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VECTOR MESON PHOTOPRODUCTION
AND PROBLEM OF GAUGE INVARIANCE

S. V. Goloskokov∗

Joint Institute for Nuclear Research, Dubna

We discuss the problem of gauge invariance of the vector meson photoproduction at small x
within the two-gluon exchange model. It is found that the gauge invariance is fulˇlled if one includes
the graphs with higher Fock states in the meson wave function. The obtained results are used to
estimate the amplitudes with longitudinal and transverse photon and vector meson polarization.
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Investigation of vector meson photoproduction at small x is a problem of
considerable interest. We are interested in the low-x region, where the predomi-
nant contribution is determined by the two-gluon exchange and the vector meson
is produced via the photon-two-gluon fusion. The factorization of diffractive
vector meson production with longitudinally polarized photons into the hard part
and parton distribution was shown in [1]. Thus, such processes, can be an excel-
lent tool to study the generalized parton distribution [2]. Moreover, they should
give important information on the vector meson wave function. The spin-density
matrix elements which were studied at DESY (see [3] and references therein)
should be sensitive to the vector meson wave function. To analyze spin effects in
the γ∗ → V transition, it is necessary to calculate the amplitude with transverse
polarization of a vector meson. For the light meson production, this transition
amplitude is not well deˇned because of the present end-point singularities [4].
One of the possible ways to regularize these end-point divergences is to include
the transverse quark motion, as it was done, e.g., in [5Ä8].

Unfortunately, such higher-twist effects can result in the loss of the gauge
invariance (GI) of the amplitude. In this report, we study the γ∗ → V transition
amplitude for different polarization of photon and vector meson at small x and
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check the GI of our results. The vector meson production can be described in
terms of the kinematic variables which are the following:

q2 = (L − L′)2 = −Q2, r2
P = (P − P ′)2 = t, xP =

q(P − P ′)
qP

, s = (q + P )2,

(1)
where L, L′ and P, P ′ are the initial and ˇnal lepton and proton momenta, respec-
tively; Q2 is the photon virtuality; rP is the momentum carried by the two-gluons;
xP is the part of proton momentum carried by the two-gluon system and s is
the photonÄproton energy squared. The vector meson is produced by the photon-
two-gluon fusion, and the momentum V = (q + rP ) is on the mass shell. The
xP variable which is equivalent to skewedness ζ is determined by

xP ∼ ζ ∼ M2
V + Q2 + |t|

s
. (2)

Within the two-gluon exchange model we calculate the L → L, T → T and
T → L amplitudes which are of importance in analyses of spin density matrix
elements. In calculations the k-dependent wave function [9] is used

Ψ̂V = g

[
( /V + MV ) /EV +

2
MV

/V /EV /K − 2
MV

( /V − MV )(EV K)
]

φV (k, τ). (3)

Here V is a vector meson momentum and MV is its mass; EV is a meson
polarization vector and K is a quark transverse momentum. The ˇrst term in
(3) represents the standard wave function of the vector meson. The leading twist
contribution to the longitudinal vector meson polarization is determined by the
MV /EV term in (3). The k-dependent terms of the wave function are essential
for the transverse amplitude of the light mesons. Wave function (3) has quite
a general form and can reproduce results of the most models [6Ä8]. The other
model for the wave function which has a structure similar to (3) was considered
in [10]. The GI of the vector meson production amplitude was discussed in [5,11].
It was found that the γ∗ → V transition amplitude at zero momentum transfer
should vanish as l2⊥ for l2⊥ → 0, where l⊥ is the transverse part of the gluon
momentum. The importance of the higher Fock states of the wave function in GI
of the vector meson production was shown in [11]. These results were obtained
in the two-gluon model exchange in the Feynman gauge.

The leading term of the amplitude of diffractive vector meson production
is mainly imaginary. The imaginary part of the amplitude can be written as an
integral over z and k⊥. The leading over s term of the γ∗ → V amplitude has
the form

TλV ,λγ = N

∫
dz

∫
dk2

⊥
Fg

ζ (ζ, t)φV (z, k2
⊥)Al2

λV ,λγ
(z, k2

⊥)(
k2
⊥ + Q̄2

) (
k2
⊥ + |t| + Q̄2

)2 , (4)
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where N is normalization; Q̄2 = m2
q + zz̄Q2, z̄ = 1− z and mq is a quark mass.

Generally, the numerator of the hard scattering amplitude AλV ,λγ can be written
as follows:

AλV ,λγ = A0
λV ,λγ

+ Al2

λV ,λγ
l2⊥. (5)

Only the second term in (5) obeys the GI and appears in (4). The imaginary part
of the vector meson production amplitude (4) depends on the generalized gluon
distribution Fg

ζ (X = ζ, . . .). It can be connected with the unintegrated gluon
distribution G through the integration over l⊥

Fg
ζ (ζ, t, k2

⊥+Q̄2+ |t|) =

l2⊥<k2
⊥+Q̄2+|t|∫
0

d2l⊥(l2⊥)
(l2⊥ + λ2)((l⊥ + r⊥)2 + λ2)

G(l2⊥, ζ, . . .).

(6)
Here r⊥ is the transverse part of the rP momentum; λ is some effective gluon
mass. The distribution Fg

0 (x, 0, q2
0) is normalized to (xg(x, q2

0)). The l2⊥ factor
in the numerator of (6) appears from the second GI term of (5).

Unfortunately, in the model with the higher twist effects like the transverse
quark motion, the sum of the graphs where gluons are coupled with the quarks in
the loop does not obey GI. Let us discuss this problem in detail for the L → L
amplitude. The GI term of the amplitude has the form

Al2

L,L = 4
s√
Q2

[
Q̄2 + k2

⊥(1 − 4zz̄) − 2mqMV zz̄
] (

Q̄2 + k2
⊥

)
. (7)

For the gauge-dependent term (GDT) we have

A0
L,L = 2

s√
Q2

[
k2
⊥(1 − 4zz̄) + mq (mq − 2MV zz̄)

] (
Q̄2 + k2

⊥
)2

. (8)

It can be seen that in the nonrelativistic limit z = z̄ = 1/2, mq = MV /2 the
GDT A0

L,L is equal to zero. For light quarks, when mq = 0, the A0
L,L term is

equal to zero at k2
⊥ = 0. At the same time, the A0

L,L term has additional power

of
(
Q̄2 + k2

⊥
)

that compensates one propagator in (4) with respect to the GI term
(7). As a result, the GDT A0

L,L of amplitude (4) is similar to the contribution
of the higher Fock state. Really, here one gluon is coupled directly to the wave
function and one quark propagator disappears. Let us suppose that we can write
the sum of GDT and the contribution of the higher Fock state in the form

ÃL,L ∼ A0
L,L + B(z, k2

⊥)Φqq̄g

(
1 + C

l2⊥
Q2

)
. (9)

Here by the C l2⊥/Q2 term in (9) we estimate the higher twist contributions in
the qq̄g term of the wave function. Let us suppose that the higher Fock term
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B(z, k2
⊥)Φqq̄g compensates the A0

L,L term in (9). In this case, the contribution

proportional to l2⊥ in ÃL,L can be estimated as

ÃL,L ∼ −C
l2⊥
Q2

A0
L,L. (10)

One can see that this GDT will be suppressed with respect to the GI contribution
(7) as a power of Q2. Really,

ÃL,L

l2⊥Al2
L,L

∝
m2

q + k2
⊥

Q2
, (11)

and we have GI of the model at sufˇciently high Q2.
Similar calculations have been done for the amplitude with transversely po-

larized photons and vector mesons. The GI term of this amplitude has the form

Al2

T,T ∼ 2s

MV
Q̄2

[
k2
⊥(1 + 4zz̄) + MV (2MV zz̄ − mq(1 − 4zz̄))

]
(eγ

⊥eV
⊥). (12)

For light meson production the resulting amplitude is proportional to k2
⊥. For

heavy mesons, the term proportional to M2
V appears, too. In the transverse case,

the GDT which does not vanish as l2⊥ in (5) takes place like for the longitudinal
amplitude. If we suppose the same compensation of GDT as in (9), we ˇnd

ÃT,T

l2⊥Al2
T,T

∝ zz̄. (13)

This means that in the transverse case we do not ˇnd a Q2 suppression of
additional GDT, but we have only its numerical suppression. Really, it can be
seen that the TT,T amplitude has additional divergence like 1/(zz̄) with respect
to the TL,L amplitude (4). In the ÃT,T GDT the additional zz̄ term in the
numerator cancels this divergence and leads to the numerical suppression of the
GDT contribution.

The GI term of the T → L transition amplitude is determined by

Al2

L,T ∼ 2s

MV
Q̄2

[
2M2

V zz̄ − k2
⊥(1 − 2z)

] (eγ
⊥r⊥)
MV

. (14)

It can be found that in this case we have the numerical suppression of a possible
GDT contribution like for the TT amplitude (13).

Thus, we have found that the GDT in the γ∗ → V transition amplitudes are
suppressed and one can use the GI terms (7), (12), and (14) to calculate spin-
dependent amplitudes of the vector meson production. The average momentum
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transfer, which is used in (4), (14) is about 〈|t|〉 ∼ 0.13 GeV2 [3]. The corre-
sponding amplitudes were calculated for the k-dependent wave function (3) with
the exponential form of φV (z, k2

⊥) [12]

φV (z, k2
⊥) = H exp

(
−k2

⊥b2
V

zz̄

)
. (15)

Here H is a normalization factor. Transverse momentum integration of (15) leads
to the asymptotic form of a meson distribution amplitude ΦAS

V = 6zz̄. The model
has one parameter bV which determines the average value of k2

⊥ and provides the
regularization of the integrals in the end-point region. In our calculation, we use
the value bV ∼ 0.65 GeV−1 which leads to a reasonable description of the σL

cross section for ρ production [12]. Then the average 〈k2
⊥〉 ∼ 0.6 GeV2.

Fig. 1. Q2 dependence of the ratio of helicity amplitudes |T11|/|T00| [3]. 1 Å our
calculation; 2 Å results of model [6]; 3, 4 Å models [7] and [8], respectively

Fig. 2. Q2 dependence of the ratio of helicity amplitudes |T01|/|T00| extracted from H1
and ZEUS measurements of the spin density matrix elements in [3]. Lines are the same
as in Fig. 1

The results of calculations for the ratio of helicity amplitudes |TTT |/|TLL| are
compared in Fig. 1 with the data extracted in [3] from H1 and ZEUS measurements
of the spin density matrix elements. It can be seen that experimental results are
reproduced by the model quite well. The model gives a reasonable description of
the ratio R = σL/σT . The results of the models [6Ä8] are shown in this graph,
too. We can see that all the models describe experimental data satisfactorily.

The comparison of model results for the |TLT |/|TLL| with experiment is
presented in Fig. 2. It can be seen that the TLT amplitude is more sensitive to the
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structure of the wave function. The best description of the |TLT |/|TLL| ratio is
found in our model and in the models [6,8]. Note that the experimental errors in
the spin-density matrix elements are quite large. This does not allow us to ˇnd
out which model of the wave function describes experiment data adequately.

In this report, the results of the model for the γ∗ → V transition amplitude
which considers the transverse quark motion have been analyzed. These higher
twist effects regularize the end-points singularities of the amplitudes but lead in the
models to violation of GI. Note that a similar problem with GI should take place
in the models [5,6]. It is found that the contribution of GDT in the model should
be small. This permits us to use the model results for the GI terms of the γ∗ → V
amplitudes for numerical calculations. Our results describe experimental data on
the ratio of helicity amplitudes quite well. Unfortunately, the experimental errors
in DESY experiments are large and all known models describe the experimental
results qualitatively. To obtain more information on the form of the vector meson
wave function it is important to reduce the experimental errors. We hope that the
precise analyses of spin density matrix elements can be done in the COMPASS
experiment at CERN.
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