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The aim of this article is to survey advances made in investigating the properties of the Fermi
(F) and symmetrized Fermi (SF) functions and in using them as approximants for basic physical
inputs in various applications in nuclear physics and related areas, such as the physics of hypernuclei
and of metal clusters. The evaluation of the F- and SF-type integrals, taking also into account more
general limits, is considered on the basis, either of the Sommerfeld approximation or beyond that,
when, e.g., rapidly oscillating functions are involved in the integrand. Particular attention is paid
to the ®small exponential terms¯ and topics such as the Fourier and Bessel transforms of the F and
SF functions, their analytic properties, the Dingle representation of the F function, etc. Applications
refer to the nuclear diffraction in scattering of particles by nuclei, generalized expressions of the
harmonic oscillator (HO) energy level spacing for its variation with the particle number, study of the
WoodsÄSaxon (WS)-type potentials and their use in problems of hypernuclei and metal clusters.
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1. INTRODUCTION

The Fermi function (F function):

fF(r) =
1

1 + e(r−c)/a
(1.1)

or

fF(r) =
1
2

+
1
2

tanh
(

c − r

2a

)
(1.2)

has many applications in physics (see [1, 2] and refs. therein). It has been
extensively used [3Ä6] by the Stanford group to represent the charge density
ρF(r) = ρ0fF(r) of nuclei for a wide range of mass numbers. Then, beginning
with [7] it was often used in the so-called high-energy approximation in calcu-
lating the charge form factor (FF) of nuclei. Furthermore, the ®form factor¯ of
the conventional WoodsÄSaxon potential [8], which is a fair ˇrst approximation
to the self-consistent single-particle potential, is an F function. Among other
applications of the F function we mention its use in connection with the strong
absorption models [9Ä14]. Another function which is closely related to fF(r) is
the symmetrized Fermi function (SF function) (see, e.g., [15,16]):

fSF(r) =
1

1 + e(r−c)/a
+

1
1 + e−(r+c)/a

− 1. (1.3)

The function fSF(r) has the property fSF(−r) = fSF(r) and may also be written
in the following forms:

fSF(r) =
1

1 + e(r−c)/a
− 1

1 + e(r+c)/a
, (1.4)

fSF(r) =
sinh (c/a)

cosh (r/a) + cosh (c/a)
, (1.5)

fSF(r) =
1
2

[
tanh

(
c + r

2a

)
+ tanh

(
c − r

2a

)]
. (1.6)

It is evident, since fSF(r) is an even analytic function, that it can be expanded
in even powers of r, and has a zero slope at the origin f ′

SF(0) = 0. Furthermore,
it has certain analytic advantages. For light nuclei with c/a > 1, it resembles a
Gaussian function while for heavier ones it goes over to the Fermi distribution.
Thus, it might be said that it is quite appropriate to be considered as a ®universal¯
nuclear density. In practice, however, it leads for medium and heavy nuclei to
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results very similar to those of the usual Fermi distribution. We may also recall
that the so-called ®cosh¯ [17] and the SF potentials [18] are appropriate to
represent cluster model potentials [17].

In a recent publication [19] the ®expansion of the Fermi distribution¯ has
been obtained in terms of derivatives of the δ function in an alternative way to
the traditional one:

1
1 + e(r−c)/a

= Θ(c − r) −
∞∑

k=0

δ(2k+1)(r − c)a2k+2A2k+1 (1.7)

with the coefˇcients An = A2k+1 expressed through the Bernoulli numbers. In
the above expansion both sides should be understood under the integral sign, with
a well-behaved function q(r). The leftÄside integral has been discussed in [4] (for
q(r) = rn) and called ®the Fermi-type integral¯. In those cases when Eq.(1.7)
has meaning, the corresponding integrals are corrected by the exponentially small
terms of the order exp (−c/a). They have been omitted in [19] as well as in
other studies (e.g., [20,21]), where only the ˇrst terms of (1.7) have been derived.
Exact formulae and estimations for omitted terms have been given in [22] and
some examples where their contribution can be important have been considered.

We have seen very recently [23] some operator representation for the integrals
with the SF function. Similar result for Fermi integrals∗

IF(α) =
∫ ∞

0

G(x)
1 + ex−α

dx, (1.8)

where the function G(x) meets the conditions of Sommerfeld's lemma [24] (see
Sect. 2), is well known in solid state physics [2] (cf. integrals involving (1.1) by
setting (r/a) = x and (c/a) = α).

The aim of this survey is to present and compare various analytic methods
and results which have been used in those problems of nuclear and hypernuclear
physics, where the signiˇcant theoretical ingredients such as nucleon density
distributions, particleÄnucleus interactions and mean ˇeld potentials are approxi-
mated by the F function or the Fermi-type functions. Our exposition is organized
as follows.

First of all, the methods under consideration are divided into two categories,
viz., those which essentially rely on the Sommerfeld lemma (Sect. 2) and those
which may be helpful beyond it (Sect. 3). In accordance with this, in Subsect. 2.1
we examine the conditions of validity for expansions like (1.7) and write them in
a compact operator form which is equivalent to Sommerfeld's result known in the
electron theory of metals. Applicability of the result for calculation of the model

∗Sometimes, they are called the FermiÄDirac integrals.
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nuclear form factors is speciˇed. In Subsect. 2.2, we allow for more general
integration limits, namely from Ri < c to Rf > c, including in the expansion
the exponential terms. The same procedure is applied to the SF function and the
results for both distributions are obtained in a uniˇed way.

In Sect. 3 an alternative treatment is carried out on the basis of Fourier
transforms and the properties of the hypergeometric functions. Special attention
is paid to the Dingle representation for the F function, apparently little known to
the nuclear physics community.

In Sect. 4 we show that the results obtained in the preceding paragraphs
in combination with the WatsonÄSommerfeld method, the AbelÄPlana summation
procedure and the contour integration method become very useful tools in studying
the scattering of fast particles (electrons, hadrons, mesons, and heavy ions) by
nuclei. Strong emphasis is given to the exponentially small contributions to the
scattering amplitudes for strongly absorbing particles.

Section 5 is devoted to applications as well. The F function is used as an
approximation to the nuclear densities in order to obtain improved expressions
for the variation of the harmonic oscillator (HO) energy level spacing �ω with
the mass number A. This leads to additional terms with powers of A in the
standard expression �ω = const A−1/3. A considerable part of Sect. 5 is devoted
to a discussion and use of ®WoodsÄSaxon-type¯ potentials in approximating the
nucleon and Λ-nucleus interactions which appear in the so-called folding model.
Attention is paid to the dependence of the potential radius R on the particle
number. The problem of determination of the variation of �ω with this number
on the basis of WS-type potentials is also discussed. In addition, the question
of the approximate (semi)analytic treatment of the s-state energies for the WS
potential is dicussed and comparison is made in one case with the corresponding
numerical result. Reference to the use of those approaches in the study of atomic
(metal) clusters is also made.

2. EVALUATION OF SOME FERMI AND SYMMETRIZED
FERMI INTEGRALS. THE SOMMERFELD LEMMA

First of all, we consider those cases in which the integrand in (1.8) satisˇes
the following conditions:

(i) The ®degeneracy¯ parameter∗ α (if one uses the terminology adopted in
the physics of metals and semiconductors (see, e.g., [1]), is much larger than
unity: α � 1.

∗In many applications to nuclear physics problems, this parameter is the radius-to-diffuseness
ratio α = c/a.
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(ii) The function G(x) is slowly varying near x = α and possessing a Taylor
series expansion about that point.

Then, it is possible to apply the Sommerfeld method [24] to obtain an
asymptotic expansion in ascending powers of α−1. The latter may be written
in the form [2]

IF(α) = π csc (πD̂α)G(x), (2.1)

where the operator csc (πD̂α) indicates the Laurent expansion of the cosecant
about zero with

D̂α =
d

dx

∣∣∣
x=α

and

D̂−1
α =

α∫
0

dx.

The above two conditions and the result (2.1) are a statement known as the
Sommerfeld lemma.

One should keep in mind that even if these conditions are satisˇed, Eq. (2.1)
holds with an accuracy to the exp (−α)-order terms. Afterwards, more general
expansions for the integrals in question will bring the Sommerfeld approximation
as a byproduct together with explicit expressions for the corresponding ®correc-
tion¯ terms. It turns out that the condition (ii) may be relaxed whereas result
(2.1) remains unchanged. We shall exemplify it below but beforehand it is clear
that the ®best¯ alternative to the lemma with G(x) = exp (ıωx) permits the series
expansion for an arbitrary ®frequency¯ ω. In this connection, one has to specify
the meaning of a ®slowly varying¯ function in the above formulation (see next
subsection).

2.1. Expansions in Powers of the ®Diffuseness¯ Parameter. A general in-
tegral containing the SF function can be written as [22]

ISF =
∫ ∞

0

fSF(r)q(r)dr = IF − J (+), (2.2)

where the ®standard Fermi integral¯ considered previously in [19] is

IF =
∫ ∞

0

q(r)
1 + e(r−c)/a

dr, (2.3)

and J (+) is one of the forms

J (±) =
∫ ∞

0

q(±r)
1 + e(r+c)/a

dr = a

∫ ∞

c/a

q (±(az − c))
1 + ez

dz. (2.4)
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As shown in [22], the integrals of interest can be represented as follows,

IF = Is + Ias + J (−), (2.5)

ISF = Is + Ias + J , (2.6)

where

Is = a

∫ c/a

0

q(c − az)dz =
∫ ∞

0

Θ(c − r)q(r)dr, (2.7)

Ias = a

∫ ∞

0

q(c + az) − q(c − az)
1 + ez

dz, (2.8)

J = J (−) − J (+), (2.9)

and Θ(x) is the unit step function as deˇned in [22].
The representation for the F and SF integrals (2.5) and (2.6) is rather in-

structive. Indeed, the ˇrst term Is contains the very simple sharp cutoff function
in an integrand. The second term Ias includes an ®antisymmetric¯ function
g(z) = q(c + az) − q(c − az). The property g(z) = −g(−z) enables one
to simplify considerably its evaluation. Finally, the integrals J (±) and J are
usually exponentially small since merely the integration from a large number
z = c/a � 1 (when condition (i) is valid) to ∞, where only the tail of the
integrand function (1 + ez)−1 � e−z � 1 contributes to them, is involved.

Now, when calculating the Ias integral we assume that q(c ± az) can be
expanded in the series (cf. condition (ii))

q(c ± az) = q(c) +
∞∑

n=1

(±1)nan q(n)(c)
n!

zn. (2.10)

Inserting (2.10) into (2.8) and then changing the order of integration and summa-
tion (which is assumed to be valid) we obtain:

Ias = a

∞∑
n=1

Dnanq(n)(c), (2.11)

where the coefˇcients Dn (n = 1, 2, 3, ...) are related to the Bernoulli numbers
(see, e.g., [25,26]) Bn+1 and are given by:

Dn =
1 − (−1)n

n!

∫ ∞

0

zn

1 + ez
dz =




0 for even n

2
n!

πn+1

(n + 1)
(2n − 1) |Bn+1| for odd n.

(2.12)
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Equivalently, they may be expressed in terms of the Riemann ζ function. Thus,
one can obtain, for example, the ˇrst coefˇcients:

D1 =
π2

6
, D3 =

7
4

π4

90
, D5 =

31
16

π6

945
. (2.13)

Hence, under these assumptions we ˇnd,

Is + Ias =
∫ c

0

q(r)dr + a
∞∑

n=1

Dnanq(n)(c) (2.14)

or, by using the relation 1.411(11) from [26]:

H(z) ≡ csc (z) − z−1 =
1
π

∑
n=1,odd

Dn

( z

π

)n

, |z| < π, (2.15)

in a more compact form:

Is + Ias =
∫ c

0

q(r)dr + πaH(πaD̂c)q(r) (2.16)

with

D̂c =
d

dr

∣∣∣
r=c

.

Now, if one can neglect integrals J
(
J (−)

)
we obtain

ISF(F ) =
∫ ∞

0

fSF(F )(r)q(r)dr = πa csc (πaD̂c)q(r), (2.17)

that is equivalent to the Sommerfeld approximation (2.1).
Further, accepting the relation

q(n)(c) = (−1)n

∫ ∞

0

δ(n)(r − c)q(r)dr (n = 1, 2, 3...) (2.18)

as valid for some class of the functions q(r) (see, e.g., [27]) we arrive at the
following expressions:

ISF(F ) =
∫ ∞

0

Θ(c − r)q(r)dr −

−
∞∑

n=1,odd

Dnan+1

∫ ∞

0

δ(n)(r − c)q(r)dr + J
(
J (−)

)
(2.19)
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for integrals IF and ISF expanded in powers of the diffuseness parameter a. To
this approximation when one can neglect the last terms in (2.19), the expansions
for the SF and F functions coincide with each other, and therefore one can write:

fSF(F)(r) =
sinh (c/a)

cosh (r/a) + cosh (c/a)
= Θ(c − r) −

∞∑
n=1,odd

an+1Dnδ(n)(r − c).

(2.20)

The explicit form as a series with terms proportional to the odd derivatives of
the δ function may be useful for practical calculations. However, in all the
cases one needs to keep in mind the conditions of its validity, viz., (i) existence
of the expansion (2.10), (ii) capability of the transition from (2.10) to (2.11),
(iii) determination of the class of functions, on which the generalized δ function
and its derivatives act. In order to do the essential points more transparent let us
apply these results in a speciˇc example.

2.1.1. Fourier and Bessel Transforms of F and SF Distributions. The stan-
dard expression for the charge FF (neglecting normalization) is given by

FSF(F)(p) =
∫

eıprfSF(F)(r)dr =
4π

p

∫ ∞

0

fSF(F)(r) sin (pr) rdr =

= −4π

p

d

dp
ISF(F)(p), (2.21)

where

ISF(F )(p) =
∫ ∞

0

fSF(F )(r) cos (pr) dr. (2.22)

First, it is easily seen from (2.7) that Is = sin pc/p . Then, in calculating Ias by
means of (2.11) we use dn cos pr/drn = (−1)(n+1)/2pn sin pr for n = odd.
Thus, we obtain:

Ias = ai sin pc
∑

n=1,odd

Dn

(
iπpa

π

)n

= πa
sin pc

sinh πpa
− sin pc

p
, pa < 1.

(2.23)

Bearing in mind that for the even cos pr-function J = 0, we have:

ISF(p) = Is + Ias =
πa sin pc

sinh πpa
, (2.24)

that yields

FSF(p) = −4π

p

d

dp

πa sin pc

sinh πpa
. (2.25)
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The quantity FF(p) is approximated by the same expression neglecting the terms
of order exp (−c/a) and higher. Their estimation is given in Subsect. 2.2.2.

One should stress an important point, namely that the results have been
obtained for the SF and F integrals with the oscillating function cos pr under the
condition pa < 1 which ensures the convergence of the series in (2.23). It means
that the method used may be applied if the ®wavelength¯ p−1 is greater than the
thickness a of a ®surface layer¯ of the density distributions. On the other hand,
if one evaluates the integral (2.8) by using Eq. 3.911(1) from [26] we obtain

Ias = a

∫ ∞

0

cos [p(c + az)] − cos [p(c − az)]
1 + ez

dz =

= −2a sin pc

∫ ∞

0

sin paz

1 + ez
dz = πa

sin pc

sinh πpa
− sin pc

p
(2.26)

for any values of the effective parameter pa. The r.h.s. of (2.26) may be expanded
in the series appearing in (2.23) only under the condition pa < 1. Of course,
the result (2.26) can be considered as analytic continuation∗ of (2.23) for values
pa ≥ 1, i.e., for the ®rapidly¯ oscillating function q(r) = cos pr. Unlike the
latter, the ®slowly¯ varying function q(r) = cos pr corresponds to the case where
pa < 1 even if the wavelength p−1 is much smaller than the distribution radius
c, i.e., pc � 1.

In general, this procedure with the intermediate series expansion and subse-
quent term-by-term integration and summation may be impractical and below we
shall describe other more advanced methods for evaluation of the Fermi-type in-
tegrals. Nevertheless, we continue our illustrations when dealing with the Bessel
transform:

BSF(p) =
∫ ∞

0

fSF(r)J0(pr)rdr, (2.27)

where p = 2k sin
θ

2
, θ is the scattering angle, and J0(x) is the cylindric Bessel

function of the zeroth order. This transform determines in certain approximation
the high-energy scattering amplitudes in the theory of nuclear diffraction with the
short-wavelength condition:

kc � 1. (2.28)

∗Eq. (2.26) can be derived including complex pa values within band
∣
∣
∣�(pa)

∣
∣
∣ < 1 in an

alternative way.
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Again, in accordance with prescription (2.16) we ˇnd

Is =
∫ c

0

rJ0(pr)dr =
pcJ1(pc)

p2
(2.29)

and

Ias =
a

p

∞∑
n=1

Dn(pa)n[pcJ1(pc)](n+1)
, (2.30)

where we have employed the relation (d/dz){zJ1(z)} = zJ0(z) and introduced

the notation [g(z)](n) for the n-th derivative.
In order to calculate the derivatives involved, let us recall the asymptotic

expression

J1(pc) ∼
√

2
πpc

cos
(

pc − 3
4
π

)
(2.31)

at pc � 1. This implies not too small scattering angles, in view of strong
inequality (2.28). Substituting (2.31) into the r.h.s. of Eq.(2.30) and ignoring
terms of order (pc)−

1
2 and smaller, we have

[pcJ1(pc)](2m) = (i)2m [pcJ1(pc)] , m = 1, 2, . . . , (2.32)

and therefore

Ias = i
a

p
pcJ1(pc)

∞∑
n=1

Dn(ipa)n. (2.33)

At pa < 1 the series in (2.33) is convergent and, as in the previous example, one
can apply relation (2.15), so that

Ias =
[

πpa

sinh πpa
− 1

]
pcJ1(pc)

p2
. (2.34)

Finally, by adding expressions (2.29) and (2.34) we obtain

BSF(p) = Is + Ias =
πpa

sinh πpa

pcJ1(pc)
p2

, (2.35)

or

BSF(p) =
πpa

sinh πpa
Is, (2.36)

that coincides with the ˇrst term of the asymptotic series obtained in [23].
One should keep in mind that this result has been derived for not too large

momentum transfers p, namely, pa < 1 omitting the corresponding J contribu-
tion. Unlike the calculation of FSF(p) the correction term is not equal to zero
since we deal with the odd function q(r) = rJ0(pr).
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2.1.2. Correction Terms. When estimating the correction terms determined
by Eq. (2.4), it is sufˇcient to consider the integrals

J (±)
e,o =

∫ ∞

0

qe,o(±r)
1 + e(r+c)/a

dr (2.37)

with (even, odd) functions qe,o(r). In fact, every function is the sum of its even
and odd parts.

By deˇnition, qe,o(−r) = Pe,oqe,o(r), where the parity factor Pe,o = +1(−1)
for any even (odd) function, that leads to the following simple relation:

J (−)
e,o = Pe,oJ (+)

e,o . (2.38)

Hence for the even functions

ISF = Is + Ias, IF = Is + Ias + J (+)
e = ISF + J (+)

e , (2.39)

so that the correction is needed only for the Fermi integral.
For the odd functions we have

ISF = Is + Ias − 2J (+)
o , IF = Is + Ias − J (+)

o , (2.40)

where the correction term for IF has opposite sign in comparison to that in the
preceding case, while for ISF it is twice that for IF.

In general, as mentioned above, for sufˇciently smooth q(r) these terms are
thought to be of the order of e−(c/a). Indeed, the inequality∣∣∣J (+)

∣∣∣ ≤ e−c/a

∫ ∞

0

|q(r)| e−r/adr (2.41)

gives us the simplest estimation. A more reˇned calculation can be performed
with the expansion in ascending powers of e−c/a,

J (+) = −
∞∑

n=1

(−1)n e−nc/a

∫ ∞

0

q(r) e−nr/adr, (2.42)

which is especially useful if the separate contributions to it can be exactly cal-
culated or easily estimated (see below). Sometimes, when evaluating integrals
J (+), it is convenient to employ the following representation:∫ ∞

0

eφ(r)dr =
eφ(r)

φ′(r)

∣∣∣∞
0

+
φ′′

[φ′]3
eφ(r)

∣∣∣∞
0

+ ..., (2.43)

which can be obtained through integration by parts. For

J (+) � e−c/a

∫ ∞

0

q(r) e−r/adr
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it follows from (2.43) that with φ(r) = ln q(r) − r/a one obtains

J (+) � a
q(0)

1 − a
q′(0)
q(0)

e−c/a




1 + a2 φ′′(0)[
1 − a

q′(0)
q(0)

]2 + ...




, (2.44)

if the function q(r) exp (−r/a) tends to zero as r → +∞. In particular, one
can see that for a function q(r) with a|q′(0)/q(0)| � 1 the additional small
factor q(0)/aq′(0) appears in the estimation (2.44).

For instance, let us come back to that calculation of the Fourier transform of
the Fermi function

IF(p) =
∫ ∞

0

cos pr

1 + exp [(r − c)/a]
dr. (2.45)

With the help of the relation (2.39) between IF and ISF integrals in the case of
the even function cos pr one can write,

IF(p) = πa
sin pc

sinh πpa
+ J (+), (2.46)

since ISF is determined by Eq. (2.24).
The correction term in (2.46) is readily estimated via Eq. (2.42) with q(r) =

cos pr, namely,

J (+) = −a

∞∑
n=1

(−1)n n

n2 + p2a2
e−nc/a (2.47)

or

J (+) ≤ e−c/a a

1 + p2a2
. (2.48)

In the case of the Bessel transform with the odd function q(r) = rJ0(pr),
both integrals IF and ISF should be corrected. The respective corrections (see
Eqs. (2.40) are determined by the expansion (cf. [23]):

J (+) =
∫ ∞

0

rJ0(pr)
1 + e(r+c)/a

dr = −
∞∑

n=1

(−1)n e−nc/a

∫ ∞

0

rJ0(pr) e−nr/adr.

(2.49)

The integral involved is known (see, e.g., formula 7.7.3(18) in [28]) to be
na2/(n2 + p2a2)3/2, and therefore

J (+) = −a2
∞∑

n=1

(−1)n n

(n2 + p2a2)3/2
e−nc/a (2.50)
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or

J (+) ≤ e−c/a a2

(1 + p2a2)3/2
. (2.51)

By comparison of the ˇrst and second terms in the r.h.s. of Eq. (2.46),
it is seen that the ®correction¯ terms of order exp (−c/a) may be comparable
and in some cases larger than the oscillating contribution to the form factor. In
such cases with quickly changing functions q(r) one needs to develop methods
which calculate these contributions in a more satisfactory way. In Sec.3, methods
will be demonstrated where the results are expressed through the hypergeometric
functions and the corresponding series are, in fact, the decompositions in the
small parameter exp (−c/a).

2.2. A Generalization in the Calculation of the Fermi-Type Integrals.
Here we extend our consideration by introducing the integration limits Ri < c
and Rf > c, so that the ®standard Fermi integral¯ (namely, for Ri → 0 and
Rf → ∞) is a special case of the integral we calculate. Such a generalization
is not only of mathematical interest but it is also relevant to physical problems.
Henceforth, in this section we proceed in the same way as in certain treatments
made for more specialized cases [29]. Namely, by splitting the second integral
in a form suitable for making use of the well-known formula for the geometrical
progression, we ˇnd [22]

IF(Ri, Rf ) ≡
∫ Rf

Ri

q(r)
1 + e(r−c)/a

dr =
∫ c

Ri

q(r)dr +

+
∞∑

m=1

(−1)m

[∫ c

Ri

q(r) em(r−c)/adr −
∫ Rf

c

q(r) e−m(r−c)/adr

]
.

(2.52)

2.2.1. Expansion of the ®Generalized¯ Fermi-Type Integral Using a Taylor
Series. We now assume that the function q(r) can be expanded in a Taylor series
around r = c

q(r) =
∞∑

n=0

q(n)(c)
(r − c)n

n!
. (2.53)
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Substituting (2.53) into (2.52), one can show that

IF(Ri, Rf ) =
∫ c

Ri

q(r)dr +
∞∑

n=0

q(n)(c)an+1

{
Dn +

+
n∑

l=0

1
l!

[
(−1)n+1

(
c − Ri

a

)l

F (− e(Ri−c)/a, n+1−l)+

+
(

Rf−c

a

)l

F (− e(c−Rf )/a, n+1−l)

]}
. (2.54)

Here according to [25, p.45] the function F (z, k) is determined by

F (z, k) =
∞∑

m=1

zm

mk
= zΦ(z, k, 1), (2.55)

where Φ(z, k, 1) has the following integral representation:

Φ(z, k, 1) =
1

Γ(k)

∫ ∞

0

tk−1 e−t

1 − z e−t
dt, (2.56)

that is valid if either |z| ≤ 1, z 
= 1 and Re k > 0 or z = 1 and Re k > 1 (see
Eq. (3) in [25], p. 43). Here Γ(k) is the ordinary Γ function.

Note a compact form [22],

IF(Ri, Rf ) =
∫ c

Ri

q(r)dr +
∞∑

n=0

q(n)(c)an+1 ×

×
{

Dn +
(−1)n

2
Dn

(
c−Ri

a

)
− 1

2
Dn

(
Rf−c

a

)}
, (2.57)

where

Dn(β) =
2
n!

∫ ∞

β

tn

et + 1
dt (β ≥ 0). (2.58)

2.2.2. Integrals with the SF Function. It is convenient to use form (1.4) of
the SF function. Thus we have only to calculate the integral which corresponds to
the second term in (1.4). In this case no separation of the interval of integration
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is needed and we obtain after some algebra

J (+)(Ri, Rf ) ≡
∫ Rf

Ri

q(r)
1 + e(r+c)/a

dr =
∞∑

n=0

q(n)(c)an+1 ×

×
{

n∑
s=0

1
s!

[(
Rf−c

a

)s

F
(
−e−(Rf+c)/a, n + 1 − s

)
−

−
(

Ri−c

a

)s

F
(
−e−(Ri+c)/a, n + 1 − s

)]}
. (2.59)

The above result can be combined with the corresponding one of the previous
section and therefore we obtain immediately the expansion of the integral with
the SF distribution. However, it is more expedient to write the results obtained
in a uniˇed way, that is to write in a simple formula the expansion of both the F
and SF function, by introducing a factor ε, which is equal to 1 in the case of the
SF function and to 0 in the case of the usual F. Thus, we write:

I(Ri, Rf , ε) =
∫ Rf

Ri

q(r)f(r)dr = IF(Ri, Rf ) − εJ (+)(Ri, Rf ), (2.60)

where we take

f(r) =
1

1 + e(r−c)/a
− ε

1
1 + e(r+c)/a

. (2.61)

Some general expansions for the integral can be found in [22]. Here we give a
simpliˇed result for Ri → 0 and Rf → ∞:

I(0,∞, ε) =
∫ ∞

0

q(r)f(r)dr =
∫ c

0

q(r)dr +
∞∑

m=0

q(m)(0)am+1 ×

×
{

m∑
l=0

1
(m − l)!

Dl

( c

a

)m−l

+ [ε − (−1)m] F
(
−e−c/a, m + 1

)}
.

(2.62)

In the special case with q(r) = rn, we ˇnd:

In(0,∞, ε) =
∫ ∞

0

rnf(r)dr =
cn+1

n + 1

{
1 + (n + 1)!

(a

c

)n+1

×

×
[

n∑
l=0

1
(n − l)!

Dl

( c

a

)n−l

+ [ε − (−1)n] F
(
−e−c/a, n + 1

)]}
.

(2.63)
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The following remarks can be made regarding this expression.
Firstly, in the case of the F distribution (ε = 0) it reduces to the result which
follows from the general expression of the ®Fermi integral¯ Fn(k), k = (c/a)
quoted by Elton (see Appendix of [4]) since

∫∞
0 rnfF(r)dr = an+1Fn(k). We

note that generalizations to nonintegral values of n, etc., in moment calculations
have been discussed in literature [30Ä32]. Secondly, in the case of the SF distrib-
ution (ε = 1), there are no exponential terms when n is even. Thus, the use of the
SF distribution has the advantage all its even moments to be free of exponential
terms. This property simpliˇes their treatment.

3. TWO TECHNIQUES FOR EVALUATION OF THE FERMI-TYPE
INTEGRALS BEYOND THE SOMMERFELD APPROXIMATION

3.1. Connection with the Gauss Hypergeometric Function. Separation of
Exponentially Small Contributions. The previous results have been based on
the assumption that the function q(r) may be expanded in a power series at a
vicinity of the radius r = c. In this section we shall relax this assumption and
consider the exponential Fourier transform∗:

q(r) = F{q̄(p); r} = (1/2π)
∫ ∞

−∞
q̄(p) eirpdp. (3.1)

In calculating the Fermi-type integrals with such functions q(r), one can use
the following representation for the Gauss hypergeometric function F (a, b; c; z)
([26], p. 319):∫ ∞

0

(1 − e−x)ν−1(1 − β e−x)−ρ e−µxdx = B(µ, ν)F (ρ, µ; ν + µ; β), (3.2)

where
Re µ > 0, Re ν > 0, |arg (1 − β)| < π,

and B(x, y) is the beta function:

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

Let us set q(r) = eipr and calculate the integral
∫∞
0

q(r)fF(r)dr. Obviously,
this is the case when in the more general expression (3.2) one should put µ =

∗What follows is easily extended to the sine- and cosine Fourier transforms and the Laplace
one.
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1 − ipa, ν = 1, ρ = 1 and β = −ec/a. Therefore, one can obtain [33,34]:

AF(p)=
∫ ∞

0

eipr

1 + e(r−c)/a
dr = aB(1 − ipa, 1) ec/aF (1, 1 − ipa; 2 − ipa;−ec/a).

(3.3)

Furthermore, because for the applications in question exp (c/a) > 1 (or even
ec/a � 1), it is pertinent to transform (3.3) into

AF(p) =
πa

i sinh πpa
eipc + ip−1F (1, ipa; 1 + ipa;−e−(c/a)). (3.4)

Thus, the Fourier transform of the Fermi distribution has been expressed in
terms of functions of well-known properties. One should emphasize that the
exact result (3.4) re	ects explicitly the interplay between the physical parameters
involved, namely, the ®radius¯ c, the ®diffuseness¯ parameter a and the ®incident
frequency¯ p. In many applications the latter plays the role of momentum transfer.

Formula (3.4) enables one to separate all at once the oscillating part of the
form factor AF(p) (the ˇrst term in the r.h.s. of (3.4)) and a comparatively smooth
p-dependence that is determined by its second term. Note, that the separation has
been achieved without those constraints inherent to the previous approaches (see
Sect. 2). We see that the corresponding oscillations at pc > 1 (the ®edge¯ effect)
have an exponential fall-off generated by the factor [sinh πpa]−1 ∼ exp (−πpa)
at pa ≥ 1 (the ®surface diffuseness¯ effect).

Further, by using the deˇnition

F (a, b; c; z) = 1 +
ab

c

z

1!
+

a(a + 1)b(b + 1)
c(c + 1)

z2

2!
+ ... (3.5)

of the Gauss series, the smooth contribution to AF(p) can be split into the pole
term p−1 and an expansion in ascending powers of an ®effective¯ parameter
exp (−c/a) < 1. The former is cancelled at p = 0 with the same term which
stems from −iπa[sinh πpa]−1 exp (ipc), while the latter may not be disregarded
even for the values of c/a � 1. In fact, at high frequencies with πap ∼ c/a
the contribution of these exponentially small terms becomes comparable to the
contribution of the remaining terms in (3.4) and the formula gives a systematic
way to calculate each of them. We shall come back to this point in Subsect. 4.4.2.

Now, we apply this result to evaluate the integral considered in Subsect. 2.2:

IF(Ri, Rf ) =
∫ Rf

Ri

q(r)
1 + e(r−c)/a

dr = IF(Ri,∞) − IF(Rf ,∞) (3.6)

with ˇnite lower Ri and upper Rf limits which satisfy the condition Ri < c < Rf .
Here

IF(R,∞) =
∫ ∞

R

q(r)
1 + e(r−c)/a

dr =
1
2π

∫ ∞

−∞
dpq̄(p)AF(p, R) (3.7)
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with the function q(r) being replaced by its exponential Fourier transform. Again
the problem reduces to the following:

AF(p, R) =
∫ ∞

R

eipr

1 + e(r−c)/a
dr = eipR

∫ ∞

0

eipr

1 + e(r−c+R)/a
dr. (3.8)

By using (3.3) one gets

AF(p, R) = aB(1 − ipa, 1) eipR e(c−R)/aF (1, 1 − ipa; 2 − ipa;− e(c−R)/a).
(3.9)

Two cases should be considered, namely: R < c and R > c.

Case i) R < c:

In this case it is convenient to convert the hypergeometric function of (3.9)
into the corresponding hypergeometric series (cf., the transition from (3.3) to
(3.4)), and so we have

AF(p, R) = eipR

{
πa

sin (πipa)
eip(c−R) +

i

p
F (1, ipa; 1 + ipa;−e−(c−R)/a)

}
=

= eipR

{
πa

sin (πipa)
eip(c−R) − 1

ip
+

a

1 + ipa
e−(c−R)/a + O

(
e−2(c−R)/a

)}
,

(3.10)

or omitting the terms of higher order in e−(c−R)/a we obtain

AF(p, R) = πaH(πipa) eipc +
∫ c

R

eiprdr + eipR a

1 + ipa
e−(c−R)/a, (3.11)

where the function H(z) = sin −1z − z−1 is the function considered in Sec. 2.
Substituting (3.11) into (3.6) and preserving the exponential Fourier transform in
r space we arrive at the expression

IF(R,∞) = πaF{q̄(p)H(πipa); c} +
∫ c

R

q(r)dr + aF
{ q̄(p)

1 + ipa
; R

}
e−(c−R)/a.

(3.12)

Case ii) R > c:

In this case Eq. (3.9) includes the hypergeometric series directly from the
beginning and therefore

AF(p, R) =
a

1 − ipa
eipR e−(R−c)/aF (1, 1 − ipa; 2 − ipa;− e−(R−c)/a). (3.13)
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If the parameters involved meet the inequality e−(R−c)/a � 1, we ˇnd

AF(p, R) =
a

1 − ipa
eipR e−(R−c)/a, (3.14)

and ˇnally making the same substitutions as in case i) we get for IF(R,∞):

IF(R,∞) = aF
{ q̄(p)

1 − ipa
; R

}
e−(R−c)/a. (3.15)

Combining Eq. (3.12) and Eq. (3.15) we get

IF(Ri, Rf ) = πaF{q̄(p)H(πipa); c} +
∫ c

Ri

q(r)dr+

+aF
{

q̄(p)
1 + ipa

; Ri

}
e−(c−Ri)/a − aF

{
q̄(p)

1 − ipa
; Rf

}
e−(Rf−c)/a. (3.16)

Similarly, evaluation of the generalized SF integral

ISF(Ri, Rf ) =
∫ Rf

Ri

q(r)fSF(r)dr (3.17)

can be reduced to the following substraction of the Fermi-type integrals:

ASF(p, R) = AF(p, R) −A(+)(p, R) =

= eipR

{
πa

i sinh πpa
eip(c−R) +

i

p
+

a

1 + ipa
×

× e−(c−R)/aF (1, 1 + ipa; 2 + ipa;−e−(c−R)/a) −

− a

1 − ipa
e−(c+R)/aF (1, 1 − ipa; 2 − ipa;−e−(c+R)/a)

}
,

(3.18)

where

A(+)(p, R) =
∫ ∞

R

eipr

1 + e(r+c)/a
dr.

Putting in (3.18) R = 0 we ˇnd for the ®standard¯ form factors the expression:

ISF(p) = Re ASF(p; 0) = πa
sin pc

sinh πpa
. (3.19)

The approach described in this section is an alternative way to evaluate the
integrals in question. The following comments can be made: (a) It is relied on
the well-known results of the theory of special functions and can be presented
in a mathematically compact form; (b) We have managed to bypass too strong
assumptions (in particular, condition (ii) of Sommerfeld's lemma) leading to
(2.11); (c) The corrections of any order in exp (−c/a) may be evaluated in a
systematic manner.
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3.2. The Dingle Representation for the Fermi Function. In the previous
subsection we have shown a possible way of handling the Fermi-type integrals
whose integrands may not meet, at least, condition (ii) of the Sommerfeld lemma.
In such situations when q(r) may oscillate rapidly or may have a branch point
another useful technique is based upon application of the identity

1
ex + 1

=
1

2πi

∫ β+i∞

β−i∞
π csc (πt) e−xtdt, (0 < β < 1), (3.20)

which can be proved closing the contour to the left if x < 0 and to the right if
x ≥ 0.

This representation has been introduced by Dingle [35] in his calculations
of the generalized moments of the Fermi distribution, and we shall call it the
Dingle representation or the Dingle integral∗. It has been shown (see [2] and
refs. therein) that this representation is a sufˇciently 	exible tool allowing to
reduce many F integrals which occur in solid state physics to tabulated Laplace
transforms and their inverses or sometimes to tractable exercises in residue theory.

When applying the Dingle result to nuclear physics problems let us return to
the FF AF(p) deˇned in Subsect. 3.1. In this case, inserting the corresponding
expression (3.20) in the integrand of integral (3.3) and integrating over r we
obtain,

AF(p) =
a

2πi

∫ β+i∞

β−i∞
π csc (πt)

exp
( c

a
t
)

t − ipa
dt. (3.21)

Further, the contour in (3.21) may be closed by a very large semicircle to the
left picking up the residues from the point t = ipa and the simple poles of the
meromorphic function π csc (πt). It is easily seen that due to the Cauchy theorem
this procedure leads to the known formula (3.4).

One more illustration is related to evaluation of the eikonal phase integral

GF(b) =
∫ ∞

0

dz

1 + exp

(√
z2 + b2 − c

a

) , (3.22)

that determines the scattering amplitude in the high-energy approximation at small
angles [36,37] for the Fermi density distribution, so that here c is the half-density
radius.

∗In the introduction of the interesting paper by Dingle a survey of early works on the Fermi
integrals is also given and relevant contributions are pointed out.
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Again, making use of Eq. (3.20) we get,

GF(b) =
b

2πi

∫ β+i∞

β−i∞
π csc (πt)K1

(
b

a
t

)
exp

( c

a
t
)

dt, (3.23)

where the McDonald function K1(
b

a
t) is determined by

bK1

(
b

a
t

)
=

∫ ∞

0

exp

(
−
√

z2 + b2

a
t

)
dz.

At this point we shall conˇne ourselves to the case of peripheral collisions with
b > c.

It is pertinent to write down a MittagÄLef	er expansion (see, e.g., [38],
p. 402)

π csc πt =
1
t

+
∞∑

m=1

(−1)m

[
1

t + m
+

1
t − m

]
. (3.24)

Taking into account this equation we ˇnd with the help of Jordan's lemma

GF(b) = b

∞∑
m=1

(−1)m+1K1

(
m

b

a

)
exp

(
m

c

a

)
. (3.25)

Of course, the same result could be derived directly using the geometrical pro-
gression expansion for the integrand in (3.22).

Because of the condition c/a � 1, one may replace the function K1 in the
r.h.s. of Eq. (3.25) by its asymptotic expression

K1(z) ∼
√

π

2z
e−z (3.26)

for |z| � 1 and −3π

2
< arg z <

3π

2
(see, e.g., [28], Eq. 7.4.1(4) ). This leads to

GF(b) ∼
√

π

2
ab

∞∑
m=1

(−1)m+1

exp
(
−m

b − c

a

)
√

m
(3.27)

or

GF(b) ∼ −
√

π

2
abF

(
− exp

(
−b − c

a

)
,
1
2

)
, (3.28)

where we have employed deˇnition (2.55).
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At large values of the impact parameter b, when

exp
(
−b − c

a

)
� 1, (3.29)

we obtain the asymptotic result:

GF(b) ∼
√

π

2
ab exp

(
−b − c

a

)
. (3.30)

In this context one should note that an exponential decrease of the eikonal phase
with b increasing is expected.

4. TREATMENT ON THE BASIS OF ANALYTIC PROPERTIES OF THE
FERMI FUNCTION

4.1. A Contour Integration Method for Form Factors Calculations. We
start from a simple application of the Cauchy theorem to evaluate some Fermi
integrals, the so-called contour integration method, based on the property of the
F function to have simple poles in the complex plane. So, this method has been
utilized for evaluation of nuclear FF's in the so-called high-energy approxima-
tion (HEA) [7] (see, also, [39]). As an example, we consider their calculation in
the Born approximation (BA) with charge density distributions ρF(r) = ρ0 fF(r)
and ρSF(r) = ρ0 fSF(r). The corresponding FF's are determined by the integrals
(omitting for simplisity the renormalization constant)

IF(SF)(p) = Re AF(SF)(p), (4.1)

where AF(p) is the integral

AF(p) =
∫ ∞

0

eipr

1 + e(r−c)/a
dr,

and ASF(p) is given by

ASF(p) = AF(p) −A(+)(p) (4.2)

with

A(+)(p) =
∫ ∞

0

eipr

1 + e(r+c)/a
dr.
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In order to calculate AF(p)∗ it is convenient to consider the integral

I
(1)
F =

∮
C1

WF(r)dr, WF(r) = eiprfF(r),

where the contour C1, lying in the ˇrst quadrant of the complex r plane and
proceeding counter-clockwise, consists of the three parts, namely, the piece [0, R]
of the positive real axis, a quarter-circle of the radius R, with the centre in the
origin, and the piece [iR, 0] of the imaginary axis. In the limit R → ∞ the
Cauchy theorem allows us to write

lim
R→∞

I
(+)
F = 2πi

∞∑
n=1

resWF(r(+)
n ) ≡ Σ(+)

res , (4.3)

so that

AF(p) = Σ(+)
res + i

∫ ∞

0

WF(iy)dy, (4.4)

where the poles of the F function in the ˇrst quadrant are

r(+)
n = c + i(2n − 1)πa (n = 1, 2, 3, ...). (4.5)

While the sum of residues in these poles is equal to

Σ(+)
res = −2πai eipc

∞∑
n=1

e−(2n−1)πpa =
πa

i sinh (πpa)
eipc, (4.6)

the integral in the r.h.s. of Eq. (4.4) is the following expansion in ascending
powers of exp (−c/a):∫ ∞

0

WF(iy)dy = a

∫ ∞

0

e−pas

1 + e−c/a eis
ds = ia

∞∑
m=0

(−1)m

m + ipa
e−m c/a. (4.7)

In its turn, this expansion is equivalent to one of the Gauss series from Subsect.3.1,
viz., it is p−1F (1, ipa; 1 + ipa;− exp (−c/a)). Now, it is seen that the method
gives an alternative derivation of the result (3.4).

As to the case with the SF distribution, one should note the property,

A(+)(p) = −
∫ ∞

0

e−pr

1 + e(r+c)/a
dr. (4.8)

∗Although explicit expressions for this integral have been given in the preceding sections, we
follow the approach that has been used for the ˇrst time in treatment [7] of the electron scattering by
nuclei.
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Moreover, owing to the identity (1 + exp z)−1 = 1 − [1 + exp (−z)]−1 one
can write,

A(+)(p) = −ip−1 + i

∫ ∞

0

WF(−iy)dy. (4.9)

Obviously, with the help of these relations we are able to reproduce formula
(3.19).

Doing so we obtain the form factor for the SF charge density distribution
[15,16]

FSF(p) =
4π2acρ0

p sinh πpa

[
cos pc − πa

c
sin pc cothπpa

]
, (4.10)

Here ρ0 = 3/4(πc)−3[1 + (πa/c)2]−1.
The contour integration method has successfully been employed in the de-

scription of the electron scattering by medium and heavy nuclei when the Coulomb
distortion effects are signiˇcant, so that it becomes necessary to go out beyond the
BA. In this connection, within the HEA one has to deal with the eikonal phases
β(r) and distorted amplitudes g(r) that determine the electron wave functions in-
stead of those calculated by numerical solution of the respective Dirac equation.
As a result, the form factor, similar to the preceding one, has been obtained for
nuclei with the SF density distribution

FSF(p) =
4π2acρ0

p sinh πpa
D(p)

[
cos (pc + Φ) − πa

c
sin (cR + Φ) coth πpa

]
, (4.11)

where D and Φ are expressed in terms of the distortion functions β(r) and
g(r) [39]. With the help of this expression, in [40] the treatment of available data
for many nuclei from 4He to 208Pb has been undertaken, and the corresponding
charge density distributions have been extracted taking into account the radial
variations of them.

4.2. The Fermi-Like Functions in the Strong Absorption Models for the
S Matrix of Diffraction Scattering. Many features of diffractive processes
studied in nuclear physics at intermediate and high energies can be rather well
described using the so-called strong absorption assumption. To be more speciˇc
let us consider the elastic scattering amplitude for a spinless particle incident on
a spin-zero target nucleus

f(θ) =
∞∑

l=0

Fl(θ), (4.12)

Fl(θ) = (2ik)−1(2l + 1)(Sl − 1)Pl(cos θ) exp
[
−γ

(
l +

1
2

)]
, (4.13)
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where k−1 is the corresponding wave number, and the S matrix elements

Sl = SN (l) = ηl exp [2iδl] (4.14)

are determined merely by the nuclear interaction∗. Our discussion refers at the
moment (in order to avoid some complications associated with inclusion of the
Coulomb interaction) to the scattering of neutral particles. We shall come back
to this point later.

It is implied herewith that the short-wavelength condition

kR � 1, (4.15)

where R is the radius of nuclear interaction, is fulˇlled. This is a general condition
for nuclear diffraction.

Then, the absorption coefˇcient ηl ≤ 1 is expected to increase smoothly and
monotonically with l, from small values to unity. It reaches this value near l0, the
so-called grazing angular momentum. The rise occurs within a transition region
of width ∆ around l0, which deˇnes the diffuseness∗∗. The l0 value is related to
the ®absorption radius¯ R as follows:

L = l0 +
1
2

= kR. (4.16)

Strong absorption may be deˇned as the situation for which the surface diffuseness
region is very small compared to the grazing angular momentum, i.e.,

∆ � l0. (4.17)

This strong inequality plays an essential role in deriving important asymptotic
expressions.

Let us remind that such a behaviour of ηl re	ects the scattering situation with
many open inelastic channels, in which all incoming waves l ≤ l0 are almost
completely absorbed, whereas the remaining waves are slightly affected by the
nuclear interaction. This concept (from the semiclassical point of view, a black
disk with a grey, partially transparent edge) that implies the scattering off a
nucleus with smooth boundary, was realized many years ago within the strong
absorption model (SAM), put forward in [9],

SN (l) = η(l) =
[
1 + exp

l0 − l

∆

]−1

= 1 − ηF(l), (4.18)

where the parameters obey Eq. (4.17).

∗For convenience, we have introduced a cutoff factor exp [−γ (l + 1/2)] where the parameter
γ(> 0) should be set equal to zero at the end of the calculations.

∗∗In particular, this means that the Sl-matrix elements are deˇned not only for the discrete
integer l values as in the case of ordinary potential scattering theory.
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Many analyses have been carried out by using parametrization [11]:

SN (l) = η(l) + iµ0
dη(l)
dl

(4.19)

with the same function η(l) as in Eq. (4.18). The inclusion of the term involving
the derivative is equivalent to an allowance of nuclear refraction.

In another model [13] often used for the description of the scattering of
strongly absorbing particles (e.g., heavy ions at intermediate energies [41, 42],
and pions in the GeV-region [43]), one writes SN (l) containing three parameters:

SN(l) = η(l) exp [2iδ(l)] =
[
1 + exp

l̄0 − l

∆

]−1

, l̄0 = l0 + ilI . (4.20)

Of course, unitarity, i.e., the condition

|SN (l)| ≤ 1 (4.21)

for all non-negative integer l values, imposes some constraints on the parameters
lI and ∆, viz.,

cos
lI
∆

≥ 0 (4.22)

or ∣∣∣∣ lI∆
∣∣∣∣ ≤ π

2
. (4.23)

The latter is valid since the nuclear phase takes on not too large values for the
peripheral partial waves with l ≥ l0 � 1.

This recollection of various diffraction models would be incomplete without
mentioning the expression

S(l) =
[
1 − ηF(l)

]
exp [2iδ0ηF(l)] (4.24)

proposed in [10] for the analysis of the α-particle elastic scattering experiments.
Later, this model and its modiˇcations (see, e.g., in [44]) were applied to treat-
ment of heavy-ion elastic scattering and are still popular. Its attractive feature
as it is shown below, is the possibility of getting a closed expression for the
corresponding amplitude [14, 34] that enables one to understand better the true
role of the refractive properties of the nuclear medium in a diffraction scattering.

Note that the three-parameter form (4.24) follows from the prescription (4.21)
for a ®weak¯ nuclear attraction around the nuclear surface

δ(l0) � 1 (4.25)
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with δ(l0) = |lI |/4∆ � 1
2
δ0, where the second relation is valid to order

exp (−l0/∆). However, although Eq. (4.24) is a good approximation to the
form (4.21) for positive real l, their analytical properties are rather different. We
have a line of simple poles in the l plane for the Ericson model vs. the essential
singular points lm = l0 ± iπ∆(2m − 1) (m = 1, 2...) for the function (4.24).

4.2.1. Distributions with Arbitrary Number of Parameters. Generalized
Phase-Shift Analysis. The Fermi function has the speciˇc analytic properties not
only itself. It has been shown [45] that this function and its derivatives form a
complete set for the class of quadratically integrable functions. To do this explicit
let us employ formula (1.2) to write down

ηF(l) =
1
2

[
1 − tanh

l − l0
2∆

]
(4.26)

and construct the set of functions

φ0(l) = 1, φk(l) =
dk−1

dlk−1
tanh

l − l0
2∆

, (k = 1, 2, ...), (4.27)

deˇned in the interval of l ∈ [−∞,∞]. One can verify that the function φk(l)
is a linear combination of the Legendre polynomials Pn(y) of the variable

y = tanh
l − l0
2∆

with the maximum index value n equal to k. For instance,

one has

φ2(l) =
dy

dl
=

1
3∆

{P0(y) − P2(y)},

φ3(l) = −P1(y)
∆

dy

dl
, φ4(l) =

P2(y)
∆2

dy

dl
.

(4.28)

Obviously, the substitution y = tanh
l − l0
2∆

maps the l interval [−∞,∞] into the

y interval [−1, 1] where the Legendre polynomials form a complete set.

The associated orthogonal functions φ̃k(l) =
√

k +
1
2
Pk(y) satisfy the rela-

tions

∞∫
−∞

φ̃k(l)φ̃k′ (l)w(l)dl = δkk′ , (k, k′ = 0, 1, 2, ...) (4.29)

with the weight function w(l) = dy/dl. The coefˇcients in the expansion

χ(l) =
∞∑

k=0

akφ̃k(l) (4.30)
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for a given function χ(l) are determined by∗

ak =
∫ ∞

−∞
φ̃k(l)χ(l)w(l)dl. (4.31)

Similar arguments were used in [45] for the uniˇcation of the models for the
S matrix of diffraction scattering. In general, assuming for the S matrix that

SN (l) = u(l) + iv(l), (4.32)

where the real (imaginary) part u(l)
(
v(l)

)
is like the Fermi function (δ function),

the corresponding expansions can be written as

u(l) = D(1)

(
∂

∂l1

)
η(1)(l), (4.33)

v(l) = D(2)

(
∂

∂l2

)
η(2)(l) (4.34)

with

η(1,2)(l) =
1
2

[
1 + tanh

l1,2 − l

2∆1,2

]
. (4.35)

The differential operators D(j)(z) are generated by the series

D(j)(z) =
∞∑

k=0

C
(j)
k zk, (j = 1, 2). (4.36)

Furthermore, the parameters l1, l2, ∆1 and ∆2 can be chosen in an ®optimum¯
way so that

C
(1)
0 = 1, C

(1)
1 = C

(1)
2 = 0 , (4.37)

C
(2)
0 = C

(2)
2 = C

(2)
3 = 0. (4.38)

Unitarity u2
l + v2

l ≤ 1 imposes some extra constraints.
Thus, keeping several ˇrst terms in the r.h.s of Eq. (4.30) one can introduce

the necessary number of parameters in the treatment of diffraction scattering. In
combination with the asymptotic results shown underneath the approach called
in [45] the generalized phase-shift analysis is sufˇciently 	exible allowing to
evaluate the contribution of each separate term into the scattering amplitude.

∗This implies that the series (4.30) converges in the mean, i.e., the function χ(l) is quadratically
integrable, etc.
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4.3. The Complex Angular Momentum Method in the Theory of Nuclear
Diffraction. The WatsonÄSommerfeld Transformation. Analytic properties of
the F function gave an essential impetus to the development of several fruitful
approaches within the models described above. One of them is the so-called
complex angular-momentum method, developed by Inopin [12] and Ericson [13]
and based on the WatsonÄSommerfeld (WS) transformation [46]. It enables one
to ˇnd a simple connection between the properties of the S matrix in the complex
l plane and the corresponding cross sections in the ®shadow¯ region, i.e., for scat-
tering angles θ > θc. The Coulomb or grazing angle θc is the classical de	ection
angle for a charged particle moving along the grazing Coulomb trajectory with
the distance of the closest approach from the ˇeld centre equal to R

kR = n

(
1 + csc

θc

2

)
, (4.39)

where n is the Sommerfeld parameter. In what follows we conˇne ourselves to
the consideration of the elastic scattering at energies E above the Coulomb barrier
B = Z1Z2e

2/R, where Z1 and Z2 are the charges of the colliding nuclei.
It is generally accepted to separate out the Rutherford scattering contribution

SR(l) = exp [2iσ(l)] =
Γ(l + 1 + in)
Γ(l + 1 − in)

(4.40)

from the total S matrix

S(l) = SN (l) exp [2iσ(l)]. (4.41)

We assume that the ®nuclear¯ part SN (l) is one of the distributions considered
in Subsection 4.2.

In order to evaluate a sum like (4.12) with a large number of terms it is
often convenient to convert the sum into an integral. This can be done exactly
using the Cauchy theorem provided one can ˇnd an analytic function F (l; θ) in a
neighbourhood of the positive real l axis, which takes on the values Fl(θ) at the
positive integer l values. The sum (4.12) can be transformed into an integral in
the complex l plane

f(θ) =
i

2

∫
Γ

F (l; π − θ)
sin πl

dl, (4.42)

where Γ is the contour which proceeds clockwise around the positive real axis,
and may be inˇnitesimally close to it. This representation referred to as the
Watson transform is based on calculating the residues of the integrand in (4.42)
at the zeros of sin πl.
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The contour Γ is then deformed into the line Re l = −1
2

closed by a very

large semicircle to the right, picking up the contributions from the poles ln =
l0 ± iπ∆(2n − 1) (n = 1, 2...)∗ of η(l) (in general, from the possible (isolated)

singularities of S(l) which are to the right of the line Re l = −1
2

in the complex

l plane). Denoting the residues in these poles through βn (equal to ∆ for the
absorption coefˇcient (4.18)) we obtain

f(θ) =
iπ

2k

∑
n

(2ln + 1)
βn

sin πln
Pln(− cos θ) e−γ(ln+ 1

2 ) + IB(θ), (4.43)

IB(θ) = (2k)−1

+∞∫
−∞

y

[
η

(
−1

2
+ iy

)
− 1

]
cosh πy

P− 1
2+iy(− cos θ) e−iγydy. (4.44)

The WatsonÄSommerfeld representation (4.43) becomes especially useful
when the so-called background integral IB(θ) is negligible and one can ˇnd
efˇcient ways for calculating the sum in (4.43).

4.3.1. The Two-Pole Approximation. Exponential Falloff of the Cross Sections
of Diffraction Scattering. An important consequence of this pole expansion is
that the typical pole contribution in Eq. (4.43) outside the small angle region is
characterized by

Pln(− cos θ)
sin πln

� −


 2

π

(
ln +

1
2

)
sin θ




1/2

×

×




exp
[
i

(
ln +

1
2

)
θ + i

π

4

]
for Im ln > 0

exp
[
−i

(
ln +

1
2

)
θ − i

π

4

]
for Im ln < 0,

(4.45)

if the ®falloff¯ factors exp
[
−|Im ln|θ

]
and exp

[
−|Im ln|(π − θ)

]
are small.

Thus, the magnitude of a pole contribution is proportional to exp
[
−|Im ln|θ

]
,

∗This means that, according to the Jordan lemma, the contribution from the integral along a

semicircle of radius R, with centre in −1

2
, must tend to zero as R → +∞. This is the case for the

Fermi-like functions considered here.



1524 GRYPEOS M.E. ET Al.

so that the in	uence of poles far from the real axis decreases rapidly with in-
creasing θ. Of course, such estimates may be modiˇed by other factors and in
particular by the weight factors βn. For the grey disk absorption model the back-
ground integral (4.44) is proportional to O(exp [−l0/∆]) except for the extreme
forward-scattering region, where the conical function P−(1/2)+iy(− cos θ) has a
logarithmic singularity. Therefore, unless the pole contributions fall to very small
values, the background term in Eq. (4.43) is in practice negligible.

For a not too sharp boundary there is a large angular region for which
exp

[
−2π∆θ

]
� 1 and exp

[
−2π∆(π − θ)

]
� 1. This region is dominated by

the two poles nearest to the real axis. The scattering amplitude can then be
written as

f(θ) =
iπ∆
2k

[
(2l1 + 1)

Pl1(− cos θ)
sin πl1

+ (2l∗1 + 1)
Pl∗1

(− cos θ)
sin πl∗1

]
(4.46)

or

f(θ) = 2iπ∆
L

k
exp

(
−π∆θ

) [ θ

sin θ

] 1
2

J1(Lθ) (4.47)

for (π∆)−1 < θ < π − (π∆)−1. (4.48)

Here the cylindric Bessel function J1(Lθ) should be replaced by its asymptotic
expression at Lθ � 1.

The corresponding cross section is

σ(θ) = 4π2∆2 L2

k2
exp

(
−2π∆θ

) θ

sin θ

[
J1(Lθ)

]2

. (4.49)

At this point we can already conclude that as a general feature the diffuseness
gives rise to an exponential overall decrease of the cross section with angle.
Regular oscillations of Fraunhofer type are superimposed on this decrease. The
damping becomes stronger when the parameter ∆ increases. This general re-
sult has been also obtained using other analytical methods [11]. The present
phenomenon has been observed in many experiments with nuclear particles at
intermediate energies that give a strong conˇrmation of the theory based on the
SAM with Fermi-type distributions.

The idea of pole dominance and the two-pole approximation have been a
spring of inspiration for further elaborations [41,47Ä49]. We shall come back to
this point later.

4.3.2. Inclusion of Nuclear Refraction. Dip Phenomenon. Another applica-
tion of the method is connected with the inclusion of the refractive properties of
the S matrix. We show this within the ansatz (4.24) which is equivalent to

SN (l) =
1
2

[
1 + tanh

l − l0
2∆

]
exp

[
iδ0

(
1 − tanh

l − l0
2∆

)]
, (4.50)
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in order to exhibit extra advantages of the method and avoid some unnecessary
simpliˇcations.

As mentioned above, the function SN (l) has isolated singularities associ-
ated with the poles of the phase δ(l), i.e., the essential singular points lm =
l0 ± iπ∆(2m − 1) (m = 1, 2, ...). It was ˇrst shown in [14] that the WatsonÄ
Sommerfeld transformation makes it possible to get a closed expression for the
scattering amplitude in this case as well. In fact, if we neglect the respective
background integral, the method yields

f(θ) =
∑
m

[
f (m)(θ)

∣∣∣
Im lm>0

+f (m)(θ)
∣∣∣
Im lm<0

]
,

f (m)(θ) =
i

2

∮
lm

F (l; π − θ)
sin πl

dl,

(4.51)

where the contribution of the m-th singularity is given by an integral along a
circle of an inˇnitesimally small radius, with centre at lm, when moving along
the path in a counter-clockwise direction. Here the function SN (l) involved in
the partial scattering amplitude F (l; π−θ) is given by Eq. (4.50) with an arbitrary
parameter δ0.

Following [14] we obtain

f (m)(θ) =
1
2k

∮
lm

(
l +

1
2

)
SN(l) exp

[
2iσ(l)

]
Pl(− cos θ)

dl

sin πl
�

� − 1
k
√

2π sin θ

∮
lm

SN (l)gm(l)dl, (4.52)

with

gm(l) =

√
l +

1
2

exp
{

2iσ(l) + i

[(
l +

1
2

)
θ +

π

4

]
sign (Im lm)

}

and the l values being in neighborhood of the point l = lm.
Further, let us consider the integral

Cm(x) =
∮

lm

exp
[
−ix tanh

l − l0
2∆

]
gm(l)dl. (4.53)

The integral in the r.h.s. of (4.52) is simply related to the value Cm(δ0), and it
turns out that the quantity Cm(x) satisˇes the homogeneous differential equation

d2Cm(x)
dx2

+
{

1 − 2∆
x

[
2σ′(lm) + sign (Im lm)

]}
Cm(x) = 0, (4.54)
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if one neglects small variations of the square root

√
l +

1
2

and the Coulomb phase

derivative σ′(l) near the point l = lm.

The substitution x = −1
2
iy reduces (4.54) to the standard Whittaker form

d2Z(y)
dy2

+
[
−1

4
+

km

y

]
Z(y) = 0 (4.55)

with the parameter

km = i∆
[
2σ′(lm) + sign (Im lm)

]
.

All we need is to write down its solution which satisˇes the boundary conditions

Z(y)
∣∣
y=0

= 0, Z ′(y)
∣∣
y=0

= −2πi∆gm(lm).

The respective result is (cf. [14])

Z(y) = −2πi∆gm(lm)y exp
(
−y

2

)
Φ(1 − km, 2; y), (4.56)

where Φ(a, b; x) is the con	uent hypergeometric function.
It follows from (4.56) that the contribution of interest is

f (m)(θ) =
1
ik

[
2π

sin θ

]1/2

∆gm(lm)Φ(−km, 1; 2iδ0). (4.57)

Therefore, to the two-singular-point approximation

f(θ) � f (1)(θ)
∣∣∣
Im l1>0

+f (1)(θ)
∣∣∣
Im l1<0

, (4.58)

we ˇnd

f(θ) =
∆
ik

[
8πL

sin θ

]1/2

exp (−π∆θ) exp [2i Reσ(l1)] ×

×
[
Φ(−i∆θ+, 1; 2iδ0)Φ(i∆θ−, 1; 2iδ0)

]1/2 cos
[
Lθ + ρ(θ) + iξ(θ)

]
, (4.59)

where

ρ(θ) =
π

4
+

1
2

arg
Φ(−i∆θ+, 1; 2iδ0)
Φ(i∆θ−, 1; 2iδ0)

, (4.60)

ξ(θ) = 2 Im σ(l1) −
1
2

ln
∣∣∣∣Φ(−i∆θ+, 1; 2iδ0)

Φ(i∆θ−, 1; 2iδ0)

∣∣∣∣ , (4.61)
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with θ± = θ ± θc. The corresponding cross section is

σ(θ) =
8πL

k2
∆2 |Φ(−i∆θ+, 1; 2iδ0)Φ(i∆θ−, 1; 2iδ0)|

sin θ
×

× exp (−2π∆θ)
{
cos2

[
Lθ + ρ(θ)

]
+ sinh2 ξ(θ)

}
. (4.62)

The series

Φ(∓i∆θ±, 1; 2iδ0) ≡
∞∑

n=0

Γ(∓i∆θ± + n)
Γ(∓i∆θ±)

[2iδ0]n

[n!]2
=

= 1 ± 2∆θ±δ0 ±
i

4
∆θ±(1 ∓ i∆θ±)δ2

0 + ..., (4.63)

introduced in the diffraction theory [14] accumulates the refractive effects in all
orders in the phase parameter δ0. It follows from (4.63) that a true role of the
nuclear refraction is characterized by the products 2∆θ±δ0 but not the value of
δ0 itself.

Moreover, if the physical parameters obey the inequality

2∆θ+|δ0| < 1, (4.64)

one can put

Φ(∓i∆θ±, 1; 2iδ0) � 1 ± 2∆θ±δ0. (4.65)

Then, the formula (4.62) predicts an extreme swing of the cross-section oscilla-
tions near a scattering angle θ = θ1, where

θ1 =
(

p − 1
4

)
π

L
= (1 + 2∆θcδ0)

tanhπ∆θc

2∆δ0
(4.66)

and p is a half-integer number. For this value, both the cosine and the ˇlling
factor sinh2 ξ(θ) in (4.62) become equal to zero, i.e., the cross section has a very
deep minimum. This ®dip¯ phenomenon may take place even under the condition

exp (2π∆θc) � 1, (4.67)

in which case the nuclear phase is not included (δ0 = 0) and the Fraunhofer-type
oscillations are suppressed (the so-called Coulomb damping (see [50] and refs.
therein)).

For a weak Coulomb repulsion (θc � 2n/L � 1) we have instead of
Eq. (4.66)

θ1 =
(

p − 1
4

)
π

L
=

π

2δ0
θc. (4.68)
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This angle was introduced in Refs. [51, 14], where we proposed to use the dip
phenomenon, if any, to extract some information on the nuclear phase function
for peripheral collisions.

One should note that the approximation (4.62) works well in the shadow
region at θc + (π∆)−1 < θ < π. The asymptotic expression, which is applied in
the illuminated region too, will be given below (see Subsect. 4.4.2).

4.4. The AbelÄPlana Summation Procedure and Its Extension. The WS
method has been employed successfully [12, 13] to evaluate the corresponding
amplitude for θ > θc using a few poles only. However, at angles θ close
to the grazing angle θc this method becomes ineffective (cf. [42]) since the
series of the residues in Eq. (4.43) with the Coulomb repulsion included is not
rapidly convergent, so that the entire pole line begins to contribute. In order
to overcome such obstacles one can use another approach [52] based on the
following representation:

∞∑
l=0

Fl =

∞∫
0

F

(
s − 1

2

)
ds − i

∞∫
0

F

(
is − 1

2

)
− F

(
−is − 1

2

)
exp (2πs) + 1

ds −

− π
∑

k

res
[

eiπl

sin πl
F (l)

]
l=lk

(Im lk > 0) −

− π
∑

k

res
[

e−iπl

sin πl
F (l)

]
l=lk

(Im lk < 0). (4.69)

This result is an extension of the AbelÄPlana formula (cf. Eq. 1.9(11) in [25].
See also [53]). Unlike the latter, Eq. (4.69) can be employed both, for functions

F (l) regular on the right of the line Re l = −1
2

, as well as for those which have

isolated singularities in that part of the complex l plane.
This approach takes an intermediate place between the WS method focused

upon an analytical continuation of Fl and the Poisson procedure [54] where an
initial sum is replaced by an inˇnite series of the integrals along the real axis,
viz.,

f(θ) =

∞∫
0

F

(
s − 1

2

)
ds + 2

∞∑
m=0

∞∫
0

F

(
s − 1

2

)
cos

[
2πm

(
s − 1

2

)]
ds.

(4.70)

The latter turned out to be successful whenever only the ˇrst terms contribute sig-

niˇcantly to (4.70) owing to the frequently oscillating factors cos
[
2πm

(
s − 1

2

)]
.
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The problem was investigated in [11,41], where this approach was justiˇed using
cumbersome tricks. In particular, these authors have shown that the approxima-
tion

f(θ) =

∞∫
0

F

(
s − 1

2

)
ds (4.71)

is rather good as long as the cutoff is a smooth function.
It is noteworthy that Eq. (4.71) itself and some exact conditions for its validity

can be obtained simply starting from Eq. (4.69) and using the fact that for

∆ ∼ 1 (4.72)

the contributions from all the poles are suppressed by the factors
exp (±iπl)/ sin πl, which are exponentially small∗. Moreover, the second in-
tegral in (4.69) can be estimated usually without complications. Of course, one
should keep in mind that the contributions from the singularities of the S matrix
in Eq. (4.69) are attenuated by extra factors exp (−|Im lk|) in comparison with
the WS method. Thus, their relative role is to a great extent reduced even if the
singular points are not too far from the real axis.

4.4.1. Diffraction Scattering of Charged Particles. Since the competition
between the Coulomb repulsion and the nuclear absorption is typical for nucleus-
nucleus interactions at the collision energies above the Coulomb barrier, it is
interesting to unite them within a realistic model for the absorption coefˇcient ηl.
Here we shall parametrize the S matrix elements (4.41) following (4.18), where
the grazing angular momentum l0 is now given by

L = l0 +
1
2

= kR

√
1 − B

E
= kR

√
1 − 2n

kR
. (4.73)

Combining Eq. (4.73) with Eq. (4.39) one has

n

L
= tan

θc

2
. (4.74)

At this point, the amplitude can be written as [34]

f(θ) = −(ik)−1 lim
γ→0+

∂

∂γ

[
Sγ(θ) − δγ(θ)

]
, (4.75)

∗Exponentially small contributions of different origin are compared to one another in Sub-
sect. 4.4.3 with signiˇcant physical consequences.
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Sγ(θ) =
∞∑
l=0

ηl exp (2iσl)Pl(cos θ) e−γ(l+ 1
2 ), (4.76)

δγ(θ) =
∞∑

l=0

e−γ(l+ 1
2 )Pl(cos θ) =

1
2

[
sinh2 γ

2
+ sin 2 θ

2

]− 1
2

. (4.77)

When applying formula (4.69) to calculate Sγ(θ), one can ˇnd that the
respective ®background¯ integral (the second term in the r.h.s. of (4.69)) is of
the order of exp (−L/∆) � 1. Moreover, if

exp (−π2∆) � 1, (4.78)

which means a moderately sharp cutoff implied, for instance, when condition
(4.72) is fulˇlled, the pole line of the Fermi function contributes as

Σpole
γ (θ) � 2π∆i e−2π2∆

[
e2πil0 e−(l1+

1
2 )γ e2iσ(l1)Pl1(cos θ)−

−e−2πil0 e−(l∗1+ 1
2 )γ e2iσ(l∗1)Pl∗1

(cos θ)
]
.

On these conditions, one can replace the sum (4.76) by the integral,

Sγ(θ) � Aγ(θ) =

∞∫
0

S

(
l − 1

2

)
Pl− 1

2
(cos θ) e−lγdl, (4.79)

where

S

(
l − 1

2

)
=

exp
[
2iσ

(
l − 1

2

)]

1 + exp
L − l

∆

.

It has been shown that for realistic values of the parameters involved, Eq. (4.79)
gives a fair approximation apart from extremely large scattering angles.

In order to proceed in obtaining an asymptotic expression for the integral
Aγ(θ), let us employ the MehlerÄDirichlet formula,

Pl(cos θ) =
√

2
π

θ∫
0

cos
(

l +
1
2

)
v

(cos v − cos θ)1/2
dv, (4.80)

and the expression for the Coulomb phase factor,

exp [2iσ(l)] = B(l + 1 + in,−2in)/Γ(−2in) =

= h(n)

∞∫
0

[
sinh

s

2

]−1−2in

e−(l+(1/2))sds, (4.81)
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which is equivalent to

exp [2iσ(l)] =
1
2

h(n)
sinh πn

2π∫
0

[
sin

τ

2

]−1−2in

ei(l+(1/2))τdτ, (4.82)

being one of the Nielsen results (cf. Eqs. 1.5.1(25,29) in [25]). It leads directly
to the integral considered in Subsect. 3.1 (cf. Eq. (3.3)),

∞∫
0

exp (−µl)

1 + exp
L − l

∆

dl = π∆
exp (−Lµ)
sin π∆µ

+

+
∆ exp (−L/∆)

∆µ − 1
F
(
1, 1 − ∆µ; 2 − ∆µ;− exp (−L/∆)

)
, (4.83)

where µ = γ − iτ ± iv.
Along this guideline, going back to the Legendre polynomials and the Cou-

lomb phase shift via Eqs. (4.80) and (4.82), one can show that if along with the
strong inequality (4.78) one has

exp (−L/∆) � 1, (4.84)

at l0θ � 1, the asymptotic formulae obtained in [34, 52] yield the following
expression for the elastic scattering amplitude:

f(θ) = fFre(θ) + f̃ (+)(θ) + f̃ (−)(θ) (4.85)

with the Fresnel-type part

fFre(θ) = fR(θ)


G(θ) + sign (θc − θ)

exp
[
−ix − i

π

4

]
2
√

πx


 exp

[
2i(σas

0 − σ0)
]
,

(4.86)

where

G(θ) =
1
2

[
1 +

2√
π

sign (θc − θ)Er f(
√

ix)
]

,

x = n

{
(θ − θc) cot

θc

2
+ 2 ln

sin (θc/2)
sin (θ/2)

}
,

Er f(y) =

y∫
0

exp (−t2)dt,



1532 GRYPEOS M.E. ET Al.

and the Fraunhofer-type branches

f̃ (±)(θ) =
1
k

[ L

2π sin θ

]1/2 π∆
sinh

[
π∆(θc ± θ)

] exp
[
2iσ

(
L − 1

2

)
± iLθ ∓ i

π

4

]
.

(4.87)

Here fR(θ) is the exact Rutherford amplitude,

fR(θ) = − n

2k

exp
[
2iσ0 − 2in ln

(
sin

θ

2

)]

sin2 θ

2

. (4.88)

By σas
0 we denote the asymptotic Coulomb phase shift σ0 at n � 1,

σas
0 =

π

4
+ n(ln n − 1).

Expression (4.85) gives a solution of the diffraction problem for arbitrary
values of the Sommerfeld parameter in the SAM with nuclear refraction not
included.

4.4.2. Application to Heavy-Ion Scattering at Intermediate Energies. The Cou-
lomb-Nuclear Interference in Different Regimes of Nuclear Diffraction. These ana-
lytic results re	ect a rich physics, inherent to the interplay between the Coulomb
repulsion and the properties of nuclear interaction (in particular, its diffuseness).
To show it more prominently let us recall the following expression

fsco(θ) = fFre(θ) + f (+)(θ) + f (−)(θ), (4.89)

f (±)(θ) =
1
k

[
l0

2π sin θ

] 1
2

exp
[
2iσ

(
l0 −

1
2

)
± il0θ ∓ i

π

4

]

2 sin
θc ± θ

2

, (4.90)

obtained in [34] for the scattering amplitude fsco(θ) in the sharp cutoff limit
(∆ → 0). Of course, Eq. (4.89) cannot be derived directly from Eq. (4.85)
because of the restriction to the ∆ values, imposed by inequality (4.78).

Also note that the factor G(θ) can be expressed through the Fresnel integrals
C(x) and S(x):

G(θ) =
1√
2

{[
1
2

+ sign (θc − θ)C(x)
]

+ i

[
1
2

+ sign (θc − θ)S(x)
]}

, (4.91)
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where, by deˇnition,

C(x) =
1√
2π

x∫
0

cos t√
t

dt, S(x) =
1√
2π

x∫
0

sin t√
t

dt. (4.92)

Comparing expressions (4.89) and (4.85) we see that the diffuseness of nu-
clear surface does not change the structure of the scattering amplitudes, which, in
particular, retains its Fresnel part. The principal difference between them is related
to the Fraunhofer branches where the attenuation factors π∆/ sinh [π∆(θc ± θ)]

appear instead of

[
2 sin

θc ± θ

2

]−1

. This change causes signiˇcant distortions of

the diffractive patterns. Thus, one of the factors (corresponding to the + sign)
contributes negligibly (for ∆ ∼ 1 and θc ∼ 1) to the amplitude (4.85) in the
illuminated region (θ ≤ θc), where the cross section is determined mainly by
the interference of the Fresnel part in Eq. (4.85) and the ®negative¯ Fraunhofer
branch f̃ (−)(θ). If one uses the concepts geometrical interpretation of diffractive
phenomena [55], one may say that the diffuseness of nuclear boundary leads to
a suppression of the interference with waves scattered from the ®far¯ side of the
nuclear surface. Therefore, in the illuminated region with

√
x � 1 we ˇnd the

ratio of the elastic scattering cross section σ(θ) = |f(θ)|2 to the Rutherford cross
section σR(θ) = |fR(θ)|2 :

σ(θ)
σR(θ)

=

∣∣∣∣∣1 +
f̃ (−)(θ)
fR(θ)

∣∣∣∣∣
2

, (4.93)

so that the exponential decrease of |f̃ (−)(θ)| while moving away from θc gives
an exponential falloff of the envelopes of the oscillations inside the region. In
other words, at θ ≤ θc the f̃ (+)(θ) damping which is more rapid in comparison
with f̃ (−)(θ) results in smoothing the angular dependence of σ/σR (any shallow
oscillations induced by interference of ffree(θ) with both the branches f±(θ) in
fsco(θ) vanish).

These peculiarities of the diffractive patterns are illustrated in Fig. 1, taken
from [56]. A more detailed discussion of the diffuseness effects can be found
in [34] and [56].

In the region θ > θc, the two branches f̃ (+)(θ) and f̃ (−)(θ) begin to con-
tribute approximately equally, generating the ®Fraunhofer¯ regime of the diffrac-
tion. It is clear, however, that on the condition

exp (2π∆θc) � 1

the purely Fraunhofer picture of oscillations is not able to develop, and in the
shadow region the cross section decreases rapidly without oscillations.
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Fig. 1. Ratio of the scattering cross section to the Rutherford cross section. a) Calculations
in the smooth (sharp) cutoff diffraction model. b) Calculations with the uniform asymptotic
method (solid curve), the Fresnel approximation (dashed curve) and numerical summation
(points). The parameters involved are: l0 = 25, n = 20, and ∆ = 1
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Assuming n = 0 (the N limit according to [57] ) in (4.85), we ˇnd

f(θ) = i
L

k

[
θ

sin θ

]1/2
π∆

sinh π∆θ
J1(Lθ). (4.94)

This is equivalent, on the condition exp (−2π∆θ) � 1, to the result (4.47)
derived in the two-pole approximation.

Finally, by using the AbelÄPlana summation and other analytic procedures
(in particular, formula (3.2) with integer values of the index ρ), one can obtain
the following expression:

f(θ) = fFre(θ) + f̄ (+)(θ) + f̄ (−)(θ), (4.95)

f̄ (±)(θ) = Φ(∓i∆θ±, 1; 2iδ0)f̃ (±)(θ) (4.96)

for the scattering amplitude within the SAM (see [10]). Thus, with the inclu-
sion of nuclear refraction the Fresnel part of the scattering amplitude remains
unchanged. The asymptotic formula is a good approximation to the initial partial-
wave expansion both, in the illuminated and shadow regions (in the latter, at
not too large scattering angles when one can neglect other exponentially small
contributions shown in the next subsection).

4.4.3. On Exponentially Small Contributions to the Amplitudes of Diffrac-
tion Scattering. We have seen that the exponential falloff of the envelope of
diffraction maxima in the elastic scattering cross sections is regulated by the dif-
fuseness parameter ∆ which is proportional to the thickness parameter a of the
surface layer of the nucleus. The corresponding contribution to the amplitude
is determined by the factor exp (−π∆θ) � exp (−πkaθ). Here we show some
satellite terms (for instance, of the exp (−l0/∆)Äorder), which are usually disre-
garded keeping in mind strong absorption condition (4.17). Following [58] (see
also [59]) let us rewrite the sum of interest:

Σ(z) =
∞∑
l=0

(2l + 1) g

(
l − l0

∆

)
Pl(z) (4.97)

in the form

Σ(z) =
d

dz

∞∑
l=0

[
g

(
l − l0 − 1

∆

)
− g

(
l − l0 + 1

∆

)]
Pl(z), (z = cos θ),

(4.98)

where the function g

(
l − l0

∆

)
gives an extrapolation S(l) = g

(
l − l0

∆

)
of the

S matrix in l plane and satisˇes all the necessary analytical requirements (in
particular, it has a well-deˇned behaviour at inˇnity).
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By using some relations and tricks shown when deriving the asymptotics
for the amplitudes in the case of scattering of charged particles, it has been
found [58,59], when using

S(l) = gF

(
l − l0

∆

)
= 1 −

[
1 + exp

l − l0
∆

]−1

, (4.99)

the following expression for the scattering amplitude of interest (with an accuracy
to contributions of exp (−2π2∆) Ä and exp (−2L/∆)Äorder):

f(θ) = fD(θ) + fND(θ) + fpole(θ), (4.100)

fD(θ) =
√

2∆
ik

1
sin θ

d

dθ
Im ID(θ), (4.101)

fND(θ) =
1

i
√

2k

sinh (1/∆)

[cosh (1/∆) − cos θ]
3
2

e−L/∆, (4.102)

fpole(θ) =
2π∆
ik

Im
[(

2l+1 + 1
)
exp

(
2πil+1

)
Pl+1

(cos θ)
]
. (4.103)

A careful investigation shows that the diffraction integral ID(θ)

ID(θ) = exp (iLθ)

∞∫
0

e−Lu sin (θ + iu)
sinh [π∆(θ + iu)]

du√
cos (θ + iu)− cos θ

(4.104)

can be approximated either by

ID(θ) =
√

2
sin θ

sinh (π∆θ)
QL− 1

2
(cos θ − i0), (4.105)

or by

ID(θ) = −i
√

2
[
Ql+1 +1(cos θ − i0)− Ql+1 −1(cos θ − i0)

]
, (4.106)

where Qν(x − i0) is the Legendre function of second kind. Formula (4.105)
works asymptotically at L � 1, i.e., owing to the short wavelength condition
(4.15), over the band 0 ≤ θ < π−L−1. At the same time the r.h.s. of Eq. (4.106)
is the leading term of the expansion in powers of the factor exp (−π∆θ) and it
provides a good approximation to ID(θ) in the band (π∆)−1 < θ ≤ π. One can
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verify that these approximations give rise to the same angular dependence on an
intersection of the bands.

Now, it can be seen that the part fD(θ) yields a typical diffractive distribution.
In fact, let us replace ID(θ) by (4.105) and use the discontinuity relation,

πiPν(cos θ) = Qν(cos θ − i0) − Qν(cos θ + i0). (4.107)

Then

fD(θ) =
π∆
ik

1
sin θ

d

dθ

[
sin θ

sinh (π∆θ)
Pl0(cos θ)

]
. (4.108)

Whence at L � 1 it follows the well-known result [11] (cf. also Eq. (4.94))

fD(θ) = i
L

k

(
θ

sin θ

) 1
2 π∆

sinh (π∆θ)
J1(Lθ). (4.109)

Being concentrated in the forward-scattering diffractive cone 0 ≤ θ < x1/L,
when x1 is the ˇrst zero of J1(x), the distribution |fD(θ)|2 has the oscillations
of the Fraunhofer type beyond this cone. The envelope of their maxima is
determined by the factor exp (−2π∆θ).

This diffractive picture occurs against the background of smooth angular
dependence of the nondiffractive contribution fND(θ). Its magnitude is governed
by the other factor exp (−L/∆)∗. Obviously, the values can be comparable if

exp (−π∆θ) ∼ exp (−L/∆), (4.110)

i.e., at π∆2θ � L.
Finally, the pole contribution has the asymptotic behaviour:

fpole(θ) ∼
2i∆
k

(
2πL

sin θ

)1/2

e−(2π−θ)π∆ sin
[
L(2π − θ) +

π

4

]
,

L−1 � θ < π − L−1,

(4.111)

so that the distribution |fpole(θ)|2 oscillates inside a backward-scattering diffrac-
tive cone where the respective envelope has the exp [−2(2π−θ)π∆]-falloff while
moving from θ = π towards smaller angles.

A typical interplay between the three contributions which can simultaneously
take on exponentially small values is shown in Fig. 2, taken from [59]. We see

∗In fact, we are able to determine a whole hierarchy of such contributions classiˇed by ascending
powers of the exponentially small factor.
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Fig. 2. Exponentially small contributions to the cross section: diffractive (tiny solid line),
nondiffractive (dashed), pole (dots) and their sum (thick solid curve). The circles are
obtained by summing the partial wave expansion. Here l0 = 25 and ∆ = 3

that the nondiffractive effects which are closely related to the smooth cutoff in the
absorption become prevalent for scattering angles in the backward hemisphere.
At this point, let us remind that for nucleusÄnucleus scattering at intermediate
energies (e.g., 10 MeV per nucleon) the ratio L/∆ is approximately equal to
15Ä20 and the nondiffractive contribution can be comparatively small. However,
this is not the case for hadronÄnucleus scattering in the GeV-region. See, e.g.,
Table 1 of [43] where for scattering of 800 MeV/c pions from 12C the adjustable
parameters are such that L/∆ � 4 with ∆ � 2.5. Then one can expect that
fND(θ) contributes starting from θ ≥ π/6.

We distinguish two diffractive contributions. One of them yields the angular
distributions concentrated inside the forward-scattering cone while the other has
a prominent peak at backward-scattering angles. Envelopes of their maxima are
determined by the factors exp (−π∆θ) and exp [−(2π − θ)π∆], respectively.
Therefore, they become comparable for the extremely large scattering angles
where their interference turns out to be destructive because of some differences
in the corresponding pre-exponentials.
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5. THE FERMI FUNCTION IN STUDYING THE PROPERTIES
OF NUCLEI, HYPERNUCLEI AND METAL CLUSTERS

5.1. The Fermi Distribution for Nuclear Density and the Determination of
the Harmonic Oscillator Energy Level Spacing. One of the applications of the F
function approximating the density distribution of nuclei is its use in determining
the harmonic oscillator (HO) energy level spacing �ω and its variation with the
mass number A of the nucleus. A pertinent study has been undertaken in [60],
where nuclei with Z = N were considered. This approach follows the general
procedure usually developed for the uniform distribution (see Refs. 61, 62), but
the possibility of treating in a way nuclei with n valence nucleons in the spirit
of [8, 63] has been considered without making, however, any approximation in
relating the number of the highest ˇlled shell K to the mass number.

The average HO shell model (SM) mean square (m. s.) radius may be written
as [60]

〈r2〉K+n =
�

Mω

4
K∑

p=1

(
p +

1
2

)
N(p) +

(
K +

3
2

)
n

4
K∑

p=1
N(p) + n

=

= (�/Mω)[(K + 1)(3A + n) + 2n]/4A,

(5.1)

where K is determined by the solution of the equation

4
K∑

p=1

N(p) + n = 2
K∑

p=1

(p2 + p) + n = A. (5.2)

We have therefore

2
3
K(K + 1)(K + 2) + n = A. (5.3)

This equation can be solved exactly. Its only real solution is

K + 1 = v1/3[(1 + u)1/3 + (1 − u)1/3],

v =
3
4
(A − n), u =

(
1 − 1

27
v−2

)1/2

.
(5.4)

In deriving the asymptotic expression �ω = 41A−1/3 one equates the average
m. s. radius 〈r2〉 to that corresponding to a uniform distribution. It is more
appropriate, however, to consider here (for nuclei with N = Z or N 
= Z) a
Fermi distribution for the density of nuclear matter

ρ(r) = ρF(r) = ρ0{1 + exp [(r − c)/a]}−1. (5.5)
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Such a density is not, of course, suitable for nuclei with small A. We
assume, as in certain other studies (see, e.g., [4] ), that ρ(r) is the same with
the charge density distribution ρch(r) (as well as that the point-nucleon density
distribution is the same with the point proton one), apart from a normalization
constant, that is ρ0,ch = (Z/A)ρ0. Such an assumption implies equality of the
corresponding m.s. radii for a given nucleus, which is only approximately correct
[5, 6]. Here we adopt the assumptions made in [4]. One of them is that the
central density ρ(0) � ρ0 is independent of the mass number, which was argued
to be expected to be true, apart from the lightest nuclei, because of the saturation
properties of nuclear forces. The in	uence of the Coulomb forces which do not
saturate and of the exclusion principle which has opposite effects on neutrons
and protons is neglected. On the basis of the previous assumption ρ0 is taken
in this study to be constant, which (as well as a) is ˇxed by a ˇtting procedure
(see below). The value of c follows then from the normalization condition of
ρ(r). An alternative possibility which has also been followed in the past for the
determination of the parameters of the Fermi distribution is to choose a value of
a and a dependence of c on A which ˇt the results of elastic electron scattering
experiments. Such an approach appears interesting since ρ0, which is determined
now by the normalization condition, becomes dependent on A. It seems, however,
that there is still a sort of ambiguity as far as the functional dependence of c on A
is concerned, since the choice for this dependence does not appear to be unique.
We may also note that the dependence of ρ0 on the mass number which comes out
in this way with a = 0.54 fm, and the dependence of c on A given by Eq. (2.29)
in Ref. 64, namely: c = (0.978 + 0.0206A1/3)A1/3 is not strong. The difference
between the maximum and minimum value of ρ0, in the region 12 < A < 208 is
less than 16 % of its maximum value.

By using expression (5.1), the following formula for �ω is obtained

�ω =
3
4

�
2

MA

[
(K + 1)

(
A +

1
3
n
)

+
2
3
n − 2

]
×

×
[
〈r2〉 − (〈r2〉p + 〈r2〉n)

]−1

, (5.6)

where a value of (〈r2〉p + 〈r2〉n) is 0.659 fm2 [65]. In the above expression the
correction to 〈r2〉 = 〈r2〉ch due to the centre-of-mass motion [66] has also been
taken into account, in addition to proton and neutron ˇnite size effects.

We may remark that the ®half-way¯ radius is given in terms of A, a, and ρ0

by the expression

c =
(

1
2

)1/3

bA1/3{[1 + δ]1/3 + [1 − δ]1/3}, δ =
[
1 +

4
27

( πa

bA1/3

)6
]1/2

(5.7)
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with
b = (3/(4πρ0))1/3.

It is an ®almost exact relation¯ that follows from the normalization condition
for ρ when omitting terms of exp (−c/a) and of higher order.

The m. s. radius of the Fermi distribution with an accuracy to the small
exponential terms is equal to

〈r2〉 =
3
5

(
c2 + 7π2 a2

3

)
, (5.8)

where c is given by (5.7). Expansion of the quantity in the curly brackets in (5.7)
in ascending powers of A−1/3 leads to successive approximations to c and to the
radius of an equivalent uniform distribution,

Ru =
(

5
3
〈r2〉

)1/2

, (5.9)

given in [4].
On the basis of the above discussion the following (approximate) formula for

�ω may be proposed:

�ω =
5
4

�
2

MA

[
(K + 1)

(
A +

1
3
n

)
+

2
3
n − 2

] (
c2 + λ

)−1
, (5.10)

where

λ =
7
3

(πa)2 − 5
3
(
〈r2〉p + 〈r2〉n

)
. (5.11)

Expression (5.10) can be expanded in powers of A−1/3, the leading term of
the expansion being the well-known result: const A−1/3. Thus, we have

�ω =
5
4

(
3
2

)1/3 (
�

2

M

)
b−2A−1/3

(
1 + c1A

−2/3 + c2A
−4/3 + ...

)
, (5.12)

where

c1 =
1
3

(
2
3

)2/3

+
[
2
3
− λ

(πa)2

]
(πa/b)2 , (5.13)

c2 =
(

2
3

)1/3 (2
3
n − 2

)
+

1
3

(
2
3

)2/3

(πa/b)2 −

− 1
3

[(
2
3

)2/3

+ 4 (πa/b)2
]

λb−2 + λ2b−4 +
1
3

(πa/b)4 . (5.14)
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It is seen from the above expansion that the ˇrst two terms are independent of
the number of the valence nucleons. Obviously, for closed shell nuclei all the
terms are independent of n. In addition, we may remark that the centre-of-mass
correction does not affect the ˇrst two terms of the expansion.

The values of ρ0 and a needed for the computation of �ω have been obtained
by ˇtting expression (5.8) (with c given by Eq. (5.7)) for the r.m.s radius to the
experimental r.m.s radii of the charge distributions of individual nuclei, taken

from Ref. 67 (neglecting the errors quoted there). The 〈r2〉1/2
exp for the calcium

isotopes, which were used are the same with those used in Ref. 68. The best ˇt
values found (by ˇtting in the region 12 ≤ A ≤ 208) are ρ0 = 0.156 fm−3 and
a = 0.492 fm.

Alternatively, the values ρ0 and a can be determined by ˇtting the theoretical
expression (5.10) to the value of �ω, which reproduce by means of (5.6) the
experimental values of the r.m.s radii of the charge distributions of the relevant
nuclei, as these are determined from the elastic electron scattering experiments.
Such a ˇt (for nuclei with N = Z in the region 12 ≤ A ≤ 40) gave the values
ρ0 = 0.123 fm−3 and a = 0.369 fm.

The results of the calculations, in the framework of the approximate scheme
described, show discontinuities in the slope of �ω at closed shells. These discon-
tinuities die out as the mass number increases (see Fig. 1 in [60]).

Subsequent work for the determination of �ω on the basis of a density
distribution were made in Ref. 69, where the trapezoidal density was used, and in
Refs. 70Ä73. In Ref. 70 the problem of the dependence of the harmonic oscillator
spacings �ωn(�ωp) for neutrons (protons) on N(Z) was addressed using the
semiphenomenological distribution from Refs. 74, 75 for ρn(r), ρp(r) which is
rather complex but has certain desirable features. A comparison of the results
for �ω(= �ωnucleon(A)) obtained with the density from [74, 75] and those with
the Fermi density of [60] (leading to larger values of �ω) was made in [71]. At
last, in Refs. 72 and 73 isospin dependent oscillator spacings were considered. In
Ref. 72 a SF density was also parametrized and expressions for the radius and
�ω dependent on A and N − Z were obtained. In Ref. 73 the dependence of
�ωn(�ωp) on N and Z was established employing a parametrization of the m. s.
nuclear radius obtained in HF-BCS calculations. The parametrization had been
introduced in [76] with a Fermi-like shape assumed for the neutron and proton
densities.

Finally, we mention that a Fermi distribution was also used recently [77,78]
in determining the HO energy level spacing �ω for metal clusters, within the
jellium model in a way analogous to the one described in this section. Neutral
sodium clusters were considered and parameters of the Fermi distribution were
determined by means of the jellium model results for the electronic densities
obtained in the detailed local density calculations in Ref. 79. An ®overall¯ least
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squares ˇt was made of the expression for ρF(r)/ρ0 to the results of [79] for a
number of clusters which gave b = 2.08 
A and a = 0.39 
A. The variation of �ω
with the particle number N (the number of the valence electrons of the atoms
in the jellium model) showed again ®slope discontinuities¯ (kinks) at the closed
shells, under the assumptions made (see Figs. 1Ä3 of [78]). These are somewhat
more apparent in the plot of ∆�ω/∆N (see Fig. 4 of [78]).

5.2. ®WoodsÄSaxon-Type¯ Potentials. The aim of this paragraph is to
discuss certain potentials which are quite similar among themselves and we use
for them the term ®WoodsÄSaxon-type¯ potentials. They include in addition to
the usual WoodsÄSaxon (WS) potential, the so-called ®cosh¯ potential Vc(r) and
the ®symmetrized WoodsÄSaxon¯ one: VSWS (having as its radial dependence
the SF function). Potentials of this type have been extensively used in nuclear
and hypernuclear physics calculations and also in studying metal clusters.

5.2.1. The Potential Radial Dependences, Depths and Radii. The well-known
WS potential

VWS(r) = −V0fF(r) =
−V0

1 + exp [(r − R)/a]
, (5.15)

being a very helpful approximation in nuclear physics, has been discussed in many
monographs and textbooks (see, e.g., [8, 80]). Such a potential does not satisfy
the physical requirement which is usually imposed [81] that the force experienced
by a particle at the centre of a spherically symmetric potential be zero, though
the value of dVWS(r)/dr|r=0 is very small for R/a � 1, that is apart from the
light nuclei.

An alternative potential considered in [17], the so-called ®cosh¯ potential,
which is a symmetrized form of the WS one, namely,

Vc(r) = −V0fc(r) = −V0
1 + cosh (R/a)

cosh (r/a) + cosh (R/a)
(5.16)

has the desirable feature: (dVc/dr|r=0) = 0. Note that we usually drop the
corresponding subscripts in the potential parameters in order to simplify the
notation. The radial dependence of this potential (its FF) is very similar to that
which has been put forward in [15] (cf. 1.3) to describe the densities of nuclei for
a wide range of the mass number. In Ref. 17, the potential (5.16) has been used
as the central part of a cluster-core potential, and by suitably choosing parameters
R and a, potential shapes can be obtained, which are remarkably similar to the
folding potentials used in [82], and hence they also exhibit rotational spectra.

Subsequently, in Refs. 83, 84 the potential (5.16) was used in connection with
a semiclassical method of quantization for a particle in a nuclear potential and
for comparison of the results with those obtained with the Schréodinger equation.
In this case, the WS potential is inadequate (according to [84]) to calculate the
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classical trajectories since the numerical methods used for the integration of the
equations of motion are inapplicable in the vicinity of r = 0 for this potential.

One may employ, instead of potential (5.16), a symmetrized WS potential in
the form which has been used in the case of nuclear densities (and in the analysis
of hypernuclei),

VSWS(r) ≡ −V0fSF(r) = −V0
sinh (R/a)

cosh (r/a) + cosh (R/a)
. (5.17)

Following Ref. 18, we would like to note that potentials (5.16) and (5.17) are of
SF form and have zero slope at the origin, but their FF's differ, their ratio being:

fSF

fc
= sinh (R/a) [1 + cosh (R/a)]−1 (5.18)

with the same values of R and a in both cases. This ratio is almost unity for
R/a � 1, that is for the heavier elements for which both potentials are very close
to the WS one.

The choice of the numerator in potential (5.16) seems to originate from the
requirement that the form factor to become unity at the origin, where the potential
has its minimum. Thus, V0 is the actual depth of the ®cosh¯ potential: Dc = V0.
This is not the case for the other two potentials for which the depths are:

DWS = |VWS(0)| = V0[1 + exp (−R/a)]−1,

DSWS = |VSWS(0)| = V0[1 − exp (−R/a)][1 + exp (−R/a)]−1.
(5.19)

Therefore, for each of these potentials V0 is a ®depth parameter¯, which deter-
mines its depth to a large extent, but not entirely, since D depends also upon R
and a.

Analogous remarks can be made regarding the meaning of R. For the WS
potential the parameter R is the distance from the origin at which the absolute
value of the potential becomes half of its depth parameter V0 (not its depth). It
is a ®half-depth¯ parameter radius since

|VWS(R)| =
1
2
V0 =

1
2
DWS[1 + exp (−R/a)] >

1
2
DWS. (5.20)

For the ®cosh¯ potential we have

|Vc(R)| =
1
2
Dc

{
1 + 2 exp (−R/a)[1 + exp (−2R/a)]−1

}
>

1
2
Dc. (5.21)

The same expression holds for VSWS(r). Therefore, for all three potentials, R
is a quantity which characterizes the range of the potential, but it is somehow
smaller than the ®half-depth¯ radius (see the Table).
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The above remarks as well as the following one are pertinent to the cases in
which the condition R/a � 1 is not quite satisˇed, that is, to the lighter nuclei.

The choice of the numerator in the ®cosh¯ potential discussed earlier seems,
however, to have another implication. The volume integral of the potential
becomes a transcendental function of the radius R:

|V c| =
∣∣∣∣4π

∫ ∞

0

Vc(r)r2dr

∣∣∣∣ =
4πV0

3
R3

(
1 +

(πa)2

R2

)(
1 + cosh (R/a)

sinh (R/a)

)
,

(5.22)

and it is not easy to use it in order to express R as a function of the mass number
of the nucleus. Transcendental terms appear also in the volume integral of the
WS potential [4]. On the contrary, for the VSWS(r) these terms are absent as
the results given in [15] for the SF density show and detailed calculations [18]
have veriˇed (see also Sects. 2 and 3). One can therefore write on the basis of a
folding model and the well-known properties of the convolution (in analogy, for
example, with the approximate treatment of [86] (see below Subsect. 5.3) for a
WS):

4πV0

3
R3

(
1 +

(πa)2

R2

)
= Ac|V NN |, (5.23)

where, in the case of a bound nucleon, Ac = A− 1, A being the mass number of
the nucleus, |V NN | is the volume integral of the spin-average (central) nucleon-
nucleon potential|V NN | = |

∫
V NN (r)dr|. The above equation is a third-order

equation with respect to R and can be solved exactly. In fact, it has the same
structure as the equation arising from the normalization integral for a trapezoidal
distribution [69, 87]. The corresponding equation for the Fermi distribution [60]
(and the WS potential) is approximate.

Thus, in the case of the VSWS potential, one may obtain the following exact
expression of the radius R in terms of the mass number:

R =
1

21/3
r0A

1/3
c {[1 + δc]1/3 + [1 − δc]1/3} =

= r0A
1/3
c


1 − 1

3

(
πa

r0A
1/3
c

)2

+
1
81

(
πa

r0A
1/3
c

)6

+
1

243

(
πa

r0A
1/3
c

)8

+ . . .


 ,

δc =


1 +

4
27

(
πa

r0A
1/3
c

)6



1/2

(5.24)

where r0 = (3|V NN |/4πV0)1/3. The leading term of this expansion (assuming
also a suitable dependence of V0 on A, such as the one in Sect. 4 of Ref. 18):
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R � r′0(A − 1)1/3 is of the form which is often used for the radius of the WS
potential. In the treatment of Ref. 88, however, the r′0 in such an expression was
dependent on A.

It should be noted that the higher even moments of potential VSWS(r) may
also be given analytically and contain no exponential terms. The same holds for
the ®cosh¯ potential but not for the WS one. The respective expression for the
®nth¯ moment is determined by Eq. (2.63) in Subsect. 2.2.1.

We would like also to point out that some ˇndings which have been described,
permit to give rather transparent qualitative predictions. In particular, it has been
shown [89] that an expansion of the type (1.7) or (2.20), truncated at the term
with the ˇrst derivative of δ function, may be helpful in certain cases. Thus, one
may write the WS potential in the Schréodinger equation approximately as

V (r) = −V0Θ(R − r) + V0
π2

6
a2 d

dr
δ(r − R), (5.25)

considering the corresponding eigenvalue problem. In particular, for bound s
states, this leads to the following analytic eigenvalue equation:

X

X0
=

| sin X |
(1 − g2 cos2 X)1/2

, (5.26)

where

X = KR = [(2µ/�
2)(V0 − |E|)]1/2R, (5.27)

X0 = K0R = [(2µ/�
2)V0]1/2R (5.28)

and

g2 = 1 −
(

1 − ξ

1 + ξ

)2

, ξ = (µ/�
2)(V0/6)π2a2. (5.29)

It is seen immediately that for the diffuseness parameter a going to zero, Eq. (5.26)
yields the usual eigenvalue relation for the square-well potential (see, e.g., para-
graph 3.2 in [90]).

Numerical or graphical solution of (5.26) determines the energy eigenvalues.
Application of this equation to the ground state binding energy of the Λ particle in
the hypernucleus 89

Λ Y gave for it the value BΛ = 23.8 MeV while the Shréodinger
equation solved numerically for the WS potential gave the value BΛ = 24.3 MeV.
The parameters used were V0 = 29.8 MeV, r0 = 1.2 fm, and a = 0.6 fm. We
see that these binding energy values are quite close.
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5.2.2. The Estimate of the Potential Parameters. Firstly, one may point out,
following a proposal made in a study of inclusive pion nuclear reactions [91],
that the radius R and the diffuseness parameter a for a point proton density distri-
bution of the Fermi-type can be obtained approximately from the corresponding
parameters Re and ae for the same type charge density distribution and the m. s.
radius for the charge density distribution of the proton r2

p. The pertinent expres-
sions were given by formulae (18) and (19) of Ref. 18, where an improvement is
also pointed out.

The corresponding approximate depth, radius and diffuseness parameter for
the SWS potential are derived under the assumption this potential to be given by
the folding model expression [92,93], viz.,

V (r) = Ac

∫
ρ(|r − r′|)VNN (r′)dr′ =

=
[
Ac

∫
VNN (r)dr

](
1 +

∞∑
n=1

〈r′2n〉NN

(2n + 1)!
∆n

)
ρ(r), (5.30)

where ∆nρ(r) = [(d/dr)2n+(2n/r)(d/dr)2n−1]ρ(r), and ρ(r) is the point proton
density, which is taken to be the same with the nucleon one.

The above expansion is valid for large r, compared with the range of the
nucleonÄnucleon potential VNN , and for sufˇciently short range VNN only the
ˇrst term in the sum may be taken into account, so that, for instance,

−V0 �
(

Acρ0

∫
VNN (r)dr

)(
1 − 〈r2〉NN

6Ra

)
, (5.31)

where R and a are the radius and diffuseness parameters of the (S)F distribution
for point nucleons.

The parameters (RV , aV ) for the (S)WS potential are also given by approx-
imate analytic expressions (formulae (28), (29) or (32) and (33) of Ref. 18).

Another possible way of determining the parameters RV and aV is the one
which is outlined in [94] (see also [95]) in the case of the Λ nucleus potential.
According to this approach one uses the relation

〈r2〉 + r2
p = 〈r2〉e (5.32)

between the second moments of the SF distribution and the corresponding one
between the fourth moments (the factor 7/3 in expression (A3) of [94] should be
written as 10/3) [94,96]:

〈r4〉e = 〈r4〉 + r4
p +

10
3
〈r2〉r2

p. (5.33)
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Analogous relations are used between the moments of the potential and the
point-nucleon distribution. The analytic expressions for 〈rn〉SF can be found by
means of general relation (2.63).

Again in this approach the parameters R and a are ˇrst determined from Re

and ae. From the 〈r2〉e and 〈r4〉e, which are known in terms of Re and ae, the

〈r2〉 and 〈r4〉 (and the ratio
21
25

〈r4〉/〈r2〉2 = λ2) are determined by means of

(5.32) and (5.33). Subsequently, the quantity y = (πa/R)2 is expressed in terms
of λ2, using the expression of the second and the fourth moment for SF:

y =
(πa

R

)2

=
3

49λ2 − 93

(
−7λ2 + 9 ± 2

√
4λ2 − 3

)
. (5.34)

Thus, using (5.32) and (5.34), the expressions of R and a are

R =

(
5
3
〈r2〉e − r2

p

1 + 7
3y

)1/2

(5.35)

and

a =
y1/2R

π
=

(
5y(〈r2〉e − r2

p)
3π2(1 + 7

3y)

)1/2

. (5.36)

The expressions of RV and aV are quite analogous. The λ2 refers now to

the ratio of
21
25

〈r4〉V /〈r2〉2V and instead of r2
p and r4

p the corresponding moments

of the nucleonÄnucleon potential appear in the various expressions.
It should be clear that in both approaches described above the approximation

is made, as in [94], that the convolution of a SF distribution is a SF distribution.
This should be reasonable as long as the ®folding¯ distribution (either proton
charge density or nucleonÄnucleon potential) are of sufˇciently short range com-
pared with the folded distribution. Having determined RV and aV in one way
or the other the potential depth parameter V0 is adjusted so that the values of the
experimental single particle energies are reproduced on solving the Schréodinger
equation.

Finally, all parameters could be determined by a suitable least-squares ˇt
to the experimental single-particle energies. It appears, however, that in most
cases such a procedure would not be satisfactory, mainly because of the large
experimental uncertainties. For this reason, one of the parameters, namely aV

(on which the single-particle energies, at least for the ground state [86], are not
expected to depend strongly, unless Ac is small), is ˇxed from our previous
experience and the remaining parameters could be attempted to be determined by
a least-squares ˇt.
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5.2.3. Numerical Results and Discussion. Numerical estimates of the SWS
potential parameters (RV , aV , and V0) have been obtained on the basis of the
procedures that have been outlined brie	y in the preceding paragraph (see [18]
for more details) considering the nuclei, 12

6 C, 16
8 O, 24

12Mg, 28
14Si, 32

16S, 40
20Ca, 56

26Fe,
and 58

28Ni. The parameters used for the charge density distribution for these and
certain other nuclei were determined in [15, 16] from the analysis of the elastic
electron scattering experiments. Both approaches discussed were applied, more
exactly, an improved version of the approach in [91] and also the approach of
the second and fourth moments following [94,95].

The second and fourth moments of the nucleonÄnucleon potential were esti-
mated by using interaction 4 of Table 1 of [97]. This potential is of short range
that is essential for the applicability of the method. The results for RV and aV

are displayed in Tables 1 and 2, respectively, of Ref. 18 and they do not differ
between the two methods appreciably. The ˇrst approach leads to larger values
of RV and to smaller values of aV compared with those of the second approach.
In the same tables, the values of the potential depth parameter V0 determined
through the values which have been found for RV and aV and the nuclear contri-
butions to the proton energy for various states are also displayed. These energies
have been estimated from the experimental proton energies given in [98] (or by
the corresponding curves in Fig. 117 of [99]) subtracting approximate values for
the Coulomb energy Ec. The same expression for Ec, as in [85], has been used
for the present rough estimates relying upon the values of Table 1 of [18] for Re

and ae. The values of Ec obtained in this way are quite close to those of [85] in
which the Re and ae for the corressponding (or neighbouring) nuclei have been
taken from [100], [67]. A marked state dependence of V0 has been observed. V0

is smaller for the 1p states and (normally) even smaller for the 1d or 2s states.

We may note that the nonorthogonality between the 1s and 2s states, be-
cause of the state dependence of the potential, can be treated within the relevant
formalism [101]. In practice, it is easier, however, to apply an orthogonalization
procedure like the GramÄSchmidt one. Such an approach has been developed
in [102] using the WS potential to calculate the charge density of 58Ni. It led
to the interesting observation that under certain general conditions the occupation
numbers remain approximately unchanged.

It should be also pointed that the folding model approach with an average
spin and isospin independent nucleonÄnucleon potential is essentially limited to
the case of light symmetric nuclei. Although the described approach could perhaps
be also attempted for some asymmetric nuclei, its validity in these cases should
be in general quite doubtful.

A couple of additional remarks are relevant. As in the case with the WS po-
tential [103], the solution of the Schréodinger eigenvalue problem with an energy-
dependent SWS potential is equivalent to the solution of this problem with an
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energy-independent potential ṼSWS but with radial dependent effective mass:

m∗(r, ε) = m

(
1 − ∂VSWS(r, ε)

∂ε

)
. (5.37)

By assuming a linear energy dependence of the potential depth parameter of VSWS

V0(ε) = V0 +
(
1 − m∗

0

m

)
f−1
SF (0)ε, (5.38)

where m∗
0 is the value of the effective mass for r = 0, the effective mass (5.37)

becomes energy independent:

m∗(r) = m

[
1 −

(
1 − m∗

0

m

)
fSF(r)
fSF(0)

]
. (5.39)

The corresponding energy-independent potential is

ṼSWS(r) = − m

m∗(r)
V0fSF(r). (5.40)

The value of m∗
0/m was estimated for 40

20Ca and 58
28Ni, using equation (5.38)

and the values of V0(ε) (from Table 2) of [18] for the various occupied states
(apart from the last one). For 40

20Ca it was found m∗
0/m = 0.6; while for 58

28Ni,
m∗

0/m = 0.5.
We may also note that a spin-orbit term V SO should be added to the central

SWS potential

V SO
SWS = V SO

0

(
�

mπc

)2 1
r

dfSF(r)
dr

1 · σ =

= −V SO
0

αV

(
�

mπc

)2 1
r

sinh (RV /αV ) sinh (r/αV )
(cosh (RV /αV ) + cosh (r/αV ))2

1 · σ.

(5.41)

The strength V SO
0 of this term may be estimated empirically from the experimental

splitting of the single-particle levels due to the spin-orbit force. The values of V0

and V SO
0 for a number of nuclei are displayed in Table 3 of [18]. In all those

estimates the values of RV and aV were taken to be those displayed in Table 2
of that reference.

In conclusion, we should make clear that only a rough estimate of the po-
tential parameters has been attempted. This is mainly due to the approximations
involved, to the rough estimate of the Coulomb energies and to the rough ex-
perimental values for the single-particle energies. In order to become free of the
second ambiguity and diminish the third one, were used the comparatively more
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recent neutron separation energies reported in [104]. Unfortunately, only the 12C
and 16O nuclei (and some lighter ones) have been studied in that reference. The
values of the potential depth parameters obtained from the experimental values
for the energies in the 1s and 1p states are somehow different from those of
Tables 1 and 2 of [18]. The differences are, however, of the order of about 10 %
or less.

5.3. WoodsÄSaxon-Type Potentials in Analyses of Hypernuclei and Metal
Clusters. 5.3.1. The WS Λ-Nucleus Potential. The WS potential has also been
employed in studying hypernuclei such as Λ and Ξ hypernuclei. Initially and in
a number of calculations the half-way radius R was related to the mass number
of the core-nucleus Ac = A by the simple expression R = r0A

1/3 [94,95,105].

An improved relation [86] between R and A may be derived by consider-
ing the ®rigid-core model¯ (folding model) [106] expression for the Λ-nucleus
potential, assumed to be of the WS form,

VΛA(r) =
−V0

1 + exp [(r − R)/a]
. (5.42)

Thus,

VΛA(r) = A

∫
VΛN (|r − r′|)ρA(r′)dr′, (5.43)

where VΛN is the (spin-average) Λ-nucleon potential and ρA the normalized to
unity point nucleon density distribution of the core nucleus. Using the well-known
property of the convolution, we may write

4π

∫ ∞

0

VΛA(r)r2dr = −AV , (5.44)

where the volume integral of the (spin-average) Λ-nucleon potential is denoted
here by V > 0 .

If VΛA(r) is assumed to be of the form (5.42), the above integral may be
evaluated analytically and the following equation for R is obtained:

R3 + (πa)2R − 3V

4πV0
A = 0, (5.45)

provided that exp [−R/a] � 1. The latter condition is usually well satisˇed. The
third-order equation is of the same form with the one which follows from the
normalization condition of a trapezoidal distribution for the nuclear density and



PROPERTIES OF FERMI AND SYMMETRIZED FERMI FUNCTIONS 1553

has been solved analytically [87]. The expression for R obtained in this way is

R =
(

1
2

)1/3

r0A
1/3




1 +

(
1 +

4
27

(
πa

r0A1/3

)6
)1/2




1/3

+

+


1 −

(
1 +

4
27

(
πa

r0A1/3

)6
)1/2




1/3

 , (5.46)

where r0 = (3V /4πV0)1/3. It is easily seen from (5.46) that R may be expressed
as an expansion in powers of A1/3, which is the same (if we replace V0/V
by ρ0) with the corresponding expansion of R for a Fermi-type nuclear density
distribution.

If we wish to make an estimate of V0, the Schréodinger equation must be
solved numerically with potential (5.42). Alternatively, one might consider the
relevant eigenvalue equation for BΛ, which is known in the case exp [−R/a] � 1,
to be (for the ground (1s) state) [107,108]

Rξ + arctan
ξ

η
+ arg Γ(1 + 2iaξ) − 2 arg Γ(1 + aη + iaξ) = π, (5.47)

where

ξ =
[
2µΛA

�2
(V0 − BΛ)

]1/2

, η =
(

2µΛA

�2
BΛ

)1/2

. (5.48)

It is shown in [108] that a Walecka-type expression (see [109]), which is appro-
priate for sufˇciently large A, can be written for BΛ,

BΛ � V0 −
�

2π2

2µΛAR2

(
1 − 2

S
+

3
S2

)
. (5.49)

The quantity 1/S is determined by

1
S

=
1

Rk0
{1 − 2ak0 [γ + Ψ(1 + ak0)]} , k0 =

(
2µΛAV0

�2

)1/2

, (5.50)

where γ is Euler's constant (γ = 0.577...) and Ψ the logarithmic derivative of
the Γ function. For comments on (5.49) see Ref. 108.

We may remark that a somewhat different approximate expression for BΛ

is [86]

BΛ � V0 −
(

�
2

2µΛA

)( π

R

)2
(

1 +
1
S

)−2

, (5.51)
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which has the same form with the one in the square-well case, where S = Rk0

(see, e.g., [110]).
We should note that equation (5.51) gives very similar results with (5.49),

at least apart from the comparatively small values of A for which the results
of these expressions deviate more or they are even quite different from those
obtained with the exact expression for BΛ.

Expression (5.51) for BΛ is an approximate semiempirical mass formula
which has the attractive feature (as the truncated expression (5.49) too) of being
rather simple and of giving also quite accurate estimates for BΛ, apart from the
cases of light hypernuclei. It may, therefore, be used for the heavy hypernu-
clei as an alternative to the evaluation of BΛ either by solving numerically the
Schréodinger equation or the analytic eigenvalue equation (5.47) since these pro-
cedures, particularly the ˇrst one, are much more time consuming. BΛ, given by
expression (5.51), may be written as an expansion in powers of A, if the relevant
expansion for R given in [4] is used:

R = r0A
1/3

[
1 − 1

3

(
πa

r0

)2

A−2/3 +
1
81

(
πa

r0

)6

A−2 +

+ O
(
A−8/3

)]
= r′0(A)A1/3. (5.52)

The parameters V0 and a are assumed here to be independent of A. The ˇnal
result at which we arrive after some algebra is the following:

BΛ � V0 −
�

2π2

2mΛ
r−2
0 A−2/3

{
1 − 2S̃−1A−1/3+

+

[
3S̃−2 +

2
3

(
πa

r0

)2
]

A−2/3 −
[
4S̃−3 + 2S̃−1

(
πa

r0

)2

− mΛ

mN

]
A−1+

+

[
5S̃−4 + 4S̃−2

(
πa

r0

)2

+
1
3

(
πa

r0

)4

− 2
(

mΛ

mN

)
×

×
(

S̃−1 +
a2

r0
k̃0Ψ′(1 + ak̃0) −

1
4r0k̃0

)]
A−4/3 + O(A−5/3)

}
, (5.53)

where

S̃−1 = r−1
0 (k̃−1

0 − 2a(γ + Ψ(1 + ak̃0))), k̃0 =
(

2mΛ

�2
V0

)1/2

(5.54)

and Ψ′(1 + ak̃0) is the derivative of Ψ(1 + ak̃0) with respect to ak̃0.
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The function Ψ(1 + ak̃0) may be expressed as a series expansion

Ψ(1 + ak̃0) = −γ +
∞∑

n=1

(−1)n+1ζ(n + 1)(ak̃0)n, ak̃0 < 1, (5.55)

where ζ(n + 1), n = 1, 2, ... is the Riemann's zeta function (ζ(2) = 1.6449,
ζ(3) = 1.2021, ζ(4) = 1.0823 etc.). The function Ψ′(1+ ak̃0) may also be given
as a series expansion.

We may note that the surface diffuseness effects (a 
= 0) in	uence the
coefˇcients of the third and higher terms of the expansion for BΛ, while the
use of the reduced mass µΛA has resulted in additional correction terms in the
coefˇcients of the ˇfth (∼ A−5/3) and higher terms. In Ref. 86 preliminary
numerical calculations of BΛ were made using the WS potential with the complex
expression for R and the earlier experimental values for BΛ (from the emulsion
data [105, 111]). The well-depth D = V0, the diffuseness parameter a and
V were treated as adjustable parameters. The values turned out to be around
D � 29 MeV, a � 0.6 fm and V � 325 MeV · fm3 (r0 = 1.4 fm) (for more
details see [86]). Also, for 13

Λ C, the value of the quantity (R − r0A
1/3)/R is

indicated to be roughly (10Ä15) %.
The WS and SWS potentials were used in the same spirit in the analysis of

Ξ hypernuclei (see [112]).
Finally, we recall that the WS potential was also used in the analysis of the

Λ energies not only in the ground state but also in its excited states. Signiˇcant
progress in measurements of the Λ-single particle energies for various hypernu-
clei in their ground and excited states was made during the last decades [113].
We mention, in particular, Ref. 114 (and references therein). There, the ra-
dius parameter r0 was also taken to be dependent on the mass number, but it
was equal to 1.128 + 0.43A−2/3, where A is the mass number of the hyper-
nucleus. In addition, more complex potentials were employed including those
containing a quadratic form of the Fermi function. In this context, we would
like to note Ref. 115 where the SWS potential had state-dependent depth and
radius parameter r0 (in addition to the A dependence of the latter). Also, let
us recall applications of the WS form in relativistic energy calculations of the Λ
particle on the basis of the Dirac equation with attractive and repulsive poten-
tials [116].

5.3.2. WS-Type Potentials for Metal Clusters. In this subsection we would
like to point out that WS-type potentials were used in the study of atomic (metal)
clusters as well. This research area was much developed in the last two decades
after it had been found in 1984 that atoms of some metals (alkali, gold, etc.) can
form bound systems (clusters) showing shell structure and magic numbers as in
nuclei and atoms [117,118]. Thus, this area can be regarded as a new application
ˇeld of nuclear-physics ideas and methods [119].
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The usual WS potential was used in Ref. 117 in analysing the mass spectrum
for sodium clusters in the pioneering work, where shell effects were observed.
The same potential was imployed in [119] in parametrizing the effective radial
electronic potential, that had been obtained on the basis of local density approxi-
mation, to examine shell and supershell effects. The parameters were: V0 = 6 eV,
R = r0N

1/3, r0 = 2.25 
A and a = 0.74 
A.
In Refs. 120 the WS and SWS potentials were applied to describe the prop-

erties of metal (sodium) clusters. In those papers a complex expression for the
potential radius R, that is a sort of generalization of the expression used for
hypernuclei, was considered, and also another potential of the WS-type, namely,
the ®wine bottle¯ SWS given by

VWB = −V0

(
1 +

wr2

R2

)
sinh (R/a)

cosh (r/a) + cosh (R/a)
, 0 ≤ r < ∞ (5.56)

was discussed.
5.3.3. The SWS Potential and the Determination of �ω for Hypernuclei and

Metal Clusters. The determination of the HO energy level spacing �ω and its
variation with the particle number was discussed in Subsect. 5.1 for ordinary
nuclei and metal clusters on the basis of the Fermi distribution for the particle
density. Here we address the same problem for hypernuclei and metal clusters
employing the single particle (s.p.) potential which is assumed to be of the (S)WS
shape. Our brief discussion is based on Refs. 85 and 121 where pertinent details
are given.

We consider �ωΛ the HO energy level spacing of a Λ in hypernuclei. We
should ˇrstly point out that one could use for our purpose other simpler two-
parametric potentials [85, 110] which, however, are less realistic compared with
the (S)WS one in describing the surface of the system. Secondly, the way
in determining �ωΛ is not unique and therefore one encounters with various
possibilities in such an endeavour.

Let us write the s. p. potential in the form

V (r) = −V0f(r), 0 ≤ r < ∞ (5.57)

and the HO one as

VHO = −V0 + V0
r2

R2
0

, 0 ≤ r < ∞. (5.58)

Then, given the Λ-nucleus potential V (r), we require, in order to approximate
it by the HO one in the nuclear interior and as far as possible in the nuclear surface,
®VHO to approximate best in the mean the V (r) in the interval 0 ≤ r ≤ R0¯.
Thus, we require the following condition to be satisˇed∫ R0

0

|V (r) − VHO(r)|2dr = min . (5.59)
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The optimum value R0 = Rm should satisfy the conditions[
8
15

+ f2(Rm)
]

R3
m = 4

∫ Rm

0

f(r)r2dr (5.60)

and

f(Rm) <

[
2
5

+
3
2
f2(Rm)

]
+

Rm

4
df2(R0)

dR0
|R0=Rm . (5.61)

In case of the (S)WS potential, neglecting terms which are expected to be
small, one is led to [85]

Rm =
(

5
2

)1/3

R

[
1 +

(πa

R

)2
]1/3

, (5.62)

from which the expression of �ω follows, since

�ωΛ =
[

�
2

µ
2V0

]1/2 1
Rm

. (5.63)

It is seen that �ωΛ depends on the expression for R considered for the SWS
potential. If the complex relation (5.46) is used, then �ωΛ is simpliˇed within
this treatment,

�ωΛ =
[

�
2

µ

2V0

r2
0

]1/2 (2
5

)1/3 1

A
1/3
c

. (5.64)

Expressions of this or other forms (see Ref. 85) can be helpful in miscella-
neous problems of hypernuclear physics [122,123] where �ωΛ occurs.

The corresponding result for metal clusters in this sort of treatment looks
rather similar

�ω =
[

�
2

me

2V0

r2
0

]1/2 (2
5

)1/3 1
(β + N)1/3

, (5.65)

cf. [121] where one can see that the origin of β is due to the respective formula
for the potential radius R.

6. SUMMARY AND CONCLUSIONS

In this last section we give a summary of some basic topics discussed in this
review, along with certain remarks.
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A considerable part of the survey was devoted to the evaluation of the F and
SF integrals (including the more general case, in which the limits of integration
were from Ri to Rf , Ri < c < Rf ) on the basis of the Sommerfeld approxi-
mation and pertinent expansions in powers of the diffuseness parameter a were
given. Results can be presented in a uniˇed way for the S and SF functions.
Furthermore, the interesting problem of the evaluation of F-type integrals beyond
the Sommerfeld approximation that is when the Sommerfeld lemma fails (particu-
larly when the integrand in the Fermi-type integrals contains a rapidly oscillating
function) was considered. A pertinent treatment based on Fourier transforms and
the properties of the hypergeometric function, was described and the systematic
evaluation of the correction terms of any order in exp (−c/a) was pointed out.
Special attention was also paid to the Dingle representation for the Fermi function.

In the framework of the conventional model of the S matrix it has been
shown how the elastic scattering amplitude can be divided into the diffractive
and nondiffractive contributions. The former oscillate with a high frequency
L ∼ kR � 1 (the ®edge¯ effect). The latter have smooth angular dependence
and are due to the diffuseness of nuclear boundary (the ®rim¯ effect).

The nondiffractive contributions discussed here can be classiˇed in powers
of an ®effective¯ parameter exp (−L/∆). Although this parameter is exponen-
tially small under the strong absorption condition L/∆ � 1, their relative role
increases with θ against the rapid decrease of the magnitude of the diffractive
contributions. Of course, it is not compulsory that the magnitude of nondiffrac-
tive contributions to the diffraction scattering amplitude to be regulated by the
exponent exp (−L/∆). However, a similar interplay between them and the cor-
responding diffractive contributions should be retained in any SAM with smooth
cutoff (a black disk with a grey, partially transparent edge).

Among the applications of Fermi-type functions in studying the properties
of nuclei, hypernuclei and metal clusters, the variation of the HO energy level
spacing �ω with the particle number was discussed in some detail. Correction
terms to the standard formula for a nucleon in nuclei �ω = constA−1/3 were
given ˇrst, on the basis of a Fermi function for the nuclear density (and an
approximate treatment of the open shell nuclei). An analogues treatment for
metal clusters (neutral sodium clusters) was also made by parametrizing through
a Fermi function, Eckardt's electronic densities in his self-consistent jelium model
and local density approximation calculations.

Furthermore, a comparative discussion of the WoodsÄSaxon-type potentials
was made and a way in estimating the corresponding parameters was described.
Attetion was also paid to the analytic determination of the ground (1s) state
energy of a particle in the WS potential and application to hypernuclei was made
allowing also for an expression for the potential radius R somewhat more general

than the simple one R = r0A
1/3
c . Finally, the problem of the determination of �ω
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was also discussed on the basis of a (S)WS potential and under the assumption
of an integral constraint.

We conclude by emphasizing that the usefulness of the Fermi and sym-
metrized Fermi functions in describing surface effects in various problems of
nuclear physics and related areas has stimulated theoretical work in treating them
analytically, as far as possible. Here we have tried to show that such analytic
treatments have considerable advantages.
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