX) = m-(0,1,2,3) + n-(1,0,2,3),

p=1" — 1<m<6,1<n<E06,

p=2 — m=n=2,

p=3 — m=n=3, (8.24)
p=4 — m=n=4,

p=6 — m=n=06.
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Fig. 13. The E{", — E{" ,, graph obtained from the eldest (1, 1,4,6)[12] polyhedron in
chain XIX: 39 =167 + 75 + 16r

Table 26. The group singularities of the dual pairs of elliptic polyhedra in chain X7X

P?(k) H(A) H(A™) | GL(A) | Gr(A) | GL(AY) | Gr(AT)
(1,1,4,6) |m1+2m2+3m3=0|mi=0| FEs Es SU(1) | SU(1)
(1,2,6,9) |my+2ms+3ms =0|mi=0| Es Fy G, | sU()
(1,3,8,12) | m1+2mae +3ms =0|mj = Es G2 F, SU(1)

(1,4,10,15) | m1 + 2m2 + 3ms =0 |mi =0| Es | SU®@) | E: | suQ)
(1,5,12,18) | m1 + 2m2 +3mz =0 | mi = Esg SU(1) Esg SU(1)
(1,6,14,21) | m1 +2ma +3ms =0 |mf =0| Es | SUQ)| Es | SU(1)

The seven invariant monomials corresponding to this chain are the following:

ui = (6,6,0,00 = ab.95

ud = (4,4,1,0) = a2ty 2

u%:(2,2,2,0) = xQ-yQ-zz,

uo=(0,1,3,0) = y-2% (8.25)
no=(3,3,0,1) = z%.9° u,

ug:(l,l,l,l) = z-y-z-u,

uh=(0,0,0,2) = u’

Using these invariant monomials and basis, the CY equations for all the
k(I = m + n) projective vectors of this chain can be written in the following
form:

p=Il;r

. ,NprL-(—e1) PR —nyr-(—e1)
A + I; allxé A 1

(8.26)

where the basis vector e; = (m, —n,0,0). The Eél)L — él)R graph obtained
from the eldest (1,1,4,6)[12] polyhedron in chain X7X is shown in Table 26

and Figure 13.



686 ANSELMO F. ET AL.

9. PERSPECTIVES ON THE FURTHER CLASSIFICATION OF CYj3
AND K3 SPACES

Although a fuller study of C'Y3 spaces lies outside the scope of this paper,
a preliminary study is of interest here, for the following reason. In addition to
the 95 K3 spaces (Table 1) related to the zeroes of single polynomials discussed
in previous Sections, others can be found by «higher-level» constructions as the
intersections of the loci of zeroes of quasi-homogeneous polynomials, which are
obtainable from C'Y3 spaces, as we now discuss.

When going on to consider the general construction of k5 projective vectors
in C'P* that describe C'Y3 hypersurfaces, we start from the 95 simple extensions of
these K3 vectors as well as 5 multiple extensions of lower-dimensional vectors,
together with all their possible permutations. In accordance with the previous
five forms of extended vectors, one finds the following sets and permutations:
quadruply-extended basic vectors with the cyclic C5 group of permutations:

kim = (0,0,0,0,1), |C5| = 5; (91)
triply-extended composite vectors with the dihedral D5 group of permutations
kgm = (0,0,0,1,1), |D5| = 10; (92)

the following doubly-extended composite vectors with the Df, AL, and A5 groups
of permutations

KS* = (0,0,1,1,1), |D4| = 10, (9.3)
kK" = (0,0,1,1,2), |A4%| = 30, (9.4)
K® = (0,0,1,2,3), |As| = 60, (9.5)

we recall that the alternating group of permutations Ay can be identified with
the icosahedral symmetry group I. All the other extended ks vectors can be
obtained similarly from 95 K3 vectors, utilising the symmetric group S5 or some
subgroups. The full set of extended k5 vectors is displayed in Table 27. As noted
in its caption, the total number of extended vectors is 10 270.

As an illustration how our method may be used to classify C'Ys manifolds,
we now describe briefly how to obtain the complete list of ks vectors with K3
intersections, which we find to be distributed in 4242 chains. To build the chains
for C'Y3 which have a double-vector structure, each of which is parametrized by a
pair of positive integers, one should find the «good» pairs of «extended» vectors
(i.e., those whose intersection gives a reflexive K3 hypersurface), which involves
checking all the 10 270 x 10 271/2 = 52 731 315 possible pairs of vectors from
Table 27. It was just such a search by computer that led to the 4242 double
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to construct C'Y3 spaces, listed together with the orders of their permutation groups.

Table 27. The 100 distinct types of five-dimensional «extended» projective vectors used
Including these permutations, the total number of extended vectors is 10 270
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chains mentioned above, together with their eldest vectors. For more complete
information about these chains, see [37].

These chains give many C'Y3 projective vectors, but not all. The complete list
also includes the «good» triples which have elliptic fibres. This requires looking
for good triples among the following five types of five-dimensional extended
vectors:

(0,0,0,0,1) =
(0,0,0,1,1) = 10
(0,0,1,1,1) = 10, (9.6)
(0,0,1,1,2) = 30,
(0,0,1,2,3) = 60,

R

where the number after the arrow on each line of (9.7) corresponds to the number
of permutations in each case. We have found 259 such good triples, together with
their eldest vectors, corresponding to 259 elliptic chains. The union of the K3
and elliptic projective vectors still does not yield the full dual set of ks projective
vectors. We must also construct another set of chains using quadruples from
among the following multiply-extended vectors:

1. (0,0,0,0,1) = 5,
2. (0,0,0,1,1) = 10. 9.7)

The number of C'Y3 chains found in this way is just six.

In addition to these 4242 double, 259 triple and 6 quadruple CY3 chains
(to be compared with the 22 double and 4 triple K3 chains found previously),
one must find all the vectors whose intersection contains only one central interior
point (to be compared with the exceptional K3 vector (7,8,9,12)). We have
found just two such examples in the case of C'Y3, namely (41, 48,51,52,64) and
(51,60, 64,65, 80), again using the intersection-projection duality technique. The
eldest vectors for all the C'Y3 projective vector chains we have found can be
obtained from [37].

In the cases of dimension higher than three, the concept of intersection—
projection duality is richer, and leads to one important and by now well-known
consequence [7,33], namely the isomorphism between different homology groups
for dual pairs of C'Yy manifolds M, M*, and specifically the following relation:

HP9(M) ~ HIPI(M™) (9.8)

for 0 < p,q < d. We leave a more complete discussion of duality of CYj
spaces to future work, limiting our discussion here of their ramifications for the
classification of K3.
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Our construction based on the 10270 extended vectors obtained from the
100(= 95 + 5) types of projective vectors in lower dimensions n = 1,2,3,4
shown in Table 27 yielded all the 4242 (259,...) eldest vectors representing
CYj3 spaces with K3 (elliptic, ...) fibers. However, this method of construction
simultaneously provides a new higher-level list of K3 spaces defined by planar
polyhedra. To explain this, let us first assign to all K3 spaces defined by n-
dimensional projective vectors level zero, and denote them by Ily. Then, level
one K3 spaces consist of all the «good» intersections* of two (n+ 1)-dimensional
extended vectors, denoted by II;. This yields a list of reflexive polyhedra that is
more complete than the previous list of polyhedra obtained from n-dimensional
projective vectors, i.e., Il C II;. Continuing, one may define the set of all
«good» intersections of level two, Il,, by considering the intersections of three
(n + 2)-dimensional extended vectors, and similarly for the higher levels 3,4, ...:

Il CII; C1IIz C ... C Iljast 9.9)

until this process gives us no new reflexive polyhedra. Since the number of
distinct reflexive polyhedra in any dimension is finite, e.g., the maximal number
of integer points for planar polyherdra is 10, for K3 polyhedra it is 39, etc.,
there exists a maximum last level, after which one cannot find any new types of
polyhedra.

Following this approach in the simple case of C'Y; spaces, we recall that we
found three planar polyhedra (triangles) at level zero, determined by the three
projective vectors (1,1,1), (1,1,2) and (1,2,3). At level one, constructing the
22 chains of K3 projective vectors via the 22 «good» intersections of the five
types of four-dimensional extended vectors, we now find 7 new planar polyhedra
in 9 of the 22 two-vector K3 chains, differing from the previous three trian-
gles by the numbers of vertices (V, V*) and/or by the numbers of integer points
(N, N*) and/or by the areas of these planar polyhedra, as shown in Table 28. To
look for further new polyhedra at level 2, one should consider the five following
types of vectors: (1),(1,1),(1,1,1),(1,1,2), and (1,2,3), extended to five di-
mensions. Taking into account all the 50 possible permutations, and looking for
the «good» triple intersections, we find among the 259 «good» planar reflexive
polyhedra mentioned above just three distinct new polyhedra, which are exhibited
in Table 29.

Extending this procedure, we found among the 4242 chains of CY3 spaces
with «good» intersections 730 new K3 polyhedra at level one, many with mul-
tiple realizations as in Tables 28 and 29. As an example how such new K3
spaces emerge, consider the following two-vector C'Y3 chain: m(0,1,1,4,6)+

*In the sense that they give n-dimensional reflexive polyhedra.
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Table 28. The 7 distinct new planar polyhedra, representing new CY: spaces, that
are found as double intersections involving 9 of the 22 two-vector K3 chains. Two
realizations each are given for 2 of the new polyhedra

N k() k() N,N* | V,V*
1| (0,0,1,1) | (1,1,0,0) | 9,5* | 4,4*

(0,0,1,1) | (1,1,0,1) | 9,5° | 4,4*
2 | (0,0,1,1) | (1,2,0,1) | 7,7* | 4,4
30 (0,1,1,1) | (1,0,1,2) | 8,6* | 4,4
41 (0,1,1,1) | (3,0,1,2) | 4,10 | 3,3"
51 (0,1,1,2) | (1,1,2,0) | 5,9° | 3,3

(0,1,1,2) | (2,0,1,3) | 5,9° | 3,3
6 | (0,1,1,2) | (2,1,3,0) | 6,8 | 4,4
71(0,1,2,3) | (3,2,1,0) | 59" | 4,4

Table 29. The 3 distinct new planar polyhedra, representing new C'Y; spaces, that are
obtainable as triple intersections of five-dimensional extended projective vectors, the
sum of which gives the eldest C'Y5 projective vector. Three realizations each are given
for 2 of the new polyhedra

N kéze)z kéQa: kéze)z N7 N* ‘/7 V*
1 (070707171) (071717070) (17071707 1) 87 6" 575*
2 (050307171) (0,1,1,0, 1) (170a13170) 77 ~ 575*
(070707171) (07171707 1) (171727070) 77 7 575*
(050317171) (1,1,0,0, 1) (071a03172) 77 7* 575*
3 (070707171) (171717070) (07172707 1) 67 8” 575*
(03 Oa 07 17 1) (05 17 27 Oa 1) (27 13 Oa 17 O) 67 8* 57 5*
(070717171) (071707172) (170727170) 67 8" 575*

+n(1,0,1,4,6). The maximum values of m and n are determined by the di-
mensions of these extended vectors, namely d = 12. This chain contains 46
different ks projective vectors. The four-dimensional pentahedroid correspond-
ing to the eldest vector in this chain is shown in Figure 14. As can be seen there,
in addition to its 5 vertices, the pentahedroid has 10 one-dimensional edges,
10 two-dimensional triangular faces, and 5 three-dimensional tetrahedral facets.
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Fig. 14. The 4-dimensional pentahedroid corresponding to the CY3 space specified by
the eldest vector ks = (1,1,2,8,12)[24] in the two-vector chain m(0,1,1,4,6)+
+n(1,0,1,4,6). The number of integer points in this pentahedroid is N(S) = 335,
and the volume S = 72. SL(4, Z) transformations produce an infinite number of polyhe-
droids, conserving the volume

This pentahedroid contains two realizations of the tetrahedron corresponding to
ks = (1,1,4,6), whose intersection contains an elliptic fibre corresponding to
k3 = (1a 27 3)

A snapshot of the complete m(0,1,1,4,6)+n(1,0,1,4,6) chain is shown in
Figure 15, where the number of points IV in each member of the chain is plotted
as a function of d = k1 + ko + k3 + k4 + ks for each of the allowed values
of m. We note a systematic tendency for NV to decrease as d increases. (The
structure of the chain is, of course, symmetric under the interchange: n < m).
The corresponding plot for the dual polyhedra is shown in Figure 16: here we
see that the number of points N* increases as d increases.

To get another impression of the rich new structures emerging at levels
one and above, we consider a «tetrahedron subalgebra» of our K3 algebra, i.e.,
we consider only those projective vectors corresponding to point- and segment-
polyhedra, triangles and tetrahedra. With this restriction, we start from only 32
K3 projective vectors, corresponding to four-vertex tetrahedra and five of our
previous extended vectors. In this way, the number of reflexive polyhedra at
level one is reduced to just 632, consisting of 460 tetrahedra and 172 reflexive
polyhedra with numbers of vertices between 5 and 10. In this list of 632 poly-
hedra, there are actually only 146 distinct new types of polyhedra, as shown in
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Fig. 15. The number of points N found in different members of the chain m(0,1, 1, 4,6)+
n(1,0,1,4,6), plotted as a function of d = k1 + k2 + ks + ka + ks for different values
of m

Table 30. More information about them can be obtained from [37]: we leave
their more detailed study to later work.

The method described here has a very simple geometrical interpretation.
According to the chain structure, each C'Y3 can have a complex internal structure,
and correspondingly its vector can be extended as a sum of two K3, three
elliptic, four two-component or five single-component extended vectors. Another
nice feature of this chain structure is that it gives us complete information about
the integer lattice which determines all the CY equations. Moreover, it also gives
us the possibility of summarizing the singularity structure of C'Y3 spaces. As we
discussed in Section 8, the K3 polyhedron structure gives us a systematic way
of classifying the corresponding Cartan—Lie algebra graphs. It will be interesting
to make a full corresponding analysis for C'Y3 hypersurfaces, taking duality into
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Fig. 16. The number of points N found in the polyhedra dual to the previous
m(0,1,1,4,6)+n(1,0,1,4,6) chain, plotted as a function of d = k1 + ka2 + ks + ka + ks
for different values of m

account. This method could also provide the full classification of Betti-Hodge
topological numbers for C'Y3 manifolds. Moreover, this algebraic method enables
us to «walk» between different dimensions, e.g., to classify C'Yy, ...5,... manifolds
(Figure 1). The greatest limitations may be our abilities to analyze this algebra
and/or the available computer resources.

A fuller analysis of our structural classification of the ks vectors for C'Y3
manifolds will be given in later work. An important aspect of this procedure is
that we can study the structures of the positive-integer lattices which correspond
to the k vectors, introducing the corresponding modular (for two-dimensional
sublattices) and hypermodular (for 3-, 4- or higher-dimensional lattices) transfor-
mations. These yield duality groups that are more general than the well-known
S, T and U dualities, including them as subgroups. Moreover, the study of the
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Table 30. The 146 distinct new polyhedra, representing new K3 spaces, that are ob-
tainable as double intersections of projective vectors in the «tetrahedron subalgebra»
containing only point- and segment-polyhedra, triangles and tetrahedra. Many of these
have several different realizations as double intersections: more details can be found
in [37]

R| N, N* |V, V*|Pic, Pic* | ® | N, N* |V, V*|Pic, Pic* | ® | N, N* |V, V*|Pic, Pic*
1| 31,6% | 6,5 | 2,18 | 51 |14,19%| 7,6* | 13,8 |101|22,20*| 5,5 | 10,11*
2| 28,9% | 7,6%| 4,16% | 52 | 26,8* | 6,5% | 4,17% [102|20,16* | 5,5* | 10,13*
3120,7%|6,5% | 4,17* | 53 [25,14* | 6,6 | 7,13* |103|24,18" | 5,5 | 9,12*
4|22,8%|6,5%| 7,16 | 54 [15,21%| 5,5% | 12,10 |104|15,21* | 4,4* | 14, 10*
5(31,9% | 6,5 | 3,17 | 55 |22,16*| 6,6* | 9,11* |105|21,15% | 4,4* | 10, 14*
6 |21,12%| 7,6% | 8,13* | 56 [12,18" | 6,7 | 13,10* |106|10,26* | 5,6* | 15, 7"
7 17,20% | 7,7* | 11,9* | 57 |17,13*| 6,6* | 10,13* |107|10,32* | 6,6 | 16,4*
8 |22,14% | 6,6* | 8,13* | 58 |24,12*| 5,5 | 7,14* |108]19,14* | 5,5* | 11,13*
9 |24,12%| 6,5% | 7,14* | 59 |15,15% | 4,4* | 14,12* |109|16,26* | 5,5 | 13, 8"
10[20,12*| 6,6* | 10,13* | 60 |20,11%| 7,6* | 9,14* |110|12,27*| 5,5 | 15, 7"
11(20,20* | 6,6* | 10,10* | 61 [10,20% | 5,6* | 16,9* |111|15,15% | 5,5* | 12,13*
12(13,14% | 6,6 | 13,11* | 62 |11,14*| 6,6* | 14,12* |112]|10,23* | 6,6* | 15,7*
13] 26,8* | 6,5% | 5,17* | 63 |24,18| 5,5 | 8,12* |113| 6,34 | 5,6 | 18,2*
14| 26,7* | 6,5% | 5,17* | 64 |16,17*| 6,6* | 11,11* |114|25,11*| 5,5% | 8, 15"
15| 18,8* | 6,5% | 9,16* | 65 | 8,26* | 5,6* | 17,5 |115|15,15% | 4,4* | 13,13*
16(24,10% | 6,6 | 6,15% | 66 [14,11% | 7,6* | 12,14 [116|14,16* | 5,5* | 12,13*
17(11,11% | 4,4 | 15,15% | 67 | 8,26* | 6,7 | 17,3* |117| 9,27* | 5,5* | 16,6*
18]21,17* | 7,7* | 9,11* | 68 |21,19*| 6,6* | 10,10* |118|10,26* | 6,6 | 16, 6"
19(14,15% | 6,6* | 12,11% | 69 |12,12* | 4,4* | 14,14* |119|22,14* | 5,5 | 9, 14*
20(23,11%| 5,5% | 7,15 | 70 |10,17*| 5,6* | 15,11* |120| 7,31* | 5,6% | 17, 3"
21(10,20% | 7,7 | 15,7* | 71| 9,15 | 4,4* | 16,12* |121|15,15* | 5,57 | 13, 12"
22| 7,23% | 5,6* | 17,5 | 72| 8,23 | 5,6% | 16,8* |122]15,15% | 4,4 | 12, 14"
23|10,14% | 5,6 | 15,12* | 73 |24,12* | 6,6 | 8,14* |123|19,11%| 5,5* | 10, 14*
24|12,12%| 6,6 | 13,13* | 74 |19, 11* | 4,4 | 11, 14* |124|12,18%| 6,6* | 14, 10*
25| 6,30% | 4,4% | 18,4 | 75 |11,19*| 4,4* | 17,10* |125|11,17* | 5,5% | 14,11*
26(25,11%| 6,6* | 6,14 | 76 |19,11*| 4,4* | 10,17* | 12620, 14* | 6,6* | 7, 14"
27(12,12%| 4,4* | 16,14 | 77| 8,24* | 5,6* | 16,7* |127|14,16* | 5,57 | 13, 12"
28| 21,9% | 4,4* | 9,17* | 78 |31,11*| 5,5% | 5,16% |128|19,17*| 5,5* | 11,12*
29|15,15%| 5,6 | 11,12* | 79 |20,22*| 5,5% | 11,10* [129|12,24* | 5,5* | 15, 8*
30(12,12%| 4,4* | 14,16* | 80 |26,10*| 6,5% | 3,17* |130|12,20* | 6,6" | 13, 10"
31| 31,8% | 5,5% | 4,17* | 81 |26,10*| 5,5% | 7,16* |131|12,24* | 5,5% | 14, 9"
32|17,11*| 6,5* | 9,16 | 82 [19,11*| 4,4* | 10,16* |132| 7,26* | 5,6* | 17,5*
33|20,10%| 5,5% | 9,16 | 83 |16,14*| 5,5 | 12,14* [133|11,28* | 7,7* | 15,5*
34|18,12%| 5,5 | 11,14* | 84 |14,16* | 6,6 | 12,12* [134] 9,33* | 5,5* | 16,4*
35(15,12% | 4,4* | 13,13 | 85 |23,13*| 5,5% | 9,14* |135|14,28% | 5,5% | 14,7~
36| 9,21% | 4,4* | 17,9 | 86 [23,10*| 5,5* | 8,15* [136|10,29* | 6,6* | 15,5*
37|25,17%| 6,6 | 8,12 | 87 |14,16*| 6,5 | 14,11* [137|11,25% | 5,5% | 15, 8"
38|15, 21%| 5,5 | 13,10* | 88 [12,18*| 6,6 | 15,10* |138|17,26* | 6,6* | 12,8*
39|17,10%| 6,5 | 11,15* | 89 |29,13*| 5,5% | 6,15% |139|15,18*| 5,5* | 13,11*
40(10,23%| 6,6* | 16,7* | 90 |17,19*| 5,5% | 12,11* |140|11,19* | 5,5 | 16, 10"
41(13,28%| 7,7 | 14,6* | 91 |11,19*| 4,4* | 16,10* |141|20,25* | 5,5% | 11,9*
42|24,21%| 5,5% | 9,11* | 92 |14,16*| 6,6 | 13,11* |142|10,26* | 5,5* | 16, 7*
43| 9,24 | 5,5% | 17,7* | 93 |10,24* | 6,6 | 15,6 |143|11,25% | 6,6* | 15, 7"
44(12,30%| 6,6* | 15,5 | 94| 8,34* | 5,6* | 17,3* |144]| 9,33 | 5,5% | 17,4*
45| 21,9 | 5,5% | 8,16* | 95 |14,16* | 5,5% | 14,12* |145|11,13* | 5,5 | 14, 13"
46(16,11%| 6,5% | 11,13 | 96 |16,15*| 7,6* | 12,12* |146] 9, 36* | 5,5% | 17, 3*
47|11,16%| 7,7* | 13,9* | 97 |11,31*| 5,5* | 16,5"

48|26,10%| 6,5* | 6,15* | 98 | 9,30* | 6,7* | 16,4*

49(18,12%| 6,5% | 11,13 | 99 |14,10*| 6,5 | 12, 15"

50|12, 22%| 6,7* | 14,8 |100] 9,28* | 6,7* | 16,5*
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geometric properties of the one-dimensional complex torus, two-dimensional K3
hypersurfaces and Calabi—Yau manifolds with dimensions d = 3,4, ... gives in-
sight into the possible rank and dimensions of the Lie algebras which may be
important for the understanding of the nature of the symmetries used in high-
energy physics.
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