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FORMATION OF THE SU(3)-POLARIZATION STATES
IN ATOM-QUANTUM ELECTROMAGNETIC FIELD

SYSTEM UNDER CONDITION OF THE BOSEÄEINSTEIN
CONDENSATE EXISTENCE

A. P. Alodjants1, A. V. Prokhorov1 , S. M. Arakelian2
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We consider the problem of multipartite entanglement of two-level atom system in BoseÄEinstein
condensate (BEC) and quantized electromagnetic ˇeld. The main accent is made on polarization
properties of such a system. The SU(3)-polarization states are introduced for three-mode quantum
system satisfying both the Gell-Mann symmetry and the isopolarization property for atoms in condensate
state. Superstructure of revivals and collapses of quantum state in the system is described by degree of
polarization changing in time.

INTRODUCTION

Quantum states of ultracold atoms in BoseÄEinstein condensate (BEC) are under intensive
study in modern quantum and atomic optics [1]. Such a mesoscopic system is of great interest
for both basic and applied research. In the latter case, the problem of quantum computing
is considered in many papers (e. g., [2]). Entangled multipartite states of condensate atoms
and external electromagnetic (EM) ˇeld become principal for the case [3]. The effect is very
well known for classical optical ˇeld when two hyperˇne levels of atoms are coupled by the
ˇeld and the Rabi oscillations for population imbalance and phase difference of two-level
system take place and demonstrate the nonlinear behaviour [4]. Another case is the Josephson
effect resulting in nonclassical statistics and squeezing in atomic variables for junctions of
two conductors at low temperature [5].

In our previous paper [6], we considered the problem of interaction of two-level atoms
with quantized EM ˇeld under the JaynesÄCummings (or Dicke) model. In the frameswork of
the model, nonclassical effects of collapse and revivals for quantum atomic system and also
the squeezing effects in terms of the SU(9) observables (i. e., the spin operators) have been
predicted. For some conditions a quantum steady-state excitation can appear. In experiments
[7] with ultracold sodium atoms, the light velocity reduction has been demonstrated for
passing EM radiation, and such a behaviour can be explained by the effect of electromagnetic
ˇeld induced transparency for ®bright¯ and ®dark¯ polaritons (i. e., the spin-wave excitations)
arising in three-level atomic system [7, 8]. Mathematically, the excitations represent an
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example of phenomena under formalism of so-called SU(2)-algebra deformation (see, e. g.,
[9]).

On the other hand, complete description of the three-component bosonic system should
be presented by using the SU(3)-algebra symmetry, being the mathematical apparatus in
both quantum chromodynamics and physics of elementary particles [10]. Although such
an approach is well known for describing the atomÄˇeld interaction [11, 12], the SU(3)-
polarization problem is still open now.

In the present paper we develop the SU(3)-polarization approach for the two-level atomic
and EM ˇeld system interaction.

1. QUANTUM DESCRIPTION OF THE SU(3)-POLARIZATION PROBLEM

Let us describe the SU(3) symmetry of Bose system in the Schwinger representation by
Hermitian Gell-Mann operators λj (j = 0, 1, . . . , 8) (cf. [10]):

λ0 = a+
1 a1 + a+

2 a2 + a+
3 a3, (1)

λ1 = a+
1 a2 + a+

2 a1, λ2 = i
(
a+
2 a1 − a+

1 a2

)
, λ3 = a+

1 a1 − a+
2 a2, (2)

λ4 = a+
1 a3 + a+

3 a1, λ5 = i
(
a+
3 a1 − a+

1 a3

)
, (3)

λ6 = a+
2 a3 + a+

3 a2, λ7 = i
(
a+
3 a2 − a+

2 a3

)
, (4)

λ8 =
1√
3

(
a+
1 a1 + a+

2 a2 − 2a+
3 a3

)
, (5)

where aj(a+
j ), j = 1, 2, 3 are the bosonic annihilation (creation) operators, respectively, under

commutation relation: [
ai; a+

j

]
= δij , [ai; aj ] = 0. (6)

Using Eqs. (1), (6), we have the SU(3)-algebra commutation relations for λ-operators:

[λj ; λk] = iεjkmλm, j, k, m = 1, 2, 3, (7)

[λ4; λ5] = i
(
λ3 +

√
3λ8

)
, [λ6; λ7] = i

(√
3λ8 − λ3

)
, (8)

[λ0; λi] = 0, i = 1, . . . , 8, (9)

where structural coefˇcients εjkm are the completely antisymmetric with the values (cf. [12])

ε123 = 2, ε584 = ε678 =
√

3, ε147 = ε246 = ε257 = ε345 = ε516 = ε637 = 1. (10)

According to deˇnition (1), the operator λ0 describes a total number of particles in Bose
system. The operators λ1,2,3 can be considered as an isospin of SU(6) subgroup in SU(3)
algebra under Gell-Mann symmetry [10]. The operators λ1,2,3 characterize a two-level atomic
system for Bose condensate. Another set of the operators λj (j = 4, . . . , 8) determines the
interaction of atoms and mode of quantum ˇeld a3.

Now consider the SU(3)-polarization problem for three-mode system by analogy with the
case discussed above (see, e. g., [13]).
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Let us introduce a unit ®vector of polarization¯ e:

ea = e1a1 + e2a2 + e3a3, (11)

where a is the annihilation operator for a total three-mode system; ej(j = 1, 2, 3) are the
orthogonal basic vectors under the condition

3∑
j=1

|ej | = 1. (12)

Expression (11) can be represented in the form

a = e∗1a1 + e∗2a2 + e∗3a3, (13)

where e∗j = e∗ej .
According to the SU(3) symmetry (see, e. g., [12]), we can rewrite Eq. (13) in terms of

the four phase parameters Θ, φ, ψ1, ψ2:

e1 = eiψ1 sin Θ sin φ, e2 = eiψ2 sin Θ cos φ,

e3 = cos Θ, 0 < Θ, φ ≤ π

2
, 0 ≤ ψ1,2 < 2π.

(14)

A simple geometric interpretation of introduced quantities is presented in Fig. 1. In fact,
the phase parameters Θ, φ, ψ1, ψ2 as well as the operators aj determine completely the

Fig. 1. 3D geometric presentation of the SU(3) polarization for three-level bosonic system. The angles

φ, Θ and relative phase ψ1,2 determine the parameterization of polarization state of the system

®polarization¯ states of the SU(3)-symmetry system in a Hilbert space. The polarization
states of atomic system can be associated with isopolarization states of the SU (6) subgroup.
Thus, the degree of isopolarization looks like (cf. [13])

PIP =

(
〈λ1〉2 + 〈λ2〉2 + 〈λ3〉2

)1/2

〈
a+
1 a1

〉
+

〈
a+
2 a2

〉 , (15)



Formation of the SU(3)-Polarization States in Atom-Quantum Electromagnetic Field System 69

and we can introduce the parameter for total system

P =
√

3
2

(
8∑

j=1

〈λj〉2
)1/2

〈λ0〉
, (16)

being independent of the PIP parameter.
The numerical factor

√
3/2 in Eq. (16) arises due to normalization condition for the P

quantity. For absolutely polarized state of the system, we have

P = 1, gPIP = 1. (17)

2. QUANTUM POLARIZATION IN THE BEC ENTANGLED STATE

For the system including the two-level ultracold atoms and the quantum EM ˇeld (de-
scribed by the operators a3, a+

3 ), we have the Hamiltonian [6]

H = Hf + HBEC + HOPT, (18)

where
Hf = �ωfa+

3 a3, (19)

HBEC = �

(
ω1a

+
1 a1 + ω2a

+
2 a2 +

1
2
γ1a

+2
1 a2

1 +
1
2
γ2a

+2
2 a2

2

)
, (20)

HOPT = �k
(
a+
3 a+

2 a1 + a+
1 a2a3

)
(21)

and rotating wave approximation and lossless cavity taken into account.
The operators a1(a+

1 ), a2(a+
2 ) describe an annihilation (creation) of the atoms in condensate

states being induced by two hyperˇne levels ®1¯ and ®2¯, respectively.
For ®small¯ number of particles (N ≈ 200, see, e. g., [5]) that is exactly the case, we can

neglect the motion of the atoms.
The parameters γ1,2 are proportional to the scattering length, and characterize the atomic

collisions in the Born approximation. The Hamiltonian HOPT (see (21)) describes a direct
coupling between the atom levels arising due to quantum EM modes. The Hamiltonian Hf

(see (19)) corresponds to the energy of the free EM ˇeld.
Let us characterize the entangled state determined by a single-photon state and atoms

and described by the following ansatz of the state vector of the system in Schréodinger
representation:

|Ψ (t)〉 =
N−1∑
p=0

{Pp (t) |p〉1 |N − p〉2 |1〉3 + Dp (t) |p + 1〉1 |N − p − 1〉2 |0〉3}, (22)

where Pp (t) and Dp (t) are the unknown coefˇcients being subject of calculating by varia-
tional method. Physically, the Pp (t) amplitudes determine the probability to ˇnd the number
(N − p) and p atoms in the lower and upper level of the condensate, correspondingly.
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The coefˇcient Dp (t) characterizes the probability of a single-photon state absorption in the
condensate.

The following normalization condition takes place:

〈Ψ (t) | Ψ (t)〉 =
N∑

p=0

(
|Pp (t)|2 + |Dp (t)|2

)
= 1. (23)

For in-+itial state, we have

|Ψ (0)〉 =
1√

2NN !

(
a+ + b+

)N |0〉12 |1〉3 (24)

in the limit of a large number of atoms (N � 1) (cf. [3]).
Using the variational method to obtain the coefˇcients Pp (t) and Dp (t), we have the

equations

dPp (t)
dt

= −i (χ0Pp (t) + θDp (t)) ,

dDp (t)
dt

= −i (χDDp (t) + θPp (t)) ,

(25)

where the parameters χ0, χD, θ characterize the quantum atomic modes in the condensate
state:

χ0 = ω2 (N − p) + ω1p +
1
2
γ2 (N − p) (N − p − 1) +

1
2
γ1p (p − 1) + ω3,

χD = ω2 (N − p − 1) + ω1 (p + 1) +
1
2
γ2 (N − p − 1) (N − p − 2) +

1
2
γ1p (p + 1) , (26)

θ = k
√

(N − p) (p + 1).

Stationary solutions of the equations (25) reduce to the form

Pp (t) = Qp e−iωStUP , Dp (t) = Qp e−iωStUD, (27)

where ωS is the frequency for the evolution behaviour in time; Qp =
√

N !√
2N (N − p)!p!

.

Coefˇcients UP , UD do not depend on time t and characterize the initial distribution of
the atoms in condensate. In particular, we have

U2
P =

1
2

(
1 ±

√
δ2

4θ2 + δ2

)
, U2

D =
1
2

(
1 ∓

√
δ2

4θ2 + δ2

)
, (28)

where δ ≡ χD − χ0 = ∆ω − γ2 (N − p − 1) + γ1p is the phase difference describing the
®self-interaction¯ effects for the atom/ˇeld modes; ∆ω = ω1−ω2−ωf is the phase retardation.
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The dispersion relation associated with solutions (27) determines the two frequency bran-
ches Ω1,2 for quantum excitations (i. e., spin waves) in such a system:

Ω1,2 =
χD + χ0 ±

√
δ2 + 4θ2

2
. (29)

In optical region, the coupling for two atomic levels ®1¯ and ®2¯ by frequencies Ω1,2

results in a ®bright¯ and a ®dark¯ condensate polaritons, correspondingly. The frequencies
Ω1,2 depend on the quantum number p characterizing the population of atomic levels in
condensate state (see Fig. 2).

Fig. 2. The frequency for ®bright¯ (1) and ®dark¯ (2) excitations as a function of particle number p for

N = 100, ∆ω = 0, γ1 = γ2 = 2.1 · 105 s−1, k = 1.7 · 109 s−1. The magnitude ω12/ 2π = 5.5 MHz

determines an initial and ˇnal energy gap between the two types of excitations

Existence of two excitations, i. e., positive (Ωj > 0) and negative (Ωj < 0), associated
with two quasiparticles propagating with supersonic velocities results in instabilities for the
condensate, and macroscopic effect of formation of shock waves takes place [7]. The para-
meter ω12 =

√
δ2 + 4θ2 determines an energy gap for the two branches of excitations which

have a minimum for p = 0 and p = N − 1.
For ®dark¯ polariton in the case when Ω2 = 0 (Fig. 2), the condition χ0χD = θ2 (see Eq.

(29)) determines the frequency of the EM ˇeld driving the atomic system (p is ˇxed).
For the state (22), the expressions (15), (12) reduce to the form

P 2
IP = 1 −

4
(〈

a+
1 a1

〉 〈
a+
2 a2

〉
−

〈
a+
1 a2

〉 〈
a+
2 a1

〉)
N2

, (30)

P 2 = 1 −
3

(〈
a+
1 a1

〉 〈
a+
2 a2

〉
+ N

〈
a+
3 a3

〉
−

〈
a+
1 a2

〉 〈
a+
2 a1

〉)
(
N +

〈
a+
3 a3

〉)2 . (31)

In the case described by Eqs. (24) and (21), we have

P 2
IP = 1, P 2 = 1 − 3N

(N + 1)2
. (32)

The ˇrst expression in (32) corresponds to polarization of own coherent state for atomic
system, but depolarization of total system is determined by a single-photon state. The time
evolution behaviour for P , PIP under resonance condition ∆ω = 0 is shown in Fig. 3.
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The phenomena described above determine the principal dynamics behaviour of the po-
larization states for the system, and the collapse and revival effects (see Fig. 3 and cf. [6])
arise. At the same time the depolarization occurs in the system.

Fig. 3. Time dependence of the degree of polarization P (a) and isopolarization PIP (b) for nonstationary

regimes. The parameters of the atomÄˇeld interaction: N = 15′′, ∆ω = 0, γ1 = γ2 = 2.1 · 105 s−1,
k = 1.7 · 109 s−1

The difference between two parameters, i. e., the degree of isopolarization for atoms
in condensate state and the degree of polarization for total system, can be explained by the
in�uence of EM ˇeld. In fact, the P behaviour demonstrates the superstructure of the revivals
as a result of the atomÄˇeld interaction [6].

CONCLUSION

Nonclassical effects of collapse and revival for degree of polarization are obtained in the
atomÄEM-ˇeld system in condensate state. For experimental observation of predicted effects,
the interferometric methods are necessary [14], but special analysis should be carried out for
the SU(3) interferometer to measure simultaneously all the Gell-Mann observables with some
ultimate accuracy.

Finally, the problem of the Elliott SU(3) symmetry for atomic system [10, 11], which
we do not consider in the present paper, demands that the angular momentum be taken into
account as well (cf. [15]).
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