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CHARGE EXCHANGE INJECTION FOR NUCLOTRON
AND NUCLOTRON BOOSTER

D.Dinev1, V.Mikhailov2

The acceleration of polarized beams is between the major items in the JINR LHE's
heavy ion superconducting synchrotron Nuclotron research programme. One effective
way to increase the intensities of polarized deuteron beams is the application of the
charge exchange injection into the Nuclotron.

The paper represents the results of a new analytical description of the heavy ion
stripping injection based on the Boltzmann kinetic equation. Expressions for the ion
density evolution in the transverse phase plane, for the emittance growth due to the elastic
scattering and to energy losses in the stripping foil and for the number of successfully
stored particles have been derived. These results have been applied to the stripping
injection of polarized deuterons into the Nuclotron as well as to the stripping injection
of heavy ions into the now under consideration Nuclotron rapid cycling booster. It has
been shown that an estimated 40-fold intensity gain could be achieved for the stripping
injection of polarized D− into the Nuclotron and that an effective stripping injection of
light and medium ions into the booster could be realized.

The investigation has been performed at the Laboratory of High Energies, JINR.
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“¸±µ·¥´¨¥ ¶µ²Ö·¨§µ¢ ´´ÒÌ ¶ÊÎ±µ¢ Å ¢ ¦´Ò° ¶Ê´±É ´ ÊÎ´µ° ¶·µ£· ³³Ò ´ 
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¶¥·¥§ ·Ö¤´µ° ¨´¦¥±Í¨¨ ¢ ´Ê±²µÉ·µ´.

„ ´´ Ö ¸É ÉÓÖ ¶·¥¤¸É ¢²Ö¥É ·¥§Ê²ÓÉ ÉÒ ´µ¢µ£µ  ´ ²¨É¨Î¥¸±µ£µ µ¶¨¸ ´¨Ö ¨´-
¦¥±Í¨¨ ¸ µ¡¤¨·±µ° ÉÖ¦¥²ÒÌ ¨µ´µ¢, µ¸´µ¢ ´´Ò¥ ´  ·¥Ï¥´¨¨ ±¨´¥É¨Î¥¸±µ£µ Ê· ¢-
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¶·µÌµ¦¤¥´¨¨ µ¡¤¨·µÎ´µ° Ëµ²Ó£¨,   É ±¦¥ Ëµ·³Ê²Ò ¤²Ö ±µ²¨Î¥¸É¢  ´ ±µ¶²¥´´ÒÌ
Î ¸É¨Í. �É¨ ·¥§Ê²ÓÉ ÉÒ ¶·¨³¥´¨³Ò ± ± ¤²Ö ¨´¦¥±Í¨¨ ¸ ¶¥·¥§ ·Ö¤±µ° ¶µ²Ö·¨§µ¢ ´-
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¶·µ¥±É¨·Ê¥³Ò° ¢ ´ ¸ÉµÖÐ¥¥ ¢·¥³Ö ¡Ò¸É·µÍ¨±²¨Î´Ò° ¡Ê¸É¥· ´Ê±²µÉ·µ´ . �µ± § ´µ,
ÎÉµ Ê¢¥²¨Î¥´¨¥ ¨´É¥´¸¨¢´µ¸É¨ ¶·¨³¥·´µ ¢ 40 · § ³µ¦¥É ¡ÒÉÓ ¤µ¸É¨£´ÊÉµ ¸ ¶µ³µ-
ÐÓÕ ¶¥·¥§ ·Ö¤´µ° ¨´¦¥±Í¨¨ ¶µ²Ö·¨§µ¢ ´´ÒÌ D− ¢ ´Ê±²µÉ·µ´ ¨ ÎÉµ ÔËË¥±É¨¢´ Ö
¨´¦¥±Í¨Ö ¸ ¶¥·¥§ ·Ö¤±µ° ²¥£±¨Ì ¨ ¸·¥¤´¨Ì ¨µ´µ¢ ¢ ¡Ê¸É¥· ³µ¦¥É ¡ÒÉÓ ·¥ ²¨§µ¢ ´ .

� ¡µÉ  ¢Ò¶µ²´¥´  ¢ ‹ ¡µ· Éµ·¨¨ ¢Ò¸µ±¨Ì Ô´¥·£¨° �ˆŸˆ.

1. INTRODUCTION

The superconducting heavy ion synchrotron Nuclotron uses an Alvarez type linac capable
to accelerate ions with 0.28 < Z/A < 0.5 up to 5 MeV/u and protons up to 20 MeV as an
injector [1]. The available ion sources are: duoplasmatron for producing protons, deuterons
and α particles; a laser ion source for producing heavy ions; an EBIS ion source for producing
high charge state ions, and a cryogenic polarized deuteron source ®Polaris¯. The laser and
EBIS ion sources generate short beam pulses with duration comparable to the revolution time.
Hence the single turn injection is the appropriate injection method and it has been used at the
Nuclotron since 1992.

The acceleration of polarized particles is one of the major items in the Nuclotron re-
search programme. The ˇrst test runs of polarized deuteron injection and acceleration in the
Nuclotron have already been carried out.

It is important to increase the intensity of polarized beams. As the emittance of the
injected beam is comparable with the Nuclotron acceptance no multiturn injection can be
applied. In this paper we study the possibility to use the charge exchange injection to store
polarized deuterons in the Nuclotron.

A more fundamental way to increase the intensity of Nuclotron beams is the use of a
booster synchrotron injector [2]. The booster lattice can have large enough acceptance which
will allow a multiturn injection to be applied. The high vacuum in the booster ring will reduce
the beam losses due to interactions with the residual gas to a great extent. The booster will
also raise the ˇnal energy of ions applying ion stripping before the injection into the main
ring.

In this paper we study the injection of heavy ions into the booster synchrotron by means
of ion stripping.

Proposed by G.I.Dimov in Novosibirsk in 1969 [3], nowadays the charge exchange, or
stripping, injection is a preferred injection method for proton machines due to its relative
simplicity and a very high intensity of stored beams. Recently this injection method has been
successfully applied for light ion storage in CELSIUS [4].

In this paper we develop an analytical approach to description of the stripping injection.
It is based on a kinetic treatment of the injection process. Analytical expressions for the
particle density evolution in the transverse phase space, for the emittance growth due to the
elastic scattering and to energy losses in the stripper and for the number of successfully stored
particles have been derived.

2. PROCESSES IN CHARGE EXCHANGE INJECTION

A comprehensive review of the processes taking place during the heavy ion charge
exchange injection could be found in [5]. Here we will summarize only those results which
are of importance for the following description.
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As the beam travels through the stripping foil the relative content of ions in different
charge states changes due to the processes of electron loss and of electron capture. For thick
enough foils the charge state distribution reaches an equilibrium [6]. This equilibrium distri-
bution is independent of the charge state distribution in the incident beam and is determined
only by the relations between different charge-exchange cross sections and by the ion velocity.

The equilibrium charge state distribution is well described by a Gaussian [7]:

Φq =
1

σ
√

2π
e−

(q−q̄)2

2σ2 . (1)

In (1) Φq denotes the relative content of ions in the charge state q, q̄ is the average charge
state (generally not integer) and σ is the standard deviation of the charge state distribution.
Formula (1) is valid for 1 < q̄ < Zpr − 1.

Several semiempirical formulae have been proposed for the average charge state q̄, for
example, the NikolaevÄDmitriev formula [8]:

q̄

Zpr
= (1 + X− 1

0.6 )−0.6, (2)

where

X =
v

v′Z0.45
pr

, v′ = 3.6 · 108 cm/s. (3)

In (2) and (3) v is the ion velocity and Zpr is the projectile atomic number.
For the standard deviation of the distribution Nikolaev and Dmitriev propose the following

expression [8]:

σ = 0.5

√√√√q̄

(
1 −
(

q̄

Zpr

)1.67
)

. (4)

Two processes are of big importance for the charge exchange injection: Coulomb elastic
scattering and ionization losses of ion energy.

The Coulomb elastic scattering causes a change in the ion trajectory slope. In [9] the
following experimental formula for the heavy ion multiple scattering mean square angle in
solid foils is given:

〈∆θ2〉 = 0.250
Zt(Zt + 1)

At

Z2
pr

E2
pr

t, (5)

where the scattering angle θ is in mrad, the stripper thickness t is in µg/cm2 and the projectile
energy Epr is in MeV.

The distribution of the multiple scattering angle could be approximated with good accu-
racy by a Gaussian.

The losses of the ion energy in the stripping foil are due to the excitation and ionization
of the foil atoms. Mean losses are described by the well-known BetheÄBloch formula [10].

The ionization losses straggling is distributed according to Landau's, Vavilov's or normal
distributions depending on the ion velocity. In practice the straggling is small and could be
neglected.
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3. EQUATION OF MOTION

The Floquet normalized coordinates are the most convenient for the description of the
kinetics of charge exchange injection. In this paper we will use

i) generalized azimuth φ as an independent (®time¯) variable

φ =

s∫
0

ds

Qβ(s)
, (6)

ii) normalized transverse displacement

u =
x√
β

, (7)

iii) conjugate momentum

pu =
du

dφ
= Q

(
αx + βx′

√
β

)
. (8)

The coordinates u and pu have dimensions
√

m.
In the above formulae x denotes the horizontal coordinate, s Å the longitudinal coordinate

along the reference orbit and α, β, γ are the well-known Twiss functions. We will use ®′¯
for the differentiation with respect to φ.

Taking into account the process of elastic Coulomb scattering and of ionization losses of
energy in the stripper, we can write the following equation of motion describing the behaviour
of heavy ions passing through the stripper:

du
dφ

= Au + a(φ) + b(φ)δ + cV (φ), (9)

where

u =
(

u

pu

)
, A =

(
0

−Q2

1
0

)
, (10)

a =
(

0
Q2f(φ)

)
, b =

(
0

−Q2g(φ)

)
, c =

(
0
1

)
. (11)

The function f(φ) describes linear perturbations causing the closed orbit distortion:

f(φ) = β3/2 ∆B

Bρ
. (12)

The function g(φ) is connected with the dispersion:

g(φ) = −β3/2

ρ
. (13)
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In the above formulae ∆B denotes ˇeld errors, δ Å the relative momentum spread and
ρ Å the radius of curvature.

In (9)

V (φ) =
∑

0�k�φ/2π

Q
√

βt∆θkδ(φ − 2πk). (14)

The random kicks ∆θk which particles undergo in each passing the stripper are due to
the Coulomb scattering. They are uncorrelated, with zero mean values and equal dispersions
〈∆θ2〉. The function V (φ) is consequently a white noise with intensity

υ(φ) =
n∑

k=1

Q2βt〈∆θ2〉δ(φ − 2πk), (15)

where n = [φ/2π] is the number of realized turns and [ ] denotes the integer part of the
number.

The above equation of motion is a linear stochastic differential equation. Its solution is

u = uβ + uco + Duδ + usc. (16)

In (16)
i) uβ is the general solution of the uniform equation and describes the betatron oscillations:

uβ = K(φ, φ0)u0, (17)

where

K(φ, φ0) =

(
cos Q(φ − φ0)

−Q sin Q(φ − φ0)

1
Q sin Q(φ − φ0)
cos Q(φ − φ0)

)
(18)

is the Cauchy matrix for the differential equation normalized to the unity matrix at φ = φ0

and u0 is the vector of initial conditions;
ii) uco, the normalized closed orbit, is a private, periodic (with period 2π) solution of the

nonuniform equation u′′ + Q2u = Q2f(φ):

uco =
Q

2 sin πQ

φ+2π∫
φ

f(φ) cos Q(φ + π − ϕ)dϕ; (19)

iii) Du, the normalized dispersion, is a private, periodic (with period 2π) solution of the
nonuniform equation u′′ + Q2u = Q2g(φ):

Du = − Q

2 sin πQ

φ+2π∫
φ

β3/2

ρ
cos Q(φ + π − ϕ)dϕ. (20)



54 Dinev D., Mikhailov V. Charge Exchange Injection for Nuclotron

The ionization energy losses in the stripper increase the relative momentum spread ac-
cording to

δ = δ0 + n
∆p

p
, (21)

where

∆p

p
=

γ

γ + 1
∆T

T
, (22)

∆T being the change in the ion kinetic energy which is well described by the BetheÄBloch
formula for ionization losses;

iv) usc is a private solution of the nonuniform equation

u′′ + Q2u =
∑

0�k�φ/2π

Q
√

βt∆θkδ(φ − 2πk)

and describes the elastic scattering in the stripper:

usc =

φ∫
0

K(φ, ϕ)cV (φ)dφ, (23)

which after substituting for the Cauchy matrix K and the function V (φ) gives

usc =
∑

0�k�φ/2π

√
βt∆θk sin Q(φ − 2πk), (24)

i.e. usc is a sum of elementary random functions.
It is the mean square value of usc which is of interest. From (24) one could calculate

〈u2
sc〉 = βt〈∆θ2〉

∑
0�k�φ/2π

sin2 Q (φ − 2πk) ≈ 1
2
nβt〈∆θ2〉. (25)

4. THE BOLTZMANN EQUATION

Let us consider the evolution of the particle density in a thin slice of the beam.
In the consecutive moments φ = 0, 2π, 4π,... the slice will pass through the stripper and

the particles in the slice will undergo elastic Coulomb scattering. The elastic scattering results
in kicks in the slope of the particle trajectories Å ∆θ.

A bit earlier new portions of particles are injected into the accelerator. As we will see,
not all of the particles which have passed the stripper will be accepted by the accelerator;
(1 − Φ2)f(u, u′, φ) of them will be lost.

Summarizing these three effects, we can write the following kinetic equation for the
distribution function f(u, pu, φ) in the transverse phase plane:

∂f

∂φ
+

∂f

∂u
u′ +

∂f

∂u′ (−Q2u +
∑

0�k�φ/2π

Q
√

βt
∆θk

∆φ
hk(φ) = qsource − qdrain, (26)
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where hk(φ) is a unity pulse from 2πk to (2πk + ∆φ), with ∆φ being the phase thickness of
the stripping foil (∆φ � 2π):

hk(φ) = e(φ − 2πk) − e(φ − (2πk + ∆φ)), (27)

where e(φ) is the unity step function (Heaviside's function).
The second and the third members in (26) describe betatron oscillations while the fourth

member re�ects the Coulomb scattering.
In equation (26) qsource denotes the power of sources of particles. If f0 (u, u′) is the

distribution function in the injected beam we could write for the power of sources

qsource =
∑

0�k�φ/2π

f0(u, u′)δ(φ − 2πk). (28)

In equation (26) qdrain denotes the power of drains of particles. In order to obtain an
expression for qdrain we will use the following assumption.

First of all we consider here the machine as being able to accelerate only ions in the
equilibrium charge state 〈q〉 (〈q〉 is an integer closest to the parameter q̄ in (1)). Ions in
charge states different from the equilibrium one will ˇnally be lost on the vacuum chamber
walls.

When the injected beam, which contains ions in the charge state q0, crosses the stripper
a whole chain of electron losses and captures occurs. As a result, the beam will embrace a
spectrum of charge states behind the stripper. Only the part Φ1 of injected ions will go to the
charge state 〈q〉.

On the other hand, the circulating beam contains ions in the charge state 〈q〉 and with the
same energy as the injected ions. When it crosses the stripper the part Φ2 of ions go back to
the charge state 〈q〉.

Generally speaking, Φ1 �= Φ2, but if the foil has equilibrium thickness Φ1 = Φ2. In
this case the charge state distribution behind the foil will not depend on the charge state
distribution in the incident beam.

Under all these assumptions we can write for the power of particle drains

qdrain = (1 − Φ1)
∑

0�k�φ/2π

f0(u, u′)δ(φ − (2πk + ∆φ)) +

+(1 − Φ2)
∑

1�k�φ/2π

(f(u, u′, 2πk + ∆φ − 0) − f0(u, u′))δ(φ − (2πk + ∆φ)). (29)

The Boltzmann equation (26) contains the random function

ξ(φ) =
∑

0�k�φ/2π

Q
√

βt
∆θk

∆φ
hk(φ) (30)

and is in essence a stochastic PDE. Our ˇrst step will be to cope with this stochasticity. In
order to do this we will try to ˇnd an equation for the particle density 〈f〉 averaged over the
realization of ξ(φ). The PDE for the averaged particle density was derived in [11]:

∂〈f〉
∂

φ + u′∂〈f〉
∂u

− Q2u
∂〈f〉
∂u′ −

∑
0<k<φ/2π

1
2
Q2βt

〈∆θ2〉
∆φ

∂2〈f〉
∂u′2 hk(φ) = qsourse − 〈qdrain〉.

(31)
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This PDE is already free of any stochasticity. From this point further we will omit the ugly
brackets, writing f instead of 〈f〉.

We must solve equation (31) under zero initial and boundary conditions.

5. SOLUTION OF THE KINETIC EQUATION

We will reason that particles in the injected beam have normal distribution in the trans-
verse phase plane (u, pu):

f0(u, u′) =
∆N

2πQσ2
0

e
−Q2u2+u′2

2Q2σ2
0 , (32)

where ∆N is the number of particles injected into the considered beam slice (∆N = I0∆t =
I0∆s/vs = I0β∆φ/vs; I0 being the injected current, vs being the longitudinal velocity of the
synchronous particle).

We will work with the accuracy O
(

β〈∆θ2〉
2σ2

0

)
. As we will see later, this means that we

consider the emittance growth ∆ε in single stripper crossing much smaller than the initial
emittance ∆ε/ε � 1.

It can be shown that the solution of equation (31) consists of the main stationary part,
which represents a sum of Gaussians, and a small (of order β0〈∆θ2〉/2σ2

0) φ-dependent part
with more complicated structure [11].

For the stationary part of the solution we can obtain

f̄(u, u′) = Φ1f̄1(u, u′) + Φ1Φ2f̄2(u, u′) + ... + Φ1Φn−1
2 f̄n(u, u′)

with

f̄k(u, u′) =
∆N

2πQσ2
k

e
−Q2u2+u′2

2Q2σ2
k ,

σ2
k = σ2

0 +
1
2
kβt〈∆θ2〉. (33)

In equation (33) n denotes the number of realized injection turns. The meaning of this formula
is as follows: a portion of ∆N particles with normal distribution f0(u, pu) ∼ N(0, σ0) is
injected into the accelerator; passing through the stripper the distribution gets wider in u′

direction, i.e. the RMS is replaced by σ → σ + a/σ; the following betatron oscillations
spread this widening also to the coordinate u; a part (1 − Φ2)f of these particles goes to
charge states different from the equilibrium charge state 〈q〉 after the stripping foil and is cut
later by the accelerator, so only Φ2f of the slice survives. This process repeats n times.

For the variable with φ part of the solution we can obtain

f̃(u, u′, φ) =
n∑

k=0

n−k∑
i=0

Φ1Φn−k
2

a

2Q2σ4
i

f̄i(u, u′)×

×
[(

u′2 − Q2u2

2

)
cos 2Q(φ − (i + k)2π) + Quu′ sin 2Q(φ − (i + k)2π)

]
.

(34)

The stationary part of the distribution function is normalized, while the integral of the variable
part over u and u′ from −∞ to +∞ is equal to zero.
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6. PARTICLE STORAGE

Integrating (33) over u and u′ from (−∞) to (+∞) and over the azimuth from 0 to 2π,
we receive the number of particles successfully injected in the accelerator

N = N∞(1 − Φn−1
2 ), (35)

where

N∞ = I0T
Φ1

1 − Φ2
, (36)

T being the period of the synchronous particle.
The above formula is valid for relatively large acceptance of the machine, when the new

emittance still remains smaller than the acceptance.
In the case of aperture limitations on the beam we could modify it in the following way.

It is known that for a beam with Gaussian distribution in the phase plane the part p of the
beam that lies outside an ellipse with surface εp is given by

p = e−
2εp

εRMS . (37)

Applying this we reach the following expression for the stored beam:

N = Φ1I0T (ΦX
A,1Φ

Z
A,1 + ΦX

A,2Φ
Z
A,2Φ2 + ... + ΦX

A,nΦZ
A,nΦn−1

2 ), (38)

where the new ®aperture¯ factors ΦA,k are given by

ΦA,k =


1, if 4σ2

k < A

1 − e−
2A

εRMS

1 − e−2
= 1.16

(
1 − e

− A
2σ2

k

)
, if 4σ2

k � A,
(39)

A being the acceptance.
For the case of nonzero dispersion in the stripper, (33) is generalized to

f̄(u, u′) = Φ1f̄1(u, u′) + Φ1Φ2f̄2(u, u′) + ... + Φ1Φn−1
2 f̄n(u, u′)

with

f̄k(u, u′) =
∆N

2πQσ2
k

e
−Q2(u−Dδk)2+(u′−D′δk)2

2Q2σ2
k ,

σ2
k = σ2

0 +
1
2
kβt〈∆θ2〉, δk = δ0 + k∆δ. (40)

For the number of stored particles we can use again formula (38), but now in (39) stands
the reduced acceptance Ak instead of A. The reduced acceptance Ak is given by√

βtAk =
√

βtA −
√

D2
t + β2

t D′2
t k∆δ. (41)
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7. EMITTANCE GROWTH

The diffusion in the stripper due to the Coulomb scattering leads to transverse emittance
growth.

There are different deˇnitions of the beam emittance [12]. Here we will use the RMS
emittance which for a beam with two-dimensional Gaussian distribution is given by εRMS =
4σxσx′ = 4σ2

u. In the charge exchange injection we have on the orbit simultaneously particles
which have passed through the foil n times, (n − 1) times and so on up to one time.

If we consider the maximum (not the averaged) emittance we must take the standard
deviation of the particles having crossed the foil n times.

It follows from (33) that

∆εRMS = 2nβt〈∆θ2〉. (42)

8. CHARGE EXCHANGE INJECTION OF DEUTERONS INTO THE NUCLOTRON

A natural development of the JINR LHE spin physics programme will be the acceleration

Fig. 1. Horizontal emittance growth for
charge exchange injection of deuterons
into the Nuclotron

of polarized beams of deuterons in the Nuclotron.
The scheme of acceleration covers a cryogenic source
of polarized deuterons ®Polaris¯, a 5 MeV/u linac,
charge exchange D−↑→ D+↑ injection into the Nu-
clotron and acceleration in it up to 6 GeV/u.

Using the above derived formulas, we have stud-
ied the possibility to apply the method of stripping
injection to the storage of polarized deuterons in the
Nuclotron.

Figs. 1 and 2 show the emittance growth due to
the elastic Coulomb scattering in the stripping foil.

Fig. 3 shows the process of deuteron storage.
An estimated 40-fold intensity gain could be

achieved for a 100-turn stripping injection.

Fig. 2. Vertical emittance growth for charge exchange injection of deuterons into the Nuclotron

Fig. 3. Storage of deuterons in the Nuclotron by means of stripping injection
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9. CHARGE EXCHANGE INJECTION OF HEAVY IONS INTO THE NUCLOTRON
BOOSTER

As a second example we will describe in brief the stripping injection of heavy ions into
the Nuclotron booster. This will be a superconducting synchrotron with circumference of
84 m capable to accelerate ions with Z/A = 0.5 up to 250 MeV/u [2]. The now in operation
linac LU-20, which accelerates protons up to 20 MeV and ions with Z/A = 0.5 up to 5 MeV/u
will be used as an injector into the booster. The booster will increase the beam intensities in
the Nuclotron more than ten times, will raise the ˇnal energy of ions applying ion stripping
and will improve beams quality by electron cooling.

Fig. 4. Horizontal emittance growth due to the elastic Coulomb scattering for heavy ion stripping
injection into the Nuclotron booster

Fig. 5. Vertical emittance growth due to the elastic Coulomb scattering for heavy ion stripping injection
into the Nuclotron booster

Figs. 4 and 5 show the emittance growth due to the elastic Coulomb scattering in the foil.
Fig. 6 shows the growth of the relative momentum spread due to energy losses in the foil.
Fig. 7 shows the process of ion storage in the booster.
It is seen from Fig.7 that only light ions could be successfully stored in the booster.

Fig. 6. Relative momentum spread growth due to energy losses in the foil for heavy ion stripping
injection into the Nuclotron booster

Fig. 7. Ion storage during charge exchange injection of heavy ions into the Nuclotron booster
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Fig. 8. Standard deviation vs. ion en-
ergy; approximately all the ions below
the horizontal straight line could be suc-
cessfully stored

The following general considerations concerning
the ion storage can be expressed. In order to have
successive ion storage, Φ1 and Φ2 should be large
enough. This means that the spectrum of charge states
should be narrow, i.e. σ should be small. It follows
from (2) and (4) that small σ requires large q̄, i.e. q̄
close to Zpr. For a given ion (Zpr) this is achieved
for large enough energy. The ˇgure of merit is the
parameter X (3). On the contrary, for a given ion
energy (T/A) only light enough ions could be stored.

This is illustrated in Fig. 8, in which standard de-
viation vs. energy is plotted for several ion atomic
numbers. Approximately all the ions below the marked
horizontal straight line can be stored in the accelerator,
i.e. heavy ions with Z up to 14.

Fig. 9. Stripping injection of heavy ions into the Nuclotron booster

Fig. 10. The use of betatron oscillations to
reduce the number of foil crossings

Heavy ions which change their charge from
1.3 to 1.7 times in stripping foil crossings could
be injected into the booster through a four-magnet
closed orbit bump (Fig. 9).

As the ratio of the booster acceptance to the
beam emittance is rather small, Ax/εx = 8 and
Az/εz = 7, a simplest painting scheme making
use of the fact that the fractional part of the be-
tatron tune is equal to 0.75 is proposed (Fig. 10).
The number of foil crossings will be reduced due
to betatron oscillations and correspondingly the in-
tensity will increase by a factor of two (taking into
account the emittance growth).

A promising way to increase the intensity mul-
tiplication factor is to combine charge exchange
injection with electron cooling. This kind of injec-
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tion was successfully applied to TSR [13] and CELSIUS [14]. The principle of the method
is explained in Fig. 11. The phase space already ˇlled with particles is shrunk by electron
cooling thus making available space for injection of a new portion of particles. A new orbit
bump with appropriate amplitude reduction follows so that the already stored beam is not
displaced into the stripper foil.

With this injection method the intensity multiplication factor could be increased al least
by one order of magnitude.

Fig. 11. Combination of stripping injection with electron cooling

References

1. Kovalenko A.D. Å Proc. Fourth Europ. Part. Accel. Conf., London, 1994, v.1, p.161.

2. Agapov N.N. et al. Å 7th Europ. Part. Accel. Conf., Vienna, 2000.

3. Dimov G.I. Å INP Novosibirsk Preprint, No. 304, 1969.

4. Hedblom K. et al. Å Proc. Third Europ. Part. Accel. Conf., Berlin, 1992.



62 Dinev D., Mikhailov V. Charge Exchange Injection for Nuclotron

5. Dinev D. Å Particles and Nuclei, 1997, v.28, No. 2, p.449Ä494.

6. Xuan K.J., Droin R. Å NIM, 1979, v.160, p.461.

7. Dmitriev I.S. et al. Å NIM, 1986, v.B14, p.515.

8. Nikolaev V.S., Dmitriev I.S. Å Phys. Lett., 1968, v.284, p.277.

9. Joy T. Å NIM, 1973, v.A106, p.237.

10. Segre E. (Editor) Å Experimental Nuclear Physics, v.1., NYÄLondon, 1953.

11. Dinev D. Å 7th Europ. Part. Accel. Conf., Vienna, 2000.

12. Joho W. Å SIN Report TM-11-14, 1980.

13. Grieser M. et al. Å Proc. IEEE Part. Accel. Conf., San Francisco, 1991, p.2817.

14. Heldblom K., Johansson A., Reistad D. Å Proc. Third Eur. Part. Accel. Conf., Berlin,
1992.

Received on January 17, 2001.


