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TOPOLOGICAL SUSCEPTIBILITY IN A NONLOCAL
CHIRAL QUARK MODEL

A. E. Dorokhov∗

Joint Institute for Nuclear Research, Dubna

The topological susceptibility is studied in the framework of a covariant chiral quark model with
nonlocal quarkÄquark interaction. The relation of the ˇrst moment of topological susceptibility χ′(0)
and the ®spin crisis¯ problem is brie�y discussed. It is shown, in particular, that one always gets the
inequality χ′(0) > χ′

OZI.

’µ¶µ²µ£¨Î¥¸± Ö ¢µ¸¶·¨¨³Î¨¢µ¸ÉÓ ¨§ÊÎ ¥É¸Ö ¢ · ³± Ì ±µ¢ ·¨ ´É´µ° ±¨· ²Ó´µ° ±¢ ·±µ¢µ°
³µ¤¥²¨ ¸ ´¥²µ± ²Ó´Ò³ ±¢ ·±-±¢ ·±µ¢Ò³ ¢§ ¨³µ¤¥°¸É¢¨¥³. Š· É±µ µ¡¸Ê¦¤ ¥É¸Ö ¸¢Ö§Ó ¥¥ ¶¥·¢µ£µ
³µ³¥´É  χ′(0) ¸ ¶·µ¡²¥³µ° ®¸¶¨´µ¢µ£µ ±·¨§¨¸ ¯. �µ± § ´µ, ¢ Î ¸É´µ¸É¨, ÎÉµ χ′(0) > χ′

OZI.

It is well known that due to UA (1) axial AdlerÄBellÄJackiw anomaly the
iso-singlet axial-vector current

J
(0)
µ5 =

∑
f

qfγµγ5qf (1)

is not conserved even in the chiral limit, and its divergence equals

∂µJ
(0)
µ5 (x) = 2NfQ5(x), (2)

where

Q5 (x) = (αs/8π)Ga
µν(x)G̃a

µν(x) (3)

is the topological charge density. The correlator of singlet currents is deˇned as

Π(0)
A,µν(q) = i

∫
d4x eiqx

〈
0

∣∣∣T {
J

(0)
µ5 (x)J (0)

ν5 (0)†
}∣∣∣ 0〉

=

=
(
qµqν − gµνq2

)
Π(0)

A,T (Q2) + qµqνΠ(0)
A,L(Q2). (4)
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In the chiral limit the longitudinal part of the correlator deˇnes the topological
susceptibility, i.e., the correlator of the topological charge densities, Q5(x),

χ(Q2) = i

∫
d4x eiqx〈0 |T {Q5(x)Q5(0)}| 0〉, (5)

with the relation (see, e.g., [1])

ΠA,0
L

(
Q2

)
=

(2Nf )2

Q2
χ(Q2). (6)

At high Q2, the operator product expansion (OPE) predicts [2]

χ
(
Q2 → ∞

)
= − αs

16π

〈αs

π

(
Ga

µν

)2
〉

+ O(Q−2), (7)

where the perturbative contribution has been subtracted.
At low Q2, χ

(
Q2

)
is represented as a sum of contributions coming purely

from QCD and from (π, η)-mesonic resonances [1][
χ

(
Q2

)]
full QCD

=
mumd

mu + md
〈uu〉 − χ′(0)Q2−

− f2
π

4
Q2

[(
mu − md

mu + md

)2
m2

π

Q2 + m2
π

+
1
3

m2
η

Q2 + m2
η

]
+ O(Q4), (8)

where the ˇrst term has been found in [3] and its chiral limit follows the Crewther
theorem [4] maintaining that χ (0) = 0 in any theory where at least one massless
quark exists.

The estimates of χ′(0) existing in the literature are rather controversial:

χ′(0) = (48 ± 6 MeV)2 [5], χ′(0) = (26 ± 4 MeV)2 [6]. (9)

Both estimates were found within the QCD sum rules method. These values of
the ˇrst moment of topological susceptibility have to be compared with the value
obtained in the OkuboÄZweigÄIizuka (OZI) case, the case free of axial anomaly,
which is

χ′
OZI (0) =

f2
π

2Nf
≈ (39 MeV)2 .

The principal point is that smallness of χ′(0) is the base for the one of
the mechanisms explaining ®proton spin crisis¯ problem [6]. Indeed, within this
approach it is assumed that the �avor singlet axial charge a0(Q2) is proportional
to the product of the ˇrst moment of the QCD topological susceptibility taken at
scale Q2 and an RG-invariant coupling of ®OZI Goldstone boson¯ with nucleon

a0(Q2) =
1

2mN
6
√

χ′(0)Γ̂η0NN . (10)
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This mechanism has been, however, criticized in [8]. All this makes important
further model estimates of χ′(0).

Within the chiral quark model∗ [9] based on the nonlocal structure of instan-
ton QCD vacuum [11] the full iso-singlet axial-vector vertex becomes [10]

Γ0
µ5(k, q, k′ = k + q) =

[
γµ − (k + k′)µ

(√
M(k′) −

√
M(k)

)2

k′2 − k2
−

− qµ

q2
2
√

M(k′)M(k)
G′

G

1 − GJPP (q2)
1 − G′JPP (q2)

]
γ5, (11)

where M(k) is dynamical, momentum-dependent quark mass; G and G′ are
4-quark couplings in iso-triplet and iso-singlet channels, correspondingly, and

JPP (q2)δab =

= − i

M2
q

∫
d4k

(2π)4
M(k)M(k + q)Tr

[
S(k)γ5τ

aS(k + q)γ5τ
b
]
. (12)

In (12) the (inverse) quark propagator is S−1(p) = p̂ − M(p). Because of axial
anomaly the singlet current does not contain massless pole, since as q2 → 0 one
has:

1 − GJPP (q2)
−q2

= G
f2

π

M2
q

, (13)

where fπ is the pion weak decay constant and Mq = M(0). The cancellation
of the massless pole occurs with the help of the gap equation. Instead, the
current develops a pole at the η′-meson mass∗∗, 1 − G′JPP (q2 = −m2

η′) = 0,
thus solving the UA(1) problem. The vertex (11) satisˇes the anomalous WardÄ
Takahashi identity:

qµΓ(0)
µ5 (k, q, k′ = k + q) =

= γ5S
−1
F (k′) + S−1

F (k)γ5 + γ5
2
√

M(k′)M(k)
1 − G′JPP (q2)

(
1 − G′

G

)
, (14)

where the last term is due to the anomaly. Thus, the QCD pseudoscalar gluonium
operator is interpolated by the pseudoscalar effective quark ˇeld operator with
coefˇcient expressed in terms of dynamical quark mass. This is a consequence

∗The explicit calculations below are performed in SU(2) sector of the model.
∗∗See previous footnote.
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of the fact that in the effective quark model the connection between quark and
integrated gluon degrees of freedom is ˇxed by the gap equation.

For completeness we display the vertex corresponding to the conserved iso-
triplet axial-vector current

Γa
µ5(k, q, k′ = k + q) = T a

[
γµ − qµ

M(k′) + M(k)
q2

−

−
(

k + k′ − q
k′2 − k2

q2

)
µ

(√
M(k′) −

√
M(k)

)2

k′2 − k2

]
γ5 (15)

satisfying the axial WardÄTakahashi identity

qµΓa
µ5(k, q, k′) = γ5S

−1
F (k′)T a + T aS−1

F (k)γ5. (16)

The axial-vector vertex (15) has a kinematical pole at q2 = 0, a property that
follows from the spontaneous breaking of the chiral symmetry in the limit of
massless u and d quarks. Evidently, this pole corresponds to the massless Gold-
stone pion.

The quark matrix elements of currents corresponding to vertices (11) and
(15) can be expressed in terms of real form factors〈

p′s′
∣∣∣A(0,3)

µ5 (0)
∣∣∣ ps

〉
=

= us′(p′)T (0,3)
[
γµγ5G

(0,3)
1 (q2) − qµγ5G

(0,3)
2 (q2)

]
us(p), (17)

where T (0,3) = (1, τ3/2), us(p) are spinor solutions of the Dirac equation for
free quarks, and the currents are deˇned as

A
(0,3)
µ5 (q) =

∫
d4k

(2π)4
ψ†(k)Γ(0,3)

µ5 (k, q, k′ = k + q)ψ(k + q), (18)

with ψ(k) being the solutions of the Dirac equation[
k̂ − M(k)

]
ψ(k) = 0. (19)

By using the Dirac equation one gets

qµA
(3)
µ5 (q2) = 0,

qµA
(0)
µ5 (q2) =

(1 − G′/G)
1 − G′JPP (q2)

∫
d4k

(2π)4
2
√

M(k′)M(k)ψ†(k)γ5ψ(k + q).
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Comparison with (17) leads to the relations for form factors (taken in the local
limit M(k) ≈ Mq)

G
(3)
1 (q2) = 1, G

(3)
2 (q2) = 2Mq/q2, G

(0)
1 (0) = 1, G

(0)
2 (0) = 0

resembling the results for a model of free massive quarks.
Full model calculations lead to the following expression for the topological

susceptibility [10]

− (2Nf)2χ(Q2) =

= 2Nf(1 − G′

G
)

{
Q2JπA(Q2)

[
1 − G′JAP (Q2)

M2
q

+
1

1 − G′JPP (Q2)

]
+

+ M2
q JPP (Q2)

(
1 − G′

M2
q

JAP (Q2)
) [

GJAP (Q2)
M2

q

− G − G′

G [1 − G′JPP (Q2)]

]
+

+
G

M2
q

[
4NcNf

∫
d4k

(2π)4
M(k)
D(k)

[
M(k) −

√
M(k + Q)M(k)

]]2
}

, (20)

where D(k) = k2 + M2(k) and the integrals JAP (q2) and JπA(q2) are deˇned
by

JAP (q2) = 4NcNf

∫
d4l

(2π)4
M(l)
D(l)

√
M(l + q)M(l),

JπA(q2)δab =
qµ

q2

∫
d4k

(2π)4
Tr

[
S(k)Γ̃5a

µ (k, q, k + q)S(k + q)Γa
π(k + q, k)

]
.

At large Q2 one obtains the power-like behavior consistent with the OPE predic-
tion (7), namely

− (2Nf)2 χ
(
Q2 → ∞

)
=

2NfM2
q

G

(
1 − G′

G

)
. (21)

At zero momentum the topological susceptibility is zero

χ(0) = 0, (22)

in accordance with the Crewther theorem. For the ˇrst moment of the topological
susceptibility we obtain [10]

χ′(0) =
1

2Nf

{
f2

π

(
2 − G′

G

)
+

(
1 − G′

G

)2

J ′
AP (0)

}
. (23)
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If the OZI rule were exact in the �avor singlet channel and there were no
anomaly, then one would have G′ = G and χ′(0) = χ′

OZI(0). But in reality
one has strong attraction in the iso-triplet channel and strong repulsion due to
the anomaly in the iso-singlet channel that means that one has always inequality
G′ < G. The second, negative term in (23) is numerically suppressed with respect
to the ˇrst, positive term, J ′

AP (0)/f2
π ≈ −0.24. Thus, from the existence of the

anomaly we always have inequality

χ′(0) > χ′
OZI(0), (24)

and it is impossible to get anomalously small χ′(0). At this point we also men-
tion other alternative approaches to the spin crisis problem based on screening of

Topological susceptibility versus Q2 pre-
dicted by the model with G′ = 0.1G,
Eq. (20)

topological charge in the QCD vacuum
[12,13] (see for review, e.g., [14]).

The constants G and G′ are ˇxed
with the help of the meson spectrum. Ap-
proximately one has G′ ≈ 0.1G. As a
proˇle for the dynamical quark mass we
take a Gaussian form

M(u) = Mq exp (−2u/Λ2) (25)

with the model parameters Mq =
0.3 GeV, Λ = 1.085 GeV. Then the esti-
mate for the ˇrst moment of the topolog-
ical susceptibility is [10]

χ′(0) = (50 MeV)2 . (26)

To get the above result we have taken Nf = 3 in Eq. (23). We can see that
the model gives the value of χ′(0) which is close to the estimate of Ref. 5. The
in�uence of the current quark masses on χ′(0) is expected to be small and the
contribution of π and η mesons may be found from Eq. (8)

χ′
π,η(0) ≈ (28 MeV)2 .

The model prediction for the topological susceptibility is shown in the Figure.
In the region of small and intermediate momenta our result is quantitatively close
to the prediction of the QCD sum rules with the instanton effects included [1].

In the present talk we analyzed the correlation function of the singlet axial-
vector currents within an effective nonlocal chiral quark model. By consider-
ing this correlator the topological susceptibility was found as a function of the
Euclidean-momentum and its ˇrst moment was estimated. We demonstrated that
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in realistic situation one always gets the inequality χ′(0) > χ′
OZI(0), thus discard-

ing the mechanism explaining the ®spin crisis¯ based on anomalous smallness of
χ′(0). In addition, the fulˇllment of the Crewther theorem was demonstrated. It
would be interesting to verify the predictions given by modern lattice simulations.
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