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HIDDEN SYMMETRIES OF QCD AT HIGH ENERGY
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Different applications of the Wilson-line formalism to the high-energy QCD are reviewed.

O¡§µ· ¶µ¸¢ÖÐ¥´ · §²¨Î´Ò³ ¶·¨³¥´¥´¨Ö³ Ëµ·³ ²¨§³  ¢¨²Ó¸µ´µ¢¸±¨Ì ²¨´¨° ± ¢Ò¸µ±µÔ´¥·-
£¥É¨Î¥¸±µ° Š•„.

1. MY TEACHER

It is a special pleasure and a privilege for me to contribute to this Festschrift
to celebrate 70th anniversary of Anatolij Vasil'evich Efremov as I consider him
as one of my teachers who deeply in�uenced my scientiˇc interests and from
whom I have learned many important lessons both in physics and in maintaining
high moral standards back to the USSR time.

My ˇrst meeting with Anatolij Vasil'evich (or simply AV) goes back to
the beginning of eighties. At that time I have been a fourth-year student at
the Rostov-on-Don State University studying theoretical high-energy physics. I
was very much interested in doing research in QCD and my supervisor Sergey
Ivanov proposed to start with reading the series of papers written by AV together
with Anatolij Radyushkin on ®Field Theoretic Treatment of High Momentum
Transfer Processes¯ [1Ä3]. This was a tough job and it took me quite some
time to accomplish it. I cannot say that I understood every word in their papers
but I got the main message Å the papers presented an elegant framework for
investigating various hadronic processes in high-energy QCD. They contained a
proof that the contribution to hard scattering amplitudes (deep-inelastic scattering,
DrellÄYan process, pion form factor, . . . ) from long and short distances can
be factored out into nonpertubative distributions and perturbatively calculable
partonic cross sections. One of the crucial points in proving the factorization was
a demonstration that contribution of soft gluons cancels completely in the sum
of all Feynman diagrams. Reading the papers I was struck at some point by a
comment that soft gluons and, in general, infrared asymptotics in QCD deserve
additional studies and are ultimately related to solving the Sudakov problem in
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QCD. I knew very little about this subject and I decided to learn more about
soft gluons and all that. Together with my supervisor we started to look into the
problem and this is how my ˇrst scientiˇc contacts with AV have occurred. Our
discussions were later materialized in publishing my ˇrst paper [4].

My discussions with AV have continued after I came to Dubna as an aspi-
rant. This was also the beginning of my collaboration with another AV's former
student Å Anatolij Radyushkin. Later, I was proud to have both of them as su-
pervisors of my PhD which was devoted to investigation of infrared asymptotics
in QCD. I would come to AV ofˇce and write a few formulae on the blackboard.
He would listen quietly, smoke his famous pipe and make very deep comments
at the end with his soft voice. After ˇnishing my PhD in the late 80's, I had to
face an eternal problem of ˇnding a job and being a jew created additional com-
plications at that time. This was AV who took the problem personally and who
put tremendous efforts for making it possible for me to get a position in Dubna.
I am deeply grateful to AV for this as well as for generosity that he extended to
me through all these years. Since our ˇrst meeting almost twenty years ago many
things have changed, our scientiˇc interests have evolved in different directions
and we are not meeting as often as before. But I never forget the role that AV
has played in my life and I am proud to be associated with the school created
by AV.

In this, I would like to describe the project, the so-called Wilson-loop for-
malism, which was initiated in the above-mentioned paper written together with
AV and which arose from numerous discussions with AV. The formalism of
path-ordered exponentials, or Wilson loops, is an indispensable tool in QCD. It
allows one to formulate complicated QCD dynamics in terms of gauge invariant
degrees of freedom [5] and express correlation functions as a sum over random
walks, e.g.,

〈0|Jµ(x)Jν(0)|0〉 =
∑
C

e−mL[C] Φµν [C] 〈0| tr P exp
(

i

∮
C

dxµAµ(x)
)
|0〉 , (1)

where Jµ(x) = Ψ(x)γµΨ(x) is the electromagnetic current of a quark with mass
m; L[C] is the length of a closed path C = C[0, x] that passes through the points
x and 0; Φµν [C] is a geometrical phase, the so-called Polyakov spin factor, that
takes into account the variation of the quark spin upon parallel transport along the
path C. To evaluate (1), one has to calculate the (nonperturbative) expectation
value of the Wilson loop for an arbitrary path C and perform resummation in the
right-hand side of (1). Both tasks are extremely difˇcult and cannot be performed
in full at the current stage.

There exists a special class of QCD observables, for which the sum over paths
in the right-hand side of (1) can be performed exactly. As a relevant physical
example, let us consider a propagation of an energetic quark through a cloud of
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soft gluons. In the limit when its energy goes to inˇnity, the quark behaves as a
point-like charged particle that moves along a straight line and interacts with soft
gluons. This means that the sum over all paths in (1) is dominated in that case
by a saddle point describing a propagation of a quark along its classical path.
The Wilson loop corresponding to this path has the meaning of the eikonal phase
acquired by the quark ˇeld upon interaction with gluons. In this way, the Wilson
loop encodes universal features of soft radiation in QCD. Let us point out two
important QCD observables, in which similar semiclassical regime occurs: the
IsgurÄWise heavy-meson form factor, ξ(θ), and parton distributions in a hadron,
f(x), at the edge of the phase space, x → 1. As we will demonstrate below,
both observables are given by an expectation value of a Wilson loop with the
integration contour C ˇxed by the kinematics of the process. A unique feature of
the contour C is that it contains a few cusps at points in Minkowski space-time
where the interaction with a large momentum has occurred in the underlying
process. Thus, the Wilson loops with cusps, being fundamental objects in gauge
theories, have a direct relevance for QCD phenomenology. Their calculation in
the strong coupling (nonperturbative) regime is one of the prominent problems in
gauge theories.

2. ISGURÄWISE FORM FACTOR

The IsgurÄWise form factor ξ(θ) describes the electromagnetic transition of a
heavy meson |M(v)〉 with mass m and momentum pµ ≡ mvµ, built from a heavy
quark and a light component, to the same meson with momentum p′µ ≡ mv′µ (with

v2
µ = v′µ

2 = 1) [6]

〈M(v′)|Ψ(0)γµΨ(0)|M(v)〉 = ξ(θ)(v + v′)µ. (2)

In the heavy-quark limit, m → ∞, it depends only on the product of velocities
v′·v = cosh θ, or equivalently on the angle θ between them in Minkowski space-
time. The operator Ψ(0) annihilates the heavy quark inside the meson |M(v)〉.
For m → ∞, the heavy quark behaves as a classical particle with the velocity
vµ interacting with the light component of the meson through its eikonal current,

Ja,eik
µ (x) =

∫ 0

−∞
dτ vµtaδ(4)(x− vτ) with ta being the quark color charge. This

allows one to replace

Ψ(x) → e−im(vx) bv Φv[x;−∞],

Φv[x;−∞] ≡ P exp
(

i

∫ 0

−∞
dτ vA(x + vτ)

)
,

(3)

where Φv[x;−∞] is the eikonal phase of a heavy quark in the fundamental
representation of the SU(Nc), and bv amputates this quark inside the heavy
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meson. Applying similar transformation to the quark ˇeld in the ˇnal state meson
|M(v′)〉, one obtains the following expression for the form factor [7]

ξ(θ) = 〈M̃(v′)|Φv′ [∞; 0]Φv[0;−∞]|M̃(v)〉 ≡ 〈P exp
(

i

∮
∧

dxµAµ(x)
)
〉, (4)

with |M̃(v)〉 = bv|M(v)〉 standing for the light component of the meson with
the amputated heavy quark. Here the net effect of nonperturbative interaction
with the light component of the heavy meson is accumulated only via the Wilson
line evaluated along the contour consisting of two rays that run along the meson
velocities vµ and v′µ. It is important to notice that the contour has a cusp at the
point 0, in which the interaction with the external probe has occurred.

The IsgurÄWise form factor ξ(θ) is a nonperturbative observable in QCD [8].
It depends on hadronic, long-distance scales as well as on the ultraviolet cutoff
µ ∼ m, which sets up the maximal energy of soft gluons. Although ξ(θ) cannot
be calculated at present in QCD from the ˇrst principles, its dependence on µ can
be found from the renormalization group equation [5, 9]](

µ
∂

∂µ
+ β(g)

∂

∂g
+ Γcusp(θ; αs)

)
ξ(θ) = 0, (5)

where αs = g2/(4π) is the QCD coupling constant and Γcusp(θ; αs) is the cusp
anomalous dimension. To the lowest order in αs

Γcusp(θ; αs) =
αsCF

π
(θ coth θ − 1) + O(α∈

∫ ), (6)

where CF = (N2
c −1)/(2Nc) is the Casimir operator of the SU(Nc) group in the

fundamental representation. The two-loop correction to (6) has been calculated
in [9] and its dependence on θ is more involved.

Equation (5) follows from renormalization properties of the Wilson line in the
right-hand side of (4). It acquires the anomalous dimension due to the presence
of a cusp on the integration contour. The cusp anomalous dimension Γcusp(θ; αs)
determines universal features of soft-gluon radiation and is known as the QCD
bremsstrahlung function. As such, it is a positive deˇnite function of the cusp
angle (for real Minkowski angle θ) at arbitrary value of the coupling constant

Γcusp(θ; αs) � 0. (7)

To see this we recall that at the cusp point the heavy quark suddenly changes its
velocity from vµ to v′µ and, due to instantaneous acceleration, it starts to emit soft
(virtual and real) gluons with momentum k < µ with a cut-off µ ∼ m. Denoting
the eikonal phase of the heavy quark as Φ ≡ Φv′ [∞; 0]Φv[0;−∞] and using its
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unitarity, Φ†Φ = 1, one calculates the total probability for the heavy quark to
undergo the scattering (the Bjorken sum rule) as

1 = 〈M̃(v)|Φ†Φ|M̃(v)〉 = |ξ(θ)|2 +
∑
X

∣∣∣〈M̃X(v′)|Φ|M̃(v)〉
∣∣∣2 , (8)

where in the right-hand side we inserted the decomposition of the unity op-
erator over the physical hadronic states and separated the contribution of the
ground state meson, |M̃(v)〉, from excited states |M̃X(v)〉. The Wilson line
(4) deˇnes the probability of the elastic transition, |ξ|2 ∼ exp (−w) with w =
2

∫ µ(dk/k) Γcusp(θ; αs(k)). For θ �= 0, depending on the sign of Γcusp(θ; αs), it
either vanishes or goes to inˇnity for µ → ∞. In order to preserve the unitarity
condition |ξ|2 � 1 that follows from (8), one has to require that ξ → 0 for
µ → ∞ leading to (7). At θ = 0 the cusp vanishes, that is the heavy meson stays
intact, the sum in (8) equals zero and ξ(θ = 0) = 1. This implies that the cusp
anomalous dimension vanishes for θ → 0.

3. DEEP-INELASTIC SCATTERING AT x → 1

Our second example is provided by deep-inelastic scattering of a hadron H(p)
with momentum pµ off a virtual photon γ∗(q) with momentum −q2

µ = Q2 � p2

in the exclusive limit xBj = Q2/(2pq) → 1, i.e., when the invariant mass of the
ˇnal state system becomes small (q + p)2 	 Q2. In the scaling limit, Q2 → ∞,
the cross section of the process is expressed in terms of the twist-two quark
distribution function [10]

f(x) =
∫ ∞

−∞

dξ

2π
e−ixξ〈H(p)|Ψ(ξn)ΓΦn[ξ; 0]Ψ(0)|H(p)〉, (9)

describing the probability to ˇnd a quark inside the hadron H(p) with the fraction
x of its momentum p. The Wilson line stretched in-between the quark ˇelds
makes the bilocal operator gauge invariant. It goes along the light-like direction
nµ = (qµ + pµxBj)/(pq), so that n2 = 0 and np = 1.

The matrix Γ = �n in (9) serves to select the quark states with opposite
helicities. For our purposes, we will not specify Γ and treat it as a free parameter.
The Mellin moments of the distribution function (9) are related to the matrix
elements of local twist-two operators∫ 1

0

dxxJf(x; µ2) = 〈H(p)|Ψ(0)Γ (inD)J Ψ(0)|H(p)〉 ≡ 〈OΓ
J (µ2)〉, (10)

where Dµ = ∂µ − iAµ is a covariant derivative. Their dependence on the
ultraviolet cutoff µ is described by an evolution equation, whose solution reads
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in terms of the anomalous dimensions

〈O Γ
J (µ2)〉 = (µ/µ0)

−γ Γ
J (αs) 〈O Γ

J (µ2
0)〉, (11)

where we assumed for simplicity that the coupling constant does not run, β = 0.
The anomalous dimension of the twist-two operators, γΓ

J (αs), depends on the
choice of the matrix Γ. In particular, in the case when Γ selects the same helicities
of the quark ˇelds in (10), Γ = (1 + γ5)�nγ⊥, the anomalous dimension is

γJ(αs) =
αs

π
CF

(
2ψ(J + 2) + 2γE − 3/2

)
+ O(α2

s), (12)

where ψ(J) = d ln Γ(J)/dJ is the Euler ψ function and γE is the Euler con-
stant. For other choices of Γ, the anomalous dimensions have extra (rational in
J) terms in addition to the ψ function (see, e.g., [11]). As we will argue below,
Eq. (12) has a hidden symmetry which is responsible for integrability of evolution
equations for three-quark (baryonic) composite operators.

As follows from (10), the asymptotics of the distribution function for x → 1
is related to the contribution of twist-two operators of large Lorentz spins J ∼
1/(1 − x) � 1. One ˇnds from (12) that the anomalous dimension scales in this
limit as

γJ (αs) =
αs

π
CF

{
ln(J + 2) + γE − 3/4−

− 1
2(J + 2)

−
∞∑

n=1

B2n

2n
(J + 2)−2n

}
+ . . . , (13)

where Bn's are the Bernoulli numbers; B2 = 1/6, B4 = −1/30, . . . , and the
ellipsis stands for higher order terms in αs. It turns out that the leading scaling
behavior γΓ

J (αs) ∼ ln J is a universal property of the anomalous dimensions of
the twist-two operators (10) for arbitrary Γ. It holds to all orders in αs and
is intrinsically related to the cusp anomaly of the Wilson loops. The reason
for this is that analyzing deep-inelastic scattering for x → 1 one encounters the
same physical phenomenon as in the case of the IsgurÄWise form factor, i.e., the
struck quark carries almost the whole momentum of the hadron and, therefore, it
interacts with other partons by exchanging soft gluons. In these circumstances,
in complete analogy to the previous case, Eq. (3), the quark ˇeld can be approx-
imated by an eikonal phase evaluated along the classical path in the direction of
its velocity pµ = mvµ,

f(x) =
∫ ∞

−∞

dξ

2π
ei(1−x) ξ〈H̃(p)|WΠ(v ·n ξµ − i0)|H̃(p)〉, (14)

where |H̃(p)〉 is the state of the target hadron with amputated energetic quark and
the causal −i0 prescription ensures the correct spectral property; f(x) = 0 for
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x > 1. The Π-shaped Wilson line in Eq. (14) consists out of two rays and one seg-
ment: a link from −∞ to 0 along the velocity of the incoming quark, next along
the light-cone direction nµ to the point ξnµ and, then, along −vµ from 0 to ∞,

WΠ(vn ξµ) = Φ†
v[ξ;−∞] Φn[ξ; 0] Φv[0;−∞]. (15)

Substituting (14) into (10), one ˇnds the following relation between the ma-
trix elements of local composite operators at large spin J and the Wilson loop
expectation value [12]

〈O Γ
J (µ2)〉 = 〈H̃(p)|WΠ(−iJ)|H̃(p)〉 ≡ 〈P exp

(
i

∫
Π

dxµAµ(x)
)
〉. (16)

Here, the large Lorentz spin of the local operator deˇnes the length of the light-
cone segment:

v ·n ξµ → −iJ. (17)

We would like to stress that Eq. (16) holds only for J � 1.
According to Eq. (16), the µ dependence of the twist-two operators follows

from the renormalization of the Wilson line (15). The latter has two cusps located
at the points 0 and ξnµ. In distinction with the previous case, one of the segments
attached to the cusps lies on the light-cone, n2 = 0, and the corresponding cusp

angle is inˇnite, θ ∼ 1
2

ln [(vn)2/n2] → ∞. In this limit, the cusp anomalous

dimension scales to all orders in αs as [9]

Γcusp(θ; αs) = θΓcusp(αs) + O(θ′). (18)

Here Γcusp(αs) is a universal anomalous dimension independent of θ. At weak
coupling, it has the following form in QCD

Γcusp(αs) =
αs

π
CF +

(αs

π

)2

CF

{
Nc

(
67
36

− π2

12

)
− nf

5
18

}
+ O(α3

s), (19)

where nf is the number of quark �avors. This expression was obtained within
the dimensional regularization scheme (DREG) by using the MS-subtraction pro-
cedure, αs ≡ αMS

s .
The divergence of the anomalous dimension (18) for θ → ∞ indicates that

the Wilson line with a light-like segment satisˇes an evolution equation different
from (5). The modiˇed equation looks like [12](

µ
∂

∂µ
+ β(g)

∂

∂g
+ 2Γcusp(αs) ln [i(vn) ξµ] + Γ(αs)

)
〈WΠ(vn ξµ)〉 = 0. (20)

Here the factor of 2 stems from the presence of two cusps on the Π-shaped line
contour and Γ(αs) is a process-dependent anomalous dimension. The explicit
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dependence of the anomalous dimension on the renormalization scale µ implies
the absence of the multiplicative renormalizability of the light-like Wilson line.
Combining together Eqs. (20) and (16), we obtain the renormalization group
equation for local composite operators 〈O Γ

J (µ2)〉 at large J . Matching its solution
into (11), we ˇnd the asymptotic behavior of the anomalous dimensions of the
twist-two quark operators for J → ∞

γ
(qq)
J (αs) = 2Γcusp(αs) ln J + O(J0). (21)

Repeating a similar analysis for the twist-two gluon operators, one can show
that their matrix elements satisfy (16) with the Wilson line deˇned in the adjoint
representation. Therefore, their anomalous dimension satisˇes (21) upon replacing
CF → Nc leading to [12]

γ
(gg)
J (αs) =

Nc

CF
γ

(qq)
J (αs) + O(J0). (22)

In general, the quark and gluon operators mix with each other. However, at
large J the mixing occurs through the exchange of a soft quark with momentum
∼ 1/J . Its contribution to the corresponding anomalous dimensions is suppressed
by a power of 1/J leading to

γ
(gq)
J (αs) = O(1/J), γ

(qg)
J (αs) = O(1/J). (23)

We would like to stress that the relations (21)Ä(23) are valid to all orders in αs.
Remarkably enough, they hold both in QCD and its supersymmetric extensions. In
the latter case, the mixing matrix has a bigger size due to the presence of additional
scalar ˇelds. Nevertheless, this matrix remains diagonal at large J . Since the
ˇelds in supersymmetric YM theories belong to the adjoint representation, the
diagonal matrix elements are the same

γ
(ab)
J = 2δabΓcusp(αs) ln J + O(J ′) (24)

with a, b = (q, g, s) and Γcusp(αs) deˇned in the adjoint representation. As
we will show in the next section, the fact that the anomalous dimension (12)
turns out to be the Euler ψ function and, as a consequence, has a universal
scaling behaviour (24), leads to a hidden integrability of the evolution equations
in QCD [13Ä16].

4. INTEGRABILITY OF HIGH-ENERGY QCD

Scale dependence of the structure functions of deep inelastic scattering and
hadronic light-cone wave functions can be studied in QCD using the Operator
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Product Expansion. It can be reformulated as a problem of calculating the anom-
alous dimensions of the composite operators of a deˇnite twist. The operators of
the lowest twist have the following general form

O(2)
N,k(0) = (nD)kΦ1(0)(nD)N−kΦ2(0),

O(3)
N,k(0) = (nD)k1Φ1(0)(nD)k2Φ2(0)(nD)N−k1−k2Φ3(0),

(25)

where k ≡ (k1, k2) denotes the set of integer indices ki; nµ is a light-cone vector
such that n2

µ = 0; Φk denotes elementary ˇelds (quarks, antiquarks, gluons), and
Dµ = ∂µ − iAµ is a covariant derivative. The operators of a deˇnite twist mix
under renormalization with each other. In order to ˇnd their scaling dependence
one has to diagonalize the corresponding matrix of the anomalous dimension and
construct linear combination of such operators, the so-called conformal opera-
tors [17, 11]

Oconf
N,q (0) =

∑
k

Ck,qON,k(0). (26)

A unique feature of these operators is that they have an autonomous RG evolution

Λ2 d

dΛ2
Oconf

N,q (0) = −γN,qOconf
N,q (0). (27)

Here Λ2 is a UV cutoff and γN,q is the corresponding anomalous dimension
depending on some set of quantum numbers q to be speciˇed below. It turns out
that the problem of calculating the spectrum of the anomalous dimensions γN,q

to one-loop accuracy becomes equivalent to solving the Schréodinger equation for
the SL(2, R) Heisenberg spin magnet [13Ä16]. The number of sites in the magnet
is equal to the number of ˇelds entering into the operators under consideration.

To explain this correspondence it becomes convenient to introduce nonlocal
light-cone (mesonic and baryonic) operators built from (two and three) quark
ˇelds of the same chirality

F (z1, z2) =
Nc∑
i=1

(q̄↑i �y)α(z1y)(�yq↑i )β(z2y),

F (z1, z2, z3) =
Nc∑

i,j,k=1

εijk(�yq↑i )α(z1y)(�yq↑j )β(z2y)(�yq↑k)γ(z3y)
(28)

with (q↑i )α = (1+γ5)(qi)α/2 is a quark ˇeld of the ith color and αth �avour. Here
nµ is a light-like vector (n2

µ = 0) deˇning certain direction on the light-cone and
the scalar variables zi serve as coordinates of the ˇelds along this direction. The
quaks ˇelds in (28) are transformed under the gauge transformations. It is tacitly
assumed that the gauge invariance of the nonlocal operators F (zi) is restored by
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including the Wilson lines between the ˇelds in the appropriate (fundamental or
adjoint) representation. The conformal operators appear in the OPE expansion of
the nonlocal operators (28) for small z1 − z2 and z2 − z3.

The ˇeld operators entering the deˇnition of F (zi) are located on the light
cone. This leads to the appearance of the additional light-cone singularities.
They modify the renormalization properties of the nonlocal light-cone operators
(28) and lead to nontrivial evolution equations which as we will show below
are related to integrable chain models. We notice that there exists the following
relation between the conformal three-particle operators (26) and the nonlocal
operators (28)

Oconf
N,q (0) = ΨN,q(∂z1 , ∂z2 , ∂z3)F (z1, z2, z3)

∣∣∣∣
zi=0

, (29)

where ΨN,q(x1, x2, x3) is a homogeneous polynomial in xi of degree N

ΨN,q(x1, x2, x3) =
∑
k

Ck,qxk1
1 xk2

2 xN−k1−k2
3 (30)

with the expansion coefˇcients Ck,q deˇned in (26). Similar relations hold for
the twist-2 operators. The problem of deˇning the conformal operators is reduced
to ˇnding the polynomial coefˇcient functions ΨN,q(xi) and the corresponding
anomalous dimensions γN,q.

Using the renormalization properties of the nonlocal light-cone operators (28)
one can show [13Ä16] that to the one-loop accuracy the QCD evolution equation
for the conformal operators (28) can be rewritten in the form of a Schréodinger
equation

HΨN,q(xi) = γN,qΨN,q(xi), (31)

where the Hamiltonian H acts on the xi variables which are conjugated to the
derivatives ∂zi and, therefore, have the meaning of light-cone projection (npi) of
the momenta pi carried by particles described by the quark ˇelds in (28).

For mesonic operator F (z1, z2), Eq. (28), the Hamiltonian H is given by [11]

H(2) =
2αs

π
CF [Hqq(J12) + 1/4] , Hqq(J12) = ψ(J12) − ψ(2), (32)

where CF = (N2
c − 1)/(2Nc) and the operator J12, the so-called conformal spin,

is deˇned as
J12(J12 − 1) = − (∂x1 − ∂x2)

2
x1x2. (33)

The eigenfunctions for the Hamiltonian (32) take the form

Ψ(2)
N (x1, x2) = (x1 + x2)NC

3/2
N

(
x1 − x2

x1 + x2

)
, (34)
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where C
3/2
N are Gegenbauer polynomials. The corresponding eigenvalues deˇne

the anomalous dimensions of the twist-2 mesonic operators built from two quarks
with the same helicity

γ
(2)
N =

2αs

π
CF [ψ(N + 2) − ψ(2) + 1/4] =

2αs

π
CF

[
N∑

k=1

1
k + 1

+
1
4

]
, (35)

which coincides with (12). At large N this expression has well-known asymptotic

behaviour γ
(2)
N ∼ (2αsCF /π) ln N .

For baryonic operator built from three quark ˇelds of the same chirality the
evolution kernel is given by [13, 14]

H(3) =
αs

2π
{(1 + 1/Nc) [Hqq(J12) + Hqq(J23) + Hqq(J31)] + 3CF /2} (36)

with Hqq given by (32) and Jik being the two-particle conformal spins. It is
conformal symmetry of QCD Lagrangian which dictates that the two-particle
Hamiltonian in (32) and (36) is a function of the conformal two-particle spin,
but it does not ˇx this function. According to (32), the latter is given in QCD
by the Euler ψ function and it leads to the following remarkable property of
the evolution equations for anomalous dimensions of baryonic operators [13Ä16].
The Schréodinger equation (31) with the Hamiltonian deˇned in this way has a
hidden integral of motion, [H(3), q] = 0

q = i (∂x1 − ∂x2)(∂x2 − ∂x3)(∂x3 − ∂x1)x1x2x3, (37)

and, as a consequence, the Schréodinger equation (31) is completely integrable.
Moreover, one can identify (36) as the Hamiltonian of a quantum XXX Heisen-
berg magnet of SL(2, R). This model is a generalization of the celebrated Heisen-
berg spin−1/2 magnet which has been studied in 1931 by Bethe as a model of
one-dimensional metal and which has been solved by the method well known
nowadays as the Bethe Ansatz. In application to QCD, the Bethe Ansatz tech-
nique allows one to solve the evolution equations and the detailed results can
be found in [18]. The obtained solutions have direct applications to phenom-
enology of the baryon wave functions, scale dependence of twist-3 spin structure
functions, etc.
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