
�¨¸Ó³  ¢ �—�Ÿ. 2003. º 1[116] Particles and Nuclei, Letters. 2003. No. 1[116]

PHYSICS OF QUANTUM COMPUTATION
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INTRODUCTION

As many other signiˇcant discoveries in physics, the invention of quantum computer was
a result of the battle against thermodynamic laws. It was the middle of the 19th century when
Maxwell proposed his demon Å a creature with unique perceptivity able to detect every
molecule and control its motion. Separating fast and slow molecules of a gas in different
parts of a box, Maxwell's demon could have changed the temperature in these parts without
producing any work. Thus, the intelligent machine could prevent thermal death.

Later Smoluchowski proved that measuring molecular velocities and storing the informa-
tion demon would increase entropy. Therefore, the perpetuum mobile of the second type could
not be created. It became a common opinion that any physical measurement was irreversible.
In the 1950s von Neumann applied these arguments to his computer science. He supposed
that the penalty for computer operation was energy scattering with the rate of energy loss
kT ln 2 per one step of computation. This estimation was considered as convincing. However
at the beginning of the 1960s Landauer proved that energy dissipation in computers was
closely related to logical irreversibility of computation. There were no rigorous arguments for
correctness of von Neumann's conclusion in the case of reversible computation. A hope ap-
peared that if Maxwell's demon learned to perform reversible computations, the construction
of reversible computers would become real. To formulate the latter thesis more precisely, let
us recall some deˇnitions.

A function F is M-computable if a computing machine M can compute the function F
according to some program.

For each computing machine M there is a set C(M) of M-computable functions. Among
a great number of machines one can ever imagine there exists the universal Turing machine
(T ) which is able to replace any computer. It follows from the statement (Turing, 1936) that
any M-computable function that maps the set of integers Z to itself belongs to the set C(T ).

It is well known that C(T ) is a numerable set of all recursive functions and it is essentially
smaller than the set of all functions that map Z to Z.

In 1936, Church and Turing independently formulated a hypothesis, the so-called ChurchÄ
Turing principle: Every function that is considered computable can be computed by the
universal Turing machine.

In 1985, Deutsch [1] proposed a physical version of ChurchÄTuring principle: ®Every
ˇnitely realizable physical system can be perfectly simulated by a universal model computing
machine operating by ˇnite means.¯
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Here, the term ®ˇnitely realizable physical system¯ means any physical object upon which
experiment is possible. The ®universal computing machine¯ is an idealized (but theoretically
realizable) model. ®Finite means¯ can be deˇned axiomatically, without restrictive assump-
tions about the form of physical laws. If we think of a computing machine as proceeding in
a sequence of steps whose duration has a nonzero lower bound, then it operates ®by ˇnite
means¯ if

(1) only a ˇnite subsystem (though not always the same one) is changed during any step,
(2) a change of a subsystem at any step depends only on a state of a ˇnite number of

subsystems, and
(3) a rule of a change of a subsystem is ˇnite in mathematical sense.
The new version of ChurchÄTuring principle is stronger than the original one. Indeed, the

demands are so strong that they cannot be satisˇed by Turing machine acting according to
the laws of classical physics. Owing to continuity of spectra of variables in classical physics,
possible states of a classical system form a continuum. But only a numerable set of states
can be taken at the input of Turing machine. Consequently, Turing machine cannot perfectly
simulate any classical dynamic system. Contrarily to classical systems, quantum systems are
compatible with the new version of ChurchÄTuring principle.

Quantum Turing machines are so attractive because their action is controlled by unitary
reversible transformations of quantum mechanics. A possible irrevesibility could be introduced
only by an input data or by an inappropriate choice of a material of the machine's construction.
Conˇgurations of spins seem to be a particularly suitable construction material because these
machines would not depend on wave packet spreading. Among the most important early
works on the subject, the papers of Benioff [2], Bennett [3] and especially famous Feynman's
articles [4] should be mentioned.

However, contemporary science on quantum computation began in 1985 after Deutsch's
paper [1].

1. QUANTUM TURING MACHINE

Deutch's quantum computer as well as Turing machine consists of two components Å a
ˇnite processor and an inˇnite memory. During calculations always only a ˇnite part is used.

The processor is a system, all states of which are eigenstates of a set of observables

P̂ = {n̂i, i = 0, 1, . . . , N − 1},

acting in two-dimensional Hilbert spaces.
The memory consists of an inˇnite sequence of observables of the same kind:

M̂ = {m̂i, i = 0, 1, . . .}.

This system corresponds to the inˇnite memory's tape of Turing machine. The observable
x̂ corresponds to the head's (cursor's) position at the tape of Turing machine. Its spectrum is
a set of integer numbers.

One of the bases in the space of computer's states is a set of eigenvectors of these
operators:

|x; n; m〉 = |x; n0, . . . , nN−1; . . . m−1, m0, m1, . . . 〉.



32 Belokurov V. V. et al.

They are called ®computational basis states¯. The variables n̂, m̂ are chosen in such a way
that all of them have spectrum {0, 1}.

The evolution operator Û for Deutsch computer is deˇned by its matrix elements

〈x′; n′; m′|Û |x; n; m〉 =
= {δx′x+1U+(n′, m′

x|n, mx) + δx′x−1U−(n′, m′
x|n, mx)}Πy �=xδmymy .

Quantum computer is equivalent to Turing machine if

U±(n′, m′|n, m) =
1
2
δA(n,m),n′δB(n,m),m{1 ± C(n, m)},

where A, B, C are some functions with ranges of values (Z2)N , Z2 and {−1, 1}, correspond-
ingly.

For operator Û to be unitary, it is necessary and sufˇcient to have a bijective mapping:

{n, m} ⇔ {A(n, m), B(n, m), C(n, m)}.

In the rest the functions, A, B, C are arbitrary. They can be chosen such that the constructed
computer represents the universal quantum Turing machine T .

2. EVALUATION OF FUNCTIONS BY QUANTUM COMPUTER

Suppose the function f(i) = j transforms the set

Zm = {i = 0, 1, . . . , m − 1}

into the set
Zn = {j = 0, 1, . . . , n − 1}.

Is it possible to associate with it a unitary transformation in some Hilbert space? The answer
is positive and the constructions of the space and the transformation are rather transparent.

Let Hmn be a Hilbert space with the dimension mn and

es ≡ |i, j〉, i ∈ Zm, j ∈ Zn, 〈i, j|i′, j′〉 = δii′δjj′

be a basis in this space. The transformation

Uf |i, j〉 = |i, j ⊕ f(i)〉

is a unitary one. Symbol ⊕ means addition modulo n.
A remarkable property of quantum computation is a possibility to deˇne states in which

all the values of the function f are considered simultaneously. If

φ =
m−1∑
i=0

|i, 0〉 1√
m

,
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then

ψ = Ufφ =
m−1∑
i=0

|i, f(i)〉 1√
m

.

In some cases the unitary operator Ŝ deˇned by the equation

Ŝ|i, j〉 = |i, j〉(−1)j

appears to be useful. It converts the vector ψ into the vector

θ = Ŝψ =
m−1∑
i=0

|i, f(i)〉 (−1)f(i)

√
m

.

In its turn, operator Ûf transforms the vector θ into the vector

ξ = Ûfθ =
m−1∑
i=0

|i, f(i) ⊕ f(i)〉 (−1)f(i)

√
m

.

If n = 2, i. e., the function f has only two values 0 and 1, then f(i) ⊕ f(i) = 0 and

ξ =
m−1∑
i=0

|i, 0〉 (−1)f(i)

√
m

.

The scalar product of the initial and the ˇnal vectors in this chain is

〈φ|ξ〉 =
1

2m

2m−1∑
i=0

(−1)f(i).

An operation of a quantum computer is described by a d-dimensional unitary matrix T̂ that
realizes the evolution operator in a computational basis. It is very essential that the matrix T̂
can be represented as a product of d(2d − 1) unitary matrices. Each of them corresponds to
an operator that acts in a two-dimensional space formed by a pair of vectors of the mentioned
basis. Any vector V with the components (v1, v2, . . . , vd) in the computational basis can
be transformed by d − 1 transformations of indicated form to the vector W that has the
components (1, 0, . . . , 0) in the computational basis:

W = Ŝd · · · Ŝ3Ŝ2V.

The reverse transformation looks like

V = Ŝ+
2 · · · Ŝ+

d−1Ŝ
+
d W.
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3. QUANTUM FOURIER TRANSFORM

Consider functions deˇned in ZN . Suppose

ω =
1√
N

e2πi/N.

If numbers a, b ∈ ZN , then the numbers ωab form a unitary matrix F̂ :

F̂ab = ωab =
1√
N

exp
(

2πi
ab

N

)
,

(F̂ F̂+)ab =
∑

c

ωac(ω∗)cb =
1
N

∑
c

exp
(

2πi
(a − b)c

N

)
= δab.

The Fourier transform of a function f(a) is given by the equation

(F̂ f)(a) ≡ f̃(a) =
∑

c

ωacf(c).

We can deˇne the Fourier operator in the Hilbert space HN . If a vector Ψ ∈ HN equals

Ψ =
N−1∑
a=0

|a〉f(a),

then we say that Fourier transform of the vector Ψ is

F̂Ψ =
∑

a

|a〉(F̂ f)(a).

It is clear that Fourier transform of a basis vector |a〉 is

F̂ |a〉 =
∑

c

|c〉ωca.

Further, we suppose that N = 2l. Let a be represented in binary as a1 · · · al ∈ {0, 1}l

a =
l∑

i=1

2l−iai

(and similarly c). It is possible to represent the computational basis in the form of direct
product of the bases in two-dimensional Hilbert spaces

|i1, i2, . . . , il〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |il〉.

The product of the numbers a and c can be written in the form

ac = alcl + 2(al−1cl + alcl−1) + . . . 2l−1(alc1 + . . . + a1cl) + O(2l).
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Since

ac

2l
=

al

2
c1 +

(al−1

2
+

al

22

)
c2 + . . . +

(a1

2
+

a2

22
+ . . . +

al

2l

)
cl + O(20),

we obtain
exp

(
2πi

ac

2l

)
= e2πi(0.al)c1e2πi(0.al−1al)c2 · · · e2πi(0.a1a2···al)cl ;

here,

0.al =
al

2
, · · · 0.a1 · · · al =

a1

2
+

a2

22
+ . . . +

al

2l
.

The Fourier transform of the vector |a〉 is

F̂ |a〉 =
1√
N

∑
{c}

|c1〉 e2πi(0.al)c1 ⊗ |c2〉 e2πi(0.al−1al)c2 ⊗ · · · ⊗ |cl〉 e2πi(0.a1a2···al)cl.

It follows that

F̂ |a〉 =
1√
N

(|0〉 + |1〉 e2πi(0.al)) ⊗ (|0〉+

+ |1〉 e2πi(0.al−1al)) ⊗ · · · ⊗ (|0〉 + |1〉 e2πi(0.a1a2···al)).

The WalshÄHadamard operator R̂j acting in a subspace Hj is given by the formula

R̂j =
1√
2
(|0j〉〈0j | + |0j〉〈1j | + |1j〉〈0j | − |1j〉〈1j |).

The controlled phase shift operator Ŝjk acts in the join of subspaces Hj ∪Hk as:

Ŝjk = |0j0k〉〈0k0j| + |0j1k〉〈1k0j| + |1j0k〉〈0k1j| + |1j1k〉 eiθjk〈1k1j|.

The angle θjk is

θjk =
π

2j−k
.

It is easy to prove that the quantum Fourier transform [5] is realized by the following
sequence of the operators. First, the operator R̂1 acts. Then the operators Ŝ2,1, Ŝ3,1, . . . , Ŝl,1

act. Then there is a turn for the operators R̂2, Ŝ3,2 and Ŝ4,2 and so on. In the interval
between R̂j and R̂j+1 all operators Ŝk,j (k > j) act. The explicit formula is

R̂lŜl,l−1R̂l−1Ŝl,l−2Ŝl−1,l−2R̂l−2Ŝl,l−3 · · · Ŝ3,2R̂2 · · · Ŝ3,1Ŝ2,1R̂1|a1, . . . , al〉 =

= (|0〉 + |1〉 e2πi(0.a1···al))(|0〉 + |1〉 e2πi(0.a2···al)) · · · (|0〉 + |1〉 e2πi(0.al)).

This vector differs from the Fourier transform of the vector |a1, . . . , al〉 in order of variables
ai only. We use unitary operator Ŝ that converts basis |a1, . . . , al〉 into |al, . . . , a1〉. Thus,
we get

ŜR̂l · · · R̂1 = F̂ .

In order to understand how important the factorization of the Fourier transform operator
is, we recall some general concepts of quantum computation theory.
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The minimal quantity of information in the classical theory, a bit, is a basic notion of
the theory. In the theory of quantum computations the minimal quantity of information (a
quantum bit, or a qubit) is given by a unit vector in a two-dimensional Hilbert space H2. In
the classical theory a logic gate is a computing machine which has ˇxed numbers of input
and output bits and can produce a ˇxed operation in a ˇxed period of time. A quantum gate
is a device which performs a ˇxed unitary operation on the selected qubits in a ˇxed period
of time. The quantum gate is an operator that transforms Hilbert space HI into HO. The
operators R̂ and Ŝij , deˇned above, are gates. The swapping operation is the sequence of
gates.

If one quantum gate is one step of computation, then Fourier transform in Hilbert space
of N = 2l dimension requires about

Nqstep = O((lg2 (N))2)

steps. The best known classical algorithm for fast discrete Fourier transform is of size

Ncstep = O(N lg2(N) lg2 (lg2 (N))).

4. EXPERIMENTAL REALIZATION
OF QUANTUM FOURIER TRANSFORMATION

In the paper [6] QFT in two-qubit system is realized by NMR methods. Two qubits were
nuclears A and B with spin 1/2 in constant magnetic ˇeld. The Hamiltonian for this system
can be approximated as

Ĥ = ωaŜ3a + ωbŜ3b + 2πωabŜ3aŜ3b + Ĥenv,

where Ĥenv is interaction with environment. In the ˇrst approximation it can be ignored. The
eigenstates of Ĥ are the eigenstates of operators Ŝ3a and Ŝ3b.

In the experiment, they chose H2PO3 as a sample, labeled 31P as A-qubit and 1H as
B-qubit. The observed J-coupling between 31P and 1H was 647.451 Hz.

First, they produced effective pure state |00〉 by using ®temporal averaging¯ [7].

To perform QFT on the state |01〉, we should operate the pulse sequence
(π

2

)H

Y
− 1

2
J −(π

2

)H

X
on 1H to obtain the state |01〉.

Second, we perform Fourier transformation on |01〉. The list of pulses and spinÄspin
interaction are as follows:

(π)P
X −

(
−π

2

)P

Y
,

−
(π

2

)P

Y

(π

2

)H

Y
−

(π

4

)P

X

(π

4

)H

X
−

(
−π

2

)P

Y

(
−π

2

)H

X
− 1

4J
,

(π)P
X −

(
−π

2

)H

X
.
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The ˇrst and the third lines in this formula are WalshÄHadamard transformation and
the second is phase-shift transformation. After these operations, the initial state |01〉 is
transformed into the state

|01〉 =⇒ 1
2
(|00〉 + i|01〉 − |10〉 − i|11〉) =

1
2
(|00〉 + |01〉 eiπ/2 + |10〉 eiπ + |11〉 ei3π/2).

The third step is the reversion of qubits. It is well known that this operation is composed
of three C-Not gates.

5. GEOMETRIC QUANTUM COMPUTATIONS

At present, the geometric quantum computation with NMR on the base of Berry phase [8]
is considered as one of the most promising methods. This new approach to quantum gates
may be important to the future, as it is naturally resilient to certain types of errors connected
with interactions with environment.

If Hamiltonian varies adiabatically through a circuit C in the space of parameters R(t),
then the adiabatic evolution of the system is described by time-dependent Schrödinger equa-
tion. According to Berry, solutions have a form

Ψ(t) = |n(R(t))〉 exp
{
− i

�

∫ t

0

dt1EnR(t1)
}

eiγn(t)|R(t)〉;

here, |R(t)〉 is eigenvector of Hamiltonian at the moment t and γn(t) is geometric phase
which depends only on the path. For system of two spins 1/2 Berry's phase in the state
| ↑, ↓〉 is

γ↑,↓ = ∓π(1 − cos θ);

here θ is a solid angle that vector R(t) sweeps out in the space of parameters. Thus, we get
the evolution of state's vector in time Ψ = |α〉 ei(δ+γ); δ is dynamical phase which depends
on the Hamiltonian. It is well known in NMR that it is possible to eliminate the dynamic
phase by the ®phase refocusing¯ procedure. As a result of suitable circuit, the spin state
vectors are changed. One gets

| ↑〉 =⇒ | ↑〉 ei(δ↑−γ) =⇒ | ↓〉 ei(δ↑−γ) =⇒ | ↓〉 ei(δ↑+δ↓−2γ) =⇒ | ↑〉 ei(δ↑+δ↓−2γ),

| ↓〉 =⇒ | ↓〉 ei(δ↓+γ) =⇒ | ↑〉 ei(δ↓+γ) =⇒ | ↑〉 ei(δ↑+δ↓+2γ) =⇒ | ↓〉 ei(δ↑+δ↓+2γ).

The dynamic phases are eliminated and we are left with an exclusively geometric phase
difference of 4γ = 4π cos θ. The conditional Berry phase gates depend only on the geometry
of the path. They are completely independent of how the motion is performed, as long as it
is adiabatic. Hence, the kind of quantum computation with the help of Berry's phase may be
called geometric quantum computation.

These techniques are readily implemented with current technology in quantum optics and
have already been demonstrated by some of the authors using NMR [9].
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