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The density matrix formalism and the positivity conditions for general multiple-spin asymmetries
are reviewed, taking as an example the case p̄ + p → Λ̄ + Λ in which one, two or three spins
are analyzed. Some aspects related to quantum information and entangled states are discussed.
Some positivity domains for pairs and triplets of spin parameters are displayed, together with the
experimental points. The case of inclusive reaction is also treated, taking as an example the spin- and
transverse momentum-dependent quark distributions.
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µ¶·¥¤¥²¥´´µ¸É¨ ¢ ¸· ¢´¥´¨¨ ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨. ’ ±¦¥ µ¡¸Ê¦¤ ÕÉ¸Ö ¨´±²Õ§¨¢´Ò¥
·¥ ±Í¨¨ ´  ¶·¨³¥·¥ ±¢ ·±µ¢ÒÌ · ¸¶·¥¤¥²¥´¨°, § ¢¨¸ÖÐ¨Ì µÉ ¸¶¨´  ¨ ¶µ¶¥·¥Î´µ£µ ¨³¶Ê²Ó¸ .

INTRODUCTION

The single- or multiple-spin asymmetries, which can be measured using polar-
ized beams, polarized targets or analyzing the ˇnal-particle polarizations, provide
important information about the elementary processes in particle physics. These
spin observables may be related by equalities coming from the symmetries of the
processes. Besides, they satisfy inequalities expressing the positivity of a Grand
Density Matrix, R, which describes all possible polarized cross sections. The pos-
itivity of R insures that the cross section is positive for any initial and ˇnal spin
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states, including entangled ones. The resulting inequalities provide consistency
checks of experimental data, constrain any parametrization of polarized structure
functions and, in the future, may be applied to Monte-Carlo event generators with
spins.

The positivity conditions are also interesting from the point of view of the
quantum information carried by spins. The information about the scattering
amplitudes is maximal when all the independent spin observables are measured.
There are inequalities that deˇne the allowed domain and are saturated in this
case. Conversely, there is a loss of information, in other words an increase of
entropy, when some particles are not analyzed or in the case of inclusive reactions.
In this case, most of the inequalities may be nonsaturated.

There is an abundant literature on positivity conditions. Some key papers
of the 60's are still relevant. See, for instance, Ref. 1 for a survey and some
references. The subject has been revisited in recent months due to the results on
the reaction

p̄ + p → Λ̄ + Λ, (1)

measured by the PS185 collaboration at CERN [2]. The polarization of the
outgoing hyperon or antihyperon is revealed by its weak decay. Since a polarized
target was used in the last runs, observables up to rank 3 can be accessed.

This contribution is a short introduction to the density matrix formalism and
derivation of the positivity conditions. In Secs. 1Ä4 we will consider the case
of exclusive reactions, illustrating it by reaction (1). We will also present in
Sec. 5 some results of an alternative ®empirical¯ method by which the positivity
domains of a subset of observables can be very easily discovered.

Finally, we will consider the case of inclusive reactions and obtain the in-
equalities which must be satisˇed by the spin-dependent quark distribution, con-
sidered as the probability of the elementary splitting process

nucleon → quark + X (2)

for a given longitudinal momentum ratio x = pL(quark)/pL(nucleon).

1. THE SPIN OBSERVABLES

The fully polarized differential cross section of (1), more generally A+B →
C + D, where A, B, C, and D have spin 1/2, can be expressed as

dσ

dΩ
(SA,SB,SC ,SD) =

1
4

(
dσ

dΩ

)
unpol

Cλµντ Sλ
A Sµ

B Sν
C Sτ

D. (3)

The S 's are the polarization vectors of pure spin states (|S| = 1). In the right-
hand side they are promoted to 4-vectors with S0 = 1. The indices λ, µ, ν, τ , run
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from 0 to 3, whereas latin indices i, j, k, l, take the values 1, 2, 3, or x, y, z. A
summation is understood over each repeated index. Sx, Sy, Sz are measured in
a triad of unit vectors {x̂, ŷ, ẑ} which may differ from one particle to the other.
Cλµντ are the correlation parameters. For example, C0000 ≡ 1, Cxy00 ≡ Axy is
an initial double-spin asymmetry, C000y is the spontaneous polarization of particle
D along ŷ, C0y0y ≡ Dyy is a spin transmission coefˇcient from B to D and
C00xy ≡ Cxy is a ˇnal spin correlation.

Equation (3) also applies to the case of incomplete initial polarizations, re-
placing the unit vector SA by PA with |PA| � 1 and the same for B. The ˇnal
polarizations generally depend on the initial ones, e.g.,

PC ≡ 〈SC〉 =
(

1
4

dσ

dΩ

)−1

unpol

∇SC

dσ

dΩ
(PA,PB,SC ;SD = 0). (4)

2. THE DENSITY MATRIX FORMALISM

Let {|α〉}, with α = ±1/2, be the basic spin states of particle A, {|β〉} those
of B, etc. The quantiˇcation axis ẑ may differ from one particle to the other. It
can be the helicity axis p/|p| or the transversity axis, n̂ = pA ×pC / |pA ×pC |.
We write the spin-dependent amplitude of (1) as

(〈Λ̄, γ| ⊗ 〈Λ, δ|) M (|p̄, α〉 ⊗ |p, β〉) ≡ 〈γδ|M |αβ〉. (5)

For each spin-1/2 particle we have the single-spin density matrix

ρ(P) ≡ 1
2
(1 + P · σ) (6)

For partial polarizations of A and B, but deˇnite spins of C and D, cross section
(3) becomes

dσ

dΩ
(PA,PB ,SC ,SD) = trace{Mρ(PA) ⊗ ρ(PB)M †ρ(SC) ⊗ ρ(SD)}. (7)

The ˇnal two-spin density matrix is

ρC,D =
Mρ(PA) ⊗ ρ(PB)M †

trace{MM †} . (8)

It describes the individual polarizations of C and D and their spin correlations.
The polarization of the C is obtained by taking the partial trace over the D spin
variable:

ρC = traceD ρC,D, i.e., 〈γ|ρC |γ′〉 =
∑

δ

〈γδ|ρC,D|γ′δ〉. (9)
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The lack of information about a system can be measured by various estima-
tors, among which the entropy S = −trace{ρ log ρ}, and the rank of ρ. Pure
states (maximum information) have zero entropy and unit rank. The entropy
(resp. rank) of the initial state is the sum (resp. product) of the single-particle en-
tropies (resp. ranks). The rank of the ˇnal density matrix (8) is less than or equal
to the initial one. Therefore, complete initial polarizations (|P(p)| = |P(p̄)| = 1)
lead to a ˇnal pure state. It does not imply that the individual polarization of the
Λ̄, obtained from (9), is complete, because the Λ̄Λ state may be entangled [3].

Let us now generalize the density matrix in order to describe in an uniˇed way
the spin correlations inside the ˇnal state and the transmission of polarizations
(i.e., of spin information) between the initial and the ˇnal particles. For this
purpose we consider the ˇctitious crossed reaction of (1),

|vacuum〉 → p + p̄ + Λ̄ + Λ. (10)

We restrict this crossing to spin and �avor variables (we do not consider the
momenta). An initial particle ket becomes a ˇnal anti-particle bra of opposite
spin, for instance,

|p, β〉 → 〈p̄,−β| ≡ 〈p, β|CPT, (11)

where C, P , and T are the charge conjugation, parity and time-reversal oper-
ators (it does not matter if reaction (10) does not conserve energy-momentum).
Accordingly, we can rewrite the spin-dependent amplitude (5) as

〈γ, δ|M |α, β〉 = 〈−α,−β, γ, δ|M crossed|vacuum〉 ≡ 〈−α,−β, γ, δ|Ψ〉. (12)

Thus we produce a one-to-one correspondence between the 2-particle transition
operator M and a 4-particle state vector |Ψ〉, which we will call the Grand Wave
Function. To shorten the equations, we will introduce the notation ᾱ ≡ −α,
β̄ ≡ −β, etc. For explicit values of α, we will use the notations u and d (for
®up¯ and ®down¯, like for quark isospin states) instead of +1/2 and −1/2.
Therefore (11) will be written as

|u〉 → 〈ū|, |d〉 → 〈d̄|. (13)

The Grand Density Matrix, R, which describes all possible spin correlations in
reaction (1), is deˇned by

〈ᾱβ̄γδ|R|ᾱ′β̄′γ′δ′〉 ≡ 〈γδ|M |αβ〉〈α′β′|M †|γ′δ′〉 = 〈ᾱβ̄γδ|Ψ〉〈Ψ|ᾱ′β̄′γ′δ′〉.
(14)

Like ordinary density matrices, it is hermitian and semipositive. Its trace is given
by

trace (R) = 〈Ψ|Ψ〉 = trace (MM †), (15)
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which is 22 times the unpolarized cross section. Dividing by (15), we can rescale
R to unit trace, as a standard density matrix. As can be seen from (14), R
describes a pure state: R = |Ψ〉〈Ψ|, and is therefore of rank one. This is a
particular property of exclusive reactions.

Expression (8) for the ˇnal density matrix can be rewritten as

ρ(Λ̄, Λ) =
traceᾱ,β̄{R[ρt(p) ⊗ ρt(p̄)]}

trace (R)
, (16)

where ρt(p) is the transpose of ρ(p). This transposition is explained in the
Appendix.

The Grand Density Matrix can be expressed in terms of the correlation
parameters and vice versa through

R = 2−4 Cλµντ σt
λ(A) ⊗ σt

µ(B) ⊗ σν(C) ⊗ στ (D), (17)

Cλµντ = trace {R
[
σt

λ(A) ⊗ σt
µ(B) ⊗ σν(C) ⊗ στ (D)

]
}, (18)

where σ0 is the unit 2 × 2 matrix.

3. REDUCTION OF THE DENSITY MATRIX

It is difˇcult to have polarized antiprotons. Therefore the practical spin
observables in reaction (1) concern only p, Λ, and Λ̄. They are encoded in

the subdensity matrix R(p, Λ̄, Λ) = traceᾱ{ρt(p̄)R(p̄, p, Λ̄, Λ)} with ρ(p̄) =
1
2
I ,

more explicitly

〈β̄γδ|R(p, Λ̄, Λ)|β̄′γ′δ′〉 =
∑
ᾱ

〈ᾱβ̄γδ|R(p̄, p, Λ̄, Λ)|ᾱβ̄′γ′δ′〉. (19)

This density matrix has dimension 8× 8, which is still rather large to write down
the positivity conditions (the original one was 16×16). It has a nonzero entropy,
brought by the p̄, and rank 2 because ᾱ takes two values in (19).

An important simpliˇcation occurs due to the symmetry of reaction (1) under
the re�ection Π about the scattering plane, which reverses the spin components
parallel to this plane (it is the ®B-symmetry¯ mentioned in [4]). Using the
transversity basis, where ẑ ≡ n̂, the scattering matrix M is even under σx → −σx,
σy → −σy, and amplitude (5) vanishes when an odd number of transversities are
negative. Accordingly, the Grand Wave Function Ψ has no components like
|ūūud〉 and the original 4-particle density matrix R is reduced to 8 × 8.

For the same reason, the density matrices restricted to fewer particles like
R(p, Λ̄, Λ), ρ(Λ̄, Λ) or ρ(Λ) do not mix states with even and odd numbers of d's.
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Thus R(p, Λ̄, Λ) is block-diagonal, being the direct sum of two 4 × 4 matrices,
one corresponding to ᾱ = ū, the other to ᾱ = d̄ in Eq. (19). Each of these
submatrices is of rank one. Similarly, ρ(Λ̄, Λ) is block-diagonal in two 2 × 2
submatrices of rank 2, one corresponding to (ᾱ, β̄) = (ū, ū) or (d̄, d̄), the other
to (ᾱ, β̄) = (ū, d̄) or (d̄, ū) in Eq. (16). Finally, ρ(Λ) is diagonal, which means
that the Λ polarization is normal to the scattering plane.

4. THE POSITIVITY CONDITIONS

The positivity of the Grand Density Matrix comes from the very general, but
nontrivial requirement that the probability of any process is positive. It is not
sufˇcient to require that cross section (3) is positive for any set of polarizations
{SA,SB,SC ,SD}. Let us suppose, for instance, that (3) possesses the factor
(1 + SC · SD). This factor is positive or null for any SC and SD. However, it
corresponds to a ˇnal density matrix of the form ρC,D = [1 + σi

C ⊗ σi
D]/4 which

is nonpositive. For example, for the singlet spin state, we have σi
C ⊗ σi

D = −3.
The probability that reaction (1) produces a (Λ̄, Λ) system in the singlet state
would be negative! Note that the singlet state is entangled. This shows that
positivity has to be tested with nonentangled and entangled states.

Similarly, a factor (1 − SA · SC), which leads to the complete spin reversal
SC = −SA according to (4), gives a nonpositive R and is therefore forbidden.
As an example, let us consider the splitting π → q + q̄ followed by a quarkÄ
hadron scattering q + h → q′ + h′ where the q̄ is spectator. The intermediate spin
correlation is in (1−Sq ·Sq̄). If there were a complete spin reversal Sq = −Sq′ in
the quarkÄhadron scattering, it would lead to a ˇnal correlation in (1 + Sq′ · Sq̄),
which is forbidden as explained before.

The general positivity conditions are as follows: a N × N hermitian matrix
ρ is positive (respectively semipositive) if all its eigenvalues ri are positive (resp.
positive or null). Let us consider the symmetric functions of the eigenvalues

Σ1 =
∑

i

ri, Σ2 =
∑
i<j

rirj , Σ3 =
∑

i<j<k

rirjrk, . . . , ΣN = r1r2 · · · rn.

(20)
Σn is the sum of the on-diagonal subdeterminants of order n (when a submatrix
has its diagonal on the diagonal of ρ, we call it ®on-diagonal¯). A necessary
and sufˇcient condition of positivity, or semipositivity with N0 vanishing eigen-
values, is

Σn > 0 for n � N − N0, Σn = 0 for N − N0 < n � N. (21)

If ρ is (semi-)positive, each of its on-diagonal subdeterminants is (null or) posi-
tive. This may provide inequalities simpler than, but redundant with (21), in the
same manner as |x2| < 1 is redundant with |x2| + |y2| < 1.
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The matrix ρ depends on N2 real parameters. They can be Re (ρii′ ) for
i � i′ and Im(ρii′) for i < i′, or the correlation parameters, which are linear
combinations of them. In the N2-dimensional parameter space, the domain of
positivity of ρ is a convex half-cone. Its intersection with the hyperplane Σ1 ≡
trace (ρ) = 1 is a ˇnite convex domain D. The boundary of D is a sheet of the
hypersurface ΣN ≡ det (ρ) = 0. It is a (N2 −2)-dimensional manifold of degree
N . On this boundary, ρ is only semipositive. The other conditions, Σn � 0 for
n = 2, . . . , N − 1 deˇne domains which include D. These ®auxiliary¯ conditions
serve to eliminate the other sheets of the hypersurface ΣN = 0. The hypersurface
where Σn, or any on-diagonal subdeterminant, vanishes is externally tangent to
D.

As we have seen, for an exclusive reaction the Grand Density Matrix R is of
rank one. Therefore all the Σn's are vanishing for n � 2 and all the positivity
constraints are saturated. It can be shown that R is on a ®corner¯ of D. On
the contrary, when much information is lost through nondetected or nonanalyzed
particles, R is ®deep inside¯ D.

5. EMPIRICAL APPROACH

The search for inequalities is straightforward using the density matrix method,
but does not reveal at once the shape of the allowed domains. Also, when one
writes the conditions on the density matrix, one gets in general a combination of
several spin observables, and thus one has to make appropriate combinations of
inequalities to obtain constraints on two or three given observables of interest.

To circumvent this difˇculty, the following method was used in Ref. 5. The
real and imaginary parts of the amplitudes were chosen randomly, and the spin
observables were computed using their explicit expression in terms of amplitudes.
This detects which pairs or triplets of observables fulˇll inequalities, and then
these inequalities can be derived by straightforward calculus. The case of pairs of
observables is extensively discussed in Ref. 5, and preliminary results on triplets
presented at the LEAP2003 conference [6]. A sample of the results is displayed
in Figs. 1 and 2.

Notice that only a few types of inequalities are encountered. For pairs of
observables, say X and Y , each being typically restricted to [−1, +1], one gets
the following possibilities:

• nothing: X and Y might reach any point of the square [−1, +1]2,
• the disk X2 + Y 2 � 1,
• a triangle 4Y 2 � (1 + X)2.
For triplets of observables, say X , Y , and Z, the following situations are

obtained:
• nothing, any point of cube [−1, +1]3 is allowed,
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• a sphere X2 + Y 2 + Y 2 � 1,
• a cone (1 + Z)2 � 4X2 + 4Y 2,
• a cubic of the type X2 + Y 2 + Z2 ± XY Z � 1.

Fig. 1. Pair of observables restricted to the unit disk (a Å here polarization and Cll

are shown) or to a triangle (b Å here Cnn and Clm are shown). The small grey dots
correspond to hypothetical, randomly generated, amplitudes; and the larger dots, to actual
data

The latter case is the most interesting, since the domain is restricted in space
of three observables, but each projection covers the whole square, i.e., there is
no restriction for any pair of observables within (X, Y, Z). The border has the
shape of a twisted cushion.

6. INCLUSIVE CASE: THE SPIN-DEPENDENT PARTON DENSITIES

As an example of inclusive reaction, let us consider now the elementary
process (2), which we rewrite for ˇxed momenta and spin vectors as

N(p,SN ) → q(k,Sq) + X, (22)

with k = xp + kT . The probability of (22) is the spin- and kT -dependent quark
density in the nucleon. All what we will say below also applies to the quark
fragmentation q → baryon + X , only commuting q and N , or to any inclusive
reaction of the type

A ↑ +B → C ↑ +X (23)
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already treated by Doncel and M	endez [4]. Thus the problem was solved long
ago. One can also relate the inequalities in (23) to those of the crossed reaction [7]

A1 ↑ +A2 ↑→ A3 + X (24)

by the correspondence S(A2) ↔ −S(C).
For a given spectator state X , the matrix element in spin Hilbert space can

be written as 〈β|MX |α〉. Like in (10), (11), we consider the ˇctitious crossed
process

X̄ → N̄(p,−SN ) + q(k,Sq), (25)

where |X̄〉 ≡ CPT |X〉. Note that we have also moved the spectator system X
to the initial state. The Grand Wave Function and Grand Density Matrix are then
deˇned by

〈ᾱβ|ΨX〉 = 〈β|MX |α〉, (26)

R =
∑
X

|ΨX〉〈ΨX |. (27)

Thus R corresponds to a statistical mixture. Its rank r is the dimension of the
subspace spanned by the vectors |ΨX〉 in the (N̄q) spin Hilbert space. It cannot
exceed the number of possible quantum states of the spectator system. In general
r > 1, which means that some information is lost, taken away by the spectator
partons.

Fig. 2. Triplet of observables restricted to the inner volume of a cone (a) or of a cubic
(b). The small dots correspond to randomly generated amplitudes; the larger ones (partly
hidden), to actual data
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In our case R has dimension 4 × 4 and depends on a piori 16 correlation
parameters Cµν through the analog of (17). However, like in the 2 → 2 reaction
(1), the plane deˇned by p and kT is a symmetry plane. It is therefore convenient
to use the transversity basis with ẑ normal to this plane, instead of the helicity
basis (unless one integrates over kT ). In this basis R is even under σx → −σx,
σy → −σy and the only nonvanishing coefˇcients are C00 ≡ 1, C0z , Cz0, Czz ,
Cxx, Cxy, Cyx, and Cyy. If we take x̂ along p these parameters are respectively
proportional to f1, −h⊥

1 , f⊥
1T , h1 − h⊥

1T , g1, h⊥
1L, g1T and h1 + h⊥

1T of Ref. 8,
all kinematical factors in pT /M or p2

T /(2M2) removed. However the following
inequalities are independent of the choice of the x and y axes in the production
plane. Let us introduce

1 ± Czz

2
≡ D±

nn,
C0z ± Cz0

2
≡ A±

n ,
Cxx ± Cyy

2
≡ U±,

Cxy ± Cyx

2
≡ V ±.

(28)
Putting the |N̄q〉 basic spin states in the order {|ūu〉, |ūd〉, |d̄u〉, |d̄d〉}, one has

R =
1
2




D+
nn + A+

n 0 0 U+ − iV +

0 D−
nn − A−

n U− + iV + 0
0 U− − iV + D−

nn + A−
n 0

U+ + iV − 0 0 D+
nn − A+

n


 . (29)

As expected from the symmetry about the (x, y) plane, R is block-diagonal in
two rank-2 submatrices, which obey the separate positivity conditions:

(D±
nn)2 � (A±

n )2 + (U±)2 + (V ∓)2 (30)

and
D±

nn � 0, i.e., |Czz | ≡ |Dnn| � 1, (31)

which agrees with the results of Bacchetta et al. [8] and of Ref. 4.
If we integrate over kT , the only surviving parameters are C00 ≡ 1, Cxx ≡

∆q(x)q(x), and Cyy = Czz ≡ δq(x)q(x), where q(x), ∆q(x), and δq(x) are the
quark number, quark helicity and quark transversity [9, 10] distributions. One
obtains the Soffer inequality [11]:

2δq(x) � q(x) + ∆q(x). (32)

In a simple model of quark distribution where X just consists in a scalar
diquark, all inequalities (30), (31) of the kT -dependent case are saturated. Indeed,
such an object has no spin to carry quantum information away; a fully polarized
nucleon delivers a fully polarized quark [10]. This is no more the case if we
integrate over the degree of freedom kT . Nevertheless, the Soffer bound keeps
saturated.
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7. CONCLUSIONS AND OUTLOOK

The formalism developed in the 60's remains extremely powerful to analyze
the consistency of spin observables. However, it needs some freshening, and new
methods are needed to quickly derive the inequalities within a subset of accessible
observables. We hope to have worked in this direction.

One of the basic tools, already used in [4], is a ˇctitious crossing which
gathers all the particles on the same side. It is expressed as a partial matrix
transposition. Usual crossing also links different physical reactions, just reversing
the polarization vectors.

Particle spin physics also touches the more general theory of quantum infor-
mation, in particular with the concept of entanglement. The fact that the particles
considered here have deˇnite momenta is not essential. The inequalities obtained
in particle physics could also apply to ®gates¯ between other kinds of quantum
information channels like optical ˇbers.

In a forthcoming article, we shall provide more details about the positivity
conditions and their physical interpretation. In particular, we will show explicitly
that the method of the Grand Density Matrix gives the same constraints on
observables that the empirical approach based on randomly generated amplitudes.

Appendix
EFFECT OF CROSSING ON THE OPERATORS ACTING

ON AN INITIAL PARTICLE

Together with (11), we have 〈α′| → |ᾱ′〉,

|α〉〈α′| → |ᾱ′〉〈ᾱ|, (A.1)

and for a linear combination of such elementary operators

∑
α,α′

|α〉Aαα′ 〈α′| →
∑
α,α′

|ᾱ′〉Aαα′〈ᾱ|. (A.2)

Here we have assumed that crossing acts linearly on operators. Indeed (11)
is the product of two antilinear operations: (i) applying CPT, (ii) changing a
ket into a bra. Equation (A.2) amounts to the matrix transposition A → At,
provided we choose the same ordering for the crossed basis vectors {|ū〉, |d̄〉}
as in the initial basis vectors {|u〉, |d〉} (the ordering in magnetic number sz is
reversed: it becomes {| − 1/2〉, | + 1/2〉}). For a single-spin matrix density, the
transformation is

ρ =
1
2
(1 + P · σ) → ρt = ρ† =

1
2
(1 + P̄ · σ), (A.3)
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where P̄ = −P due to spin reversal, and σi = −σt
i are the Pauli matrices for

the {2̄} representation of SU(2) (which is not often used, due to the equivalence
{2} ↔ {2̄}).
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