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The present status of theoretical description of large angle Bhabha scattering with the account
for radiative corrections (RC) in the leading and next-to-leading approximations is reviewed. Besides
RC coming from emission of virtual, soft and additional hard photons, there has been considered
a e+e− pair production. The goal of all this activity is to reach the accuracy level of 0.1%. In
addition, some numeric MC estimates for LEP2 conditions are presented. Details of calculations are
given in appendices.
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¶·µ¢¥¤¥´´ÒÌ ¸ ¶µ³µÐÓÕ ŒŠ-£¥´¥· Éµ·  ¸µ¡ÒÉ¨°, µ¸´µ¢ ´´µ£µ ´   ´ ²¨É¨Î¥¸±¨Ì ¢Ò· ¦¥´¨ÖÌ,
¶·¨¢¥¤¥´´ÒÌ ¢ µ¡§µ·¥. ‚ ¶·¨²µ¦¥´¨ÖÌ ¤ ÕÉ¸Ö ¤¥É ²¨ ¢ÒÎ¨¸²¥´¨°.

1. LARGE ANGLE BHABHA SCATTERING

The process of electron-positron scattering is commonly used for luminosity
measurements at e+e− colliders. It has almost pure electrodynamical nature and
could therefore be described to any desired precision within a framework of
perturbative QED. Nevertheless, the accuracy of modern experiments is ahead
of that provided by theory. A lot of work has recently been done to uplift the
theoretical uncertainty to about one per mille under conditions of small angle
Bhabha scattering at LEP1 [1] and afterwards up to 0.05−0.06% [2].

The large angle kinematics of Bhabha scattering (LABS) process is exten-
sively used for calibration purposes at e+e− colliders of moderately high energies,
such as φ, J/ψ, B and c/τ factories and LEP2 [3,4]. At the Born and one-loop
levels the process was investigated in detail in [5Ä9], taking into account both
QED and electroweak effects.
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Small scattering angle kinematics of Bhabha scattering is used for high-
energy colliders such as LEP I [10,11]. As far as 0.1% accuracy is desirable in
the determination of L, the corresponding requirement∣∣∣∣δσσ

∣∣∣∣ ≤ 10−3 (1.1)

on the Bhabha cross section theoretical description appears. The quantity ∆σ
is an unknown uncertainty in the cross section due to higher order RC. A great
attention was paid to this process during the last decades (see review [5] and
references therein).

In paper [12] we considered Bhabha scattering to O(α) order exactly im-
proved by the structure function method. The latter, based on the renormalization
group approach, allows one to evaluate the leading radiative corrections to higher
orders, including all the terms ∼ (αLs)n, n = 2, 3, ... , where Ls = ln (s/m2)
is a large logarithm; s is the total centre-of-mass (c.m.s) energy of incoming
particles squared and m is the mass of fermion.

To reach the one per mille accuracy it is required to take into account radia-
tive corrections (RC) up to third order within the leading logarithmic approxima-
tion (LLA) and up to second order in the next-to-leading approximation (NLA).
In a series of papers several sources of these corrections were considered in
detail [13Ä16].

Let's sketch what we are going to present in this review. In Chapter 1.1
the emission of two hard photons [13] in LABS is revised followed by a pair
production [14] in Chapter 1.2. We further proceed with the consideration of the
radiative LABS in different kinematical settings, namely, the most general one
with all particles outgoing at large angles [16], and another one with an emitted
photon radiated within a narrow cone about a beam direction [17]. In the last
Chapter the numerical implication of the analytical results presented is reviewed
in some detail. We start with outlining the MC generator for LABS at LEP2 and
then pass on to the comparison with other existing codes. Concluding remarks
are given in the Outlook.

1.1. Emission of Two Hard Photons. The Born cross section with weak
interactions taken into account and the ˇrst order QED radiative corrections to it
were studied in detail [18]. Both contributions, the one enhanced by the large
logarithmic multiplier L = ln (s/m2) (where s = (p+ + p−)2 = 4ε2 is the total
c.m.s. energy squared; m is the electron mass), and the one without L, are to be
kept in the limits 1.1: αL/π, α/π. As for the corrections in the second order
of the perturbation theory, they are necessary in the leading and next-to-leading
approximations and take the following orders, respectively:

(α/π)2L2, (α/π)2L. (1.2)

The total two-loop (∼ (α/π)2) correction could be constructed from:
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1. two-loop corrections arising from the emission of two virtual photons;

2. one-loop corrections to a single real (soft and hard) photon emission;

3. those arising from the emission of two real photons;

4. virtual and real e+e−-pair production [14].

As for the corrections in the third order of perturbation theory, only the leading
ones proportional to (αL/π)3 should be taken into account.

In this section we consider the emission of two real hard photons:

e+(p+) + e−(p−)→ e+(q+) + e−(q−) + γ(k1) + γ(k2). (1.3)

The relevant contribution to the experimental cross section has the following form

σexp =
∫

dσ Θ+Θ−, (1.4)

where Θ+ and Θ− are the experimental restrictions providing the simultaneous
detection of both the scattered electron and positron. First, this means that their
energy fractions should be larger than a certain (small) quantity εth/ε, εth is the
energy threshold of the detectors. The second condition restricts their angles with
respect to the beam axes. They should be larger than a certain ˇnite value ψ0
(ψ0 ∼ 35◦ in the experimental conditions accepted in [3]):

π − ψ0 > θ−, θ+ > ψ0, θ± = q̂±p− , (1.5)

where θ± are the polar angles of the scattered leptons with respect to the beam
axes (p−). We accept the condition on the energy threshold of the charged-
particle registration q0± > εth. Both photons are assumed to be hard. Their
minimal energy

ωmin = ∆ε, ∆� 1, (1.6)

could be considered as the threshold of the photon registration.
The main (∼ (αL/π)2) contribution to the total cross section (5) comes from

the collinear region: when both the emitted photons move within narrow cones
along the charged particle momenta (they may go along the same particle). So
we will distinguish 16 kinematical regions:

âk1 and âk2 < θ0, âk1 and b̂k2 < θ0,
m

ε
� θ0 � 1, a �= b, a, b = p−, p+, q−, q+ .

(1.7)

The matrix element module square summed over spin states in the regions (1.7)
is of the form of the Born matrix element multiplied by the so-called collinear
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factors. The contribution to the cross section of each region has also the form of
2→ 2 Bhabha cross sections in the Born approximation multiplied by factors of
the form

dσcolli = dσ0i

[
ai(xj , yj) ln2

(
ε2θ20
m2

)
+ bi(xj , yj) ln

(
ε2θ20
m2

)]
, (1.8)

where xj = ωj/ε, y1 = q0−/ε, y2 = q0+/ε are the energy fractions of the photons
and of the scattered electron and positron. The dependence on the auxiliary
parameter θ0 will be cancelled in the sum of the contributions of the collinear and
semicollinear regions. The last region corresponds to the kinematics, when only
one photon is emitted inside the narrow cone θ1 < θ0 along one of the charged
particle momenta. And the second photon is emitted outside any cone of that sort
along charged particles (θ2 > θ0):

dσsci =
α

π
ln
(
4ε2

m2

)
dσγ0i(k2), (1.9)

where dσγ0i has the known form of the single hard bremsstrahlung cross section
in the Born approximation [19].

Below we show explicitly that the result of the integration over the single
hard photon emission in Eq. (1.9) in the kinematical region θi2 > θ0 (θi2 is the
emission angle of the second hard photon with respect to the direction of one of
the four charged particles) has the following form∫

dσγ0i(k2) = −2 ln
(
θ20
4

)
ai(x, y)dσi0 + dσ̃i. (1.10)

The collinear factors in the double bremsstrahlung process were ˇrst consid-
ered in papers of the CALCUL collaboration [20]. Unfortunately they have a
rather complicated form which is less convenient for further analytical integration
in comparison with the expressions given below. The method of calculation of the
collinear factors may be considered as a generalization of the quasireal electron
method [21] to the case of multiple bremsstrahlung. Another generalization is
required for the calculations of the cross section of process e+e− → 2e+2e− [14].

It is interesting that the collinear factors for the kinematical region of the two
hard photon emission along the projectile and the scattered electron are found the
same as for the electron-proton scattering process considered in paper [22].

There are 40 Feynman diagrams of the tree type which describe the double
bremsstrahlung process in e+e− collisions. The differential cross section in terms
of helicity amplitudes was computed about ten years ago [20, 23]. It has a very
complicated form. We note that the contribution from the kinematical region in
which the angles (in the CM system) between any two ˇnal particles are large
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compared with m/ε is of the order

α2r20m
2

π2ε2
∼ 10−36 cm2, (1.11)

where r0 is the classical electron radius. Thus the corresponding events will pos-
sess rather poor statistics at colliders with luminosity L ∼ 1031−
1032 cm−2 · s−1. More probable are the cases of double bremsstrahlung imi-
tating the processes e+e− → e+e− or e+e− → e+e−γ, which corresponds to the
emission of one or two photons along charged-particle momenta.

1.1.1. Collinear Kinematics. It is convenient to introduce, in the collinear
region, new variables and transform the phase volume of the ˇnal state in the
following way (from now on we will work in the CM system):∫

dΓ =
∫

d3q−d
3q+d

3k1d
3k2

16q0−q0+ω1ω2(2π)8
δ(4)(η1p− + η2p+ − λ1q− − λ2q+) =

=
m4π2

4(2π)6

1∫
∆

dx1

1∫
∆

dx2 x1x2

2π∫
0

dφ

2π

z0∫
0

dz1

z0∫
0

dz2

∫
dΓq,

∫
dΓq =

∫
d3q−d

3q+
4q0−q0+(2π)2

δ(4)(η1p− + η2p+ − λ1q− − λ2q+), (1.12)

z1,2 =
(
θ1,2ε

m

)2
, φ=k̂1⊥k2⊥, xi =

ωi
ε
,

z0 =
(
θ0ε

m

)2

1, ∆ =

ωmin
ε

,

where θi (i = 1, 2) is the polar angle of the i-photon emission with respect to the
momentum of the charged particle that emits the photon; η± and λ± depend on
the speciˇc emission kinematics, they are given in Table 1.

Table 1. The values of ηi and λi for different collinear kinematics

p−p− q−q− p+p+ q+q+ p−p+ q−q+ p−q− p+q+ p−q+ p+q−

η1 y 1 1 1 1 − x1 1 1 − x1 1 1 − x1 1
η2 1 1 y 1 1 − x2 1 1 1 − x1 1 1 − x1

λ1 1
1

y
1 1 1

1

1 − x1
1 +

x2

y1
1 1 1 +

x2

y1

λ2 1 1 1
1

y
1

1

1 − x2
1 1 +

x2

y2
1 +

x2

y2
1

The columns of Table 1 correspond to a certain choice of the kinematics in the
following way: p−p− means the emission of both photons along the projectile
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electron, p+q− means that the ˇrst of the photons goes along the projectile
positron; the second, along the scattered electron and so forth. The contributions
from 6 remaining kinematical regions (when the photons in the last 6 columns
are interchanged) could be found by the simple substitution x1 ↔ x2. We will
use the momentum conservation law

η1p− + η2p+ = λ1q− + λ2q+ , (1.13)

and the following relations coming from it:

η1 + η2 = λ1y1 + λ2y2, λ1y1 sin θ− = λ2y2 sin θ+, y1,2 =
q01,2
ε

,

λ2y2 =
η21 + η22 + (η

2
2 − η21)c

η1 + η2 + (η2 − η1)c
. (1.14)

Each of 16 contributions to the cross section of process (1.3) can be expressed
in terms of the corresponding Born-like cross section multiplied by its collinear
factor:

dσcoll =
1
2!

(
α

2π

)2
x1x2
2

∑
(η,λ)

K(η, λ)dσ̃0(η, λ)dx1dx2,

dσ̃0(η, λ) =
2α2

s
B(η, λ) dI(η, λ), B(η, λ) =

(
s̃ 2 + t̃ 2 + s̃t̃

s̃t̃

)2
,

dIi(η, λ) =
∫

d3q−d
3q+

q0−q0+
δ(4)(η1p− + η2p+ − λ1q− − λ2q+) =

=
4πη1η2dc

λ21λ
2
2[c(η2 − η1) + η1 + η2]2

, (1.15)

K(η, λ) = m4

z0∫
0

dz1

z0∫
0

dz2

2π∫
0

dφ

2π
K(η, λ),

t̃ = (η1p− − λ1q−)2 = −s̃
η1(1− c)

η1 + η2 + (η2 − η1)c
,

s̃ = (η1p− + η2p+)2 = 4ε2η1η2 = sη1η2, s̃+ t̃+ ũ = 0.

The sum over (η, λ) means the sum over 16 collinear kinematical regions. The
corresponding (η, λ) could be found in Table 1. The quantities Ki(η, λ) are as
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follows:

K(p−p−) =
2
y
A(A1, A2, A, x1, x2, y),

K(q−q−) = 2yA
(
B1, B2, B,

−x1
y

,
−x2
y

,
1
y

)
,

K(p+p+) =
2
y
A(C1, C2, C, x1, x2, y),

K(q+q+) = 2yA
(
D1, D2, D,

−x1
y

,
−x2
y

,
1
y

)
, (1.16)

A(A1, A2, A, x1, x2) = −
yA2

A2A1
− yA1

A2A2
+

1 + y2

x1x2A1A2
+

r31 + yr2
AA1x1x2

+

+
r32 + yr1
AA2x1x2

+
2m2(y2 + r21)

AA2
1x2

+
2m2(y2 + r22)

AA2
2x1

,

K(p−p+) = 2K1K2, K(p−q+) = −2K1K3,

K(p+q−) = −2K4K5, K(q−q+) = 2K6K7,

K(p−q−) = −2K1K5, K(p+q+) = −2K4K3,

K1 =
g1

A1x1r1
+
2m2

A2
1

, K2 =
g2

C2x2r2
+
2m2

C2
2

, K3 =
g4

D2x2t2
− 2m

2

D2
2

,

K4 =
g1

C1x1r1
+
2m2

C2
1

, K5 =
g3

B2x2t1
− 2m

2

B2
2

, K6 =
g1

B1x1
− 2m

2

B2
1

,

K7 =
g2

D2x2
− 2m

2

D2
2

, r1 = 1− x1, r2 = 1− x2, (1.17)

g1 = 1 + r21 , g2 = 1 + r22 , g3 = y21 + t21, g4 = y22 + t22,

t1 = y1 + x2, t2 = y2 + x2, y = 1− x1 − x2,

y1, y2 are the energy fractions of the scattered electron and positron deˇned in
Eq. (1.14).

The expressions (1.17) agree with the results of paper [20] except for a
simpler form of K(q−q+). As for Eq. (1.16) it has an evident advantage in
comparison to the corresponding formulae given in paper [20]. Let us note that
the remaining factors K(p, q) could be obtained from the ones given in Eq. (1.17)
using relations of the following type:

K(p−q−)(x1, x2, A1, B2) = K(q−p−)(x2, x1, A2, B1). (1.18)

Note also that terms of the kind m4/(B2
2C

2
1 ) do not give logarithmically enhanced

contributions, and we will omit them below. The denominators of the propagators
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entering into Eqs. (1.16), (1.17) are:

Ai = (p− − ki)2 −m2, A = (p− − k1 − k2)2 −m2,

Bi = (q− + ki)2 −m2, B = (q− + k1 + k2)2 −m2, (1.19)

Ci = (ki − p+)2 −m2, C = (k1 + k2 − p+)2 −m2,

Di = (q+ + ki)2 −m2, D = (q+ + k1 + k2)2 −m2.

For further integration it is useful to rewrite the denominators in terms of the
photon energy fractions x1,2 and their emission angles. In the case of the emission
of both the photons along p− we would have

A

m2
= −x1(1 + z1)− x2(1 + z2) + x1x2(z1 + z2) + 2x1x2

√
z1z2 cosφ,

Ai
m2

= −xi(1 + zi), (1.20)

where zi = (εθi/m)2, φ is the azimuthal angle between the planes containing the
space vector pairs (p− ,k1) and (p− ,k2). In the same way one can obtain in
the case k1 , k2‖q− :

B

m2
=

x1
y1
(1 + y21z1) +

x2
y1
(1 + y21z2) + x1x2(z1 + z2) + 2x1x2

√
z1z2 cosφ,

Bi

m2
=

xi
y1
(1 + y21zi). (1.21)

Then we perform the elementary azimuthal angle integration and the integration
over z1 , z2 within the logarithmical accuracy using the procedure suggested in
paper [22]:

a = m4

z0∫
0

dz1

z0∫
0

dz2

2π∫
0

dφ

2π
a. (1.22)

The list of relevant integrals is given in Appendix I. This way we obtain the
differential cross section in the collinear region,

dσcoll =
α4L

4π2s
d3q+d

3q−
q0+q

0
−

dx1dx2
x1x2

(
1 + P1,2

){ 1
yr21

[
1
2
(L+ 2l)g1g5+

+(y2 + r41) ln
x2r

2
1

x1y
+ x1x2(y − x1x2)− 2r1g5

]
[Bp−p−δp−p− +Bp+p+δp+p+ ]+
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+
1

yr21

[
1
2
(L+ 2l + 4 ln y)g1g5 + (y2 + r41) ln

x1r
2
1

x2y
+x1x2(y − x1x2)−2r1g1

]
×

×[Bq−q−δq−q− +Bq+q+δq+q+ ] +Bp−p+δp−p+

[
(L+ 2l)

g1g2
r1r2

− 2g1
r1
− 2g2

r2

]
+

+Bq−q+δq−q+

[
(L+ 2l+ 2 ln(r1r2))

g1g2
r1r2

− 2g1
r1
− 2g2

r2

]
+

+[Bp−q−δp−q− +Bp+q−δp+q− ]
[
(L+ 2l + 2 ln y1)

g1g3
r1y1t1

− 2g1
r1
− 2 g3

y1t1

]
+

+[Bp+q+δp+q+ +Bp−q+δp−q+ ]
[
(L+ 2l+ 2 ln y2)

g1g4
r1y2t2

− 2g1
r1
− 2 g4

y2t2

]}
.

(1.23)

The permutation operator P1,2 acts as follows

P1,2f(x1, x2) = f(x2, x1).

We used the notation (see also Eq. (1.17)):

l = ln
(
θ20
4

)
, g5 = y2 + r21 , (1.24)

where θ0 is the collinear parameter. Delta function δp,q corresponds to the
speciˇc conservation law of the kinematical situation deˇned by the pair p, q (see
Table 1): δp,q = δ(4)(η2p++η1p−−λ1q−−λ2q+). Besides, we imply that the ˇrst
photon is emitted along the momentum p; and the second, along the momentum
q(p, q = p−, p+, q−, q+). These δ functions could be taken into account in the
integration as is made in the expression for dI(η, λ) (see Eq. (1.15)). Finally, we
deˇne

Bp,q =
(
η2s

λ1t
+

λ1t

η2s
+ 1
)2

, t = (p− − q−)2. (1.25)

1.1.2. Semicollinear Kinematics. We will suggest for deˇniteness that the
photon with momentum k2 moves inside a narrow cone along the momentum
direction of one of the charged particles, while the other photon moves in any
direction outside that cone along any charged particle. This choice allows us to
omit the statistical factor 1/2!. The quasireal electron method [21] may be used
to obtain the cross section:

dσsc =
α4

32sπ4
d3q−d

3q+d
3k1

q0−q0+k
0
1

V
d3k2
k02

{ Kp−
p−k2

δp−Rp− +

+
Kp+
p+k2

δp+Rp+ +
Kq−
q−k2

δq−Rq− +
Kq+
q+k2

δq+Rq+

}
. (1.26)
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We omitted the terms of the kind m2/(p−k2)2 in Eq. (1.26) because their con-
tribution does not contain the large logarithm L. The quantities entering into
Eq. (1.26) are given by:

V =
s

k1p+k1p−
+

s′

k1q+k1q−
− t′

k1p+k1q+
− t

k1p−k1q−
+

+
u′

k1p+k1q−
+

u

k1q+k1p−
, (1.27)

V is the known accompanying radiation factor; Ki are the single photon emission
collinear factors:

Kp− = Kp+ =
g2

x2r2
, Kq− =

y21 + (y1 + x2)2

x2(y1 + x2)
, Kq+ =

y22 + (y2 + x2)2

x2(y2 + x2)
.(1.28)

The quantities Ri read,

Rp− = R[sr2, tr2, ur2, s′, t′, u′], Rp+ = R[sr2, t, u, s′, t′r2, u′r2],

Rq− = R

[
s, t

t1
y1

, u, s′
t1
y1

, t′, u′ t1
y1

]
, (1.29)

Rq+ = R

[
s, t, u

t2
y2

, s′
t2
y2

, t′
t2
y2

, u′
]
,

where the function R has the form [6]:

R[s, t, u, s′, t′, u′] =
1

ss′tt′
[
ss′(s2 + s′

2) + tt′(t2 + t′
2) + uu′(u2 + u′2)

]
,

s = (p+ + p−)2, s′ = (q+ + q−)2, t = (p− − q−)2, (1.30)

t′ = (p+ − q+)2, u = (p− − q+)2, u′ = (p+ − q−)2.

Finally, we deˇne

δp− = δ(4)(p−r2 + p+ − q+ − q− − k1),

δp+ = δ(4)(p− + p+r2 − q+ − q− − k1), (1.31)

δq− = δ(4)(p− + p+ − q+ − q−
y1 + x2

y1
− k1),

δq+ = δ(4)(p− + p+ − q+
y2 + x2

y2
− q− − k1).

Performing the integration over angular variables of the collinear photon we
obtain

dσsc =
α4L

16sπ3
d3q−d

3q+d
3k1

q0−q0+k
0
1

dx2V

{
Kp− [Rp−δp− +Rp+δp+ ] +

+
1
y2
Kq+Rq+δq+ +

1
y1
Kq−Rq−δq−

}
. (1.32)
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To see that the sum of cross sections (1.23) and (1.32)

dσγγ = dσcoll +
∫

dO1

(
dσsc

dO1

)
(1.33)

does not depend on the auxiliary parameter θ0. We verify that terms Ll from
Eq. (1.23) cancel out with the terms

L
k01q

0
i

2π

∫
dO1

k1qi
≈ −Ll, (1.34)

which arise from 16 regions in the semicollinear kinematics.
1.1.3. Numerical Results and Discussion. We separated the contribution

of the collinear and semicollinear regions using the auxiliary parameter θ0. By
direct numerical integration according to the presented formulae we had convinced
ourselves that the total result is independent of the choice of θ0.

It is convenient to compare the cross section of double hard photon emission
with the Born cross section

σBorn =
α2π

2s

cosψ0∫
− cosψ0

(
3 + c2

1− c

)2
dc. (1.35)

For illustrations we integrated over some typical experimental angular acceptance
and chose the following values of the parameters:

ψ0 = π/4,
√
s = 0.9 GeV, ∆1 = 0.4, ∆ = 0.05,

θ0 = 0.05, L = 15.0, l = −7.38 , (1.36)

where ∆1 deˇnes the energy threshold for the registration of the ˇnal electron
and positron: q0± > εth = ε∆1. Note that restrictions on θ0 (1.7) and (1.12)
(z0 = exp {L+ l} 
 1) are fulˇlled.

For the parameters chosen we get

σBorn = 1.2 mkb,
σcoll

σBorn
· 100% = −0.25%,

σsc

σBorn
· 100% = 0.81%, δσtot =

σsc + σcoll

σBorn
· 100% = 0.56%.

(1.37)

The phenomenon of negative contribution to the cross section from the collinear
kinematics is an artifact of our approach. Namely, we systematically omitted pos-
itive terms without large logarithms, among them we dropped terms proportional
to l2. The cancellation of l2 terms can be seen only after adding the contribution
of the noncollinear kinematics (when both photons are emitted outside narrow
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cones along charged-particle momenta). The noncollinear kinematics does not
provide any large logarithm L.

Both quantities σcoll and σsc depend on auxiliary parameter θ0. We elim-
inated by hands from Eq. (1.23) the terms proportional to l and obtained the
following quantity:

σbarecoll

σBorn
· 100% = 1.43%. (1.38)

This quantity corresponds to an approximation for the correction under considera-
tion in which one considers only the collinear regions and takes into account only
terms proportional to L2 and L (all terms dependent on θ0 are to be omitted).
Having in mind the cancellation of θ0 dependence in the sum of the collinear and
semicollinear contributions, we may subtract from the value of the semicollinear
contribution the part which is associated with l:

σbaresc = σsc + (σcoll − σbarecoll ),
σbaresc

σBorn
· 100% = −0.87%.

Looking at bare quantities one can get an idea of relative impact of two con-
sidered regions. We see that at the precision level of 0.1% the next-to-leading
contributions of semicollinear regions are important.

1.2. Hard Pair Production. In this chapter we consider the process of the
2→ 4 type:

e−(p1) + e+(p2)→ e−(q1) + e+(q2) + e−(p−) + e+(p+) . (1.39)

We assume for deˇniteness that two ˇnal particles e−(q1) and e+(q2) hit the
detectors, allowing the following angular aperture and energy thresholds:

Ψ0 < θ1, θ2 < π −Ψ0, θ1,2 = q̂1,2p1, yth < y1,2 < 1, y1,2 =
q01,2
ε

, (1.40)

where the dead angle Ψ0 depends on the detector (Ψ0 ∼ 20◦ for DAΦNE [4] and
Ψ0 ∼ 35◦ for CMD-1 [3]); yth >∼ 0.1, ε is the beam energy (a c.m.s. reference
frame of the initial particles is implied).

In our recent paper [10] similar problems were considered for the case of
small angle Bhabha scattering (SABS). We had there at least three simpliˇcations:
i) the generalized eikonal form of the amplitude allowed to omit all scattering-type
Feynman diagrams with more than one exchanged photons in the t channel; ii) at
the O(α2) level it was possible to omit all annihilation-type Feynman diagrams
and contributions connected with heavy Z, W and H bosons; iii) the interference
of the emission from the positron line with the emission from the electron line was
suppressed for real photon or pair production. Calculations for the LABS case
are considerably more complicated. Only the possibility of omitting heavy-boson
contributions in the O(α2) order remains here.
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1.2.1. Deˇnitions of Kinematical Regions. There are 36 tree level Feynman
diagrams (Fig. 9) which describe a e+e− pair production in LABS. Quite a lot
was paid to this process in the literature [5, 24], where different cross sections
were obtained in terms of chiral amplitudes. It was found that in the general
kinematics the cross section has a rather complicated form. Fortunately in the
general case, when the angles between each two ˇnal particles are not small,
the correspondent RC contribution to the Born cross section will have the value
(α/π)2 ∼ 10−5:

dσeē→2e2ē ∼ dσeē→eē
0

(
1 +O

(
α2

π2

))
. (1.41)

It can be safely omitted working within an accuracy of 0.1%. In RC contributions
due to pair production some enhancements appear in the cases when one or
two ˇnal particles move within a small angle θi ∼ me/ε to the direction of
one of the tagged (initial or ˇnal registered) particles. In these cases one will
have logarithmically enhanced contributions of the orders (αL/π)2 and (α/π)2L,
where L = ln s/m2

e is the large logarithm, s = 4ε2 (L ∼ 15 for
√
s ∼ 1 GeV).

The aim of this chapter is to extract contributions of that sort because of their
importance at the 0.1% accuracy level.

Our method of calculating is to separate the contributions of the collinear
and semicollinear kinematical regions. In the collinear kinematics (CK) two of
the ˇnal particles (which are not registered) go within the narrow cone about
the direction of one of the initial particles or about the direction of one of the
registered ˇnal particles:

θi < θ0,
m2
e

ε2
� θ0 � 1, (1.42)

where θi, i = 1, 2 are the polar angles of the two particles with respect to the
chosen direction. As the semicollinear case we deˇne the kinematics when only
one of the nonregistered ˇnal particles move within this cone and the second one
does not (with respect to all tagged directions). The contribution of the collinear
kinematics has the form

a

(
α

π
(L+ ln θ20)

)2
+ b

(
α

π

)2
(L + ln θ20), (1.43)

while the semicollinear one reads(
α

π

)2
f(θ0)L, f(θ0) = −2a ln θ20 + C, (1.44)

where C is ˇnite for θ0 → 0. The sum of the contributions does not depend on
the auxiliary parameter θ0 within the logarithmic accuracy (we omit the terms



18 ARBUZOV A., KURAEV E., SHAIKHATDENOV B.

(α/π)2 ln2 θ20 and (α/π)2 ln θ20). The cancellation of the dependence provides a
test of our calculations.

Consider now the structure of the collinear region contribution to the cross
section. It could be presented as a sum of the cross sections of hard subprocesses
multiplied by the so-called collinear factors. In the case of the emission of one
or two hard collinear photons, the hard subprocess is just the Bhabha scattering.
This is the manifestation of the well-known factorization theorem in its simplest
form [6]. In the case of pair production, besides Bhabha scattering there appear
three other types of hard subprocesses: Compton scattering, two-quantum anni-
hilation of the initial particles, and the subprocess of the creation of the ˇnal
registered particles by two photons moving close to the directions of the ini-
tial beams. Note that this rather complicated form of the factorization theorem
appears ˇrst in the process under consideration.

Fig. 1. Kinematical diagrams for collinear pair production

Fig. 2. Kinematical diagrams for semicollinear pair production

The contributions of semicollinear regions could as well be expressed in
terms of hard subprocesses of the 2 → 3 type [6]: a single photon emission in
e+e− scattering, and the process of pair creation in a photon-electron (-positron)
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scattering. In Figs. 1, 2 we show the kinematical schemes for the collinear
and semicollinear regions (empty circles denote the production of a collinear
undetected pair; the full ones, hard subprocesses).

Our method, we believe, saves a lot of computation work. Indeed instead
of 8-fold integration of very complicated expressions with sharp singularities it
provides 2(3)-fold integrals of smooth functions within the same accuracy.

1.2.2. Collinear Regions. Consider ˇrst a set of collinear kinematics. We will
see that there are 8 different cases. As we've underlined above, the experimental
criterion for an event to be chosen is a kinematics in which at least one outgoing
lepton moves at large angles to the beam direction in the opposite hemispheres.
In the case of the emission of a particle with momentum k, moving along the
direction of its parent particle with momentum p, a small quantity 2pk appears in
the denominator of the matrix element. Evidently, at least, two such small denom-
inators are necessary to obtain a nonzero contribution integrating over the small
phase volume of the two emitted particles in the collinear kinematics (dΓ2 ∼ θ40).
Our criterion of the Feynman-diagram selection out of the total 36 ones (or out
of 18 gauge invariant pairs of diagrams) (see Fig. 9 in Appendix III) is to choose
such gauge invariant sets which have one diagram with two small denominators.
The list of the collinear kinematics regions and the relevant Feynman diagrams
from Fig. 9 (in parentheses we put their numbers) reads

1) p+,p− ‖ p1 : (1, 2), (7, 8), (25, 26), (23, 24);
2) p+,p− ‖ q1 : (1, 2), (3, 4), (27, 28), (31, 32);
3) p+,p− ‖ p2 : (9, 10), (17, 18), (25, 26), (15, 16);
4) p+,p− ‖ q2 : (9, 10), (21, 22), (27, 28), (33, 34);
5) p− ‖ p1, p+ ‖ p2 : (19, 20); (1.45)

6) p− ‖ p1, p+ ‖ q1 : (11, 12);
7) p− ‖ q2, p+ ‖ p2 : (13, 14);
8) p− ‖ q2, p+ ‖ q1 : (29, 30).

We veriˇed explicitly the validity of the criterion for the ˇrst kinematics consid-
ering the full set of 36 diagrams. Note that collinear regions 5Ä8 are speciˇc for
the pair production process and arise due to the presence of identical particles in
the ˇnal state.

The calculation of the collinear factors for the region 1Ä4 was described in
detail in papers [20, 25], therefore here we concern with only the main points
of the derivations. Let's start with the general form of the cross section for the
region 1:

dσ(1)coll=
α4

8π4s

∑
spin

|M (1)|2 d
3q1d

3q2
4q01q

0
2

d3p−d
3p+

4p0−p0+
δ4(yp1 + p2 − q1 − q2), (1.46)



20 ARBUZOV A., KURAEV E., SHAIKHATDENOV B.

y = 1− x− − x+, x± =
p0±
ε

,

where

∑
spin

|M (1)|2 = 4
y

I(1)

m4
e

16
(
s1
t1
+

t1
s1
+ 1
)2

,

s1 = ys = 4yε2, t1 = yt = −2yy1ε2(1− c−), (1.47)

c− = cos q̂1p1, y1,2 =
q01,2
ε

,

and quantity I(1) is a rather complicated function of z± = ε2θ2±/m2
e and x±, it

is given explicitly in [25,26].
Transforming the phase volume of the created pair into the form

∫
dΦ =

∫
d3p−d

3p+
4p0−p0+

=
π2

4
m4
e

2π∫
0

dφ

2π

z0∫
0

dz+

z0∫
0

dz−

1−y∫
0

dx+

1−y−x−∫
0

x−x+dx− ,

z0 =
(
εθ0
me

)2

 1, (1.48)

and performing all integrations over variables of pair components except its total
energy fraction (1− y), one obtains

dσ(1)coll =
2α4

π2s

dy

y
F (1)(y)

(
s1
t1
+

t1
s1
+ 1
)2 d3q1d3q2

4q01q
0
2

×

× δ4(yp1 + p2 − q1 − q2). (1.49)

The next step is to rewrite the contribution in terms of the scattered electron
observable variables c− and y1.

The conservation law gives

1 + y = y1 + y2, −1 + y = y1c− + y2c+,

y1 sin θ− = y2 sin θ+, c+ = cos q̂2p1 = cos θ+. (1.50)

The ˇnal result for the contribution of the ˇrst collinear kinematics region reads

dσ(1)

dy1dc−
=

α4

sπ

F (1)(y, z0)
y

y1
[2 − y1(1 − c−)]

(
1− y1

1− c−
2
− 2

y1(1 − c−)

)2
,

y =
y1(1 + c−)

2− y1(1− c−)
. (1.51)
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The quantity F (1)(y, z0) can be found in papers [25,26] and it has the following
form

F (1)(y, z0) = L

(
1
2
R(y)L+ f(y)

)
, L = ln z0,

R(y) =
2
3
1 + y2

1− y
+
1− y

3y
(4 + 7y + 4y2) + 2(1 + y) ln y,

f(y) =
1
9

(
−107+136y−6y2−12

y
− 20
1− y

)
+
2
3

(
−4y2−5y+1+

+
4

y(1− y)

)
ln(1− y)+

1
3

(
8y2+5y−7− 13

1−y

)
ln y− (1.52)

− 2
1− y

ln2 y + 4(1 + y) ln y ln(1− y) +

+
2(1− 3y2)
1− y

Li2(1− y), Li2(x) = −
x∫
0

dt ln(1− t)
t

.

We remember the way in which this differential cross section enters into the
experimentally observable one:

∆σ(1)exp =

c0∫
−c0

dc−

1∫
yth

dy1Θ(c20 − c2+)Θ(y2 − yth)Θ(1− y2)
dσ(1)coll

dy1dc−
, (1.53)

where

y2 =
1 + (1− y1)2 + y1(2− y1)c−

2− y1(1− c−)
,

c+ =
−1 + y − y1c−

y2
, c0 = cosΨ0.

(1.54)

Let us consider as a check that our formula for dσ(1)c agrees with the corresponding
contribution to the SABS cross section. Really, the correspondence would take
place if we took the small angle limit:

c− = 1−
θ2−
2

, θ+ = yθ−, z =
θ2+
θ21

, Q2
1 = ε2θ21. (1.55)

In this way we obtain

dσ(1) =
α2

4π2
4πα2

Q2
1

F (1)(y, z0)dy
dz

z2
. (1.56)
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This formula agrees with Eq. (39) from [10], where two directions were taken
into account (we have to note that the expression for f(y) in [10] contains some
misprints, they are corrected above).

The third collinear region gives the same contribution:

∆σ(3)exp = ∆σ(1)exp . (1.57)

Also, the contributions of the collinear regions 2 and 4 are equal:

∆σ(2)exp = ∆σ(4)exp ,

∆σ(2)exp =

c0∫
−c0

dc−

1∫
yth

dy1
dσ(2)coll

dy1dc−
, y2 = 1, c+ = −c−, y1 = y,

dσ(2)

dy1dc−
=

α4

2sπ
F (2)(y, z0)

(
1− 1− c−

2
− 2
1− c−

)2
, (1.58)

F (2)(y, z0) = −yF (1)

(
1
y
, z0y

2

)
= L

(
1
2
R(y)L+ 2R(y) ln y + f1(y)

)
,

f1(y) =
1
9

(
−116 + 127y + 12y2 + 6

y
− 20
1− y

)
+
2
3

(
−4y2 − 5y + 1 +

+
4

y(1− y)

)
ln(1− y) +

1
3

(
8y2 − 10y − 10 + 5

1− y

)
×

× ln y − (1 + y) ln2 y + 4(1 + y) ln y ln(1− y) +
2(3− y2)
1− y

Li2(1− y).

Again one can check the correspondence of this result with the case of SABS
(see Eq. (39) in [10]).

Fig. 3. Diagrams for collinear fac-
tors in a space-like kinematics (1)
and in a time-like one (2)

We underline that neglecting terms of order
α2/π2 permits us within the accuracy of 0.1%
to express the contribution to σexp in terms of
two-fold integrals of smooth functions.

Consider now the collinear region 5 (see
Fig. 1 (5)) in which two of the ˇnal particles
move close to the directions of the initial beams
and the registered pair is created by two almost
real photons moving also very close to the ini-

tial particle directions. The method of the collinear-factor calculations in this
case can be considered as an essential generalization of the WeizséackerÄWilliams
approximation [21, 27]. Let us consider the block of the kinematical diagram,
Fig. 1 (5), that describes the emission of an undetected fermion and an almost
real photon (both close to the initial direction). The photon enters then into a
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hard block (see Fig. 3 (1)). The corresponding matrix element reads

M =
1
q2

Jνg
µνIµ, Jν = ū(p′1)γνu(p1), (1.59)

where Iµ is the current corresponding to the hard block. Let's decompose fol-
lowing Sudakov [28] the 4-momentum of the emitted fermion,

p′1 = αp̃2 + βp̃1 + p′1⊥, p′1⊥p1 = p′1⊥p2 = 0,

p̃1,2 = p1,2 − p2,1
m2

s
, s = 2p1p2 
 m2.

(1.60)

The 4-momenta p̃1,2 are almost light-like. The parameter β here amounts about
unity. It has the meaning of energy fraction of the scattered electron; 1−β
is the energy faction of our almost real photon; p′1⊥ is the two-dimensional
vector describing the components of the scattered electron momentum transverse
with respect to the initial direction (and further we denote transverse momentum
components by symbol ⊥). Parameter α = ((p1)2+m2)/(sβ) is small: α� 1. It
could be found from the mass shell condition for the scattered electron: p′1

2 = m2.
In that way we obtain also the useful equation

q2 = − ((p
′
1⊥)

2 +m2(1 − β)2)
β

< 0. (1.61)

Representing identically the metric tensor, entering into the photon Green func-
tion, in the form

gµν = gµν⊥ +
2
s
(pµ1p

ν
2 + pν1p

µ
2 ), (1.62)

we note that it could be effectively written in the form

gµν ≈ gµν⊥ +
2
s
pµ1p

ν
2 , (1.63)

since the contribution of the omitted term is suppressed by an additional factor
of order q2/s. Taking that into account, one obtains

M =
1
q2

{
(JI)⊥ +

2
s
(Jp2)

(
− Ip′1⊥
1− β

)}
, (1.64)

where the current conservation condition

Iq = I(α1p2 + (1− β)p1 + q⊥) ≈ I((1 − β)p1 + q⊥) = 0 (1.65)
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was used. Now we sum up over fermion spin states:∑
spin

|(JI)⊥|2 = Tr (p̂′1 +m)I⊥(p̂1 +m)I⊥ = −2q2I2⊥ > 0,∑
spin

|Jp2|2 = 2s2β,
∑
spin

(Jp2)(JI)∗⊥ = 2s(q⊥I⊥), q⊥ = −p′1⊥.
(1.66)

And we obtain∑
spin

|M |2 = 1
(q2)2

[
−2q2I2⊥ +

8
(1 − β)2

(p′1⊥I⊥)2
]
, (1.67)

where q2 are to be taken from Eq. (1.61). The phase volume of the scattered
electron could be presented in the form

∫
d3p′1
2ε′1

=
∫

dβ

2β

∫
dφ

2π
2π

(εβθ0)
2∫

0

d(p′1⊥)
2

2
. (1.68)

Then we carry out a simple integration and obtain∫ ∑
spin

|M |2 d
3p′1
2ε′1

= π(I⊥)2Q(β, z0)dβ, (1.69)

where the collinear factor Q(β, z0) for a space-like virtual photon has the form

Q(β, z0) =
1 + β2

1− β

[
L+ 2 ln

β

1− β

]
− 2β
(1− β)2

. (1.70)

Now we are ready to calculate the cross section in the collinear region 5,
where we have two collinear factors Q(β, z0). We need also the matrix element
squared of the hard block describing hard e+e− pair creation by two photons:

γ((1− β1)p1) + γ((1− β2)p2)→ e+(q2) + e−(q1). (1.71)

Taking the phase volume in terms of the detected electron as follows:

dβ2
d3q1d

3q2
2q012q

0
2

δ4(q1 + q2 − p1(1− β1)− p2(1 − β2)) =

=
(π/2)y1dy1dc−
2β1 − y1(1 + c−)

, (1.72)
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we obtain for the cross section

dσ(5)coll

dy1dc−
=

α4

2πs

1∫
0

dβ12y2(1− c−c+)
β21β

2
2(2β1 − y1(1 + c−))y1(1− c2−)

×

×
{
(1 + (1− β1)2)

(
L+ 2 ln

1− β1
β1

)
− 2(1− β1)

}
×

×
{
(1 + (1− β2)2)

(
L+ 2 ln

1− β2
β2

)
− 2(1− β2)

}
, (1.73)

where

2β1 − y1(1 + c−) > 0, β2 =
y1β1(1− c−)

2β1 − y1(1 + c−)
,

y2 =
2β21 + y1(y1 − 2β1)(1 + c−)

2β1 − y1(1 + c−)
, c+ =

1
y2
(β1 − β2 − y1c−).

(1.74)

For the hard block we used the following expression:∑
spin

|Mγγ→e+e− |2 ∼ t1
u1
+

u1
t1
=

y1(1− c−)
y2(1− c+)

+
y2(1− c+)
y1(1 − c−)

=

=
2y2(1− c+c−)
y1(1 − c2−)

. (1.75)

And for the contribution to the experimental cross section we get

∆σ(5) =

1∫
yth

dy1

c0∫
−c0

dc−
dσ(5)coll

dy1dc−
Θ(y2 − yth)Θ(1− y2)Θ(c20 − c2+). (1.76)

A similar situation takes place for the collinear kinematics 6, when the initial
electron and positron annihilate into two almost real photons, that convert then
into two electron-positron pairs.

The matrix element describing the emission of a time-like almost real photon
with its subsequent conversion into a pair (see Fig. 3 (2)) has the form

M =
gµν

k2
IµJν , Jν = v̄(p−)γνu(q+). (1.77)

We use again the Sudakov representation for the momenta of the pair components
and the photon:

gµν ≈ gµν⊥ +
2
s1

qνqµ+, q2 = 0, 2qq+ = s1,

p− = α1q + β1q̃+ + (p−)⊥, q̃+ = q+ − q
m2

s1
, (1.78)

k = q+ + p− = α2q + β2q̃+ + k⊥, β1 = β2 − 1 > 0.
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The current conservation condition here reads

kI ≈ (β1q̃+ + p⊥−)I = 0. (1.79)

Using the above deˇnitions we get the matrix element squared summed over spin
states in the following form∑

spin

|M |2 = 2(I
⊥)2

(k2)2
[(1 + (β2 − 1)2)(k⊥)2 +m2β42 ]

β22(β2 − 1)
,

k2 =
(k⊥)2 +m2β22

β2 − 1
> 0.

(1.80)

Integrating over the transverse momentum components (p−)⊥ of the electron
from the created pair, we obtain∫

d2p⊥−
2p0−

∑
spin

|M |2 = π(I⊥)2dβ2
β22

{
(1+(β2−1)2)

(
L+2 ln

(
y2

(
1− 1

β2

)))
+

+ 2(β2 − 1)
}
. (1.81)

Note that due to the character of the hard e+e− → γγ block we have k01 = k02 = ε
and the relation between the detected positron energy fraction y2 = q0+/ε and
parameter β2 reads:

β2 =
1
y2

. (1.82)

The cross section for the collinear region 6 takes the form

dσ(6)coll

dy1dc−dy2
=

α4

4πs
1 + c2−
1− c−

×

×
{
(y21 + (1− y1)2)

(
L+ 2 ln

(
y1(1− y1)

))
+ 2y1(1 − y1)

}
×

×
{
(y22 + (1− y2)2)

(
L+ 2 ln

(
y2(1 − y2)

))
+ 2y2(1− y2)

}
. (1.83)

The corresponding contribution to the experimentally observable cross section has
the following form:

∆σ(6) = N

1∫
yth

dy1

1∫
yth

dy2

c0∫
−c0

dc−
dσ(6)coll

dy1dc−dy2
, c+ = −c−. (1.84)
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The quantity N depends on a concrete experimental set-up. Namely, N =
1/2 when one requires registering two leptons with opposite charges going
back-to-back. In a charge-blind set-up one would have N = 1.

Consider now two remaining collinear regions Fig. 1 ((7), (8)). They contain,
as a hard block, the Compton scattering amplitude. Combining the expressions
for the collinear factors for time-like and space-like photons one obtains

∆σ(7) = ∆σ(8) =

1∫
yth

dy1

c0∫
−c0

dc−
σ(8)

dy1dc−
Θ(1− y2)Θ(y2 − yth)Θ(c20 − c2+),

σ(8)

dy1dc−
=

α4

2πs

1∫
β1min

dβ1
β21β

2
2(1+β1+c−(1−β1))

(
y2(1−c+)

2
+

2
y2(1−c+)

)
×

×
{
(1 + (1− β1)2)

(
L+ 2 ln

1− β1
β1

)
− 2(1− β1)

}
×

×
{
(1 + (β2 − 1)2)

(
L+ 2 ln

(
y2
(β2 − 1)

β2

))
+ 2(β2 − 1)

}
,

(1.85)

β2 =
2β1

y1(1 + β1 + (1 − β1)c−)
, y2 =

1 + β21 + c−(1− β21)
1 + β1 + c−(1− β1)

,

c+ =
1
y2
[β1 − 1− β2y1c−], β1min =

y1(1 + c−)
2− y1(1− c−)

.

1.2.3. Semicollinear Regions. The differential cross section of the pair pro-
duction process in large angle Bhabha scattering (see Fig. 2) has the following
form:

∆σsÄcoll = 2
α

2π
L

1−β0∫
0

dβ(1 + β2)
1− β

Σ1(Ω1,Ω2,Ω+, θ0)×

× dσ(γ(p1(1− β)) + e+(p2)→ e+(p+) + e+(q2) + e−(q1)) +

+
α

2π
L

1/y∫
1

dβ

β2
(1 + (β − 1)2)Σ2(Ω1,Ω2, θ0)×

× dσ(e−(p1) + e+(p2)→ e−(q1) + e+(q2) + γ(βp+)), (1.86)
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where we used the collinear factors considered above within the logarithmic
accuracy, y = p0+/ε, and the hard cross sections [6] are

dσγ(q)+e
+(p2)→e+(p+)+e

+(q2)+e
−(q1) =

(4πα)3

16(2π)52qp2
1

p2p+p2q2q1q2p+q1
×

×
(
p2q2q1p+((p2q2)2 + (q1p+)2) + p2p+q1q2((q1q2)2 + (p2p+)2) +

+ p2q1q2p+((p2q1)2 + (q2p+)2)
)
×

×
(
2p2p+
p2qp+q

+
2p2q2
p2qq2q

+
2q1p+
q1qp+q

+
2q1q2
q1qq2q

− 2p2q1
p2qq1q

− 2p+q2
p+qq2q

)
×

× δ4(q + p2 − p+ − q1 − q2)
d3q1d

3q2d
3p+

q01q
0
2p
0
+

, (1.87)

dσe
−(p1)+e

+(p2)→e−(q1)+e
+(q2)+γ(q) =

(4πα)3

16(2π)52p1p2
1

p1p2q1q2p1q1p2q2
×

×
(
p1p2q1q2((p1p2)2 + (q1q2)2) + p1q1p2q2((p1q1)2 + (p2q2)2) +

+ p1q2p2q1((p1q2)2 + (p2q1)2)
)
×

×
(
2p1p2
p1qp2q

+
2q1q2
q1qq2q

+
2p1q1
p1qq1q

+
2p2q2
p2qq2q

− 2p1q2
p1qq2q

− 2p2q1
p2qq1q

)
×

× δ4(p1 + p2 − q − q1 − q2)
d3q1d

3q2d
3q

q01q
0
2q
0

. (1.88)

The quantity 1−β0 in Eq. (1.86) is the minimum energy fraction of the virtual
photon in the pair creation process γ∗ē → eēē provided that fermions with
momenta q1 and q2 are to be detected. Multipliers Σ1 and Σ2 provide the emission
angles of every ˇnal state of a fermion with respect to the beam directions; also
with respect to each other in order the angles to be larger than θ0. Note that
because of the integration over the phase space of the ˇnal particles the identity
of two positrons is taken into account automatically. The numerical integration
of ∆σs-coll (1.86) and different contributions to ∆σcoll (see Eqs. (1.53), (1.58),
(1.76), (1.84), (1.85)) will show that the total sum does not depend on the auxiliary
parameter θ0.

1.2.4. Conclusions. Above we've considered the process of an additional
e+e−-pair production in large angle Bhabha scattering. The differential cross
sections within the logarithmic accuracy are obtained. They could be used in
a wide range of experiments. Our approach gives analytical expressions for the
leading and next-to-leading contributions. That provides a check of the theoretical
accuracy within 0.1%.
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Note that in the leading logarithmic approximation, i. e., for the terms of
order (αL)2, the parton picture of the cross section is valid: that could be just
seen from the above expressions for different collinear kinematics.

Radiative corrections to the considered process, i. e., terms of the order (αL)3

could be obtained using the renormalization group methods. But their contribution
is beyond the required accuracy.

The process of the production of two different fermion-antifermion pairs
in e+e− collisions is of interest for SM testing. As for the problem of the
luminosity measurement, we suggest that the case of a heavy pair production
could be detected experimentally.

1.3. Radiative Large Angle Bhabha Scattering in General Kinematics.
In what follows we survey a process of radiative large angle electron-positron
scattering. Two kinematical regimes are studied. The ˇrst one is in which a hard
photon is emitted close to directions of motion of one of the charged leptons,
i. e., initial or scattered electron/positron in c.m.s. [17]. Another one concerns
essentially with the noncollinear kinematics when all the c.m.s. angles between
initial or ˇnal particles are of order unity [16].

In both regimes we see some deviation from the DrellÄYan form for the cross
section: contraction of hard subprocess in Born approximation with structure
functions (fragmentation functions) of initial (scattered) leptons. This fact could
presumably be attributed to the very 2→ 3 nature of hard subprocess.

Large angle Bhabha scattering (LABS) plays an important role in e+e−

colliding beam physics [3]. First, it is traditionally used for calibration, because
it has a large cross section and can be easily recognized. Second, it might
provide essential background information in a study of quarkonia physics. The
result obtained below can also be used to construct Monte Carlo event generators
for Bhabha scattering processes.

In previous parts we considered the following contributions to the large
angle Bhabha cross section: a pair production (virtual, soft and hard [14]) and
two hard photons [13]. This chapter is devoted to the calculation of radiative
corrections (RC) to a single hard-photon emission process. We consider the
kinematics essentially of type 2 → 3, in which all possible scalar products of
4-momenta of external particles are large compared to the electron mass squared.

Considering virtual corrections, we identify gauge invariant sets of Feynman
diagrams (FD). Loop corrections associated with emission and absorption of vir-
tual photons by the same fermionic line are called as Glass-type (G) corrections.
The case in which a loop involves exchange of two virtual photons between dif-
ferent fermionic lines is called Box-type (B) FD. The third class includes the
vertex function and vacuum polarization contributions (ΓΠ-type). We see explic-
itly that all terms that contain the square of large logarithms ln (s/m2), as well
as those that contain the infrared singularity parameter (ˇctitious photon mass λ),
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cancel out in the total sum, where the emission of an additional soft photon is
also considered.

We note here that part of the general result associated with scattering-type
diagrams (see Fig. 4 ((1), (5))) was used to describe radiative deep inelastic
scattering (DIS) with RC taken into account in Ref. 29 (we labeled it the Compton
tensor with heavy photon). A similar set of FD can be used to describe the
annihilation channel [14].

The problem of virtual RC calculations at the 1-loop level is cumbersome for
the process

e+(p2) + e−(p1) −→ e+(p
′

2) + e−(p
′

1) + γ(k1). (1.89)

Fig. 4. G- and B-type Feynman diagrams for radiative Bhabha scattering
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Speciˇcally, if at the Born level we need to consider eight FD, then at the
1-loop level we have as many as 72. Furthermore, performing loop momentum
integration, we introduce scalar, vector, and tensor integrals up to the third rank
with 2, 3, 4, and 5 denominators (a set of relevant integrals is given in our
preprint [30]). A high degree of topological symmetry of FD for a cross section
can be exploited to calculate the matrix element squared. Using them, we can
restrict ourselves to the consideration of interferences of the Born-level amplitudes
(Fig. 4 ((1)Ä(4))) with those that contain 1-loop integrals (Fig. 4 ((5)Ä(16))). Our
calculation is simpliˇed since we omit the electron mass m in evaluating the
corresponding traces due to the kinematic region under consideration:

s ∼ s1 ∼ −t1 ∼ −t ∼ −u ∼ −u1 ∼ χ1,2 ∼ χ
′

1,2 
 m2,

s = 2p1p2, t = −2p2p′2, u = −2p1p′2, s1 = 2p′1p
′
2,

t1 = −2p1p′1, u1 = −2p2p′1, χ1,2 = 2k1p1,2, χ′
1,2 = 2k1p′1,2,

s+ s1 + t+ t1 + u+ u1 = 0, s+ t+ u = χ′
1,

s1 + t+ u1 = −χ1, t+ χ1 = t1 + χ′
1.

(1.90)

We found that some kind of local factorization took place both for the G- and
B-type FD: the leading logarithmic contribution to the matrix element squared,
summed over spin states, arising from interference of one of the four FD at the
Born level (Fig. 4 ((1)Ä(4))) with some 1-loop-corrected FD (Fig. 4 ((5)Ä(16))),
turns out to be proportional to the interference of the corresponding amplitudes
at the Born level. The latter has the form

E0 = (4πα)−3
∑
|M1|2 = −

16
t2
1
4
Tr (p̂′1O11′ p̂1Õ11′)

1
4
Tr (p̂2γσp̂′2γρ) =

= − 16
tχ1χ′

1

(u2 + u21 + s2 + s21),

O0 = (4πα)−3
∑

M1M
∗
2 =

8
tt1

(
s

χ1χ2
+

s1
χ′
1χ

′
2

+
u

χ1χ′
2

+
u1

χ2χ′
1

)
×

× (u2 + u21 + s2 + s21),

I0 = (4πα)−3
∑

M1(M∗
3 +M∗

4 ) = −(1 + Ẑ)
4
ts1

{
−4u1χ

′
2

χ1
+ (1.91)

+
4u(s1 + t1)(s+ t)

χ2χ′
1

− 2
χ1χ2

[2suu1 + (u+ u1)(uu1 + ss1 − tt1)] +

+
2

χ1χ′
1

[2t1uu1 + (u+ u1)(uu1 + tt1 − ss1)]
}
,

O11′ = γρ
p̂′1 + k̂1

χ′
1

γµ − γµ
p̂1 − k̂1

χ1
γρ, Õ11′ = O11′ (ρ↔ µ),
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where the Ẑ-operator acts as follows:

Ẑ =

∣∣∣∣∣∣
p1 ←→ p′1 s←→ s1
p2 ←→ p′2 u←→ u1
k1 → −k1 t, t1 → t, t1

∣∣∣∣∣∣ .
It can be shown that the total matrix element squared, summed over spin

states, can be obtained using symmetry properties realized by means of the per-
mutation operations:∑

|M |2 = (4πα)3F, F = (1 + P̂ + Q̂+ R̂)Φ =

= 16
ss1(s2 + s21) + tt1(t2 + t21) + uu1(u2 + u21)

ss1tt1
×

×
(

s

χ1χ2
+

s1
χ′
1χ

′
2

− t

χ2χ′
2

− t1
χ1χ′

1

+
u

χ1χ′
2

+
u1

χ2χ′
1

)
,

Φ = E0 +O0 − I0.

(1.92)

The explicit form of the P̂ , Q̂, R̂ operators is

P̂ =

∣∣∣∣∣∣
p1 ←→ −p′2 s←→ s1
p2 ←→ −p′1 t←→ t1
k1 → k1 u, u1 → u, u1

∣∣∣∣∣∣ ,
Q̂ =

∣∣∣∣∣∣
p2 ←→ −p′1 s←→ t1
p′2 → p′2 s1 ←→ t

p1, k1 → p1, k1 u, u1 → u, u1

∣∣∣∣∣∣ , (1.93)

R̂ =

∣∣∣∣∣∣
p1 ←→ −p′2 s←→ t
p′1 → p′1 s1 ←→ t1

p2, k1 → p2, k1 u, u1 → u, u1

∣∣∣∣∣∣ .
The differential cross section at the Born level in the case of large angle kine-
matics (1.90) was found in Ref. 6:

dσ0(p1, p2) =
α3

32sπ2
F
d3p′1d

3p′2d
3k1

ε′1ε
′
2ω1

δ(4)(p1 + p2 − p′1 − p′2 − k1), (1.94)

where ε1, ε2, and ω1 are the energies of the outgoing fermions and photon,
respectively. The collinear kinematic regions (real photon emitted in the direction
of one of the charged particles) corresponding to the case in which one of the
invariants χi, χ

′
i is of order m2 yields the main contribution to the total cross

section. These require separate investigation, and will be considered elsewhere.
Here's a brief outline of what's going to be presented. In Sect. 1.3.1 we

consider the contribution due to the set of FD (Fig. 4 ((5)Ä(8))) called glasses
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here (G-type diagrams). Using crossing symmetry, we construct the whole G-
type contribution from the gauge-invariant set of FD in Fig. 4 (5). Moreover, only
the set of FD depicted in Fig. 5 (d) can be considered in practical calculations,
due to an additional mirror symmetry in the diagrams of Fig. 5 (d, e). We
therefore start by checking the gauge invariance of the Compton tensor described
by the FD of Fig. 5 (d, e) for all fermions and one of the photons on the mass
shell. In Sect. 1.3.2 we consider the contribution of amplitudes containing vertex
functions and the virtual photon polarization operator shown in Fig. 4 ((13)Ä
(15)) and Fig. 5 (f, d). In Sect. 1.3.3 we take into account the contribution of
FD with virtual twoÄphoton exchange, shown in Fig. 4 ((9)Ä(12)), called boxes
here (B-type diagrams). Again, using the crossing symmetry of FD, we show
how to use only the FD of Fig. 4 (9) in calculations. We show that the terms
containing infrared singularities, as well as those containing large logarithms, can
be written in simple form, related to certain contributions to the radiative Bhabha
cross section in the Born approximation (1.91). We also control terms in the
matrix element squared that do not contain large logarithms and are infrared-
ˇnite. Thus our considerations permit us to calculate the cross section in the
kinematic region (1.90), in principle, to power-law accuracy, i. e., neglecting
terms that are

Fig. 5. Deciphering of the notations used in Fig. 4
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O
(

α

π

m2

s
L2s

)
, (1.95)

as compared to O(1) terms presented in this chapter. Note that the terms
in (1.95) are less than 10−4 for typical moderately high energy colliders (DAΦNE,
VEPP-2M, BEPS). Unfortunately, the nonleading terms are too complicated to be
presented analytically, so we have estimated them numerically. In Sect. 1.3.4 we
consider emission of an additional soft photon in our radiative Bhabha process.
To conclude, we note that the expression for the total correction, taking into
account virtual and real soft photon emission in the leading logarithmic approx-
imation, has a very elegant and handy form, although it differs from what one
might expect in the approach based on renormalization group ideas. Besides
analytic expressions, we also give numerical values, along with the nonleading
terms for a few points under typical experimental conditions.

1.3.1. Contribution of G-Type Diagrams. We begin by explicitly checking
the gauge invariance of the tensor

ū(p
′

1)R
σµ
1,1′u(p1). (1.96)

This was done indirectly in Ref. 29, where the Compton tensor for a heavy photon
was written in terms of explicitly gauge invariant tensor structures. We use the
expression

Rσµ
1,1′ = Rχ1 +Rχ

′
1 , (1.97)

Rχ1 = A2γσ k̂1γµ +
∫

d4k

iπ2

{
γλ(p̂

′

1 − k̂)γσ(p̂1 − k̂1 − k̂)γλ(p̂1 − k̂1)γµ
−χ1(0)(2)(q)

+

+
γλ(p̂

′

1 − k̂)γσ(p̂1 − k̂1 − k̂)γµ(p̂1 − k̂)γλ
(0)(1)(2)(q)

}
, (1.98)

where

(0) = k2 − λ2, (2) = (p
′

1 − k)2 −m2, (1) = (p1 − k)2 −m2,

(q) = (p1 − k1 − k)2 −m2, A2 =
2
χ1

(
Lχ1 −

1
2

)
, Lχ1 = ln

χ1
m2

.

The quantity Rχ1 corresponds to the FD depicted in Fig. 5 (d), while Rχ′
1

corresponds to the FD in Fig. 5 (e). The ˇrst term on the right-hand side of
Eq. (1.98) corresponds to the ˇrst two FD of Fig. 5 (d) under conditions (1.90).
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The gauge invariance condition Rσµ
1,1′kµ = 0 is clearly satisˇed. The gauge

invariance condition regarding the heavy photon Lorentz index provides some
check of the loop momentum integrals, which can be found in Ref. 30:

ū(p′1)R
σµ
1,1′u(p1)qσeµ(k1) = Akµ1 eµ(k1), A = −2Lχ1 − 2

χ1
− 6

Lχ′
1
− 1

χ′
1

.

(1.99)

The gauge invariance thus satisˇed due to the Lorentz condition for the on-shell
photon, e(k1)k1 = 0.

As stated above, the use of crossing symmetries of amplitudes permits us
to consider only Rχ1 . For interference of amplitudes at the Born level (see
Fig. 4 ((1)Ä(4)) and Fig. 4 ((5)Ä(8))), we obtain in terms of the replacement oper-
ators

(∆|M |2)G = 25α4π2(1 + P̂ + Q̂+ R̂)(1 + Ẑ)[Eχ1
15 +Oχ1

25 − Iχ1
35 − Iχ1

45 ],
(1.100)

with

Eχ1
15 =

16
t2
1
4
Tr(p̂′1R

χ1 p̂1O11′)
1
4
Tr (p̂2γρp̂′2γσ),

Oχ1
25 =

16
tt1

1
4
Tr (p̂′1R

χ1 p̂1γρ)
1
4
Tr (p̂2γσ p̂′2O22′),

Iχ1
35 =

4
ts1

1
4
Tr (p̂′1R

χ1 p̂1O12p̂2γσ p̂
′
2γρ),

Iχ1
45 =

4
ts

1
4
Tr (p̂′1R

χ1 p̂1γρp̂2γσ p̂
′
2O1′2′),

O11′ = γρ
p̂′1 + k̂1

χ′
1

γµ − γµ
p̂1 − k̂1

χ1
γρ, (1.101)

O22′ = γµ
−p̂′2 − k̂1

χ′
2

γρ − γρ
−p̂2 + k̂1

χ2
γµ,

O12 = −γµ
p̂1 − k̂1

χ1
γρ − γρ

−p̂2 + k̂1
χ2

γµ,

O1′2′ = γρ
p̂′1 + k̂1

χ′
1

γµ + γµ
−p̂′2 − k̂1

χ′
2

γρ.

In the logarithmic approximation, the G-type amplitude contribution to the cross
section has the form

dσG =
dσ0
F

α

π
(1 + P̂ + Q̂+ R̂)Φ

[
−1
2
L2t1 +

3
2
Lt1 + 2Lt1 ln

λ

m

]
,

Lt1 = ln
−t1
m2

.

(1.102)
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1.3.2. Vacuum Polarization and Vertex Insertion Contributions. Let us
examine a set of ΓΠ-type FD. The contribution of the Dirac form factor of
fermions and vacuum polarization can be parametrized as (1 + Γt)/(1 − Πt),
while the contribution of the Pauli form factor is proportional to the fermion
mass, and is omitted here. We obtain

dσΓΠ =
dσ0
F

α

π
2(1 + P̂ + Q̂+ R̂)(Γt +Πt)Φ, (1.103)

where

Γt =
α

π

{(
ln

m

λ
− 1
)
(1− Lt)−

1
4
Lt −

1
4
L2t +

1
2
ζ2

}
,

Πt =
α

π

(
1
3
Lt −

5
9

)
, Lt = ln

−t
m2

.
(1.104)

In realistic calculations, the vacuum polarization due to hadrons and muons can
be taken into account in a very simple fashion [12], just by adding it to Πt.

1.3.3. Contribution of B-Type Diagrams. A procedure resembling the one
used in the previous section, applied to the B-type set of FD (Fig. 4 ((9)Ä(12))),
enables us to use only certain 1-loop diagrams in practical calculations, speciˇcally
three of those in the scattering channel with uncrossed exchanged photon legs:

(∆|M |2)B = 25α4π2 Re (1 + P̂ + Q̂+ R̂)×
× [(1− P̂22′)I

χ1
19 + (1 + P̂22′)I

χ1
29 − I], (1.105)

where

P̂22′ =

∣∣∣∣∣∣
p2 ←→ −p′2 s←→ u
p1 ←→ p1 s1 ←→ u1

p′1, k1 → p′1, k1 t, t1 → t, t1

∣∣∣∣∣∣ , (1.106)

and

Iχ1
19 =

∫
d4k

iπ2
1

(0)(q)((p2 + k)2 −m2)
16
t

1
4
Tr (p̂′1B

χ1 p̂1O11′)×

× 1
4
Tr (p̂2γσ(−p̂2 − k̂)γλp̂′2γρ),

Iχ1
29 =

∫
d4k

iπ2
1

(0)(q)((p2 + k)2 −m2)
16
t1

1
4
Tr (p̂′1B

χ1 p̂1γρ)×

× 1
4
Tr (p̂2γσ(−p̂2 − k̂)γλp̂′2O22′), (1.107)
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I =
∫

d4k

iπ2
1

(0)(q)

{
4
s1

1
4
Tr (p̂′2γρp̂

′
1B

χ1 p̂1O
12p̂2(Â+ B̂)) +

+
4
s1

1
4
Tr (p̂′2O1′2′ p̂1B

χ1 p̂1γρp̂2(Â+ B̂))
}

,

Â =
γσ(−p̂2 − k̂)γλ
(p2 + k)2 −m2

, B̂ =
γλ(−p̂′2 + k̂)γσ
(−p′2 + k)2 −m2

.

Here

Bχ1 =
γλ(p̂1 − k̂1 − k̂)γσ(p̂1 − k̂1)γµ

−χ1(d)
+

γλ(p̂1 − k̂1 − k̂)γµ(p̂1 − k̂)γσ
(d)(1)

+

+
γµ(p̂′1 + k̂1)γλ(p̂1 − k̂)γσ

χ′
1(1)

, (q) = (p2 − p′2 + k)2 − λ2, (1.108)

(d) = (p1 − k1 − k)2 −m2, (1) = (p1 − k)2 −m2, (0) = k2 − λ2.

Analytic evaluations divulge a lack of both double logarithmic (∼ L2s) and infrared
logarithmic (∼ ln (λ/m)L) terms in the box contribution.

In spite of the explicit proportionality of the individual contributions to the
structures E0, O0, and I0, the overall expression turns out to be somewhat
convoluted, despite its having a factorized form in each gauge-invariant subset of
diagrams. We parametrize the correction coming from the B-type FD as follows:

dσB = dσ0
α

π
Ls∆B, ∆B = 2 ln

ss1
uu1

+
2
F
(ΦQ +ΦR) ln

tt1
ss1

. (1.109)

The total virtual correction to the cross section has the form

dσvirt = dσG + dσΓΠ + dσB =

=
α

π

[
−L2s + Ls

(
11
3
+ 4 ln

λ

m
+∆G +∆ΓΠ +∆B

)
+O(1)

]
, (1.110)

∆G +∆ΓΠ =
1
F

(
Φ ln

s2

tt1
+ΦR ln

t2

ss1
+ΦQ ln

t21
ss1

+ΦP ln
s21
tt1

)
,

where ΦP = P̂Φ, ΦQ = Q̂Φ, and ΦR = R̂Φ.
1.3.4. Contribution from Additional Soft Photon Emission. Consider now

radiative Bhabha scattering accompanied by emission of an additional soft photon
in the centre-of-mass reference frame. By soft we mean that its energy does not
exceed some small quantity ∆ε, compared to the energy ε of the initial beams.
The corresponding cross section has the form

dσsoft = dσ0δsoft,

δsoft = − 4πα
16π3

∫
d3k2
ω2

(
− p1
p1k2

+
p

′

1

p
′
1k2

+
p2

p2k2
− p

′

2

p
′
2k2

)2∣∣∣∣∣
ω2<∆ε

.
(1.111)
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The soft photon energy does not exceed ∆ε � ε1 = ε2 ≡ ε ∼ ε
′

1 ∼
ε
′

2. In order to calculate the right-hand side of Eq. (1.111), we use the master
equation [31]:

− 4πα
16π3

∫
d3k

ω

(qi)2

(qik)2

∣∣∣∣∣
ω<∆ε

= −α

π
ln

(
∆εm

λεi

)
, ω =

√
k2 + λ2 ,

4πα
16π3

∫
d3k

ω

2q1q2
(kq1)(kq2)

∣∣∣∣∣
ω<∆ε

=
α

π

[
Lq ln

(
m2(∆ε)2

λ2ε1ε2

)
+
1
2
L2q − (1.112)

−1
2
ln2
(
ε1
ε2

)
− π2

3
+ Li2

(
cos2

θ

2

)]
.

Here we used the notation

Lq = ln
−q2
m2

, q21 = q22 = m2, −q2 = −(q1 − q2)2 
 m2,

q1,2 = (ε1,2,q1,2), θ = q̂1q2,
(1.113)

where ε1, ε2, and θ are the energies and angle between the 3-momenta q1,q2,
respectively; and λ is the ˇctitious photon mass (all deˇned in the centre-of-mass
system).

The contributions of each possible term on rhs of Eq. (1.111) are

π

α
δsoft = −∆1 −∆2 −∆′

1 −∆′
2 +∆12 +∆1′2′ +∆11′ +∆22′ −∆12′ −∆1′2,

∆1 = ∆2 = ln
m∆ε

ελ
, ∆′

1 = ln
m∆ε

ε
′
1λ

, ∆′
2 = ln

m∆ε

ε
′
2λ

,

∆12 = 2Ls ln
m∆ε

ελ
+
1
2
L2s −

π2

3
,

∆1′2′ = Ls1 ln
(
(m∆ε)2

ε
′
1ε

′
2λ

2

)
+
1
2
L2s1 −

1
2
ln2
(
ε
′

1

ε
′
2

)
− π2

3
+ Li2

(
cos2

θ1′2′

2

)
,

∆11′ = Lt1 ln
(
(m∆ε)2

ε
′
1ελ

2

)
+
1
2
L2t1 −

1
2
ln2
(
ε
′

1

ε

)
− π2

3
+ Li2

(
cos2

θ1′

2

)
,

∆22′ = Lt ln

(
(m∆ε)2

εε
′
2λ

2

)
+
1
2
L2t −

1
2
ln2
(
ε
′

2

ε

)
− π2

3
+ Li2

(
sin2

θ2′

2

)
,

∆1′2 = Lu1 ln

(
(m∆ε)2

εε
′
1λ

2

)
+
1
2
L2u1
− 1
2
ln2
(
ε
′

1

ε

)
− π2

3
+ Li2

(
sin2

θ1′

2

)
,

∆12′ = Lu ln
(
(m∆ε)2

εε
′
2λ

2

)
+
1
2
L2u −

1
2
ln2
(

ε

ε
′
2

)
− π2

3
+ Li2

(
cos2

θ2′

2

)
,

(1.114)
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Lu = ln
−u
m2

, Lu1 = ln
−u1
m2

, Li2(z) ≡ −
z∫
0

dx

x
ln(1− x),

where ε
′

1, ε
′

2 are the centre-of-mass energies of the scattered electron and positron,
respectively; θ1′ , θ2′ are their scattering angles (measured from the initial electron
momentum direction); and θ1′2′ is the angle between the scattered electron and
positron momenta.

Separating out large logarithms, we obtain

δsoft =
α

π

{
4(Ls − 1) ln

m∆ε

λε
+ L2s + Ls ln

tt1
uu1

+ Ls ln
1− c1′2′

2
+O(1)

}
,

c1′2′ = cos θ1′2′ . (1.115)

This can be written in another form, using experimentally measurable quantities,
the relative energies of the scattered leptons and the scattering angles:

yi =
ε′i
ε

, ci = cos θ′i ,
1
2
(1− c1′2′) =

y1 + y2 − 1
y1y2

,

− t

s
= y2

1 + c2
2

, −u

s
= y2

1− c2
2

, − t1
s
= y1

1− c1
2

, (1.116)

s1
s

= y1 + y2 − 1 , −
u1
s
= y1

1 + c1
2

.

1.3.5. Conclusions. The double logarithmic terms of type L2s and those
proportional to Ls ln (λ/m) cancel in the overall sum with the corresponding
terms from the soft photon contribution (1.115). Omitting vacuum polarization,
we obtain in the logarithmic approximation

dσsoft+virt = dσ0
α

π

[
Ls

(
4 ln

∆ε

ε
+∆L

)
+∆(y1, y2, c1, c2)

]
,

∆L = 3 + ln
(1− c1)(1− c2)
(1 + c1)(1 + c2)

+ ln
y1 + y2 − 1

y1y2
+ (1.117)

+
1
F

[
Φ ln

s2

tt1
+ΦP ln

s21
tt1
+ΦQ ln

t21
ss1

+ΦR ln
t2

ss1

]
+

+ 2 ln
ss1
uu1

+
2
F
(ΦQ +ΦR) ln

tt1
ss1

.

The function ∆(y1, y2, c1, c2) is quite complicated. To compare it with ∆L,
we give their numerical values (omitting vacuum polarization) for a certain set
of points from physical regions (1.118) and y1 + y2 > 1, D > 0 (see Table 2).
Considering the kinematics typical of large angle inelastic Bhabha scattering, we
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Table 2. Numeric estimates of ∆L and ∆ versus y1, y2, c1, c2

No. y1 y2 c1 c2 ∆L ∆

1 0.36 0.89 −0.70 −0.10 10.70 −24.53
2 0.59 0.66 0.29 −0.06 4.86 −11.41
3 0.67 0.67 0.50 0.30 5.82 −35.58
4 0.68 0.65 0.60 −0.50 4.10 −10.45

show the lowest-order contribution previously obtained [32] and the radiative
corrections calculated in this work.

After performing loop integration and shifting logarithms (Li = Ls + Lis),
one can see that the terms containing infrared singularities and double logarith-
mic terms ∼ L2s, are associated with a factor equal to the corresponding Born
contribution. This is true of all types of contributions.

The phase volume

dΓ =
d3p′1d

3p′2d
3k1

ε′1ε
′
2ω1

δ(4)(p1 + p2 − p′1 − p′2 − k1)

can be transformed in various ways [32]. We introduce the variables (see
Eq. (1.116))

yi =
ε′i
ε
, ci = cos θ′i, θ′i = p̂1,p

′
i, 0 < yi < 1, −1 < c1,2 < 1, (1.118)

which parametrize the kinematics of the outgoing particles (these do not include
a common degree of freedom, a rotation about the beam axis). The phase volume
then takes the form

dΓ =
πsdy1dy2dc1dc2

2
√

D(y1, y2, c1, c2)
Θ(y1 + y2 − 1)Θ(D(y1, y2, c1, c2)),

D(y1, y2, c1, c2) = ρ2 − c21 − c22 − 2c1′2′c1c2, (1.119)

ρ2 = 2(1− c1′2′)
(1− y1)(1 − y2)

y1y2
.

The allowed region of integration is a triangle in the y1, y2 plane and the interior
of the ellipse D > 0 in the c1, c2 plane.

We now discuss the relation of our result to the renormalization group ap-
proach. The dependence on ∆ε/ε in (1.117) disappears when one takes into
account hard two-photon emission. The leading contribution arises from the
kinematics when the second hard photon is emitted close to the direction of
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motion of one of the incoming or outgoing particles:

dσhard =
α

2π
Ls

[
1 + z2

1− z

(
dσ0(zp1, p2, p′1, p

′
2) + dσ0(p1, zp2, p′1, p

′
2)
)
dz +

+
1+z21
1−z1

dσ0

(
p1, p2,

p′1
z1

, p′2

)
dz1+

1+z22
1−z2

dσ0

(
p1, p2, p

′
1,

p′2
z2

)
dz2

]
,

z = 1− x2, zi =
yi

yi + x2
, x2 =

ω2
ε
. (1.120)

The fractional energy of the additional photon varies within the limits ∆ε/ε <
x2 = ω2/ε < 1. This formula agrees with the DrellÄYan form of radiative
Bhabha scattering (with switched-off vacuum polarization)

dσ(p1, p2, p′1, p
′
2) =

∫
dx1 dx2D(x1)D(x2) dσ0

(
x1p1, x2p2,

p′1
z1

,
p′2
z2

)
×

× D(z1)D(z2)dz1dz2, (1.121)

where the nonsinglet structure functions D are [33]

D(z) = δ(1 − z)+
α

2π
LP(1)(z)+

(
α

2π
L

)2 1
2!
P(2)(z)+...,

P(1)(z) = lim∆→0

[
1+z2

1−z Θ(1−z−∆)+δ(1− z)
(
2 ln∆+

3
2

)]
.

(1.122)

In our calculations we see explicitly a factorization of the terms containing
double logarithmic contributions and infrared single logarithmic ones, which arise
from G- and ΓΠ-type FD. To be precise, the corresponding contributions to the
cross section have the structure of the Born cross section (1.94). But the above
claim fails to be true for terms containing single logarithms. Hence, the DrellÄYan
form (1.121) is not valid in this case, and the factorization theorem breaks down,
because the mass singularities (large logarithms) do not factorize before the Born
structure. That is because of plenty of different type amplitudes and kinematic
variables, which describe our process. The reason for the violation of a naive
usage of factorization in the DrellÄYan form has presumably the same origin
with that found in Ref. 34, where the authors claimed that it is necessary to study
independently the renormalization group behavior of leading logarithms before
different amplitudes of the same process. Note that in the eµ → eµγ reaction,
which can easily be extracted from our results, factorization does take place. We
also see from (1.117) that factorization will take place if all the logarithmic terms
become equal, i. e., ln (s1/m2) = ln (s/m2) = ... . The source for the violation
of the factorization theorem, we found, might have a relation to some of those
found in other problems [35].
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Numerical estimates (see Table 2) for the Φ factory energy range (
√
s �

1 GeV) show that the contribution of the nonleading terms coming from virtual
and soft real photon emission might reach 35%. Additional hard photon emission
will also contribute to ∆L and ∆. To get an explicit form of that correction, one
has to take into account a deˇnite experimental set-up.

Obviously, an analogous phenomenon of the factorization theorem violation
takes place in QCD in the processes like qq̄ → qq̄g and qq̄ → qq̄γ. A consistent
investigation of the latter processes, taking into account the phenomenon found,
can give a certain correction to predictions for large angle jet production and
direct hard photon emission at proton-antiproton colliders.

1.4. Radiative Large Angle Bhabha Scattering in Collinear Kinematics.
Here we are going to consider the complementary speciˇc kinematics, in which
the photon moves within a narrow cone of small opening angle θ0 � 1 together
with one of the incoming or outgoing charged particles. Thus, the result obtained
here may be used in experiments with the tagging of scattered electron (positron)
in detectors of small aperture θ0 � 1.

This part is organized as follows. In Sect. 1.4.1 the Born level cross section
of radiative Bhabha scattering is revised in the collinear kinematics of photon
emission along initial (scattered) electron. We introduce here the physical gauge
of real photon that is extensively used in the next sections. In Sect. 1.4.2 a
set of crossing transformations which enables us to consider in some detail only
the scattering type amplitudes of loop corrections to the process is described.
Besides, we restrict ourselves to the kinematics of hard photon emission along
initial electron. In Sect. 1.4.3 the corrections due to virtual and soft real photon
emission in the case k1 ‖ p1 are considered. The general expression for correction
in the case of hard photon emission along scattered electron is given in Sect. 1.4.4.
In Sect. 1.4.5 we consider a contribution (in LLA) coming from two hard photon
emission and derive a general expression for radiative correction. In conclusion
we discuss the relation with structure function approach and the accuracy of
the results obtained. Some useful expressions for loop integrals are given in
Appendix II and the results of numeric estimates are given in graphs.

1.4.1. Born Expressions in Collinear Kinematics. Let us begin revising the
radiative Bhabha scattering process

e−(p1) + e+(p2) → e−(p′1) + e+(p′2) + γ(k1) (1.123)

at the tree level. We deˇne the collinear kinematical domains as those in which
the hard photon is emitted close (within a narrow cone with opening angle θ0�1)
to the incident (θ1(2) = p̂1(2)k1 < θ0) or the outgoing electron (positron) (θ′1(2) =

p̂′
1(2)k1 < θ0) direction of motion. Because of the symmetry between electron and

positron we may restrict ourselves to a consideration of only two collinear regions,
which correspond to the emission of the photon along the electron momenta. The
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two remaining contributions to the differential cross section of the process (1.123)
can be obtained by the substitution Q

dσcoll =
[
1 +Q

(
p1 ↔ p2
p′1 ↔ p′2

)]{
dσγ(k1 ‖ p1) + dσγ(k1 ‖ p′

1)
}
. (1.124)

To begin with, let us recall the known expression [6] in Born approximation for
the general kinematics, i. e., assuming all the squares of the momenta transferred
among fermions to be large compared to the electron mass squared:

dσγ0 =
α3

8π2s
TdΓ, dΓ =

d3p′
1d
3p′

2d
3k1

ε′1ε
′
2ω1

δ4(p1 + p2 − p′1 − p′2 − k1),

T =
S

tt1ss1

[
ss1(s2 + s21) + tt1(t2 + t21) + uu1(u2 + u21)

]
−

− 16m
2

χ
′2
2

(
s

t1
+

t1
s
+ 1
)2
− 16m

2

χ
′2
1

(
s

t
+

t

s
+ 1
)2
− 16m

2

χ22

(
s1
t1
+

t1
s1
+ 1
)2
−

− 16m
2

χ21

(
s1
t
+

t

s1
+ 1
)2

, (1.125)

S = 4
[

s

χ1χ2
+

s1
χ′
1χ

′
2

− t1
χ1χ′

1

− t

χ2χ′
2

+
u1

χ2χ′
1

+
u

χ1χ′
2

]
,

s = (p1 + p2)2, s1 = (p′1 + p′2)
2, t = (p2 − p′2)

2, t1 = (p1 − p′1)
2,

u = (p1 − p′2)
2, u1 = (p2 − p′1)

2, χi = 2pik1, χ′
1,2 = 2p

′
1,2k1.

In the collinear kinematical domain in which k1 ‖ p1, the above formula takes
the form

dσγ0 (k1 ‖ p1) =
α3

π2s

d3k1
ω1

1
χ1
ΥF

d3p′
1d
3p′

2

ε′1ε
′
2

δ4((1− x)p1 + p2 − p′1 − p′2) =

= dWp1dσ0((1− x)p1, p2), (1.126)

Υ =
1 + (1− x)2

x(1− x)
− 2m

2

χ1
, F =

(
s1
t
+

t

s1
+ 1
)2

,

where

s1 = s(1− x), y1 =
ε′1
ε
= 2

1− x

a
, y2 =

ε′2
ε
=
2− 2x+ x2 + cx(2 − x)

a
,

a = 2− x+ cx, ω1 = εx, s = 4ε2, χ1 =
s

2
x(1− c1β), (1.127)

t = t1(1− x) = −s (1− x)2(1− c)
a

, c = cos (p̂1p′
1), c1 = cos (p̂1k1),

β =

√
1− m2

ε2
, dWp1 =

α

2π2
1− x

χ1
Υ
d3k1
ω1

.
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Here yi are the energy fractions of the scattered leptons and dσ0(p1(1 − x), p2)
is the cross section of the elastic Bhabha scattering process.

Throughout the chapter we use the following relations among invariants

s1 + t+ u1 = 4m2 − χ1 ≈ 0, s+ t1 + u = 4m2 + χ1 ≈ 0.

In the case k1 ‖ p′
1 we have

dσγ0 (k1 ‖ p′
1) =

α

2π2
1
χ′
1

Υ̃
d3k1
ω1

(1 − x)dσ0(p1, p2),

Υ̃ =
1 + (1− x)2

x
− 2m

2

χ′
1

.

(1.128)

These expressions could also be inferred by using the method of quasi-real elec-
trons [21] and starting from the nonradiative Bhabha cross section.

After integration over a hard collinear (k1 ‖ p1) photon angular phase space,
the cross section of radiative Bhabha scattering in the Born approximation is
found to be

dσγ0
dxdc

∣∣∣∣∣
k1‖p1

=
4α3

s

[
1 + (1− x)2

x
L0 − 2

1− x

x

]
×

×
(
3−3x+x2+2cx(2−x) + c2(1− x(1 − x))

(1− x)(1 − c)a2

)2
(1+O(θ20)), (1.129)

where L0 = ln (εθ0/m)
2. And in the case k1 ‖ p′

1 it reads

dσγ0
dxdc

∣∣∣∣∣
k1‖p′

1

=
α3

4s

[
1+(1−x)2

x
L′
0−2

1−x
x

](
3+c2

1− c

)2
(1+O(θ20)),

L′
0 = ln

(
ε′1θ0
m

)2
, ε′1 = ε(1− x).

(1.130)

The simplest way to reproduce these results is to use the physical gauge for
the real photon which in the beam c.m.s. sets the photon polarization vector to
be a space-like 3-vector eλ having density matrix∑

λ

eλµe
λ∗
ν =

{
0, if µ or ν = 0

δµν − nµnν , µ = ν = 1, 2, 3, n =
k1
ω1

,

with the properties∑
λ

|eλ|2 = −2,
∑
λ

|p1eλ|2 = ε2(1− c21),∑
λ

|p′1eλ|2 =
t1u1
s

,
∑
λ

(p1eλ)(p′1eλ)
∗ θ→0∼ θ.

(1.131)
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These properties enable us to omit mass terms in the calculations of traces and, be-
sides, to restrict ourselves to the consideration of singular terms (see Eq. (1.132))
only, both at the Born and one-loop level. As shown in [36], this gauge is proved
useful for a description of jet production in quantum chromodynamics; it is also
very well suited to our case because it allows one to simplify a lot the calculation
with respect, for instance, to the Feynman gauge. What is more, it possesses
another very attractive feature related with the structure of the correction to be
mentioned below (see Appendix II).

With these tools at our disposal let us turn now to the main point. The
contributions, which survive the limit θ0 → 0, arise from the terms containing

(p1e)2

χ21
,

e2

χ1
,

(p′1e)2

χ1
. (1.132)

Other omitted terms (in particular those which do not contain a factor χ−1
1 ) can be

safely neglected since they give a contribution of the order of θ20 which determines
the accuracy of our calculations

1 +O
(α
π
θ20Ls

)
,

m

ε
� θ0 � 1. (1.133)

In the realistic case this corresponds to an accuracy of the order of per mille.
1.4.2. Crossing Relations. In this and the next section we shall consider the

case k1 ‖ p1. In the case of photon emission along p′1 one can get the desired
expression by using the left-to-right permutation

|M |2k1‖p′
1
= Q

(
p1 ↔ −p′1
p2 ↔ −p′2

)
|M |2k1‖p1

. (1.134)

From now on we deal with scattering type amplitudes (FD) with the emission
of hard photon by initial electron. This is possible due to the properties of the
physical gauge. The contribution of annihilation type amplitudes may be derived
by applying the momenta replacement operation as follows:

∆|M |2annih = {Q(p′1 ↔ −p2)}∆|M |2scatt ≡ {Q1}∆|M |2scatt.
(1.135)

In considering FD with two photons in the scattering channel (box FD) one
may examine only those with uncrossed photons because a contribution of the
others may be obtained by the permutation p2 ↔ −p′2. Thus the general answer
becomes

|M |2k1‖p1
= �e

{
(1 +Q1)[G+ L] +

1
s1t
(1 +Q1)(1 +Q2)[s1t(B + P )]

}
,

(1.136)
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with the permutation operators acting as

Q1F (s1, t1, s, t) = F (t, s, t1, s1), Q2F (s, u, s1, u1) = F (u, s, u1, s1).

1.4.3. Virtual and Soft Photon Emission in k1 ‖ p1 Kinematics. One-loop
QED RC (which are described by seventy-two Feynman diagrams) can be classi-
ˇed out into the two gauge invariant subsets (see Fig. 6):

• single photon exchange between electron and positron lines (G-, L-type);

• double photon exchange between electron and positron lines (B-, P -type).

For L-type FD (see Fig. 6 ((3), (4))) the initial spinor u(p1) is replaced by

α

2π
A2k̂1êu(p1),

with

A2 =
1
χ1

{
− ρ

2(ρ− 1) +
2ρ2 − 3ρ+ 2
2(ρ− 1)2 Lρ +

1
ρ

[
−Li2(1− ρ) +

π2

6

]}
,

Lρ = ln ρ, ρ =
χ1
m2

.

The relevant contribution to the matrix element squared and summed over spin
states reads

∆|M |2L = 29π2α4
A2

χ1

s31 − u31
s1t2

[
Y − 2(2− x)

1− x
W

]
,

Y = 4(p1e)2 −
x

1− x
e2χ1, W = (p1e)2.

(1.137)

The contribution of vertex insertion, vacuum polarization∗ and G1-type FD
(see Fig. 6 ((1), (2), (5))) has the following form

∆|M |2Π,Γ,Γa
= 210π2α4

[
Πt + Γt +

1
4
Γa

]
s31 − u31
t2s1χ21

Y,

Πt =
1
3
Lt −

5
9
, Γt = (Lλ − 1)(1− Lt)−

1
4
Lt −

1
4
L2t +

π2

12
, (1.138)

Γa = −3L2t + 4LtLρ + 3Lt + 4Lλ − 2 ln (1 − ρ)− π2

3
+ 2Li2(1 − ρ)− 4,

Lλ = ln
m

λ
, Lt = ln

−t
m2

, Li2(z) = −
z∫
0

dx

x
ln(1− x).

∗For realistic applications one should also add to Π the contributions due to µ and τ leptons
and hadrons.
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Fig. 6. Some representatives of FD for radiative Bhabha scattering up to second order: (1)
is the vertex insertion; (2) is the vacuum polarization insertion; graphs denoted by (3);
(4) are of the L-type; (5) is of G1-type; (6) is of G2-type; (7) is of B-type and (8) is of
P -type

Here λ is as usual the IR cut-off parameter to be cancelled at the end of calculus
against a soft photon contribution.

For the contribution of G2-type FD (see Fig. 6 (6)) with four denominators
we obtain

∆|M |2G = 29α4π2
s31 − u31

ts1χ1(1− x)

[
(J − J1)Y +

+
2(2− x)
1− x

W (J11 − J1 + xJ1k − xJk)
]
. (1.139)
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It turns out that only the scalar integral and the coefˇcients before p1, k1 in the
vector and tensor integrals give nonvanishing contribution in the limit θ0 → 0∫

d4k

iπ2
(1, kµ, kµkν)
(0)(1)(2)(q)

= (J, J1p
µ
1 + Jkk

µ
1 , J11p

µ
1p

ν
1 + Jkkk

µ
1 k

ν
1 + J1k(p1k1)µν),

(0) = k2 − λ2, (1) = k2 − 2p1k, (2) = k2 − 2p′1k,
(q) = k2 − 2k(p1 − k1)− χ1, (ab)µν = aµbν + aνbµ,

and the terms having no p1 or k1 momentum in the decomposition have been
omitted for their unimportance.

The B-type FD shown in Fig. 6 (7) with uncrossed legs gives

∆|M |2B = 29π2α4Y
1

s1tχ21

[
(u31 − s31)s1(B + a− b)−

− u31s1

(
c+ a1′2′ + a1′2 +

2
s1

ag

)
+ s31(c[t− u1] + 2J0)

]
, (1.140)

where the coefˇcients are associated with scalar, vector and tensor integrals over
loop momentum∫

d4k

iπ2
(1, kµ, kµkν)

b0b1b2b3
= (B,Bµ, Bµν), J0 =

∫
d4k

iπ2
1

b1b2b3
,

b0 = k2 − λ2, b1 = k2 + 2p′1k, b2 = k2 − 2p′2k,
b3 = k2 − 2qk + t, q = p′2 − p2,

Bµ = (ap′1 + bp′2 + cp2)µ,

Bµν = agg
µν + a1′1′p

′µ
1 p

′ν
1 + a22p

µ
2p

ν
2 + a2′2′p

′µ
2 p

′ν
2 + a1′2(p′1p2)

µν +
+ a1′2′(p′1p

′
2)
µν + a22′(p2p′2)

µν .

For P -type FD (see Fig. 6 (8)) with uncrossed photon legs we have

∆|M |2P = 29π2α4
s31 − u31

tχ1(1− x)

[
Y (E − E1) +

+
2(2− x)
1− x

W (E11 − E1 + xE1k − xEk)
]
. (1.141)

Here we are using the deˇnition (with tensor structures giving no contributions
in the limit θ0 → 0 dropped)∫

d4k

iπ2
(1, kµ, kµkν)
a0a1a2a3a4

= (E,E1p
µ
1 + Ekk

µ
1 , E11p

µ
1p

ν
1 + Ekkk

µ
1 k

ν
1 +

+ E1k(p
µ
1k

ν
1 + pν1k

µ
1 )),
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a0 = k2 − λ2, a1 = k2 − 2p1k, a2 = k2 − 2k(p1 − k1)− χ1,

a3 = k2 + 2p2k, a4 = k2 − 2qk + t.

Note that in the evaluating of P -type FD we are allowed to put k1 = xp1, thus
keeping only p1 momentum containing terms in the decomposition.

Collecting all the contributions (for the explicit expressions of all the coefˇ-
cients see Appendix II) given above we arrive at the general expression for the
virtual corrections with ρ = x[1 + (εθ/m)2]� s/m2

2�e
∑
(M∗

0M)k1‖p1 =

=
211α4π2

χ1
FΥ

{
2− x

1− x

w

Υ
Φ+ 2Lλ(2 − Lt − Lt1 − Ls −

−Ls1 + Lu + Lu1) +
π2

3
+ Li2(x) −

101
18

+ ln
∣∣∣∣ ρ

1− ρ

∣∣∣∣+ L2u1
− L2t −

−L2s1 + Lρ ln(1− x) +
11
3
Lt − ϑ+ ln2

s1
t
+
1
F

[
Π+ 3

t3 − u31
s21t

ln
s1
t
+

+
2u1(u21 + s21)− ts21

4t2s1
ln2

u1
t
+
2u1(u21 + t2)− t2s1

4ts21
ln2

u1
s1
+

+
s1
2t
ln

u1
t
+

t

2s1
ln

u1
s1
− 3
4
π2
(
s1
t
+

t

s1

)]}
, (1.142)

where we have used the following deˇnitions

ϑ =
x

ρ− x

[
Li2(1− ρ)− π2

6
+ Li2(x) + Lρ ln(1− x)

]
,

Π =
s31 − u31
s1t2

[
π

α

(
1

1−Πt
− 1
)
− 1
3
Lt +

5
9

]
+

+
t3 − u31
s21t

[
π

α
�e
(

1
1−Πs1

− 1
)
− 1
3
Ls1 +

5
9

]
,

Πs1 =
1
3
(Ls1 − iπ)− 5

9
, Φ = χ1A2 + t1χ1(J11 − J1 + xJ1k − xJk),

w =
1
x
− 1

ρ
, Ls1 = ln

s1
m2

, Lu = ln
−u
m2

, Lu1 = ln
−u1
m2

,

Lt = ln
−t
m2

, Lt1 = ln
−t1
m2

.

After integration over χ1 one gets additional large logs of the form L0 =
Ls + ln (θ20/4). Terms containing the last factor have to be cancelled against
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a contribution coming from the emission of hard photon outside a narrow cone
θ < θ0 � 1 (and supplied by the same set of virtual and soft corrections), which
was considered in [16]. In the case of two hard photon emission it is necessary to
consider four kinematical regions, namely when both are emitted inside/outside a
cone and one inside/another outside.

Fortunately enough, the w structure, which obviously violates factorization
feature, does not contribute in LLA due to a cancellation of large logs in Φ. What
for a correction to the above structure coming from P -type graph it vanishes in
the sum of FD with crossed and uncrossed photon legs (for a more comprehensive
account see Appendix II).

The total expression can be obtained by summing virtual photon emission
corrections and those arising from the emission of additional soft photon with
energy not exceeding ∆ε� ε.

The emission of a soft photon is seen as a process factored out of a hard
subprocess (in our case the latter is exactly a hard collinear photon emission) so
this is seemingly come into an evident con�ict with a hard collinear emission.
Nevertheless, arguments similar to those given in the paper devoted to the problem
of DIS with tagged photon [37] may be applied in the present chapter: the
factorization of the two in the differential cross section is present and we are,
hence, allowed to consider a soft photon emission restricted as usual by

∆ε

ε
� 1. (1.143)

Thus the soft correction can be written as

∑
|M |2hard+soft =

∑
|M |2Bwsoft(k1 ‖ p1), (1.144)

wsoft(k1 ‖ p1) = − α

4π2

∫
ω<∆ε

d3k√
k2 + λ2

(
− p1

p1k
+

p′1
p′1k

+
p2
p2k
− p′2

p′2k

)2
,

where MB denotes the matrix element of the hard photon emission at the Born
level and in the kinematics k1 ‖ p1 it reads

∑
|M |2B =

211α3π3

χ1
ΥF. (1.145)

Now let us check the cancellation of the terms containing Lλ. Indeed it takes
place in the sum of contributions arising from emission of virtual and soft real
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photons. To show that we bring the soft correction into the form

wsoft(k1 ‖ p1) =

=
α

π

{
2
(
ln
∆ε

ε
+ Lλ

)
(−2+Ls+Ls1 +Lt+Lt1−Lu−Lu1)+

1
2
(L2s+L2s1+

+ L2t + L2t1 − L2u − L2u1
) + ln y1(Lu1 − Ls1 − Lt1) + ln y2(Lu − Lt − Ls1) +

+ ln (y1y2)−
2π2

3
− 1
2
ln2

y1
y2
+ Li2

(
1 + c1′2′

2

)
+ Li2

(
1 + c1′

2

)
+

+ Li2

(
1− c2′

2

)
− Li2

(
1− c1′

2

)
− Li2

(
1 + c2′

2

)}
, (1.146)

where ci are the cosines of emission angles of ith particle with respect to the
beam direction (p1 in c.m.s.), c1′2′ is the cosine of the angle between scattered
fermions in c.m.s. of the colliding particles and yi are their energy fractions and
in the case k1 ‖ p1 we have

c′1 = c,
1 + c1′2′

2
= 1− 1− x

y1y2
,

1− c′2
2

=
y1(1 + c)
2y2(1− x)

. (1.147)

Then the cancellation of infrared singularities in the sum is evident from
comparison of Eqs. (1.142), (1.146). The terms with ln (∆ε/ε) should be can-
celled when adding a contribution of a second hard photon having energy above
the registration threshold ∆ε.

The complete expression for the correction in the case k1 ‖ p1 reads

R = 2�e
∑
(M∗

0M) + |M |2soft =

=
211α4π2

χ1
FΥ

{
2− x

1− x

w

Υ
Φ+ 4 ln

(
∆ε

ε

)[
−1 + Lt1 +

1
2

(
− ln (1− x) +

+ 2 ln
s

−u

)]
+
11
3
Lt + (Lρ − Lt) ln (1− x)− Lt ln (y1y2) + ln2

s1
−t +

+ ln y1 ln (1− x) + ln (y1y2)
(
1 + ln

−u
s

)
− π2

3
+ Li2(x) −

101
18
− ϑ+

+ln
∣∣∣∣ ρ

1− ρ

∣∣∣∣− 12 ln2 y1
y2
+ln (1−x) ln

−u
s
+Li2

(
1 + c1′2′

2

)
+Li2

(
1 + c1′

2

)
+

+Li2

(
1− c2′

2

)
−Li2

(
1− c1′

2

)
−Li2

(
1 + c2′

2

)
+
1
F

[
Π+3

t3 − u31
s21t

ln
s1
−t+
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+
2u1(u21 + s21)− ts21

4t2s1
ln2

u1
t
+
2u1(u21 + t2)− t2s1

4ts21
ln2
−u
s
+

s1
2t
ln

u1
t
+

+
t

2s1
ln
−u
s
− 3
4
π2
(
s1
t
+

t

s1

)]}
,

dσ(k1 ‖ p1) =
1

211π5s
RdΓ. (1.148)

1.4.4. Kinematics k1 ‖ p′
1. We put here a set of replacements one can use

in order to obtain the modulus of matrix element squared and summed over spin
states for the case k1 ‖ p′

1, starting from the analogous expression for k1 ‖ p1
(Eq. (1.136)) and using the replacement of momenta p1 ↔ −p′1, p2 ↔ −p′2. The
last operation results in the following substitutions:

x→ − x

1− x
, χ1 → −χ′

1,

s↔ s1, u↔ u1, t→ t, t1 → t1.
(1.149)

Then under these permutations the expression for virtual corrections given in
Eq. (1.142) gets transformed yielding the following result for the collinear domain
k1 ‖ p′

1

2�e
∑
(M∗

0M)k1‖p′
1
=
211α4π2

χ′
1

F̃ Υ̃

{
2− x

1− x

w̃

Υ̃
Φ̃ + 2Lλ(2−Lt−Lt1 −Ls−

− Ls1 + Lu + Lu1) +
π2

3
+ Li2

(
−x
1− x

)
− 101
18

+ ln
(

ξ

ξ + 1

)
+ L2u −

− L2t − L2s − Lξ ln(1− x) +
11
3
Lt + ln2

s

−t +
1
F̃

[
Π̃ + 3

t3 − u3

s2t
ln

s

−t +

+
2u(u2 + s2)− ts2

4t2s
ln2

u

t
+
2u(u2 + t2)− t2s

4ts2
ln2
−u
s
+

s

2t
ln

u

t
− ϑ̃+

+
t

2s
ln
−u
s
− 3
4
π2
(
s

t
+

t

s

)]}
, (1.150)

with

Π̃ =
s3 − u3

st2

[
π

α

(
1

1−Πt
− 1
)
− 1
3
Lt +

5
9

]
+

+
t3 − u3

s2t

[
π

α
�e
(

1
1−Πs

− 1
)
− 1
3
Ls +

5
9

]
,

F̃ =
(
s

t
+

t

s
+ 1
)2

, w̃ = −1− x

x
+
1
ξ
, ξ =

χ′
1

m2
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and Φ̃, ϑ̃ derived upon applying a set of replacements from Eq. (1.149) on the
quantities Φ, ϑ.

The contribution from the soft photon emission is described by

wsoft(k1 ‖ p′
1) =

α

π

[
4
(
ln
∆ε

ε
+ Lλ

)(
−1 + Ls + ln

1− c

1 + c
+
1
2
ln(1 − x)

)
+

+ L2s + 2Ls ln
1− c

1 + c
− 1
2
ln2(1− x) + ln (1 − x) + ln2

1− c

2
−

− ln2 1 + c

2
− 2π

2

3
+ 2Li2

(
1 + c

2

)
− 2Li2

(
1− c

2

)]
. (1.151)

The total correction for the case k1 ‖ p′
1 has the following form

R̃ = 2�e
∑
(M∗

0M) + |M |2soft =

=
211α4π2

χ′
1

F̃ Υ̃

{
2− x

1− x

w̃

Υ̃
Φ̃ + 4 ln

(
∆ε

ε

)(
−1 + Ls +

1
2
ln (1 − x) +

+ ln
1− c

1 + c

)
+

π2

3
+ Li2

(
−x
1− x

)
− 101
18

+ ln
(

ξ

ξ + 1

)
− 2 ln2(1 − x) +

+
11
3
Lt − Lξ ln(1− x) + ln2

s

−t −
2
3
π2 + ln(1− x) − ϑ̃+ 2Li2

(
1 + c

2

)
−

− 2Li2
(
1− c

2

)
+
1
F̃

[
Π̃ + 3

t3 − u3

s2t
ln

s

−t +
1
4t2s

ln2
(u
t

)
(2u(u2 + s2)−

− ts2) +
1
4ts2

ln2
(
−u
s

)
(2u(u2 + t2)− t2s) +

s

2t
ln

u

t
+

t

2s
ln
−u
s
−

− 3
4
π2
(
s

t
+

t

s

)]}
,

dσ(k1 ‖ p′
1) =

1
211π5s

R̃dΓ. (1.152)

Performing the integration over a hard-photon angular phase space (inside a
narrow cones) we put the RC to the cross section coming from virtual and soft
real additional photons valid to a logarithmic accuracy in the form

dσγ(V+S)

dxdc
=

dσγ0
dxdc

α

π

[
C
∆ε

ε
+ LtΞL + Ξ

]
. (1.153)

In Fig. 7, a,b given are the ratio of Ξ/(LtΞL) versus x for the collinear kinematics
considered above.
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Fig. 7. The ratio
Ξ

LtΞL
(see Eq. (1.153)) versus x =

ω1

ε
for the case: a) k1 ‖ p1;

b) k1 ‖ p′
1

1.4.5. Two Hard Photons Emission and Results in LLA. Turning to the
structure of the result obtained, it should be noted that all the terms quadratic in
large logarithms Lt1 ∼ Ls1 ∼ Lu 
 Lρ are mutually cancelled out as expected.

From the formula (1.148) it immediately follows that (upon doing an inte-
gration over a hard photon angular (within a narrow cone) phase space) the w
term that is not proportional to Υ, which is in fact the kernel of the nonsinglet
electron structure function, is not dangerous in the sense of a feasible violation
of the expected DrellÄYan form of the cross section, because it does contribute
only at next-to-leading order.

Performing the above-mentioned integration and conˇning ourselves to LLA
we get for the sum of virtual and soft photons

dσγ(S+V )

dxdc
=

dσγ0
dxdc

α

π
L

[
4 ln

∆ε

ε
+
11
3
− 1
2
ln (1− x)− ln (y1y2)

]
. (1.154)

The LLA contribution coming from the emission of second hard photon with
total energy exceeding ∆ε consists of a part corresponding to the case in which
both hard photons (with total energy εx) are emitted by initial electron [13]

dσ2γ

dxdc
=

dσγ0
dxdc

α

π
L

[
xP(2)Θ (1− x)
4(1 + (1− x)2)

+
1
2
ln (1− x)−ln ∆ε

ε
− 3
4

]
,

P
(2)
Θ (z) = 2

[
1 + z2

1− z

(
2 ln (1− z)− ln z + 3

2

)
+
1 + z

2
ln z−1+z

]
,

(1.155)

and the remaining part which describes the emission of second hard photon along
scattered electron and positrons. The latter, upon combining with the part of
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contributions of soft and virtual photons to our process

dσγ0
dxdc

3α
π

L

[
ln
∆ε

ε
+
3
4

]
,

may be represented via electron structure function in the spirit of the DrellÄYan
approach

〈 dσ
γ
0

dxdc
〉
∣∣∣∣∣
k1‖p1

=
α

2π
1 + (1 − x)2

x
L0

∫
dz2dz3dz4D(z2)D(z3)D(z4)×

× dσ0(p1(1 − x), z2p2; q1, q2)
dc

, (1.156)

with the nonsinglet structure function D(z) [33]

D(z) = δ(1− z) +
α

2π
LP(1)(z) +

(
α

2π
L

)2 1
2!
P(2)(z) + ... ,

P (1,2)(z) = lim
∆→0

{
δ(1− z)P (1,2)

∆ +Θ(1−∆− z)P (1,2)
Θ (z)

}
, (1.157)

P
(1)
∆ = 2 ln∆ +

3
2
, P

(1)
Θ (z) =

1 + z2

1− z
,

P
(2)
∆ =

(
2 ln∆ +

3
2

)2
− 2π

2

3
, ...

These functions describe the emission of (real and virtual) photons both by
ˇnal electron and by positrons. The multiplier before the integral stands for the
emission of a hard photon by the initial electron. Thus Eq. (1.156) actually
represents the partially integrated DrellÄYan form of the cross section. Quite
the same arguments are applicable to the second case in which a hard photon is
emitted by the ˇnal electron.

The cross section of the hard subprocess e(p1z1) + ē(p2z2)→ e(q1) + ē(q2)
entering Eq. (1.156) has the form

dσ0(z1p1, z2p2; q1, q2)
dc

=

=
8πα2

s

[
z21 + z22 + z1z2 + 2c(z22 − z21) + c2(z21 + z22 − z1z2)

z1(1− c)(z1 + z2 + c(z2 − z1))2

]2
. (1.158)
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The momenta of scattered electron q1 and positron q2 are completely determined
by the energy-momentum conservation law

q01 = ε
2z1z2

z1 + z2 + c(z2 − z1)
, q01 + q02 = ε(z1 + z2),

c = cos q̂1,p1, z1 sin q̂1,p1 = z2 sin q̂2,p1.

In general their energies differ from those detected in experiment ε′1, ε
′
2, namely

ε′1 = q01z3, ε′2 = q02z4,

whereas the emission angles are the same in LLA.
Collecting the two expressions presented in Eqs. (1.154), (1.155) one can

rewrite the result in LLA as

dσγ

dxdc

∣∣∣∣∣
k1‖p1

=
(

dσγ0
dxdc

)
k1‖p1

{1 + δ1} , (1.159)

δ1 =

〈 dσ
γ
0

dxdc
〉

dσγ0
dxdc


k1‖p1

− 1 +
α

π
L

[
2
3
− ln (y1y2) +

xP(2)Θ (1− x)
4(1 + (1− x)2)

]
.

For the case k1 ‖ p′
1 the correction is found to be

dσγ

dxdc

∣∣∣∣∣
k1‖p′

1

=
(

dσγ0
dxdc

)
k1‖p′

1

{1 + δ1′} ,

δ1′ =

 〈 dσ
γ
0

dxdc
〉

dσγ0
dxdc


k1‖p′

1

− 1 + α

π
L

[
2
3
+

xP(2)Θ (1− x)
4(1 + (1− x)2)

]
,

〈 dσ
γ
0

dxdc
〉
∣∣∣∣∣
k1‖p′

1

=
α

2π
1 + (1− x)2

x
L′
0

∫
dz1dz2dz4D(z1)D(z2)D(z4)×

× dσ0(z1p1, z2p2; q1, q2)
dc

, (1.160)

with L′
0 = L0 + 2 ln(1 − x).

For the case when the energies of scattered fermions are not detected the
expressions (1.156), (1.160) may be simpliˇed due to

∫
dzD(z) = 1 and z3, z4

independence of the integrand in k1 ‖ p1 kinematics (z4 independence in k1 ‖ p′
1

case).
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The x dependence of δ1 is shown in the Fig. 8 for different values of the
cosine of scattering angle c. For a hard photon emission by ˇnal particles the
correction δ′1 strongly depends on the experimental conditions of particles detec-

Fig. 8. The x dependence of δ1

(see Eq. (1.159)) for different val-
ues of the cosine of scattering an-
gle c. Other parameters chosen are:
θ0 = 0.1, ε = 1 GeV

tion: the energy thresholds of detection of
scattered fermions. This dependence for δ1 is
much more weaker, namely about 1%.

In conclusion let us recapitulate the re-
sults given in Eqs. (1.159), (1.160). They
both respect the DrellÄYan form for a cross
section in LLA. Nevertheless, a certain devi-
ation away from RG structure function repre-
sentation at a second order of PT in k1 ‖
p1 kinematics is observed. The term de-
stroying expectations based on RG approach
comes from deˇnite contribution of a soft
photon emission, the term with ln (y1y2) in
Eq. (1.159) which cannot be included into
the structure function approach. Its appear-
ance is presumably a mere consequence of a
complicate kinematics of 2 → 3 type hard
subprocess (see [16]); for such a kind of
processes the validity of the DrellÄYan form
for a cross section was not proved so far. An-
other possible way out is a careful analysis of a con2ict between a soft and hard
collinear photon emission. We have used the factorized form of a soft photon
emission (1.144) under the condition (1.143). But, to the moment, this represen-
tation in the peculiar case at hand is not rigorously proved as well.

The accuracy of our calculations of virtual and soft photon corrections is
determined by the omitted terms of the order of

1 +O
(
θ20

α

π
Ls,

m2

s

α

π
Ls

)
, (1.161)

which corresponds to a per mille level. The accuracy of the correction coming
from two hard photon emission is determined by O((α/π) ln (4/θ20)) and at 1%
level.

1.5. Large-Angle Bhabha Scattering at LEP2. Electron-positron scattering
at large angles is one of the processes studied at LEP2 collider. The small-
angle Bhabha is used there for luminosity measurements in the same manner as
at LEP1 [38], whereas the large-angle kinematics provides information for the
precise veriˇcation of the Standard Model and searches for a new physics [39Ä43].

Few years ago the precision of LABS description at LEP energies had been
of about 2 percent [11]. That was before the commencement of data taking by
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LEP2. And such a precision was assumed to be appropriate for experimental
data analysis. At present the experimental community requirements became more
rigorous ˇxing the precision to be achieved by theory at level of 0.13Ä0.21%.
This precision tag is one third of the experimental accuracy itself. It was derived to
make the theoretical contribution to the resulting systematic uncertainty reasonably
small. This way one can guarantee, that a large theoretical error would not eat up
the small experimental one. That was due to the efforts of extremely large and
expensive collaborations. During the second Monte Carlo LEP2 workshop [44] a
considerable improvement in the theoretical description of the process is reached.
Several groups were working on detailed comparisons of their calculations and
estimation of uncertainties.

In this chapter we present our point of view upon the theoretical accu-
racy, which could now be achieved and the one realized in event generator
LABSMC [44Ä46].

1.5.1. LABSMC Event Generator. Initially the LABSMC event generator
was developed to simulate large-angle Bhabha scattering at energies of about
a few GeV's at electron-positron colliders like VEPP-2M and DAΦNE. The
code included the Born level matrix element, a complete set of O(α) QED RC,
and a higher order leading logarithmic RC by means of the electron structure
functions. The relevant set of formulae can be found in Ref. 12. The generation
of events is performed using an original algorithm, which combines advantages
of semianalytical programs and Monte Carlo generators.

The structure of our event generator was described in paper [46]. An ex-
tension of the code to higher energies is done by introducing electroweak (EW)
contributions, such as Z exchange, into the matrix elements. The third [47] and
fourth [48] order leading logarithmic photonic corrections were also included in
the new version (see the write-up in Ref. 44).

The LABSMC program contains:

• tree level electroweak Born cross section;

• complete set of O(α) QED radiative corrections (RC);

• vacuum polarization corrections by leptons, hadrons [49], and W bosons;

• one-loop electroweak RC and effective EW couplings according to [50] by
means of DIZET [51] package;

• higher order leading log photonic corrections accounted via the electron
structure functions [33,47,48];

• matrix element for radiative Bhabha scattering with both γ and Z exchange
[52,53], vacuum polarization RC, and optionally ISR leading log RC (with
exponentiation according to Ref. 33);
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• light pair corrections in the O(α2L2) leading logarithmic approxima-
tion [14], including (optionally) the two-photon mechanism.

An independent Monte Carlo has been created to scrutinize the pair correc-
tions. It was found that the leading log contributions, which are factorized before
the Compton scattering and eē→ γγ processes, are negligibly small at LEP2 en-
ergies, that is, because of the features of the corresponding kernel cross sections.
Therefore these contributions were omitted in LABSMC. Another source of cor-
rections which appears just at LEP2 energies, is double resonant processes, where
both the primary electron pair and the secondary pair are produced via resonating
Z-boson propagators. Such a contribution is assumed by the experimental com-
munity as a background to Bhabha scattering. And the corresponding contribution
is subtracted from the experimental data in a preliminary step of analysis.

The inclusion of the third and fourth order LLA photonic corrections allows
not to use exponentiation. A simple estimate [48] shows that the difference
between the two treatments at LEP2 is negligible, meanwhile the exponentiation
requires a speciˇc event generation procedure.

LABSMC is a FORTRAN program. It works as follows. First, the code
makes initialization and reads �ags and parameters from a list provided by user.
It performs integration of different contributions to matrix element over the or-
dered phase space in the semianalytical branch. Then it generates events. The
4-momenta of generated particles are to be analyzed in a user subroutine to
perform a concrete event selection. A certain control of technical precision is
provided by comparison of the results from the semianalytical branch and the
Monte Carlo one. Note, that for a case of complicated cuts, which cannot be
done in the semianalytical branch, one has to increase the number of generated
events to reach the required precision.

A number of �ags, to be set by user, allows one to switch between different
options and perform speciˇc comparisons and investigations. In particular one
can switch to generation of only radiative events with visible photons. That
allows one to avoid technical problems due to low statistics in this case.

A detailed comparison with Monte Carlo program BHWIDE [54] has been
performed [44] for a large set of different event selection procedures.

A reasonably good agreement was seen for the Born cross section (with
adjusted EW parameters), supplied with the pure QED photonic radiative correc-
tions. For the bulk of event selections the difference between the results of the
two codes was less than 0.1%. But for some speciˇc observables (with the so-
called BARE event selections) LABSMC was about 0.4% higher than BHWIDE.
Therefore, one can suppose, that the difference in BARE observables is not due
to the different approaches to photonic corrections themselves, but rather a con-
sequence of different treatment (realization) of conditions for particle registration
in the BARE case. An agreement between these programs in the pure QED part
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is not a big surprise. Actually they take into account the same set of photonic
radiative corrections: the Born and the ˇrst order are complete, the higher orders
contain the same leading logs. In both cases, starting from the second order,
the subleading corrections (like α2L) are incomplete, they are one of the most
important sources of uncertainties.

After switching on the electroweak contributions we received a considerably
larger discrepancy: 1.4Ä2.4% for barrel angular acceptance (| cos θ| <∼ 0.72),
and 0.1Ä0.6% for a more wide region with end-caps included (| cos θ| <∼ 0.95).
The dependence on the angular acceptance is clear. For the wide angular region
the pure QED contribution (mainly the t-channel photon exchange) gives about
95% of the observed cross section. While for the barrel region one has much
more important EW contribution of about 25% (s-channel Z-boson exchange,
Z-γ interference, etc.). Therefore at present the most important problem in the
comparisons is the treatment of electroweak effects.

1.5.2. Electroweak Contributions. The set of electroweak effects was in-
cluded into LABSMC according to Ref. 50 by means of DIZET [51] package.
The program BHWIDE calls the EW parameters and corrections from the code
ALIBABA [5]. Starting from the Born level the programs have different values
of the EW coupling constants. In other words, they are using different schemes
for EW running constants and loop corrections.

A comparison of the Bhabha cross section integrated over photons is in a fair
agreement (see Table 3, error-bars are dropped) with a number of other codes
published in [55]. But the level of agreement (disagreement) is not satisfactory
for the recent precise experimental results come from LEP2 collaborations.

Table 3. Comparison with Fig. 21 from Ref. 55, cross sections in pb

ECM, GeV BHWIDE TOPAZ0 BHAGENE3 UNIBAB SABSPV BHAGEN95 LABSMC

ϑacol = 10◦

175 35.257 35.455 34.690 34.498 35.740 35.847 35.337
190 29.899 30.024 28.780 29.189 30.270 30.352 29.941
205 25.593 25.738 24.690 25.976 25.960 26.007 25.687

ϑacol = 25◦

175 39.741 40.487 39.170 39.521 40.240 40.505 40.029
190 33.698 34.336 32.400 33.512 34.100 34.331 33.954
205 28.929 29.460 27.840 28.710 29.280 29.437 29.178

The most important contribution under consideration is now the s-channel Z
exchange. In the LABSMC code it can be computed separately (there are op-
tions to choose channels and exchange bosons). This way we compared this
contribution with the corresponding result got by ZFITTER program [50], that
describes only the s-channel electron-positron annihilation. A perfect agreement
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has been observed for the cross section of the process e+e− → Z∗ → e+e−

with all available EW corrections included (while the photonic corrections were
switched off). From the other hand, the realization of EW stuff in ZFITTER is in
a perfect agreement [56] with an alternative approach applied in TOPAZ0 [57].
Moreover, the package DIZET is continuously supported by the authors to in-
clude the most recent theoretical calculation in the EW sector. It is used by many
other groups for different applications, such as KKMC [58] Monte Carlo for
high-energy electron-positron annihilation, or HECTOR [59] semianalytical code
for deep inelastic scattering. The EW sector in ALIBABA had been tuned many
years ago for the Z-peak region. Since that time it was not updated, as far as we
know. Our ˇrst attempt to incorporate the EW corrections into LABSMC was just
to call them from ALIBABA, as it is done in BHWIDE. Test runs of the program
showed unrealistic quantities for the running electroweak constants (from the MZ

scale to the LEP2 one). To produce the numbers in Ref. 45, an adjustment of
the initialization values of EW parameters was done in certain subroutines of
the ALIBABA code. Nevertheless, the results did not seem satisfactory in the
context of the high precision, required. That is why the invoking of ALIBABA
was substituted in LABSMC by the one of DIZET.

1.5.3. Radiative Return with a Visible Photon. At LEP2 the radiative return
to the Z peak due to photon or pair radiation gives a sizable contribution to the
cross section. This process is used itself in particular to look for anomalous gauge
boson couplings.

The pure tree level matrix element [53] for radiative process

e+ + e− −→ e+ + e− + γ + (nγ) (1.162)

was supplemented in LABSMC by radiative corrections due to initial state soft and
hard collinear radiation by means of the electron structure function approach [33].
The electron-positron pair production was taken into account quite the same way.
We took the t-channel momentum transfer to be an energy scale for the structure
functions. That's owing to the dominance of the corresponding amplitudes. The
vacuum polarization correction to the photon propagators is applied as well.

Table 4. The cross section in pb of radiative Bhabha scattering with a visible photon in
different approximations

Total Without Z peak

ECM, GeV 183 189 183 189

Tree-level 0.9817 0.9146 0.8251 0.7727

Vacuum polarization 1.1022 1.0342 0.9630 0.8853
Vac. pol. + ISR LLA 1.0842 1.0088 0.9346 0.8770
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In Table 4 we give the result got under the following conditions:

1. ECM = 183, 189 GeV;

2. | cos θe± | < 0.95;

3. At least one electron has | cos θe| < 0.7;

4. Electrons should have transverse momenta above 1 GeV;

5. The ˇnal particles are to be isolated by at least 20◦ from each other;

6. The total observed energy > 0.8 ECM; | cos θγ | < 0.7.

In the columns without Z peak we excluded the events with the invariant mass
of the electron-positron pair in the range 85 < Meē < 95 GeV. As could be seen
from the numbers, the ISR LLA corrections are in this case of the order 2%.
The additional nonstandard LLA corrections, which were found in Ref. 16, make
a small shift of the correction (an independent veriˇcation of this investigation is
required).

The complete set of O(α) radiative corrections to the process (1.162) is
unknown. To estimate the uncertainty of our result we look at the relative size
of the known leading and subleading O(α) RC to the Bhabha process itself. For
an analogous set of cuts for Bhabha scattering, the difference of the correction
values is found to be δtot − δLLA ≈ 1%∗. This way we estimate the precision of
our results for the radiative process (1.162) to be of the order 1.5%.

1.5.4. Numerical Illustrations. Let us consider the Bhabha cross section under
the following conditions:

1. The centre-of-mass energy is 206 GeV;

2. The energy threshold for an electron registration is 5.15 GeV;

3. The angular acceptance for the registered e+e− pair is 44Ä136◦ degree;

4. The angle between the outgoing electron and positron should exceed 0.1 rad.

The corresponding numerical results are presented in Table 5. One can see that
the pure t-channel QED Born (the ˇrst line) still dominates, but not as much as in
the case of small angle Bhabha. The difference between the third and second lines
gives us an idea about the size of the contribution due to Z-boson exchange and
its interference with QED amplitudes. The effect is rather large: about −25% in
our case.

∗The special cut on the scattering angle of ®at least one electron has | cos θe| < 0.7¯ is similar
to the narrow-wide event selection in small angle Bhabha at LEP1. In both cases we see a considerable
reduction of the RC size. If we apply this cut, the difference δtot −δLLA is well below the 1% level.
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Table 5. The large angle Bhabha cross section in different approximations

No. Approximation σ, pb

1 t-chan. QED Born 27.692
2 QED Born 24.482
3 EW Born 18.496
4 Improved EW Born 18.505
5 EW Born with vac. pol. 21.277
6 Corr. w/o pairs 20.970
7 Corr. with pairs 20.952

In the fourth line the so-called improved electroweak Born approximation
is presented. EW corrections, which can be factorized before the Born level
functions are taken into account there. One can see that because of the choice of
the scheme applied we have a small effect of EW corrections. In fact, the main
effect of running EW constants has been already taken into account in the EW
Born (line 3), where the values of the EW parameters (MZ , cos θW ) were taken
at the proper energy scale.

The size of the vacuum polarization effect in the virtual photon propagators
(compare lines 3 and 5) is considerable. That is why the uncertainty in the
vacuum polarization by hadrons will propagate to the resulting error of Bhabha
description.

The radiative corrections (except for those induced by a pair production) are
taken into account in the 6th line. The effect due to pair corrections (see the last
line) is rather small in our case. Numerical results for many other different event
selection criteria can be found in Ref. 44.

1.5.5. Estimate of the Theoretical Uncertainty of Bhabha Description at LEP2
Energies. The theoretical uncertainty of LABSMC Monte Carlo event generator
is estimated by the analysis of the following sources of errors.

• A considerably large amount of about 0.10% is coming from the hadronic
contribution into vacuum polarization.

• The O(α2L) photonic corrections, which are not implemented in the pro-
gram, can give as large as 0.20%. Note, that for small angle Bhabha at
LEP1 we had the corresponding contribution of the order of 0.15% [60],
and so we can estimate the uncertainty, taking into account that the large
logarithm L in the large angle kinematics is greater.

• The approximate treatment of hadronic pair corrections contributes at the
level no more than 0.03%, depending on the concrete event selection.
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• Photonic corrections in high orders O(α3L2, α5L5, ...) are not calculated in
the code. Actually they are small (0.02%) enough to be safely neglected.

• Uncertainties in the electroweak coupling constants and loop corrections
can give rise to about 0.03%.

Taking into account the limited technical precision, we derive the resulting
uncertainty of the code for description of large angle Bhabha scattering at LEP2
to be of the order of 0.3%.

The authors of event generator BHWIDE [54] have a bit higher estimate of the
uncertainty of their code: 0.5%. In fact, they do not take into account radiative
corrections due to pair production, and exploit an old version of electroweak
corrections implemented in the code ALIBABA [5]. A program of detailed
comparisons between the two codes is in progress. A good agreement was
found for the Bhabha cross section within the pure QED (without electroweak
contributions).

By comparing a semianalytical and pure Monte Carlo patches of the code we
have a good control over such parameters as the precision of numerical integration
and the number of events to be generated. That allows one to reach a required
level of the uncertainty in numerical evaluations.

2. OUTLOOK

Let's summarize what has been given above and outline the problems to be
considered in the subject in future. First of all a few words on the overview of the
problem are in order. As has been quoted in the introduction, LABS is heavily
exploited for the monitoring and calibration at e+e− colliders of moderately high
energies. Therefore one must know the cross section for this process as better as
possible. To reach the one per mille accuracy it is required to take into account
RC up to a third order in LLA and up to a second order in NLA. Above we gave
the detailed account of RC NLA (and of course LLA) calculation to LABS in
various settings. Considered are a two-hard-photon emission and a hard-lepton
pair production for collinear and semicollinear regions of additional particles'
emission, as well as a radiative LABS in two complementary kinematics. For the
ˇrst two options results obtained agree in LLA with RG expectations whereas in
the last two cases we observe certain deviation from the DrellÄYan picture.

It has to be mentioned that the theoretical treatment of Bhabha scattering to
a per mille accuracy requires accounting for the gauge invariant sets of genuine
two-loop box amplitudes. This means that the consideration of two-loop level
diagrams presented here is not complete. To the moment those classes (the
so-called decorated and eikonal type diagrams) are not consistently worked out
though it should be noted that there is some progress in the analytical evaluation
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of these classes of amplitudes [61Ä63]. Their book-keeping in NLA gives a
contribution proportional to the terms of the order O(α2L/π2), that is at the level
of 0.1%. A complete knowledge of nonleading terms will give rise to corrections
of the order 0.05%.

Appendix I. We present here the list of integrals (see Eqs. (1.19)Ä(1.22)):

A2

A2A1
=

L0
x1x2r21

[
1
2
L0 + ln

x2r
2
1

x1y
− 1 + x1x2

y

]
,

1
AA1

=
L0

x1x2r1

[
1
2
L0 + ln

x2r
2
1

x1y

]
,

m2

AA2
1

= − L0
x21x2r1

, (I.1)

1
A1A2

=
L20

x1x2
,

1
A1B2

= − L0
y1x1x2

(L0 + 2 ln y1),

L0 = ln z0 ≡ L+ l, l = ln
(
θ20
4

)
, L = ln

(
4ε2

m2

)
.

The remaining integrals could be obtained by simple substitutions deˇned in
Eqs. (1.19)Ä(1.22).

Appendix II. Here we give the expressions for the quantities associated with
G-type integrals:

J = − 1
χ1t1

[
−2LλLt1 + 2Lt1Lρ − L2t − 2Li2(x)−

π2

6

]
,
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=
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,
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, (II.1)

J1k =
1

t1χ1ρ
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0
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)
,

A = Li2(1− ρ)− π2

6
+ Li2(x) + Lρ ln (1− x), λ =

x

ρ
, ρ =

χ1
m2

.

In the limit ρ
 1 we have

Φ = χ1A2 + t1χ1(J11 − J1 + xJ1k − xJk) = −
1
2
+O(ρ−1)
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and that is the reason why w structure does contribute only to the next-to-leading
terms.

In general the expression for 5-denominator one-loop scalar, vector and tensor
integrals are some complicate functions of ˇve independent kinematical invariants
(in the derivation we extensively use the technique developed in [64]). In the limit
m2 � χ1 � s ∼ −t they may be considerably simpliˇed because of singular
1/χ1 terms only kept:

E =
1
s1

D0124 +
1
t
D0123,

E1 = −xEk =
1
2χ1

(D0134 − (1− x)D0234 − xD1234 + χ1E) ,

D0124 =
1

xt1χ1

[
L2ρ + 2Lρ ln

x

1− x
− ln2 x

1− x
− 2π

2

3

]
,

�eD0123 =
1

sχ1

[
L2s1 − 2Ls1Lρ − 2LsLλ +

π2

6
+ 2Li2(x)

]
, (II.2)

�eD0234 =
1
s1t

[
L2s1 + 2Ls1Lλ − 2LρLs1 + 2Ls1Lt −

5π2

6

]
,

�eD0134 =
1
st

[
L2s + 2LsLλ − 2(Lt1 + ln (x))Ls + 2LsLt +

7π2

6

]
,

�eD1234 = − 1
s1xt1

[
−L2s + 2Ls(Lt1 + ln (x)) + 2Ls1Lλ −

7π2

6

]
.

The structure E11+xE1k has the form 1/(sχ1)f(x, χ1) and will vanish after per-
forming the operation (1+Q2)s1tP given in (1.136) which yields a contribution
of P -type graphs with crossed and uncrossed photon legs.

The following coefˇcient for the scalar integral is obtained in the calculation
of B-type FD:

B =
1
s1t

[
L2s1 + 2Ls1Lλ − 2Ls1Lρ + 2Ls1Lt +

π2

6

]
. (II.3)

For the vector integral coefˇcients we get

a = − 1
2s1u1t

[
−π2s1 + 2u1 Li2(1− ρ)− s1L

2
t + tL2s1 − 2tLs1Lt

]
,

b = − 1
2s1t

[
2π2

3
+ 2Li2(1− ρ)− 2L2s1 + 4Ls1Lρ − 2Ls1Lt

]
,
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c =
1

2s1u1t

[
2u1 Li2(1− ρ) +

π2

6
(4u1 + 6t) + (t− 2u1)L2s1 − s1L

2
t +

+ 4u1Ls1Lρ + 2s1Ls1Lt

]
. (II.4)

Fig. 9. a) Feynman diagrams for real pair production ((1)Ä(24))
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Fig. 9. b) Feynman diagrams for real pair production ((25)Ä(36))

The relevant quantities for tensor B-type integrals are:

a1′2′ =
1
s1t

(
ρ

ρ− 1Lρ − Lt

)
, ag = −

1
4u1

[(Ls1 − Lt)2 + π2],

a1′2 = − 1
2u21

[(Lt − Ls1)
2 + π2] +

1
tu1
(Ls1 − Lt)−

− 1
s1t

(
ρ

ρ− 1Lρ − Ls1

)
, (II.5)

J0 =
1
s1

[
3
2
L2s1 − 2Ls1Lρ − Li2(1 − ρ)− 4π

2

3

]
.

As has been mentioned in the text, the physical gauge exploited provides a
direct extraction of the kernel of the structure function out of the traces both in
the tree- and loop-level amplitudes. The pattern emerging

(p̂1 − k̂1 +m)ê(p̂1 +m)ê(p̂1 − k̂1 +m) = 4(p1e)2(p̂1 − k̂1)− e2χ1k̂1 ≈

≈ (1 − x)Y p̂1, (II.6)

k̂1ê(p̂1 +m)ê(p̂1 − k̂1 +m) ≈ (1 − x)
(
2
2− x

1− x
W − Y

)
p̂1

shows this clearly.
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Appendix III. Above we present the full set of 36 Feynman diagrams (Fig. 9)
describing the real e+e− pair production in a large angle Bhabha scattering
process.
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