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FACTORIZATION AND UNIVERSALITY
IN SPIN-DEPENDENT SIDIS

O. V. Teryaev∗

Joint Institute for Nuclear Research, Dubna

The QCD factorization in SIDIS is considered in close analogy to the analysis of the DrellÄYan
process. A special role of the (weighted) average over produced hadron transverse momentum is
stressed. The case of Single Spin Asymmetry (SSA) due to the Collins-type fragmentation function
is analyzed and its twist-3 nature is uncovered. The analysis of the sources of imaginary phases and
respective cuts in hadronic kinematic variables leads to the effective character (nonuniversality) of
T -odd distribution functions, contrary to universality of T -odd fragmentation functions.

Š•„-Ë ±Éµ·¨§ Í¨Ö ¢ ¶µ²Ê¨´±²Õ§¨¢´µ³ ƒ�� · ¸¸³µÉ·¥´  ¢ É¥¸´µ°  ´ ²µ£¨¨ ¸  ´ ²¨§µ³
¶·µÍ¥¸¸  „·¥²² ÄŸ´ . �µ¤Î¥·±´ÊÉ  µ¸µ¡ Ö ·µ²Ó (¢§¢¥Ï¥´´ÒÌ) ¸·¥¤´¨Ì ¶µ ¶µ¶¥·¥Î´µ³Ê ¨³¶Ê²Ó¸Ê
µ¡· §µ¢ ´´µ£µ  ¤·µ´ . �´ ²¨§¨·Ê¥É¸Ö ¸²ÊÎ ° µ¤¨´µÎ´µ° ¸¶¨´µ¢µ°  ¸¨³³¥É·¨¨, ¢µ§´¨± ÕÐ¥° § 
¸Î¥É ËÊ´±Í¨¨ Ë· £³¥´É Í¨¨ ±µ²²¨´§µ¢¸±µ£µ É¨¶ , ¶µ± § ´  ¥¥ ¶·¨·µ¤  É¢¨¸É -3. �´ ²¨§ ¨¸ÉµÎ-
´¨±µ¢ ³´¨³ÒÌ Ë § ¨ ¸µµÉ¢¥É¸É¢ÊÕÐ¨Ì · §·¥§µ¢ ¶µ  ¤·µ´´Ò³ ¶¥·¥³¥´´Ò³ ¢¥¤¥É ± ÔËË¥±É¨¢´µ³Ê
Ì · ±É¥·Ê (´¥Ê´¨¢¥·¸ ²Ó´µ¸É¨) T -´¥Î¥É´ÒÌ ËÊ´±Í¨° · ¸¶·¥¤¥²¥´¨Ö, ¢ µÉ²¨Î¨¥ µÉ T -´¥Î¥É´ÒÌ
ËÊ´±Í¨° Ë· £³¥´É Í¨¨.

INTRODUCTION

Semi-inclusive Deep Inelastic Scattering (SIDIS) is currently one of the main
sources of the experimental information on spin asymmetries (in particular, Sin-
gle Spin Asymmetries). The application of transverse momentum kT -dependent
Collins fragmentation function in combination with chiral-odd transversity distri-
bution provides a reasonable description of experimental data [1].

At the same time, the status of QCD factorization is not very clear. Indeed,
the rigorous results for semi-inclusive processes are based on the approach of
Altarelli, Ellis and Martinelli, where the leading order radiative corrections to
the semi-inclusive cross-sections integrated over hadron transverse momentum
PT are shown to be reduced to the anomalous dimensions of distribution and
fragmentation function. This program is far from being accomplished in the case
of Collins function, where integration should be of course the weighted one. As
to the (unintegrated) kT -dependent functions, some discussions of factorization
by J. Collins also exist [2].
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The serious conceptual problem of factorization at low PT , which will be
the main object of our investigation, is the difˇculty in identifying the short
distance subprocess. This contrasts to the case of large PT , where it is just the
hard parton (gluon) balancing this large PT which is providing the subprocess of
interest.

This problem was solved in the case of DrellÄYan (DY) process by A. V. Efre-
mov and A. V. Radyushkin more than 20 years ago [3]. It was shown that the
integration over PT provides an effective ®propagator¯ of heavy photon consti-
tuting the hard subprocess.

Here I am applying the similar approach to the case of SIDIS. The resulting
picture is even simpler: the effective propagator corresponds now to the quark
so that the factorization of PT -integrated SIDIS turns out to be an analog of the
factorization in DIS.

By considering the weighted kT averages, this approach can be easily gener-
alized to the case of spin-dependent and T -odd fragmentation functions. For the
later the deˇnition in the coordinate space is suggested which does not require any
speciˇcation of intrinsic kT and is free from the ambiguities of the twist deˇnition
for that case. As a result, the analog of Collins function is of twist-3, although it
reproduces some of the results with the standard kT -dependent deˇnition.

I would like to dedicate this paper to my teacher, Anatoli Vasil'evich Efre-
mov, on the occasion of his 70th birthday. As it was already mentioned, and
will be also clear of what follows, it is essentially based on his works and
ideas from various years, including the factorization in DY process, twist-3 ap-
proach to single spin asymmetries, and his current work on the asymmetries in
SIDIS.

1. FACTORIZATION IN pT AVERAGED DY AND SIDIS

Let us recall the approach of Efremov and Radyushkin to the DY N(p1) +
N(p2) → γ∗(q) + X process. It is based on the following representation of the
transverse momentum averaged hadronic tensor (Fig. 1, a, b):

W
µν

(M2, xF ) =
∫

d4qδ(q2 − M2)δ
(

2q(p1 − p2)
s

− xF

)
Wµν(p1, p2, q) =

= Discs

∫
d4q

2π(q2 − M2)
Wµν(p1, p2, q)δ

(
2q(p2 − p1)

s
− xF

)
. (1)

The photon ®propagator¯ in the r.h.s. marks the appearance of the hard sub-
processes (Fig. 1, b), so that the dominant contribution to (1) is provided by the
region z2 ∼ 0 in the coordinate representation.
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Fig. 1. Generation of hard subprocess by transverse momentum integration in DY process
(a, b) and SIDIS (c, d)

As a result, at the leading twist level only the bilocal (anti)quark correlators
q̂i(z) contribute

Wµν(p1, p2, q) =
∫

d4z

(2π)4
eiqz Tr [q̂1(z)γµq̂2(z)γν], (2)

and one may assume their following standard parametrization:

q̂i(z) = p̂i

1∫
0

dy eixipzqi(xi), i = 1, 2, (3)

where qi(xi) are the (anti)quark distributions in the colliding hadrons. Performing
the integration over z one is recovering the DY formula

W
µν

(M2, xF ) = (gµν(p1p2) − pµ
1pν

2 − pµ
2pν

1)×

×
∫

dx1dx2δ(sx1x2 − M2)δ(x1 − x2 − xF )q1(x1)q2(x2). (4)

The corresponding treatment of SIDIS N(p1) + γ∗(q) → h(p3) + X , which is
the main subject of this paper, is completely analogous (Fig. 1, c, d), except that
integration over the produced hadron, rather than photon momentum should be
performed. For spin-independent case

W
µν

(q2, xB , z) =
∫

d4p3δ(p2
3)δ

(
p1p3

p1q
− z

)
Wµν(p1, p3, q) →

→ Discs

∫
d4p3

2πp2
3

Wµν(p1, p3, q)δ
(

p1p3

p1q
− z

)
. (5)
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The ®propagator¯ 1/p2
3 in this representation does not contain the large

®mass¯, so it is not immediately clear what large parameter provides the light-
cone dominance. In fact, it is also the photon ®mass¯, and to see that one may
assume this dominance and write the following expression:

Wµν(p1, p3, q) =
∫

d4t

(2π)4
e−iqt Tr [q̂1(t)γµD̂(t)γν ]. (6)

Here D̂(t) is the cutvertex describing the fragmentation of quark to hadron,

D̂(t) = p̂3

1∫
0

dz′

z′2
eip3t/z′

D(z′), (7)

where D(z) is the spin-averaged fragmentation function. Let us now perform the
integration over t and p3 similar to the DY case. The resulting expression is

W
µν

(q2, xB , z) = (gµν(p1q) − 2xpµ
1pν

1 − qµpν
1 − qνpµ

1 )×

× Discs

∫
dx

1
2π(xp1 + q)2

q1(x)zD(z). (8)

The effective propagator now assumed the form completely similar to standard
DIS case leading to the very similar expression:

W
µν

(q2, xB , z) = (gµν(p1q) − 2xpµ
1pν

1 − qµpν
1 − qνpµ

1 )
1

2p1q
q1(xB)zD(z). (9)

This proves a posteriori the self-consistency of the form (6). The possibility of
providing the standard factorization only in such a way does not seem surpris-
ing. Indeed, there is another contribution with the same asymptotic behaviour,
where the initial and ˇnal particles are described by the common nonperturbative
object, fracture function [4]. Note, that due to the momentum sum rule for the
fragmentation functions which has a partonic form due to the factor 1/z2 in (7)

∑
i

∫
dzzDi(z) = 1, (10)

they provide the compete description of the SIDIS. The corresponding cross
section, integrated over z and summed over all hadron species, is equal to the
DIS one. As a result, fracture function contribution should be considered as a
complementary, rather than the additive one, in order to avoid the double counting.
In other words, one may speak about the fragmentation-fracture duality, when the
factorization to the separate distribution and fragmentation functions is spoiled at
low z, while in average, due to (10), these contributions are equal. This property
may be used for the developing of the phenomenological models of the fracture
functions.
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2. WEIGHTED pT AVERAGES AND SPIN-DEPENDENT SIDIS

Let us pass to the SSA in SIDIS involving the Collins fragmentation func-
tion. We use its analog in the coordinate space [5], so that the corresponding
contribution to cutvertex takes the form:

Ĥ(t) = iMσµνpµ
3 zν

1∫
0

dz

z2
ei(p3t)/zI(z), (11)

where M is the parameter of the order of jet mass, while incoming quark is
described by transversity distribution

ĥ(z) = σµνγ5p
µ
1Sν

1∫
0

dz ei(p1z)xh(x), (12)

where S is the target polarization.
The unintegrated hadronic tensor is now the following:

∆Wµν(p1, p3, q) =
∫

d4t

(2π)4
e−iqt Tr [ĥ1(t)γµĤ(t)γν ], (13)

while the deˇnition of the integrated tensor is ambiguous. The simplest possible
way is to integrate over pT like in the spin-independent case:

∆W
µν

(q2, xB , z) =
∫

d4p3δ(p2
3)δ

4

(
p1p3

p1q
− z

)
∆Wµν(p1, p3, q). (14)

Substituting here (11)Ä(13) and performing integration over t one arrives at the
expression

∆W
µν

(q2, xB, z) = M

∫
d4p3δ(p2

3)dxdz′∂αδ(xp1 + q− p3/z′)h(x)z′I(z′))×

× Tr [γ5p̂1Ŝγµ[p̂3γα]γν ]δ
(

p1p3

p1q
− z

)
. (15)

The derivative acting to the δ function appeared due to the z factor in (11). It
should be transferred to one of the p3-dependent factors. One can easily see that
its action on the δ(p2

3) and p̂3 in the trace does not contribute (in the latter case due
to antisymmetrization denoted by square bracket). The only other possibility is its
action on the other δ function ˇxing the produced particle momentum fraction z.
The resulting form of hadronic tensor is not explicitly transverse, which should
be imposed by requiring the validity of equations of motion for (11). However,
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the relevant terms are proportional to qµ, qν and do not contribute to the cross
section after contraction with leptonic tensor∗.

∆σ(q2, xB , z) =
Mx2

Bh(xB)(zI(z))′

(q2)2
(p1l)εlSp1q, (16)

where l = li + lf is the average momentum of initial and ˇnal leptons. This
expression in the target rest frame corresponds to the azimuthal asymmetry,
proportional to sin φS , φS being the azimuthal angle between the direction of
transverse polarization and lepton scattering plane.

Note also, that integration over z should lead to the zero result for each type
of the produced hadron due to the sum rule

∫ 1

0

dz(zI(z))′ = 0. (17)

The behaviour of I at large (small) z must guarantee the convergence of this
sum rule, as in the z-integrated cross section the only δ function, providing the
nonzero result is absent at all. Note that integration over z should lead, after
summation over all the hadrons, to the inclusive DIS cross section (which for
spin-independent case was guaranteed by (10)), where the T -odd asymmetry is
absent. Here we see, that this actually happens for each hadron specie separately,
which is easy to understand, as the z integration is sufˇcient in order to elimi-
nate the kinematical variables producing the imaginary phase required for T -odd
asymmetry, as will be discussed in some detail in the next section.

Let us now pass to another deˇnition, corresponding to weighted average,
which allows the consideration of other azimuthal angles:

∆nW
µν

(q2, xB, z) =
∫

d4p3δ(p2
3)(p3n)δ

(
p1p3

p1q
− z

)
∆Wµν(p1, p3, q), (18)

where n is the unit transverse 4-vector (np1 = nq = 0, n2 = −1). It is now
obvious, that the derivative in

∆nW
µν

(q2, xB, z) = iM

∫
d4p3(p3n)δ(p2

3)dxdz′∂αδ(xp1 + q − p3/z′)×

× h(x)z′I(z′)Tr [γ5p̂1Ŝγµ[p̂3γα]γν ]δ
(

p1p3

p1q
− z

)
(19)

∗Neglecting the genuine twist-3 contributions will lead, after taking into account the equations
of motion, to the zero result for the observable in question.
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should be transferred only to the p3 entering this weighting factor, so that

∆nW
µν

n (q2, xB, z) =
MxBh(xB)zI(z)

q2
×

× (2xBp
[µ
1 εν]nSp1 + pµ

1 ενSqn + qνεµnSp1 − Sµενp1qn − nνεµqSp1 ). (20)

Let us note that this expression satisˇes the electromagnetic gauge invariance.
Moreover, it is actually equal to the standard expression for the contribution of
Collins function, except that the role of intrinsic transverse momentum is played
by the auxiliary transverse vector n so that the correspondence to standard expres-
sion, making also the mentioned gauge invariance obvious, is:
Tr [p̂1Ŝγ5γ

µp̂3n̂γν ] → Tr [p̂1Ŝγ5γ
µp̂3k̂T γν ]. This does not change the azimuthal

dependence, as the weighted integration corresponds to azimuthal average

〈dσ(φh) cos (φh − φn)〉 = cos φn〈dσ(φh) cos (φh)〉 + sin φn〈dσ(φh) sin (φh)〉.

As a result the azimuthal dependence of cross section like sin φh, cos φh is
transferred to the same dependence on the angle φn, and I(z) corresponds to the
moment of the Collins function

I(z) ∼
∫

dk2
T

k2
T

M2
H1(z, k2

T ). (21)

The factor M2 in the denominator of the r.h.s. is exactly the one resulting from
the various appearance of M in the deˇnitions of H and I [5].

At the same time, the weighting with the factor |pT | plays the crucial role,
and the attempt to use other dependence would lead to the senseless singular
expression. Postponing the further detailed studies of this expression, let us
compare the two deˇnitions of SSA from the point of view of their twist. While
(16) contains extra factor q2 in the denominator, coming from the differentiation
of the relevant δ function, explicitly signalling on the twist-3 effect, it is absent
in formula (19). However, its twist-3 character is expressed by the fact, that the
dimension of the factor |pT | in the deˇnition of the weighted integral is carried
by M , rather than large scale Q. So one may consider that as a suppression with
respect to the naive expectation only. This situation is quite general. We consider
the higher twists for the spin independent DrellÄYan case, which was our starting
point, and consider the kinematical higher twist corrections, manifested in the
extra regular dependence of (anti)quark distributions on space-time interval z2:

q̂i(z) = p̂i

1∫
0

dy eixipyqi(xi, M
2z2) =

∑
n

an(M2z2)n

1∫
0

dy eixipyqi(xi), (22)
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where, as before, the (logarithmic) dependence on the factorization scale µ, re-
sulting in the extra argument mu2z2 is not shown. To probe the higher twist
contribution one may deˇne the weighted average

W
µνm

(M2, xF ) =

=
∫

d4qδ(q2 − M2)Wµν(p1, p2, q)(qn)2m ∼ M2m
∑

k

ak
1a

m−k
2 . (23)

The most important property is the ˇniteness of all the qT = qn moments,
implying that the cross section decreases faster than any power of qT . So,
the partial resummation of higher twists provides the natural explanation of the
exponential fall-off of the cross sections.

3. T -ODD DISTRIBUTION FRAGMENTATION AND FRACTURE
FUNCTIONS: EFFECTIVENESS AND UNIVERSALITY

Let us compare the above presentation with the complementary mechanism
of generation of Single Spin Asymmetry in SIDIS, namely the Sivers function.
As was already discussed earlier [6], the key role is played by the requirement
for the existence of the imaginary phase to have the T -odd observables in T -
invariant theories (while in the case of real T -violation their role is assumed by
complex couplings). The Sivers function can be only effective (such a notion ˇrst
suggested in [7]) or nonuniversal (like it is referred to now [2]), in the sense, that
this imaginary phase emerges in the interaction, involving also the hard scattering
and depending on its type. In other words, the respective cut, providing the
imaginary phase, involves both hard and soft variables.

Let us compare [6] in more detail the possible nonperturbative inputs from
the point of view of these imaginary cuts. The most widely known objects are
parton distributions, describing the fragmentation of hadrons to partons and related
to the forward matrix elements

∑
X〈P |A(0)|X〉〈X |A(x)|P 〉 = 〈P |A(0)A(x)|P 〉

of renormalized nonlocal light-cone quark and gluon operators. As they do not
contain any variable, providing the cut and corresponding imaginary phase (to put
it in the dramatic manner, the proton is stable), the T -odd distribution functions
cannot appear in the framework of the standard factorization scheme. At the same
time, they may appear effective, when the imaginary phase is provided by the
cut from the hard process, but may be formally attributed to the distribution [7].
Another way of treating the ˇnal state interaction, found in the explicit model
calculations [8], as it was recently stressed by J. C. Collins [9], and elaborated by
Belitsky, Ji and Yuan [10] is provided by the path-ordered gluonic exponential.
However, in all cases, the T -odd distribution cannot be universal, as the imaginary
phase appearance depends on the subprocess it is convoluted with. Practically,
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the dependence on the subprocess enters through the speciˇc choice of light cone
vector playing the crucial role for the sign of the Sivers function contribution.

Let us also mention in this connection, that the similar to [8] calculation was
performed earlier in twist-3 QCD [11] for the crossing related process of dilepton
photoproduction. That result, when continued to the region PT ∼ M , will also
not have any power suppression and looks formally as a twist-2 one.

As soon as the twist notion for Sivers function, like for any kT -dependent
function is ambiguous, we may write it also in the coordinate space as

〈p, S|ψ(0)γµψ(z)|p, S〉 = MεµSpz

1∫
0

dx eizpxJ(x). (24)

Like the coordinate analog of Collins function, it is also of twist-3. To prove
the nonuniversality of this T -odd distribution J(x), it is sufˇcient to consider its
contribution to the integrated asymmetry in semi-inclusive DIS (14), where the
hadronic tensor is proportional to

∆W
µν

(q2, xB, z) = iM

∫
d4p3δ(p2

3)dxdz′∂αδ(xp1 + q − p3/z′)×

× J(x)z′D(z′))εβαSp Tr [γβγµp̂3γ
ν ]δ

(
p1p3

p1q
− z

)
. (25)

One may see that the nonzero result is now only due to the action of the derivative
to the δ(p2

3) and the resulting expression is

∆W
µν

(q2, xB, z) =
Mx3

BJ ′(xB)zD(z)
2(q2)2

(pµ
1 ενSp1q + pν

1εµSp1q), (26)

where we dropped the terms proportional to qµ, qν , disappearing after contraction
with the leptonic tensor. One may note the important difference with the similar
expression (16), which is going to zero after the integration over z. Contrary
to that, the current expression is nonzero after integration over z is performed.
Performing in addition the summation over hadron species and taking into account
the momentum sum rule (10), one is coming to the expression for inclusive DIS,

∆W
µν

(q2, xB) =
Mx3

BJ ′(xB)
2(q2)2

(pµ
1 ενSp1q + pν

1εµSp1q), (27)

clearly requiring real T violation [12]. This proves the nonuniversality of Sivers
function.

Let us note, for completeness, that the weighted average (18) receives the
following contribution of Sivers function

∆nW
µν

n (q2, xB, z) =
Mx2

BJ(xB)zD(z)
q2

(p[µ
1 εν]nSp1 + gµνεSqnp1). (28)
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At the same time, the electromagnetic gauge invariance requires to consider the
contributions of quark-gluon correlators, leading to the appearance of any effective
T -odd distribution, explicitly. Moreover, the fragmentation analog of Sivers
function was also shown [13] to be entirely related to quark gluon correlators.

Imaginary phase of the Collins function (or any other T -odd fragmentation
function) constructed from the time-like cutvertices of the similar operators

∑
X

〈0|A(0)|P, X〉〈P, X |A(x)|0〉,

should come from the cut with respect to the jet mass, simulating the T violation.
It is the same in the various hard processes, and T -odd fragmentation functions
are therefore universal. The recent analysis [2] conˇrms this picture.

The FRACTURE Function (FF) [4], whose particular example is represented
by the diffractive distribution (DD) [14], is related to the object

∑
X

〈P1|A(0)|P2, X〉〈P2, X |A(x)|P1〉,

combining the properties of FRAgmentation and struCTURE functions. They
describe the correlated fragmentation of hadrons to partons and vice versa. Orig-
inally this term was applied to describe the quantities integrated over the variable
t = (P1 − P2)2, while the ˇxed t case is described by the so-called extended
fracture functions [15]. They may be also extended [16] to describe SSA in such
processes. Namely, such functions can easily get the imaginary phase from the
cut produced by the variable (P1 + k)2. Due to the extra momentum of produced
hadron P2, the number of the possible T -odd combinations increases. Therefore,
they may naturally allow for the T -odd counterparts. The T -odd fracture func-
tion may describe a number of SSA at HERMES and, especially, NOMAD [17].
The necessity of fracture functions, in particular of T -odd ones, is seen from the
property of factorization in SIDIS mentioned above. Namely, that the appearance
of separate distribution and fragmentation function cannot be proved in general,
but rather assumed and justiˇed a posteriori.

CONCLUSIONS

The factorization in PT integrated SIDIS may be proved in a similar manner
to the consideration of DrellÄYan process by A. V. Efremov and A. V. Radyushkin.
The essential difference, however, is that factorization to separate distribution
and fragmentation function cannot be proved in general, but rather justiˇed a
posteriori, leaving a room for the fracture function.

This proof may be easily generalized for the case of kT -dependent fragmen-
tation function, if the latter is deˇned in the co-ordinate space, when the explicit
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deˇnition of the transverse momentum notion occures to be non-necessary. The
respective analog of Collins function turnes out to be of twist-3 order, which is
expressed in the fact, that the dimension of |PT | in the weighted average is carried
by the soft parameter M , rather than Q. This property may be generalized for
arbitrary power of |PT |2n, so that the partial resummation of higher twist justiˇes
the exponential decrease of cross sections with PT .
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