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ON THE FERMI-SURFACE DYNAMICS OF ROTATING NUCLEI

V.G.Kartavenko1,3, I.N.Mikhailov1, T.I.Mikhailova2, P.Quentin3

Generalized virial theorems are written for rotating nuclear systems with intrinsic
currents. A set of dynamical equations of motion for angular momentum, inertia and
pressure tensors is obtained to study the collective vortical modes (e.g., modes including
the Kelvin circulation) in nuclear excitation and reaction processes.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR and Centre d'�Etudes Nucl�eaires de Bordeaux-Gradignan, CNRS-IN2P3,

Gradignan, France.
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Recent studies of collective nuclear motion (see, e.g., [1], [2]) show the limitations of
theoretical models dealing only with the coordinates describing the distribution of nuclear
matter in space (such as electric multipole moments). The motion of nuclear surface is
of course accompanied by the currents of matter, i.e., by a rearrangement of the particles
momenta. However, the role of the quantities determining the distribution of particles in
momentum space depends on the dynamical conditions. It means that some of them must
be acknowledged as generalized coordinates kinematically independent of the coordinates of
a geometrical nature. One possible way to incorporate into the theory such quantities was
proposed in [3] in which the method of ªvirial theoremsª initiated by Chandrasekhar [4] was
suggested for the study of nuclear multipole giant resonances and then generalized to the
motion of large amplitude for the study of nuclear fusion reaction [5].
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In the above-quoted references, the rotational motion was not considered. For a rotating
system of nucleons the single-particle Wigner distribution function looses its spherical sym-
metry in phase space due to the implementation of collective currents. Not only the shape of
a composite nuclear system, and its density distribution, but also the pressure tensor become
spherically asymmetrical. The importance of an explicit dynamical treatment of the latter
anisotropy has been pointed out in papers dealing with the ˇssion [6] and fusion reactions [2].

Nuclear collective vortical motion may differ drastically from a traditional case of a
uniform rigid rotation with a constant angular velocity :Ω. Namely a local vorticity within
the rotating frame :ζ(:r, t) ≡ rot:v(:r, t) �= 2:Ω may appear. This naturally leads to an intrinsic
vorticity concept. Its usefulness in nuclear physics has been pointed out by various authors [7]
and some connections of these modes with current research in mesoscopic systems [8] and
nonlinear excitations [9] have been drawn.

In this paper we suggest the following way to analyze possible dynamical effects as-
sociated with the intrinsic vorticity. Within the mean-ˇeld approximation, we analyze the
evolution of one-body Wigner phase-space distribution function of the full many-body wave
function. We will follow the well-developed scheme using as the starting point the Vlasov
equation for the Wigner phase-space distribution function [10]

∂f

∂t
+

:p

m
· ∂f
∂:r

− ∂V

∂:r
· ∂f
∂:p

= Irel, (1)

with a ªrelaxation termª Irel added to the kinetic equation to describe dissipation effects. The
quantity V (:r, t) is the selfÄconsistent single-particle potential which is assumed here to be
local, m is the mass of nucleon.

Out of the Wigner distribution function, virials at different orders can help one to extract
useful physical information from the total phase space dynamics. Integrating the initial kinetic
equation (1) over the momentum space with different polynomial weighting functions of the
:p variable one comes, as is well known [3], [4], [11], to an inˇnite chain of equations for
local collective observables including the density, collective velocity, pressure and an inˇnite
set of tensorial functions of the time and space coordinates, which are deˇned as moments of
the distribution function in the momentum space:

• the particle n(:r, t) ≡
∫
d:p f(:r, :p, t), and the mass ρ(:r, t) = mn(:r, t) densities,

• the collective current and velocity of nuclear matter

ρ(:r, t):u(:r, t) =
∫

d:p :pf(:r, :p, t),

• the pressure tensor and the energy and momentum transfer tensors of different orders
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• and the integrals related to relaxation terms∫
d:p Irel = 0,

∫
d:p :pIrel = 0,

Rij ≡ 1
m

∫
d:p qiqjIrel, . . .

Truncating this chain at order two in :q one arrives at the ª.uid dynamicalª level of description
of nuclear processes.
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where the usual notation D
Dt ≡

∂
∂t+

∑
k

uk
∂
∂xk

is introduced for the operator giving the material

derivative, or the rate of change at a point moving locally with the .uid. The hydrodynamical
set of Eqs. (2-5) describes an evolution of a rotating nuclear system. We consider two frames
of reference with a common origin: an inertial frame, (X1, X2, X3), and a moving frame,

(x1, x2, x3). Let xi =
3∑

j=1

TijXj be the linear transformation that relates the coordinates,

:X and :x, of a point in two frames. The orientation of the moving frame, with respect to
the inertial frame, will be assumed to be time dependent. Since Tij(t) must represent an
orthogonal transformation, the vector

Ωi =
1
2

∑
j,k,m

εijk

(
dT

dt

)
jm

T
+
mk,

represents a general time-dependent rotation of the :x frame with respect to the inertial frame.
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Let us deˇne integral collective ªobservablesª (the integrals over the whole phase space
of one nucleon containing the distribution function appropriately weighted), namely an inertia
tensor Jij(t), the dynamical part of the angular momentum Li(t), the integral pressure tensor
Πij(t) deˇned as

Jij ≡
∫

d:x xixjρ, Πij ≡
∫

d:x Pij ,

Lk ≡
∑
i,j

εkij

∫
d:x ρxiuj.

The dynamics in terms of the latter ªobservablesª is expressed by a set of virial equations in
the rotating frame
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∑
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∑
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∑
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∑
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where the tensors of collective kinetic and potential energies, and the relaxation tensor are

Kij =
∫

d:x uiujρ, Wij =
∫

d:x xj
∂V

∂xi
n,

Rij ≡
∫

d:x

(
∂Pij

∂t

)
rel

xixj .

The above equations constitute a starting point for the study of the stationarity conditions and
dynamical properties of rotating nuclear systems. They provide a formal framework within
which the coupling of the deformations in the :r space and in the :p space can be explicitly
worked out. The development of a collective model on the basis of such equations is currently
in progress.
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