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ON SCATTERING OF HYPERGEOMETRIC
NATANZON POTENTIALS

S. Salam�o∗

Universidad Sim&on Bol&*var, Departamento de F&*sica, Caracas, Venezuela

The so(2, 1) algebraic treatment for the bound state sector of the hypergeometric Natanzon
potentials [1] developed in [2] is extended to include the scattering sector. The formalism introduced
in [3] of an asymptotic algebra is used to evaluate the S matrix.

INTRODUCTION

Algebraic techniques have been developed to treat the Schréodinger equation
for the bound and scattering sectors, they have been studied many years ago and
it is still a living subject. There is a whole class of potentials, the Natanzon
potentials [1] for which the complete spectrum has been found in an exact man-
ner by a variety of methods. Among such methods we can mention: a) The
SUSYQM approach for shape-invariant potentials [4]; b) The so(2, 1) treatment
for the conHuent Natanzon potentials which has been done some time ago [5];
c) For the Hypergeometric Natanzon Potentials (HNP) there are two algebraic
descriptions. One uses an so(2, 2) algebra [6], the other one makes use of an
so(2, 1) algebra [2].

The scattering sector also has been treated in an algebraic way. The Coulomb
problem has been treated a long time ago using the so(3, 1) algebra to calculate
the phase shifts [7], for other approaches of the same problem see [8].

The PéoschlÄTeller potential, the reduced case, V ∼ sech2(r), has been inves-
tigated by several authors. In [3], the asymptotic expansion of the so(2, 1) algebra
was used to obtain the reHection coefˇcient. This problem was also solved in [9]
by means of the Euclidean connection.

The general case for the HNP was solved in [6], after using an so(2, 2)
algebra together with the Euclidean connection approach.

The technique developed in [9] has been used to analyze the scattering of
deformed Coulomb and PéoschlÄTeller potentials by means of an soq(2, 1) algebra
[11]. More recently, an interesting method has been developed to treat the
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scattering of systems for which the Hamiltonian H is a function of the Casimir
operator of an so(2, 1) algebra [12].

We ˇrst give a brief resume of the algebraic treatment for the bound state
sector of the HNP, using an so(2, 1) algebra [2]. A speciˇc example, the RosenÄ
Morse potential, has been treated in order to ˇx the ideas. Then we analyze
the above example for the scattering sector by means of the technique developed
in [3]. Finally the general case of the HNP is treated. Therefore, we achieve an
algebraic description for the bound and scattering sectors by means of an so(2, 1)
algebra.

1. BOUND STATE SECTOR, AN EXAMPLE

The hypergeometric Natanzon potentials are given by

V =
fz(r)2 − (h0 − h1 + f)z(r) + h0 + 1

R(r)
+

+
[
a+

a+ (c1−c0)(2z(r) − 1)
z(r)(z(r) − 1)

− 5
4

∆
R(r)

]
z(r)2(1 − z(r))

R(r)2
, (1)

where the set {c0, c1, a, h0, h1, f} are the Natanzon parameters.

τ = c1 − c0 − a, ∆ = τ2 − 4ac0,

R(r) = az(r)2 + τz(r) + c0,
(2)

and the function z(r) satisˇes

dz(r)
dr

=
2z(r)(1 − z(r))√

R(r)
. (3)

The assumptions used for the algrebraization of the HNP, V , by means of an
so(2, 1) algebra are the following [2]: a) A two-variables (r, φ) realization of the
algebra; b) The Hamiltonian is related to the Casimir operator of the algebra by

(Q− q)Ψ(r, φ) = G(r)(E −H)Ψ(r, φ), (4)

G(r) is a function to be determined by consistency; c) Eigenfunctions of the
Casimir operator Q or equivalently, of H , have the form

Ψ(r, φ) = exp (imφ)Φ(r). (5)
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The generators are given by

J± = exp (±iφ)
[
±
√
z(r)(z(r) − 1)
z(r)′

∂

∂r
− i(1 + z(r))

2
√
z(r)

∂

∂φ
±

± (1 − z(r))
2

(
1 ∓ p√
z(r)

−
√
z(r)z

′′

z(r)′2

)]
, J0 = −i ∂

∂φ
(6)

with the usual commutation relations: [J0, J±] = ± J±, [J+, J−] = −2J0, where
the ladder operators are deˇned as usual by J± = J1± iJ2. The Casimir operator
Q is given by Q = J0(J0 +1)−J−J+ = J0(J0 − 1)−J+J−, and is found to be

Q = (z(r) − 1)2
[
z(r)
z(r)′2

∂2

∂r2
+

1
2
ip(1 + z(r))

(z(r) − 1) z(r)
∂

∂φ
+

1
4

1
z(r)

∂2

∂φ2

]
+

+ (z(r) − 1)2
[

1
2
z(r)z(r)

′′′

z(r)′3
− 3

4
z(r)z(r)′′2

z(r)′4
−1

4
p2 − 1
z(r)

]
, (7)

where z(r)
′
= (dz(r))/dr and p is a function of the Natanzon parameters, inde-

pendent of z(r). The D+ representation is used, then the compact operator J0 is
known to have the following eigenvalues

m(ν) = ν +
1
2

+
1
2

√
4q(ν) + 1, ν = 0, . . . , νmax, (8)

q(ν) is the eigenvalue of the Casimir operator Q. The energy spectrum is given
by

2ν + 1 = α(ν) − β(ν) − δ(ν), (9)

where

α(ν) =
√
−aE + f + 1 = p(ν) +m(ν),

β(ν) =
√
−c0E + h0 + 1 = p(ν) −m(ν), (10)

δ(ν) =
√
−c1E + h1 + 1 =

√
4q(ν) + 1.

The set {p(ν),m(ν), q(ν)} are called the group parameters. It is worthy to note
that each solution of the Schréodinger equation belongs to different carrier spaces
of the

{
sop(ν)(2, 1)

}
, ν = 0, . . . , νmax. The carrier space of the representation

given in (6) is

Φ(r)p(ν)q(ν)m(ν) = K zβ(ν)/2(1 − z(r))δ(ν)/2R(r)1/4 ×
× 2F1(−ν, α(ν) − ν, 1 − β(ν), z(r)), (11)

where K is a normalization constant.
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To ˇx ideas, let us analyze the RosenÄMorse potential deˇned by

VRM = −2B + 2B tanh (r) −A(A+ 1) sech (r)2, (12)

then with the following Natanzon parameters

a = 0, c0 = 1, c1 = 1, f = 4A(A+ 1), h0 = −1 − 4B, h1 = −1, (13)

together with the function z(r) given by z(r) = (1 + tanh (r))/2, we reproduce
(6) after using (1). Notice, if we set f = 0 in (13), we obtain the SaxonÄWoods
potential. The energy spectra are found using (13), (10), and (9), thus one gets

E(ν)= − (ν2−2νA+A2+B)2

(ν−A)2
, ν=0, . . . , νmax, νmax=intpart (A−

√
−B), (14)

the result for νmax is obtained after a careful consideration of ambiguities in the
signs occurring in the square roots of equation (10) and using the fact that the
energy should increase with ν. Also B is supposed negative in order to support
bound states.

The group parameters are obtained from (10) and (13), they are

p(ν) =
2A+ 1 + β(ν)

2
, m(ν) =

2A+ 1 − β(ν)
2

,

q(ν) = − ((ν −A)2 +B −A+ ν)
4(ν −A)

(15)

with

β(ν)2 = − ((ν −A)2 +B)2

(ν −A)2
− 4B.

From (6) together with the fact that z(r) = (1 + tanh (r))/2, the generators are
then given by

J± = exp (±iφ)
[
∓ 1√

2(1 + tanh (r))
∂

∂r
− i(3 + tanh (r)2)

2
√

2(1 + tanh (r))
∂

∂φ
+

+
1

2
√

2(1 + tanh (r))
((p(ν) ± 1) tanh (r) − p(ν) ± 1)

]
, J0 = −i ∂

∂φ
, (16)

while the Casimir operator reads as follow

Q =
1

2(1 + tanh (r))

[
∂2

∂r2
+

(1 − tanh (r))2

4
∂2

∂φ2
+

+
ip(tanh (r) − 1)(tanh (r) + 3)

2
∂

∂φ
−

−1
4
((tanh (r)) − 1)2(p(ν)2 − 1) + 4)

]
. (17)
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With all this results we have the complete algebraic description for the RosenÄ
Morse potential. The next step is to study the scattering problem for this example.

2. SCATTERING SECTOR

We have seen in the previous section that the algebra for describing the
bound state sector is an so(2, 1) one. Following the ideas developed in [3], one
can ask for the asymptotic limit, r → ∞, of the bound state algebra given in
(16). One can guess that the limiting algebra could be suitable to describe the
scattering sector. We are going to see that in fact this is the case. The asymptotic
operators are given by

J∞
± = exp (±iφ)

[
−i ∂
∂φ

± 1
2
∂

∂r
± 1

2

]
, J∞

0 = −i ∂
∂φ
, (18)

as one can easily verify. The operators given in (19) close in an so(2, 1) algebra.
Their Casimir operator is

Q∞ =
1
4

[
∂2

∂r2
− 1
]
, (19)

we notice that the asymptotic generators obtained are p-independent as one ex-
pects. Thus we have the so(2, 1) algebra for the bound state sector and also for
the asymptotic region.

Let us consider the continuous series of so(2, 1) [12]. For this type of
representation, the eigenvalues of the Casimir operator, q, are: q = j(j + 1) with

j = −1
2

+ i
λ

2
, λ real. (20)

The compact generators have eigenvalues given by

m = m0 ± σ, σ integer. (21)

We want to show how the eigenvalues of the Schréodinger equation, E, are related
to the eigenvalues of the Casimir operator, q, for the continuum. This can be
done by means of the last of the equations given in (10), and we obtain after
using (13)

E = −4q − 1 = −4j(j + 1) − 1 = λ2. (22)

The asymptotic states [3, 12] are

|j,m〉∞ = Am exp i(λr +mφ) +Bm exp i(−λr +mφ), (23)
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where the coefˇcients or the Jost functions Am and Bm have to be evaluated.
The calculation can be easily carried out if we use the expression for J∞

+ given
in (19) and then act on the asymptotic states (22). The result obtained should be
compared with the general expression for the action of generators of an so(2, 1)
algebra, namely [12]

J± |j,m〉 =
√

(m∓ j)(m± j ± 1) |j,m± 1〉 . (24)

The following recursion relations are then obtained

Am+1 = −1
2

(iλ− 2m+ 1)√
(m− j)(m+ j + 1)

Am,

Bm+1 =
1
2

(iλ+ 2m+ 1)√
(m− j)(m+ j + 1)

Bm.

(25)

The solution for Am and Bm are

Am =
Γ
(
− iλ

2
+m+

1
2

)√ π

sin (π(j + 1))√
Γ(m+ j + 1)Γ(m− j)Γ

(
− iλ

2
+

1
2

)A0,

Bm =
Γ
( iλ

2
+m+

1
2

)√ π

sin (π(j + 1))√
Γ(m+ j + 1)Γ(m− j)Γ

( iλ
2

+
1
2

)B0.

(26)

Therefore, the reHection coefˇcient, Rm, deˇned as Rm = Am/Bm, is then given
by

Rm =
Γ
(
− iλ

2
+m+

1
2

)
Γ
( iλ

2
+

1
2

)
A0

Γ
( iλ

2
+m+

1
2

)
Γ
(
− iλ

2
+

1
2

)
B0

. (27)

The poles of Rm are located when the following relations hold

− iλ
2

+m+
1
2

= −ω, (28)

where ω is an integer. Then from (21) and (29) we obtain j = m + ω, and the
eigenvalues of the Casimir operator are given by q = (m+ω)(m+ω+1). If we
use the last equation given in (10) together with (13), we obtain E = −4q − 1.
Now we use the fact that the group parameter m = m(ν) = 1/2(α(ν)− β(ν)) as
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seen in (10). Combining the expression given for E, together with m, we obtain,
after using (10) one more time, the following relation

E = −(α(ν) − β(ν) + 2ν + 1)2 = −δ(ν)2. (29)

This result is consistent with the one given for the general case of the NHP,
see (9), up to ambiguities in signs due the occurrence of square roots. In other
words, the poles of Rm reproduce the bound state spectra, assuming that A0 and
B0 are entire functions of λ. This conclude the analysis of the scattering sector
for the RosenÄMorse potential.

The next problem is to apply the technique developed for our example to
the general case for the NHP. Let us use the Natanzon conditions [1], namely
a boundary condition for z(r): r → ∞ ∼ z(r) → 1 and demand that V given
in (1) should vanish at inˇnity. After simple calculation one ˇnds the following
limit for V

V (r → ∞) =
h1 + 1
c1

, (30)

thus h1 = −1 is required. This condition has been applied already in our example,
see (13).

A more involved calculation is required for the asymptotic expansion of the
generators given in (6), thus one obtains

j∞± = exp (±iφ)
[
−i ∂
∂φ

±
√
c1

2
∂

∂r
± 1

2

]
, j∞0 = −i ∂

∂φ
, (31)

those operators clearly close in an so(2, 1) algebra, with the following Casimir
operator

c∞ =
1
4

(
c1
∂2

∂r2
− 1
)
, (32)

as one easily veriˇes. If we compare, the algebras given in (18) and (31) are the
same. In the last one, re scales the variable r. Thus, the results obtained in (27)
for Rm are the same.

Let us conclude with a few remarks. First of all, we have achieved an
uniˇed treatment for the bound and scattering using an so(2, 1) algebra. Second,
the approach to the algebraic scattering is simple. Third, the technique of the
Euclidean connection for the HNP is a simple application of the work done in [9].
Finally, deformed scattering can be done. Work is in progress using the results
given in this paper.
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