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The s-channel helicity conservation (SCHC) in diffractive DIS is known to break down despite
the exact conservation of the s-channel helicity of quarks in high energy QCD. Here we demonstrate
that the s-channel helicity nonconservation (SCHNC) in diffractive vector meson production survives
strong absorption effects in nuclear targets. This must be contrasted to the classic 1959 result of
Glauber that the spin-�ip phenomena caused by the conventional spin-orbit interaction do vanish in
the scattering off heavy, strongly absorbing nuclei. The intranuclear absorption often discussed in
terms of the saturation effects introduces a new large scale Q2

A into the calculation of diffractive
vector meson production amplitudes. Based on the color dipole approach, we show how the impact of
the saturation scale Q2

A changes from the coherent to incoherent/quasifree diffractive vector mesons.
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INTRODUCTION

The spin-orbit interaction is of fundamental importance for the electron struc-
ture of atoms. Still in their 1954 classic study of high-energy electron scattering
Yennie, Ravenhall and Wilson noticed that ®for a spherically symmetric potential
the scattering in a given direction will be the same for both spin orientations¯ [1]
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which is a manifestation of the s-channel helicity conservation (SCHC) of elec-
trons in QED (for this interpretation of the YRW ˇnding see the v. 4 of the
LandauÄLifshits textbook [2]). In the realm of hadronic scattering, the 70'sÄ80's
were dominated by the Gilman et al. idea of SCHC in high-energy diffraction
scattering ([3], for the review of early tests of SCHC see [4Ä6]). An explicit
assumption of vanishing pomeron-exchange contribution to certain helicity am-
plitudes at high energies is behind the celebrated BurkhardtÄCottingham (BC)
sum rule for the spin structure function g2(x, Q2) [7]. However, the high-energy
spin-physics proved to be much more fertile. It is by now well understood
that the SCHC for quarks in high energy QCD does not entail the SCHC for
hadrons because the helicity of hadrons differs from the sum of helicities of its
constituent quarks the difference being due to the orbital angular momentum of
constituents [8]. The explicit realization of this mechanism of s-channel helic-
ity nonconservation (SCHNC) in diffractive DIS into continuum [9] and vector
mesons has been published in [10Ä12]. This mechanism, in conjunction with
the same mechanism for SCHNC for the Pomeron-nucleon coupling [8] and
multipomeron-exchange unitarity corrections, was shown to break the assump-
tions behind the BC sum rule [13]. Similarly, the mutipomeron exchanges in DIS
off deuterons give rise [14] to the tensor polarization of sea quarks in the deuteron
which does not vanish at small x and invalidates the CloseÄKumano sum rule [15].
A review of many aspects of the single- and double-spin asymmetries in high en-
ergy DIS, DrellÄYan and hadronic processes is found in [16, 17] and references
therein. Here we focus on a still another new feature of SCHNC in diffractive
DIS off nuclear targets Å we demonstrate that in striking contrast to the familiar
spin-orbit interaction effects it persists in the regime of strong nuclear absorption.

The further presentation is organized as follows. In Sec. 1 we explain brie�y
why the effect of the spin-orbit interaction vanishes in elastic scattering on a
strongly absorbing target. In Sec. 2 we formulate the color-dipole approach to
the calculation of helicity amplitudes for diffractive vector meson production. In
Sec. 3 we introduce the scanning radius, describe the Q2 dependence of helicity
amplitudes in terms of an expansion in powers of the scanning radius originating
from the color dipole cross section and the overlap of the lightcone color dipole
wave functions of the photon and vector meson. In Sec. 4 we start a discussion of
nuclear effects on an example of coherent diffraction γ∗A → V A when the recoil
nucleus remains in the ground state. The nuclear effects in the black nucleus
or the saturation regime are described by the new hard scale Å the saturation

scale Q2
A Å and we demonstrate how the dependence ∝ Q

−4 ∼ (Q2 + m2
V )−2

which is common to all helicity amplitudes, changes to the mixed ∝ Q
−2

Q−2
A

for Q
2

∼< Q2
A. Here the factor Q−2

A describes the blackness of the target nucleus,

whereas the factor Q
2

still comes from the photon-vector meson overlap. Even
stronger impact of saturation is found for quasielastic (incoherent) diffractive
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vector mesons considered in Sec. 5 Å the saturation scale Q2
A becomes the sole

hard scale for Q
2

∼< Q2
A. In the Conclusions we summarize our principal ˇndings

and comment on the possibilities of the COMPASS experiment at CERN.
This contribution is a humble tribute to Anatoly Vasil'evich Efremov, one of

the world experts in high-energy spin phenomena, the author of such celebrated
discoveries as the fundamental role of the axial anomaly in the helicity structure
function g1(x, Q2) of the nucleon [18] and handedness [19] and of many other
important works on spin phenomena in hard reactions [20, 21], on the occasion
of his 70's birthday.

1. THE FATE OF SPIN-ORBIT INTERACTION FOR HEAVY NUCLEI

Heavy nuclei are strongly absorbing targets. Whether the spin-�ip effects in
high energy scattering are washed out by this absorption or not is not an obvious
issue which we address here on an example of diffractive vector mesons.

The standard argument for vanishing of the spin-�ip in elastic scattering of
spin 1/2 particles off strongly absorbing nuclei goes as follows: In the presence
of the spin-orbit interaction the scattering amplitude f = f0 + 2f1ŝn, where
ŝ is the spin operator, n is the normal to the scattering plane and the partial
wave expansion of the helicity-non-�ip, f0, and the helicity-�ip, f1, amplitudes,
reads [2]

f0 =
1

2ip

∑
l

{(l + 1)[exp (2iδ+
l ) − 1] + l[exp (2iδ−l ) − 1]}Pl(cos θ),

f1 =
1
2p

∑
l

[exp (2iδ+
l ) − exp (2iδ−l )]P 1

l (cos θ),
(1)

where δ±l are the scattering phases for j = l ± 1/2. In the presence of strong
absorption the scattering phases acquire large imaginary parts, exp (2iδ±l ) → 0,
and, consequently, for the momentum transfer ∆ within the diffraction cone
f1/f0 → 0. More detailed treatment for elastic scattering of protons off nuclei
is found in Glauber's lectures [22], the net result is that the small contribution
to the spin-�ip amplitudes comes only from the periphery of the nucleus, so that
f1/f0 ∝ A−1/3, where A is the mass number of a nucleus.

2. SCHNC IN QCD

In high-energy QCD the diffractive production of vector mesons,

γ∗p → V p′,

proceeds via the exchange of colorless system of gluons in the t-channel.
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a, b) The subset of two-gluon tower pQCD diagrams for the Pomeron exchange contri-
bution (c) to the Compton scattering (DIS) and diffractive vector meson production. Not
shown are two more diagrams with q ↔ q̄

The fundamental property of such (multiple) gluon exchange is an exact
conservation of the s-channel helicity of high-energy quarks. Nonetheless, QCD
predicts a nonvanishing helicity �ip in diffractive production of vector mesons
off unpolarized nucleons [10, 11]: the origin of this SCHNC is in the subtle
possibility that the sum of helicities of the quark-antiquark pair in the diagrams
of the ˇgure can be unequal to the helicity of photons and vector mesons. In the
nonrelativistic case the pure S-wave deuteron with spin up consists of the spin-up
proton and neutron. However, in the relativistic case while the longitudinal virtual
photon contains the qq̄ pair with λq + λq̄ = 0, the transverse photon with helicity
λγ = ±1 besides the qq̄ state with λq+λq̄ = λγ = ±1, also contains the state with
λq + λq̄ = 0, in which the helicity of the photon is carried by the orbital angular
momentum in the qq̄ system. Furthermore, it is precisely the state λq + λq̄ = 0
which gives the dominant contribution to the absorption of transverse photons
and the proton SF F2p(x, Q2) in the Bjorken limit. From the point of view of the
vector meson production, it is important that the transverse and longitudinal γ∗

and V share the intermediate qq̄ state with λq+λq̄ = 0, which allows the s-channel
helicity nonconserving (SCHNC) transitions between the transverse (longitudinal)
γ∗ and longitudinal (transverse) vector meson V. As a matter of fact, this
mechanism of SCHNC does not require an applicability of pQCD. B. G. Zakharov
was the ˇrst to introduce it in application to nucleonÄnucleon scattering [8]. The
theoretical prediction of energy-independent SCHNC in diffractive vector meson
production has been conˇrmed experimentally at HERA [23, 24], the detailed
comparison of the theory and experiment is found in [25].

Now notice that the argument about exact SCHC of quarks and antiquarks
applies equally to a one-Pomeron exchange in the scattering off a free nucleon and
to multiple Pomeron exchange in the scattering off a nuclear target. Then for a
sufˇciently high energy such that the lifetime of the qq̄ �uctuation of the photon,
often referred to as the coherence time, and the formation time of the vector
meson are larger than the radius of the nucleus RA (for instance, see [26, 27]),
the above described origin of SCHNC must be equally at work for the nuclear
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and free-nucleon targets. In this communication we expand on this point, from
the practical point of view one speaks of the values of

x =
Q2 + m2

V

2ν
< xA ∼< 0.1 · A−1/3. (2)

Another property of interactions with nuclei is the so-called saturation scale QA

which for partons with x ∼< xA deˇnes the transverse momentum below which
their density is lowered by parton fusion effects [28Ä30]. It is interesting to
see how the emergence of the saturation scale affects the Q2 dependence of
diffractive vector meson production, in particular, its SCHNC properties. Here
one must compare the saturation scale Q2

A to the usual hard scale for diffractive
vector meson production [31,32]

Q
2 ≈ 1

4
(Q2 + m2

V ). (3)

3. THE FREE NUCLEON TARGET

For the purposes of our discussion it is convenient to resort to the color dipole
formalism: the production process depicted in ˇgure factorizes into splitting of
the photon into qq̄ dipole way upstream the target, s-channel helicity conserving
elastic scattering of the dipole off a target, and projection of the qq̄ dipole onto
the vector meson state. We restrict ourselves to the contribution from the qq̄
Fock states of the vector meson which is a good approximation for x ∼ xA.
The momentum-space calculation of the helicity amplitudes has been worked out
time ago in [12,25], the crucial ingredient in preserving the rotation invariance is
the concept of the running polarization vector for the longitudinal vector mesons.
Following [33], we make the Fourier transform to the color-dipole space and
represent the helicity amplitudes Afi(x,∆), where i = λγ and f = λV are
helicities of the initial state photon and the ˇnal state vector meson, respectively,
in the color dipole factorization form

Afi(x,∆) = 〈Vf |Aqq̄(r,∆)|γ∗
i 〉 =

= i

∫ 1

0

dz

∫
d2rσ(r,∆) exp

[
i

2
(1 − 2z)(r∆)

]
Ifi(z, r), (4)

where ∆ is the transverse momentum transfer in the γ∗ → V transition;
Ifi(z, r) = Ψ∗

V,f(z, r)Ψγ∗,i(z, r) and the summation over the helicities λ, λ of
the intermediate qq̄ pair is understood. The wave function ΨV,f(z, r) of the ˇnal
state vector meson contains the spin-orbital part and the ®radial¯ wave functions,
deˇned in terms of the vertex function ΓV (z,k)q̄SµqVµ, where Sµ is the relevant
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Dirac structure and Vµ is the running polarization vector which must be so deˇned
as to guarantee the rotational invariance for the ˇxed invariant mass M of the
lightcone qq̄ Fock state of the vector meson [12,25],

M2 =
m2

f + k2

z(1 − z)
,

where k is the transverse momentum of the quark in the vector meson and z
and (1− z) are fractions of the lightcone momentum of the vector meson carried
by the quark and antiquark, respectively. In the momentum-space ψV (z,k) ∝
ΓV (z,k)/(M2 − m2

V ), the Fourier transform to the dipole space depends on the
Dirac structure Sµ. For the sake of simplicity, here we take Sµ = γµ, the exact
form for the pure S and D wave states is found in [12,25], the major conclusions
on the impact of nuclear absorption on helicity �ip do not depend on the exact
form of Sµ. If one deˇnes the radial wave functions for the transverse (T ) and
longitudinal (L) vector mesons as

ψT (z, r) =
∫

d2kψ(z,k) exp (ikr),

ψL(z, r) =
∫

d2kMψ(z,k) exp (ikr),
(5)

then

ILL = 4Qz2(1 − z)2K0(εr)ψL(z, r), (6)

ITT = m2
fK0(εr)ψT (z, r) − [z2 + (1 − z)2]εK1(εr)ψ′

T (z, r), (7)

ILT = −i2z(1 − z)(1 − 2z)ψL(z, r)εK1(εr)
(er)
r

, (8)

ITL = −i2Qz(1− z)(1 − 2z)K0(εr)ψ′
T (z, r)

(V∗r)
r

, (9)

ITT ′ = 4z(1 − z)εK1(εr)ψ′
T (z, r)

(er)2

r2
, (10)

where ψ′
T (z, r) = ∂ψT (z, r)/∂r, the polarization vectors e and V are for the

transverse photon and vector meson, respectively; ε2 = z(1 − z)Q2 + m2
f , the

Bessel functions K0(x) and K1 = K ′
0(x) describe the lightcone wave function of

the photon, ITT and ITT ′ describe the helicity-non-�ip and double-helicity-�ip
production of transverse vector mesons by transverse photons, in the latter case
V∗ = e and we used (V∗e) = e2 = 0.
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The off-forward generalization of the color-dipole scattering amplitude has
been introduced in [34]

σ(r,∆) =
2π

3

∫
d2κ(

κ − 1
2
∆

)2 (
κ +

1
2
∆

)2F(x, κ,∆)αS(κ2)×

×
{

[1 − exp (iκr)][1 − exp (−iκr)]−

−
[
1 − exp

(
1
2
i∆r

)] [
1 − exp

(
−1

2
i∆r

)]}
. (11)

Here F(x, κ,∆) is the off-forward unintegrated differential gluon structure func-
tion of the nucleon, the gross features of its ∆-dependence are discussed in [34].

The analysis of [34] focused on the LL and TT amplitudes, in which case the
dominant contribution comes from z ∼ 1/2 and corrections to the ∆-dependence
from the factor exp [i/2(1− 2z)(r∆)] in (4) can be neglected. This factor which
is due to the Fermi motion of quarks in the vector meson is crucial, though, for
the helicity-�ip transitions. For small dipoles and within the diffraction cone the
leading components of the LT and TL amplitudes come from the second term in
the expansion

exp
(1

2
i(1 − 2z)(∆r)

)
= 1 +

1
2
i(1 − 2z)(∆r) (12)

so that upon the azimuthal averaging the effective integrands take the form

ILT =
1
2
z(1 − z)(1 − 2z)2ψL(z, r)εrK1(εr)(e∆), (13)

ITL =
1
2
Qz(1 − z)(1 − 2z)2K0(εr)rψ′

T (z, r)(V∗∆). (14)

In the case of the double-�ip TT ′ amplitude e2 = 0 and one needs to expand the
integrand up to the terms ∝ (r∆)2,

exp
(1

2
i(1−2z)(∆r)

) (er)2

r2
σ(x, r,∆)⇒ 1

60
(e∆)2r2[σ(∞, 0)+(1−2z)2σ(r, 0)],

(15)
so that the corresponding integrand of the double-�ip amplitude will be of the
form

ITT ′ =
1
15

z(1 − z)εr2K1(εr)ψ′
T (z, r)(e∆)2[σ(∞, 0) + (1 − 2z)2σ(r, 0)]. (16)
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4. THE SCANNING RADIUS AND HARD SCALE EXPANSION

Consider the pQCD regime of large Q2. The useful representation for small
color dipoles is [35]

σ(r, 0) =
π2

3
r2αS(q2)G(x, q2), q2 ≈ 10

r2
. (17)

Then, because of the exponential decrease, K0,1(εr) ∝ exp (−εr), the amplitudes
for the free nucleon target will dominate the contribution from r = rS , where the
scanning radius [36]

rS ∼ aS

ε
≈ aS

Q
=

2aS√
Q2 + m2

V

, aS ≈ 3. (18)

The simplest case is that of the LL amplitude:

ALL ∝ Qr2
Sσ(rS , 0)K0(aS)

∫ 1

0

dzz2(1 − z)2ψL(z, rS) ∝

∝ Q

Q
4 αS(Q

2
)G(x, Q

2
) ∝ QG(x, Q

2
)αS(Q

2
)

(Q2 + m2
V )2

. (19)

The expansion in powers of the scanning radius rS is an expansion in inverse
powers of the hard scale Q. Here one factor 1/(Q2 + m2

V ) is the same as in the
Vector Dominance Model, in the color dipole language it can be identiˇed with
the overlap of the photon and vector meson wave functions, the second factor
1/(Q2 + m2

V ) derives from the pQCD form (17) of the dipole cross section.
The helicity-�ip amplitudes will be of the form

ALT ∝ (e∆)r2
Sσ(rS , 0)aSK1(aS)

∫ 1

0

dzz(1 − z)(1 − 2z)2ψL(z, rS), (20)

ATL ∝ (V∗∆)Qr3
Sσ(rS , 0)K0(aS)

∫ 1

0

dzz(1 − z)(1 − 2z)2ψ′
T (z, rS). (21)

Finally, the leading term of expansion in powers of rS of the double-helicity-�ip
amplitude is of the form

ATT ′ ∝ (e∆)2r3
SaSK1(aS)σ(∞, 0)

∫ 1

0

dzz(1 − z)ψ′
T (z, rS). (22)

Notice that it is proportional to the dipole cross section for the nonperturbative
large color dipole and as such is of a manifestly nonperturbative origin [11].
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5. THE SENSITIVITY TO THE SHORT DISTANCE WAVE FUNCTION
OF THE VECTOR MESON

Notice the sensitivity to the short-distance behavior of the vector meson wave
function in the last result. The soft, oscillator-like interaction would give the wave
function which at short distances is a smooth function of r2, so that

ψ′
T (z, r) ∼ − r

R2
V

ψT (z, 0) (23)

whereas the attractive Coulomb interaction at short distances suggests [31,37,38]
®hard¯, Coulomb-like ψT (z, r) ∝ exp (−r/RC) when

ψ′
T (z, r) ∼ − 1

RC
ψT (z, 0). (24)

In the case of the soft short-distance wave function the helicity-�ip amplitude ATL

would acquire extra small factor rS/RV ∝ 1/(RV Q). The similar discussion is
relevant to the contribution to the ATT from the term ∝ −εK1(εr)ψ′

T (z, r)
in ITT , Eq. (8), which for the hard short-distance wave function is larger and
somewhat enhances the transverse cross section σT and lowers σL/σT , see also
the discussion in [39].

6. NUCLEAR SATURATION EFFECTS: COHERENT DIFFRACTION

In the coherent diffractive production of vector mesons the target nucleus
remains in the ground state,

γ∗A → V A.

For heavy nuclei such that their radii are much larger than the dipole size and
the diffraction slope in the dipole-nucleon scattering, only the forward dipole-
nucleon scattering enters the calculation of the nuclear proˇle function. Com-
pared to the conventional derivation of the Glauber formulas for the nuclear
proˇle functions, there are little subtleties with the presence of the phase factor
exp [i/2(1 − 2z)(r∆)] in the color dipole factorization formula (4), but a careful
rederivation gives the nuclear diffractive amplitudes of the form

Afi = 2i

∫
d2b exp (−i∆b)〈Vf |Γ(b, r) exp

[
i

2
(1 − 2z)(r∆)

]
|γ∗

i 〉, (25)

where

Γ(b, r) = 1 − exp
[
−1

2
σ(r, 0)T (b)

]
(26)
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is the nuclear proˇle function and T (b) =
∫

dznA(b, z) is the standard nuclear
optical thickness at an impact parameter b.

A comparison with the free nucleon amplitude (4) shows that the nuclear
proˇle function Γ(b, r) can be regarded as the color dipole cross section per unit
area in the impact parameter space. The color dipole dependence of the overlap of
wave functions of the photon and vector meson and the calculation of expectation
values over the orientation of color dipoles, see Eqs. (14)Ä(16), does not change
from the free nucleon to the nuclear case. The r dependence of the integrands
changes, though.

Ref. 29 gives the detailed discussion of the reinterpretation of the nuclear
proˇle function in terms of the saturating nuclear gluon density [28, 30] and of
the limitations of such an interpretation for observables more complex than the
single particle spectra. For the purposes of our discussion it is sufˇcient to know
that in terms of the so-called nuclear saturation scale,

Q2
A(b) =

4π2

3
αS(Q2

A)G(Q2
A)T (b) ∝ A1/3 , (27)

the nuclear attenuation factor in (26) can be represented as

exp
[
−1

2
σ(r, 0)T (b)

]
= exp

[
− σ(r, 0)

σ(rA(b), 0)

]
≈ exp

[
−1

8
Q2

A(b)r2

]
, (28)

where σ(rA(b), 0) = 2/T (b) is an implicit deˇnition of rA(b), a useful approx-
imation is r2

A(b) ≈ 8/Q2
A(b). We denote by Q2

A the value of Q2
A(b) averaged

over centrality b, which is appropriate for typical DIS events. For estimates of
Q2

A for realistic nuclei see [29]. The new large scale Q2
A must be compared to

Q
2

of Eq. (3), or the scanning radius rS must be compared to the saturation
radius rA.

First, there is a trivial case of Q
2 	 Q2

A. In this case the scanning radius is
very small, r2

S 
 r2
A, so that

2Γ(b, r) = σ(r, 0)T (b), (29)

i.e., the nuclear attenuation effects can be neglected and the impulse approximation
is at work. Then the nuclear amplitude has precisely the same structure as the
free nucleon one,

A(A)
fi (∆) = A(N)

fi (∆)
∫

d2b exp (−ib∆)T (b) = A(N)
fi (∆)AGem(∆), (30)

apart from the overall factors A and Gem(∆) Å the charge form factor of a
nucleus.
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Much more interesting is the case of coherent diffractive DIS at Q2 
 Q2
A,

when the color dipoles in the photon have the dipole size r ∼ 1/Q 	 rA. It
is the regime of nuclear opacity and Γ(b, r) ≈ 1 independent of the dipole size.
When cast in the form

2Γ(b, r) = σ(rA(b), 0)T (b) (31)

and compared to (29), that can be interpreted as a saturation of color dipole
cross section per unit area in the impact parameter space. Then, repeating the
considerations leading to (19), one ˇnds the nuclear amplitude

A(A)
fi (∆) ∝ AQr2

Sσ(rA, 0)K0(aS)
∫ 1

0

dzz2(1 − z)2ψL(z, rS)
J1(RA∆)

RA∆
∝

∝ AQ

Q2
AQ

2

J1(RA∆)
RA∆

αS(Q2
A)G(x, Q2

A). (32)

Here RA is the nuclear radius. First, all the arguments of Sec. 2 for the dominance
by the contribution from r ∼ rS = aS/Q will be applicable but because of the
change of the r dependence of the integrand the scale aS will change to

aS |coh ≈ 1.

Second, for the same reason the common prefactor of all helicity amplitudes, r4
S ,

of Sec. 2 for the free nucleon target will change to r2
Sr2

A for diffraction off nuclei
in the saturation scale, i.e.,

1

Q
2

1

Q
2

∣∣∣∣∣
N

⇒ 1

Q
2

1
Q2

A

∣∣∣∣∣
A

. (33)

Third, the nuclear mass number dependence, A/Q2
A ∝ A2/3, corresponds to that

for elastic scattering off a black disc. Fourth, the ∆-dependence given for the
impulse approximation by the nuclear charge form factor Gem(∆) changes to the
familiar black disc form J1(RA∆)/RA∆.

We emphasize that although the presence of those nuclear form factors limits
the practical observation of coherent diffractive DIS to the momentum transfers
within the nuclear diffraction cone, ∆2

∼< R−2
A , and these small ∆ cause the

kinematical suppression of the helicity-�ip within the coherent cone, there is
no A-dependent nuclear suppression of helicity �ip even on a black nucleus.
The ˇnite, A-independent, renormalization of the relative magnitude of different
helicity amplitudes is possible, though, because of the change of the r dependence
of the integrands of helicity amplitudes and the resulting change of the scale aS

for the scanning radius from aS ≈ 3 for the free nucleon to the A-independent
aS ≈ 1 for the nuclear target.
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7. NUCLEAR SATURATION EFFECTS:
INCOHERENT/QUASIELASTIC DIFFRACTION

In the incoherent (quasielastic, quasifree) diffractive vector meson production,

γ∗A → V A∗,

one sums over all excitations and break-up of the target nucleus without produc-
tion of secondary particles. The process looks like a production off a quasifree
nucleon of the target subject to certain intranuclear distortions of the propagating
dipoles. The relevant multichannel formalism has been worked out in [40], the
generalization to the color dipole formalism for z ≈ 1/2 is found in [26, 27].
Here we notice that in the color dipole language, the calculation of the helicity
amplitudes will be exactly the same as for the free nucleon target but with the
extra attenuation factor of Eq. (28) in all the integrands, i.e., the incoherent
differential cross section equals

dσ(γ∗
i A → VfA∗)

d∆2 =
∫

d2bT (b)
dσqel

d∆2 , (34)

where dσqel/d∆2 = |A(qel)|2/16π and the helicity amplitudes of the quasielastic
production off a quasifree nucleon are given by

A(qel)
fi (x,∆) = i

∫ 1

0

dz

∫
d2rσ(r,∆) exp

[
−1

2
σ(r, 0)T (b)

]
×

× exp
[

i

2
(1 − 2z)(r∆)

]
Ifi(z, r). (35)

These results hold for the momentum transfer ∆ beyond the diffractive peak
for coherent diffraction off nucleus but within the diffraction cone for the free
nucleon reaction.

In the genuine hard regime of Q2 	 Q2
A, i.e., for r2

S 
 r2
A, the nuclear

attenuation can be neglected and one recovers the free nucleon cross section
times the number of nucleons A. In the opposite regime of strong saturation,

Q
2 
 Q2

A, the r dependence of the attenuation factor is stronger than that of the
photon wave functions K0,1(εr). Then, repeating the derivation of the scanning
radius in Sec. 2, one will ˇnd

r2
S ≈ 3

2
r2
A. (36)

The functional dependence of helicity amplitudes on the scanning radius rS

will be the same as for the free nucleon target with one exception. Namely, the
Bessel functions in the photon wave function shall enter with the argument

aS = εrS ≈
√

3Q

QA

 1. (37)
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In this limit

K0(aS) ≈ log
(QA

Q

)
(38)

which shows that some of the amplitudes will have a logarithmic enhancement,
whereas

K1(aS) ≈ QA

Q
(39)

is indicative of even stronger enhancement. However, the closer inspection of
the helicity-�ip amplitude ALT (14) shows that K1(aS) enters as a product
aSK1(aS) which is a smooth function at aS 
 1. The helicity-�ip amplitude
ATL of Eq. (14) exhibits only the weak logarithmic enhancement (38). The case
of the helicity-non-�ip ATT and double-�ip ATT ′ is a bit more subtle. Here one
encounters

−εK1(εrS)ψ′
T (z, rS) ∼ − 1

rS
ψ′

T (z, rS) (40)

which for the soft short-distance wave function can be estimated as

1
R2

V

ψT (z, rS), (41)

whereas for the hard Coulomb wave function one ˇnds an enhancement factor

QA

RC
ψT (z, rS). (42)

To summarize, strong nuclear absorption does not generate any special sup-
pression of the helicity-�ip amplitudes compared to the non-�ip ones. Fur-
thermore, the estimate (42) suggests even a possibility of an enhancement of
the double-�ip transitions depending on the hardness of the short-distance wave
function of the vector meson. Finally, this discussion shows that in the satura-
tion regime precisely the saturation scale Q2

A sets the hard factorization scale for
incoherent diffractive production. Namely, for Q2 
 Q2

A this amounts to the
substitution

1

Q
4

∣∣∣∣∣
N

⇒ 1
Q4

A

∣∣∣∣
A

(43)

in the common prefactor of all helicity amplitudes. Similarly, the diffraction slope
for the vector meson production will be the same as that for the free nucleon target
but taken for the hard scale QA.

Here we focused on the single incoherent scattering approximation. The
higher order incoherent interactions can readily be treated following the technique
of Ref. 40, they wouldn't change major conclusions on the interplay of the DIS

hard scales Q
2

and the saturation scale Q2
A.
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CONCLUSIONS

Our principal ˇnding is a lack of nuclear suppression of the helicity-�ip
phenomena in hard diffractive production off strongly absorbing nuclei, which
is in striking contrast to the familiar strong nuclear attenuation of the spin-orbit
interaction effects as predicted by the Glauber theory. The QCD mechanism be-
hind this ˇnding is that absorption only affects the color dipole-nucleus scattering
amplitude in which the s-channel helicity of the quark and antiquark is anyway
conserved exactly. The helicity �ip originates from the relativistic mismatch of
the sum of helicities of the quark and antiquark and the helicity of the vector
meson and photon. Within the color dipole approach we demonstrated how the
expansion of helicity amplitudes in powers of the scanning radius and satura-
tion radius changes from the free nucleon to coherent nuclear and to incoherent
(quasielastic) nuclear diffractive production.

The coherent and incoherent diffractive vector meson production off nu-
clei can be studied experimentally in the COMPASS experiment at CERN [41].
Whereas we are conˇdent in our predictions for perturbatively large saturation
scale Q2

A, the numerical estimates for the saturation scale give disappointingly
moderate Q2

A ∼ 1 GeV2. Nonetheless, the qualitative pattern of predicted changes
of the Q2 dependence of diffractive vector meson production from the free nu-
cleon to coherent nuclear and incoherent nuclear cases must persist even at mod-
erately large Q2

A.
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