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Experimental results from HERA on diffractive vector-meson production and their theoretical
interpretation within microscopic QCD are reviewed with an emphasis on the BFKL color dipole and
kT -factorization approaches.
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1. INTRODUCTION

1.1. The Motivation. The Deep Inelastic Scattering (DIS) of leptons off
hadrons is interpreted as a knockout of one of the charged partons of the target by
hard Rutherford scattering followed by a complete shattering of the target nucleon
or nucleus. One of the major discoveries at the electronÄproton collider HERA
at DESY was the observation that the large rapidity gap events, in which the
target nucleon emerges in the ˇnal state with a loss of a very small fraction of its
energy-momentum, constitute a substantial and approximately scaling fraction of
high-energy/small-x DIS of electrons and positrons on protons [1, 2]. Although
the major features of such events and their cross sections have been correctly
predicted within perturbative QCD [3], the very existence of large rapidity gap
events for nuclear targets is nearly paradoxical: as is well known, the deposition
of dozen MeV energy is already sufˇcient to break up the target nucleus, still
the theory predicts that for a sufˇciently heavy nucleus and for the Bjorken

∗On leave from Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow,
Russia.
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variable x ∼< 10−3 the fraction of rapidity-gap DIS with retention of the target
nucleus in exactly the ground state must be exactly 50 per cent [4] and there is a
direct evidence for that from the E665 Fermilab experiment [5]. The discovery
of rapidity gaps at HERA has led to a renaissance of the physics of diffractive
scattering in an entirely new domain, in which the large momentum transfer from
leptons provides a hard scale. It also vindicated the early suggestions of Bjorken
to look for hard diffraction in hadronic interactions [6] and stimulated a revival
of the rapidity gap physics with hard triggers Å large-p⊥ jets, W± bosons,
excitation of heavy 
avors Å at the protonÄantiproton collider Tevatron (for the
recent review see [7Ä9] and references therein). Whether the existence of such
a hard scale makes the diffractive DIS tractable within the perturbative QCD or
not has been a subject of intense theoretical and experimental research during the
past decade or so. A good summary of the pre-1997 status of the vector-meson
production physics is found in the monograph of Crittenden [10], the pre-1999
status of theoretical ideas on diffractive DIS was reviewed by Hebecker [11]), for
the general introduction into the physics of diffractive scattering see the recent
books of Barone and Predazzi [12] and Forshaw and Ross [13].

The subject of this review is a special case of diffractive DIS Å the ex-
clusive production of vector mesons. One disclaimer is in order: we focus on
the high-energy and/or very small-x regime dominated by the pQCD Pomeron
exchange and, facing the size limitations, don't discuss very interesting low-
to-moderate energy data from the HERMES collaboration which are strongly
affected by the nonvacuum exchanges (for the review and references see [14]).
The past decade, the topic of high-energy diffraction has been dominated by new
fundamental data coming from the ZEUS and H1 experiments at HERA. The
interest in the exclusive electroproduction of vector mesons is multifold. From
the purely experimental point of view, the HERA experiments offer a prime
example of diffractive scattering at energies much higher than were attainable
before. Furthermore, the self-analyzing decays of spin-1 vector mesons allow
one to unravel the mechanism of diffraction in full complexity. Speciˇcally, the
HERA experiments for the ˇrst time gave an unequivocal proof that the s-channel
helicity nonconservation persists at the highest available energies [15,16]. On the
theoretical side, starting from the seminal papers on the color dipole approach by
Kopeliovich, Zakharov et al. [17Ä21] and the related momentum space approach
by Ryskin [22] and Brodsky et al. [23], it has been understood that the exclusive
diffractive production of vector mesons in DIS is a genuinely hard phenomenon,
whose major features can be described by pQCD. This can be understood in terms
of the shrinkage of the photon with the increase of the hard scale [17,18,24], and
because of this shrinkage the diffractive production probes the hadronic properties
of the photon and vector mesons at short distances. One of the direct manifesta-
tions of this shrinkage of the photon is a decrease of the diffraction slope with
the increase of the hard scale [25,26], which has for the ˇrst time been observed
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at HERA [27, 28], for the earlier evidence from the NMC experiment see [29].
Finally, the presence of the hard scale enables one to test the modern theoretical
ideas on the mechanism of the t-channel exchange with vacuum quantum num-
bers, i.e., the QCD Pomeron. The way the QCD Pomeron is probed in diffractive
vector-meson production is similar to, but still different from, that in the conven-
tional inclusive DIS. For instance, large-t diffractive production of vector mesons
probes the QCD Pomeron in a hard regime [30] inaccessible in inclusive DIS.

1.2. From Inclusive DIS to DVCS to Exclusive Vector-Meson Production.
To this end recall the basics of inclusive DIS of leptons off nucleons

e(k) p(P ) → e(k′) X.

To the lowest order in QED it is treated in the one-photon exchange approxima-
tion. The leptons serve as a source of virtual photons of energy ν and virtuality

Fig. 1. The kinematics of DIS

Q2 = −q2 (the scattering kinematics and the
4-momenta are shown in Fig. 1), and the fun-
damental process is the virtual photoabsorp-
tion

γ∗(Q2) p(P ) → X.

In the fully inclusive DIS only the scattered
lepton is detected and one sums over all the
hadronic ˇnal states X . Then the observed
inclusive DIS cross section is proportional to
the absorptive part of the forward, at vanish-
ing momentum transfer Δ, virtual Compton
scattering amplitude Tμν(ν, Q2

f , Q2
in,Δ = 0)

shown in Fig. 2
γ∗(Q2) p(P ) → γ∗(Q2) p(P ), (1)

and, invoking the optical theorem, can be cast in the form of the 
ux of virtual
transverse (T ) and scalar (longitudinal) (L) photons times the total photoabsorp-
tion cross sections σT and σL.

Fig. 2. The unitarity relation between DIS and forward Compton scattering

Now take a closer look at the Compton scattering amplitude as a func-
tion of the virtuality of the incident (in) and ˇnal (f) state photons, Q2

in and
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Q2
f , respectively. In fully inclusive DIS this amplitude is accessible only for

Q2
in = Q2

f = Q2 and at vanishing momentum transfer Δ = 0. When continued

analytically to Q2
f = 0 the amplitude Tμν(ν, 0, Q2) will describe the exclusive

real photon production often referred to as the Deeply Virtual Compton Scattering
(DVCS) [31]

γ∗(Q2) p(P ) → γ p(P ′), (2)

while the further continuation to Q2
f = −m2

V gives the amplitude of the exclusive
vector-meson production

γ∗(Q2) p(P ) → V (v) p(P ′). (3)

Both DVCS and exclusive vector-meson production can be studied experimen-
tally by selecting a special ˇnal state X = γ p(P ′) or X = V p(P ′), respectively.

Fig. 3. Schematic diagram of exclusive
vector-meson production in ep interaction,
ep → eV p

Furthermore, both reactions can be
studied at the nonvanishing momentum
transfer Δ, i.e., t = −Δ2 �= 0, for the
deˇnition of the kinematical variables
see Fig. 3.

The point that inclusive DIS,
DVCS, and exclusive vector-meson
production are described by the same
analytic function taken at different val-
ues of Q2

f suggests from the very out-
set the complementary probe of high
energy pQCD in three reactions (1),
(2), and (3). For instance, in the
forward, Δ = 0, Compton scattering
probed in inclusive DIS, the helicity

ip amplitudes vanish for the kinemat-
ical reason. In contrast to that, the
inclusive vector-meson production at
Δ �= 0 enables one to determine the

full set of helicity-conserving and helicity-
ip amplitudes and investigate the spin
properties of hard (generalized) Compton scattering to full complexity.

1.3. When Is Vector-Meson Production Dominated by Small Color Dipole
Interactions? The intimate relationship between inclusive DIS, DVCS, and ex-
clusive vector-meson production is still better seen in the lightcone color dipole
picture of small-x DIS which illustrates nicely the interplay of the scattering
mechanism and the (partonic) structure of particles. It is needless to recall the
outstanding role of the photonÄmatter interactions in the conception and formation
of the quantum mechanics and quantum ˇeld theory. In the early years of the
nonrelativistic quantum mechanics the photon has been regarded as structureless
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and the focus of the theory was on spectral lines, photo-effect and the related
phenomena. With the advent of the ˇrst quantum ˇeld theory Å the Quantum
Electro Dynamics (QED) Å it has become clear that the fundamental transition

γ ⇔ e+e− (4)

between bare particles gives rise to a concept of a dressed physical photon that
contains all bare states to which it couples via (4) and still higher order QED
processes. At low energies, the virtual vacuum polarization gives rise to the well-
known UehlingÄSerber radiative correction to the Coulomb potential; at higher
energies the familiar BetheÄHeitler e+e− pair production in the Coulomb ˇeld
of a nucleus can be viewed as materialization of the e+e− component of the
physical photon (see Bjorken, Kogut, Soper [32]). The Compton scattering which
is behind inclusive DIS at very small values of the Bjorken variable x can be
viewed as (i) the transition of the virtual photon to the qq̄ pair (the color dipole)
at a large distance

l ∼ 1
mNx

, (5)

upstream the target (here mN is the nucleon mass), (ii) interaction of the color
dipole with the target nucleon, and (iii) the projection of the scattered qq̄ onto
the virtual photon (Fig. 4, a). Notice the very special choice of the stage (iii): if
one lets the scattered color dipole materialize as hadrons, one ends up with the
large rapidity gap DIS Å the diffractive excitation γ∗ p(P ) → p(P ′)X . Here
the production of continuum hadronic states X is modeled by the continuum qq̄

Fig. 4. The uniˇed picture of Compton scattering, diffraction excitation of the photon into
hadronic continuum states and into the diffractive vector-meson

states (Fig. 4, b), whereas the projection of the scattered qq̄ color dipole onto the
vector-meson gives the exclusive (diffractive, elastic) vector-meson production,
and projection onto the real photon gives the so-called DVCS (Fig. 4, c). The
amplitude of the transition of the photon into the qq̄ state, alias the qq̄ wave
function of the photon, and the amplitude of scattering the color dipole off the
target are the universal ingredients in all the processes. The wave function of the
virtual photon is well known [24], and different processes probe the color dipole
scattering amplitude at different dipole sizes [18].

For instance, irrespective of the photon's virtuality Q2, the inclusive diffrac-
tive DIS into the continuum states is controlled for the most part by interaction
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of large color dipoles [3]. The scaling violations in the proton structure function
(SF), ∂F2p(x, Q2)/∂ log Q2, come from small color dipoles of size

r2 ∼ 4
Q2 + 4m2

q

, (6)

whereas the absolute value of F2p(x, Q2) receives contributions from large to
small dipole sizes [33,34],

4
Q2 + 4m2

q

< r2 <
1

m2
q

. (7)

In contrast to the inclusive DIS and inclusive diffractive DIS, the amplitude of the
exclusive vector-meson production is dominated by the contribution from small
dipoles of size [18,19]

r ∼ rS ≈ 6√
Q2 + m2

V

, (8)

often referred to as the scanning radius (formula (8) is applicable only if rS is
smaller than the typical hadron size). This exclusive vector-meson production
offers a cleaner environment for testing transition from soft to hard scattering.

The color dipole formalism is entirely equivalent to the BFKL formal-
ism of the (transverse) momentum-dependent gluon distributions in the leading
log 1/x approximation [35Ä37]. Within this formalism, often referred to as the
k⊥ factorization, Eq. (8) suggests that the vector-meson production probes the
gluon density of the target at pQCD hard scale [19Ä22,38]

Q
2 ≈ 1

4
(Q2 + m2

V ) =
9
r2
S

, (9)

which is large for heavy quarkonia (J/Ψ, Υ, . . .) or for large Q2. In the hard
regime of small scanning radius, the vector-meson production amplitudes will only
depend on the wave function of vector mesons at a vanishing quarkÄantiquark
separation in the two-dimensional transverse, or impact-parameter, space. There
still remains a certain sensitivity to the separation of quarks in the longitudinal
direction, which nonrelativistically is conjugate to the longitudinal Fermi motion
of the quark and antiquark in the vector meson or the partition of the longitudinal
momentum of the vector meson between the quark and antiquark in the relativistic
lightcone language. As a result, the vector-meson production amplitude is not
calculable from the ˇrst principles of pQCD, still the sensitivity to the soft input
can to a large extent be constrained by the decay V → e+e−, which proceeds via
the short-distance annihilation qq̄ → e+e−. Then Eq. (8) suggests that, upon fac-
toring out the emerging V → e+e− decay amplitude, the vector-meson production
amplitudes will depend on the hard scale Q in a universal manner. Finally, the
energy dependence of the vector-meson production amplitude offers a more local
probe of the properties of the hard pQCD Pomeron than the inclusive DIS.



DIFFRACTIVE VECTOR-MESON PRODUCTION AT HERA: FROM SOFT TO HARD QCD 11

1.4. The Scale for the Onset of Hard Regime. Before opening the is-
sue of hard production of vector mesons, one needs to deˇne the typical soft
production. Here a brief comment on the venerable Vector Dominance Model
(VDM) is in order. Because of the obvious dominance by the vector-meson
pole contribution, the point that at Q2

f = −m2
V the amplitude of the production

of the timelike virtual photon γ∗(Q2
f ) will be proportional to the appropriate

vector-meson production amplitude times the γ∗(−m2
V )V transition amplitude,

is a tautology. Experimentally, the timelike photons are produced in the e+e−

annihilation and the γ∗(−m2
V )V transition amplitudes are measured at the e+e−

colliders and, of course, in the decay V0 → e+e−. The assumption that the
ground state vector-meson pole contribution dominates the photoproduction am-
plitudes, and the γ∗(Q2

f )V transition amplitude does not vary substantially from

the vector-meson pole Q2
f = −m2

V down to Q2
f = 0, is the basis of the very

successful VDM as formulated by Sakurai [39], Gell-Mann, Zachariasen, Scharp,
and Wagner [40, 41] (for the comprehensive review of foundations and tests of
the VDM, see Bauer et al. [42]).

From the color dipole point of view, the success of the VDM in real photo-
production derives from the proximity of the distribution of color dipoles qf q̄f in
the ground state vector mesons and in the real photon. So, the qf q̄f component
of the physical photon can be approximated by the corresponding vector meson
(quarkonium) and the amplitude of interaction of the color dipole with the nu-
cleon can be approximated by the vector mesonÄnucleon scattering amplitude, for

Fig. 5. The VDM amplitude for the
vector-meson photoproduction

an illustration see Fig. 5. From the naive quark
model viewpoint, the ρ meson is the hyperˇne
partner of the π meson and the 2-dimensional
charge radius, Rπ, of the π± sets the relevant
scale.

One comes to the same conclusion from
the experimental observation that to a very
good accuracy the t dependence of elastic πN
scattering, real Compton scattering γp → γp
and real photoptoduction γp → ρp, is the same [42,43]. Indeed, within the VDM
which is a very good approximation for real photons, the differential cross sec-
tions of the latter two processes are proportional to the differential cross section
of elastic ρN sacttering. Then the equal t dependence of the πN and ρN elastic
scattering entails an equality of the radii of the ρ meson.

Experimentally, the charge form factor of the pion is well described by the
VDM ρ-pole formula and [44,45]

〈r2
π〉1/2 ≈ 0.55 fm ≈ 2

mρ
. (10)
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The onset of the hard regime in diffractive vector-meson production requires
that the scanning radius rS is smaller than any other hadronic scale. First place,
one needs r2

S 	 〈r2
ρ〉 ≈ 〈r2

π〉, i.e.,

Q2 
 5
4
m2

ρ ≈ 1 GeV2. (11)

The corrections in the small parameter rS/〈r2
V 〉1/2 depend on the wave func-

tion (WF) of the vector meson. With the soft, Gaussian, wave function, ψV (r) ∼
exp (−r2/〈r2

V 〉), in order for the WF-dependent corrections not to exceed

∼< (20−30)% one needs Q2
∼> (2−4) GeV2. For the hard, Coulomb-like, wave

functions, ψV (r) ∼ exp (−r/〈r2
V 〉1/2), a still higher Q2

∼> 10 GeV2 is needed for
a similar insensitivity to the shape of the wave function, for the related discussion
of the onset of pQCD see [46]. Even for the heavy J/Ψ the scanning radius at
Q2 = 0 is large,

rs ≈ 6
mc

∼ 〈r2
J/Ψ〉1/2 ≈ 0.4 fm (12)

(for the charmonium parameters see [47Ä49]), so that for the onset of the short-
distance regime insensitive to the shape of the wave function of the J/Ψ one needs
Q2

∼> m2
J/Ψ. In the realistic QCD there is still another scale Å the propagation

radius for perturbative gluons which is small, Rc ≈ (0.2−0.3) fm (for the lattice
QCD evaluations of Rc see [50], for the origin of Rc in the instanton models of
QCD vacuum see [51], the analysis of heavy quarkonia decays is found in [52]).
The color dipole cross section is of true pQCD origin only for dipoles r ∼< Rc,
i.e., the full pQCD description of diffractive vector mesons requires rS ∼< Rc, i.e.,

Q2
∼> Q2

pQCD =
36
R2

c

≈ (20−30) GeV2. (13)

One must not be discouraged, though: the r dependence of the dipole cross section
does not change any dramatically from the pure pQCD domain of r ∼< Rc to the
nonperturbative domain of r ∼> Rc, and the fundamental concept of the scanning
radius remains viable up to rs ∼< 1 fm, see also the discussion in Subsubsec. 3.3.2.

The large momentum transfer, |t| 
 1 GeV2, is still another way to probe
the structure of the photon and vector meson at short distances, r ∼ 1/

√
|t| 


1 GeV−1. It is generally believed [46,53] that |t| supersedes Q
2

as a hard scale if

|t| ∼> Q
2
. The caveats of t as large scale and of single BFKL Pomeron exchange

dominance will be discussed in more detail in Subsec. 4.11.
1.5. The Structure of the Review. In this review we focus on the onset of

hard pQCD regime in exclusive vector-meson production at HERA. The presen-
tation of the experimental data and of theoretical ideas goes in parallel, and an
intimate connection between the vector-meson production and the inclusive DIS
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will be repeatedly underlined. For this reason the presentation of the theoretical
ideas on vector-meson production will be heavily biased towards the color dipole
picture and its momentum-space counterpart Å the so-called k⊥ factorization.

The brief description of the H1 and ZEUS detectors, the kinematics of DIS
and of the vector-meson production, the event selection, the deˇnition of ma-
jor observables and of the spin density matrix of virtual photons is presented
in Sec. 2. The subject of Sec. 3 is an overview of basic theoretical ideas on
the vector-meson production. Here we discuss brie
y the Regge theory of the
soft photon and hadron interactions, the QCD approach to the vacuum exchange
(the Pomeron), the 
avor dependence, the connection between the vector-meson
production and the leptonic decay of vector mesons, the origin of s-channel he-
licity nonconservation (SCHNC) and the exclusiveÄinclusive duality connection
between inclusive diffractive DIS and vector-meson production. We also intro-
duce the color dipole approach to DIS and vector-meson production and explain
how the shrinkage of virtual photons makes the vector-meson production pQCD
tractable. The uniˇed microscopic QCD approach to small-x DIS and diffractive
vector-meson production Å the k⊥-factorization approach, which is equivalent
to the color dipole approach, Å is presented in more detail in Sec. 4. Here we
discuss both the small-t production within the diffraction cone and major ideas
on large-t proton dissociative reaction. This section can be skipped in the ˇrst
reading, but is essential for understanding the status of theoretical calculations of
the vector-meson production.

In Sec. 5 we start the presentation of the physics results with the helicity
structure of the vector-meson production. This includes the deˇnition of the spin
observables, an introduction into the important subject of the s-channel helic-
ity nonconservation (SCHNC) and the comparison of the experimental data on
the spin density matrix of produced vector mesons with the theoretical expec-
tations from the color-dipole/k⊥-factorization approach∗. In Sec. 6 we discuss
the Q2 dependence of the vector-meson production cross sections as well as
the longitudinal-to-transverse cross-sections ratios RV = σL/σT . We put spe-
cial emphasis on the 
avor dependence of cross sections, emphasize an impor-
tance of (Q2 + m2

V ) as the hard pQCD scale and comment on the sensitivity of
RV = σL/σT to the short-distance wave function of vector mesons. In Sec. 7 we
review the experimental data on the energy dependence of the cross sections and
its theoretical interpretation in terms of the Pomeron exchange. We show how the
change of the energy dependence from light to heavy 
avors and from photopro-
duction to DIS is controlled by (Q2+m2

V ) as the hard pQCD scale. We comment
on tricky points in comparison of hard scales and energy dependence in inclusive

∗Throughout this review, the numerical results shown for the k⊥ factorization are either taken
from the PhD thesis [54] or performed specially for this review [55].
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DIS and diffractive vector-meson production and on the impact of interplay of the
scanning radius rS and the position of the node of the radial wave function for the
Ψ(2S) production cross section. The focus of Sec. 8 is on the t dependence of
the cross sections, both in the low-t and high-t regimes. The discussion of low-t
data centres on the Q2, mV , and W dependence of the slope of diffraction cone.
The recurrent theme is a universality of diffraction slopes as a function of the
scanning radius and/or (Q2 +m2

V ) as the hard pQCD scale. The properties of the
Pomeron trajectory αIP (t) extracted from the vector-meson production data are
discussed in detail: the experimentally observed shrinkage of the diffraction cone
for the J/Ψ production gives a strong evidence for αIP (t) which decreases with t
approximately linearly at |t| ∼< 1 GeV2, but then starts rising up to αIP (t) ∼ 1.3
in the hard regime of large |t|. Finally, in Sec. 9, we summarize the principal
ˇndings from HERA experiments on diffractive vector-meson production and list
open issues in the pQCD interpretation of these data.

It is important to mention here that not all currently available HERA data are
always shown in each plot where they may belong to. This is because sometimes
the published plots from H1, ZEUS and other authors are used without any mod-
iˇcations. This is especially valid for the ®preliminary¯ H1 and ZEUS plots, that
have been shown to the conferences and are not yet submitted in the form of ®of-
ˇcial¯ papers. Such plots are just taken as they are. If for some compilation and
ˇgures only very recent data are used it is explained in the correspondent caption.

2. THE EXPERIMENTAL OVERVIEW

2.1. HERA. HERA (Hadron Electron Ring Anlage) is the world's ˇrst leptonÄ
proton collider located at the Deutsches Elektronen Synchrotron (DESY) site in
Hamburg, Germany (see, e. g., [56] and references therein). The HERA ring
has a circumference of about 6.3 km with two separated synchrotron rings for
electrons (positrons) and protons. It runs 10Ä30 m below ground level and has
four experimental areas. In two of them the beams are made to collide to provide
ep interactions for the H1 and ZEUS experiments. The remaining two areas are
used by the ˇxed target experiments: HERMES [57], which scatters longitudinally
polarized electrons off stationary polarized targets, and HERA-B [58, 59], which

investigated CP violation in the B0B
0

system by scattering beam halo protons
off wire targets (was shut down in 2000). HERA was commissioned in 1991
with the ˇrst ep collision observed by H1 and ZEUS in the spring 1992. A major
HERA upgrade took place during 2000Ä2002 break. A signiˇcant luminosity
increase should be achieved by stronger focusing of both the electron and the
proton beams, see Table 1 where the design and achieved HERA values, as well
as the values of HERA after upgrade, are summarized. Further information about
HERA luminosity upgrade can be found in [60,61].
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Table 1. HERA parameters

HERA parameters Design 2000 Design after upgrade

p/e beam energy, GeV 820/30 920/27.5 920/30
p/e beam current, mA 160/58 >100/>50 140/58
Number of bunches proton/electron 210 180/189 180/189
Time between crossings, ns 96
Proton β function x/y, m 10/1 7/0.5 2.45/0.18
Electron β function x/y, m 2/0.7 1/0.7 0.63/0.26
Speciˇc luminosity, cm−2 · s−1 · mA−2 3.4 · 1029 8 · 1029 1.6 · 1030

Luminosity, cm−2 · s−1 1.5 · 1031 2 · 1031 7 · 1031

2.2. The Detectors H1 and ZEUS. The H1 and ZEUS are general purpose de-
tectors with nearly hermetic calorimetric coverage and a large forward-backward
asymmetry to accommodate the boost of the ep centre-of-mass in the direction of
the proton beam.

Fig. 6. The H1 detector. The main components are: 1, 7, 11 Å beam, compensating and
muon toroid magnets; 2 Å central tracking detector; 3 Å forward tracking and transition
radiators; 4, 5 Å liquid argon calorimeter; 6 Å superconducting coil; 9 Å muon chambers;
12, 13 Å warm electromagnetic and plug calorimeters
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The H1 and ZEUS detectors are described in detail elsewhere [62, 63]. The
detectors are shown in Figs. 6, 7. The main difference between the H1 and
ZEUS detectors is the choice of the calorimetry. In the H1 case the main
liquid argon calorimeter with different tracking detectors inside is surrounded
by a large diameter superconducting solenoid thus minimizing the amount of
inactive material in the path of the particles between the interaction point and
the calorimeter. In the ZEUS case only tracking chambers are placed inside a
superconducting solenoidal magnet, surrounded by a uranium-scintillator sampling
calorimeter with equal response to the electromagnetic and hadronic components.
Both detectors are surrounded by muon chambers. Some of the components most
relevant for the vector-meson analysis are outlined below.

Fig. 7. The ZEUS detector. The main components are: VXD Å vertex detector, after
2000 upgrade silicon microvertex detector; CTD Å central tracking detector; FDET Å
forward detector; RTD Å rear tracking detector; F/RMUON Å forward/rear muon cham-
bers; BMUOI/O Å barrel muon inner/outer chambers; F/B/RCAL Å forward/barrel/real
calorimeters; BAC Å backing calorimeter

2.2.1. Tracking Detectors. Charged particles are measured both for H1 and
ZEUS by the central tracking detectors operating in magnetic ˇeld of 1.15 and
1.43 T, respectively. Both trackers are build mainly of drift, jet, and proportional
chambers. The part closest to the beam pipe in H1 case uses silicon detectors
(Central Silicon Tracker). During 2000Ä2001 shutdown ZEUS has also installed
a Silicon Micro Vertex Detector that should signiˇcantly improve the resolution
of the tracking system and the vertex reconstruction.

The polar angle coverage is 15 < θ < 164(165)◦ for H1(ZEUS), correspond-
ingly. The relative transverse-momentum resolution is σ(pT )/pT ≈ 0.006pT
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with pT in GeV for both experiments. Charged particles in the forward direc-
tion are detected in the forward tracking detector covering the polar angle range
7 < θ < 25◦ and 7 < θ < 28◦ for the H1 and ZEUS, respectively, the backward
part (172 < θ < 176◦) is covered by the backward silicon tracker, BST in the
H1, and by the Small Rear Tracking Detector in the ZEUS cases.

Charged tracks measured by the tracking system are used to reconstruct the
interaction vertex for each event.

2.2.2. Calorimetry. The tracking detectors of H1 are surrounded by a liquid
argon calorimeter (LAr, 4 < θ < 154◦, σ/E : 0.12/

√
E and 0.50/

√
E for elec-

tromagnetic and hadronic showers, correspondingly, E in GeV) and a scintillating
ˇber calorimeter (spaghetti calorimeter, SpaCal, 153 < θ < 178◦, 0.075/

√
E for

electromagnetic showers).
The central tracking detector of ZEUS is placed inside of a thin supercon-

ducting coil. Surrounding the solenoid is the high-resolution uranium-scintillator
calorimeter (CAL) which covers the angular range 2.6 < θ < 176.2◦ with equal
response to the electromagnetic and hadronic components and with energy resolu-
tion of 0.18/

√
E and 0.35/

√
E for the electromagnetic and hadronic components,

correspondingly.
In 1998Ä2000 a Forward Plug Calorimeter (FPC, lead-scintillator sandwich

calorimeter [64]) was installed in the 20 × 20 cm beam hole of the forward
part of the CAL with only a small hole of radius 3.15 cm in the centre to
accommodate the beam pipe. It extended the pseudorapidity coverage of the
forward calorimeter from η < 4.0 to η < 5.0. A similar device Å Beam Pipe
Calorimeter (BPC) Å was installed in the rear region of the ZEUS detector,
294 cm away from the nominal ep interaction point, mainly to measure the lepton
scattered at very small angle. Both these calorimeters were removed during
2000Ä2001 shutdown because of the changed beam-pipe geometry for the HERA
luminosity upgrade.

2.2.3. Muon Detectors. The H1 muon system consists of an instrumented
iron return yoke (Central Muon Detector, CMD, 4 < θ < 171◦) and a Forward
Muon Detector (FMD, 3 < θ < 17◦).

The ZEUS muon system covers the polar angles between 10 < θ < 171◦, in
addition the forward part has additional drift chambers for high-momentum muon
reconstruction for polar angles between 6 and 30◦.

2.2.4. Forward Detectors and Proton Taggers. Both H1 and ZEUS have very
forward detectors, placed along the beam-line in the direction of the proton beam,
20Ä90 m away from the nominal interaction point.

Forward Proton Spectrometer (FPS in H1) and Leading Proton Spectrometer
(LPS in ZEUS) consist of movable ®Roman Pots¯ forming together with the
magnets of HERA a kind of magnetic spectrometer. Scattered protons with a
different energy and/or angle compared to the nominal beam protons are separated
from the beam and are detected at appropriate positions.
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Also in the proton direction experiments have placed simple scintillation
counters (5.15 m and 23Ä24 m from the nominal interaction point in the ZEUS
case, ˇve stations between 9 and 92 m in the H1 case) that are used as Proton
Remnant Taggers (PRT). These taggers cover very high region of pseudorapidity
(e. g., 4.3 < η < 5.8 for ZEUS) and are used to tag the events where the proton
dissociates.

2.2.5. Luminosity Detectors and Electron Taggers. The luminosity is de-
termined from the rate of the BetheÄHeitler bremsstrahlung process ep → eγp,
where the high-energy photon is detected in a lead-scintillator calorimeter (LUMI)
located at Z = −107 m in the HERA tunnel in the ZEUS case or by a crystal
Cherenkov calorimeter (PD) located at Z = −103 m in the H1 case.

In the lepton direction the experiments have Photoproduction Taggers (PT) at
8 and 44 m from the nominal interaction point for ZEUS, Electron Taggers (ET)
in the H1 case. They detect leptons scattered under very small angle (less than
few mrads). The leptons measured in the PT (ET) are used to tag photoproduction
events, thus signiˇcantly reducing the background.

2.3. Kinematics and Cross Sections. 2.3.1. Kinematics of DIS. Because of
the small electromagnetic coupling αem ≈ 1/137, the deep inelastic scattering
of leptons off protons is treated in the one-photon exchange approximation. The
generic diagram for DIS e(k) p(P ) → e(k′) X is shown in Fig. 1. The relevant
kinematic variables are:

• Q2 = −q2 = −(k − k′)2, the negative squared four-momentum of the
virtual photon;

• W 2 = (q +P )2 = 2mpν +m2
p −Q2, the squared centre-of-mass energy of

the photonÄproton system;
• y = (P · q)/(P · k), the fraction of the positron energy transferred to the

photon in the proton rest frame.
• x = Q2/2(P · q), the Bjorken variable, which in the parton model interpre-

tation of DIS has a meaning of the fraction of the proton's lightcone momentum
carried by the struck charged parton.

2.3.2. The Flux and Polarization of Photons. The amplitude of DIS equals

T (e(k) p(P ) → e(k′) X) =
4παem

Q2
〈e(k′)|lμ|e(k)〉gμν〈X |Jν |p(P )〉, (14)

where lμ and Jμ stand for the electromagnetic current of leptons and hadrons.
The leptons serve as a source of photons and the physical process is the virtual
photoabsorption

γ∗(q)p(P ) → X.

The virtual photons have three polarization states: the two spacelike transverse
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ones with helicities λγ∗ = ±1,

e(±) = − 1√
2
(±ex + iey) e±iΦ (15)

and the timelike scalar state (often misnamed the longitudinal one, hereafter we
follow this tradition)

eμ(L) = −
√

Q2

(Pq)2 + P 2Q2

[
Pμ +

(Pq)
Q2

qμ

]
.

For the purpose of future convenience, here we choose the z axis along the
photon's 3-momentum, the x axis in the γp → V p reaction plane, and Φ is the
azimuthal angle between the reaction and the (e, e′) scattering planes (for more
details see Subsec. 5.1 below). The complete set includes still another spacelike
vector

eμ(S) =
1√
Q2

qμ.

Making use of the expansion

gμν = e∗μ(L)eν(L) − e∗μ(+)eν(+) − e∗μ(−)eν(−) − e∗μ(S)eν(S),

and of the current conservation, (e(S)J) = 0, one can write down

〈e(k′)|lμ|e(k)〉gμν〈X |Jν |p(P )〉 = 〈e(k′)|lμ|e(k)〉e∗μ(L)〈X |Jν |p(P )〉eν(L)−
− 〈e(k′)|lμ|e(k)〉e∗μ(+)〈X |Jν |p(P )〉eν(+)−

− 〈e(k′)|lμ|e(k)〉e∗μ(−)〈X |Jν |p(P )〉eν(−). (16)

Now notice that

T (γ∗(λγ∗; q)p(P ) → X) =
√

4παem〈X |Jν |p(P )〉eν(λγ∗) (17)

is precisely an amplitude of the photoabsorption for the photon of polarization
λγ∗, and 〈e(k′)|lμ|e(k)〉e∗μ(L),−〈e(k′)|lμ|e(k)〉e∗μ(+),−〈e(k′)|lμ|e(k)〉e∗μ(−) de-
ˇne the emission by leptons of photons of appropriate polarization, which is
quantiˇed by the spin density matrix of the photon ρλ′λ. Then, making use of the
expansion (16), the differential cross section for the leptoproduction of the speciˇc
ˇnal state X can be expressed through the photoabsorption cross sections as

dσ(ep → e′X)
dQ2dy

dτX = ΓT (Q2, y)
∑

λ′,λ=+,−,L

ρλ′λdσλ′λ(γ∗p → X), (18)
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where dτX is the element of the appropriate phase space,

dσλ′λ(γ∗p → X) =

=
1

4
√

(pq)2 + Q2m2
p

T ∗(γ∗
λ′p → X)T (γ∗

λp → X)dτX (19)

and

ΓT (Q2, y) =
αem

πQ2y

(
1 − y +

1
2
y2

)
(20)

is the 
ux of transverse photons. With this normalization the spin density matrix
of the photon equals

⎛
⎝ρ++ ρ+− ρ+L

ρ−+ ρ−− ρ−L

ρL+ ρL− ρLL

⎞
⎠ =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

−1
2
ε e2iΦ 1

2

√
ε(1 + ε) eiΦ

−1
2
ε e−2iΦ 1

2
−1

2

√
ε(1 + ε) e−iΦ

1
2

√
ε(1 + ε) e−iΦ −1

2

√
ε(1 + ε) eiΦ ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where

ε =
1 − y − y2 Q2

4ν2

1 − y +
1
2
y2 + y2

Q2

4ν2

≈ 2(1 − y)
(1 − y)2 + 1

(22)

is the longitudinal polarization of the virtual photon. We also indicated the
small-x approximation for ε which is appropriate for DIS at HERA.

Notice, that because of the current conservation one can deˇne the longitu-
dinal photon interaction amplitude in terms of the current component Jz, which
is customary in electronuclear physics, for instance, see [65Ä67]. It does not
affect the observed cross section (18) because the different normalization of the
amplitude (16) for longitudinal photons is compensated for by the change of the
relevant components of the spin density matrix of the photon.

2.3.3. The Transverse and Longitudinal Cross Sections for DIS. In the fully
inclusive DIS one integrates over the whole phase space of the state X and
sums over all states X . Then by virtue of the optical theorem one can relate
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the photoabsorption cross section to the absorptive part of the Compton forward
scattering amplitude

∑
X

σλ′λ(γ∗p → X) =
1

2
√

(pq)2 + Q2m2
p

Im Tλ′λ(γ∗p → γ∗p). (23)

The crucial point is that for the unpolarized target the helicity-
ip, λ′ �= λ,
amplitudes vanish in the forward scattering. Then the virtual photonÄproton cross
section, σγ∗p, can be determined from the measured positronÄproton cross section:

σγ∗p = σγ∗p
T + εσγ∗p

L =
1

ΓT (Q2, y)
d2σep

dQ2dy
, (24)

where σγ∗p
T = σ++ = σ−− and σγ∗p

L are the transverse and the longitudinal virtual
photoproduction cross sections, respectively. The often discussed total inclusive

cross section, σγ∗p
tot = σγ∗p

T + σγ∗p
L can be determined from σγ∗p through the

relation:

σγ∗p
tot =

1 + RDIS

1 + εRDIS
σγ∗p, (25)

where

RDIS =
σγ∗p

L

σγ∗p
T

. (26)

(Because R is heavily used for different ratios, we supply it by the subscript
DIS.) In the kinematic range of most of the discussed measurements, the value

of ε is close to unity, and because RDIS is small, σγ∗p differs from σγ∗p
tot by less

than one per cent.
2.4. Kinematics of Diffractive Vector-Meson Production. Diffractive vector-

meson production corresponds to the special two-body ˇnal state which contains
only the vector meson and scattered proton

e(k)p(P ) → e(k′)V (v)p(P ′),

where V = {ω, ρ, φ, J/ψ, Ψ′, Υ}; and k, k′, P , P ′, and v are the four-momenta
of the incident lepton (positron or electron), scattered lepton, incident proton,
scattered proton and vector meson, respectively, see Fig. 3.

The new kinematic variable is t = (P − P ′)2 = (v − q)2 = −Δ2 + tmin,
the squared four-momentum transfer at the proton vertex. At high energies the
longitudinal momentum transfer ΔL = mp(Q2 +m2

V )/W 2 is small, tmin = −Δ2
L

can be neglected, and t ≈ t′ ≡ −Δ2. Besides t, the new important variables
are the orientation of the production plane with respect to the electron scattering
plane and the appropriately deˇned polar and azimuthal angles of the decay pions,
which will be discussed in Sec. 5.
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The major background process is the proton-dissociative reaction e p →
e V Y , and in addition to the above quantities, MY , the mass of the diffractive
excitation of the proton, is used.

2.5. The Event Reconstruction. For the photoproduction events, Q2 ≈ 0,
Q2 ranged from the kinematic minimum, Q2

min = M2
e y2/(1− y) ≈ 10−12 GeV2,

where Me is the positron mass, up to Q2
max ≈ 1 GeV2, the value at which the

scattered positron starts to be observed in the calorimeter, with a median Q2 of
approximately 5 · 10−5 GeV2 (differs slightly for ZEUS and H1 and from year to
year with modiˇcations in calorimeter geometry). Since the typical Q2 is small,
it can be neglected in the reconstruction of the other kinematic variables.

For the DIS events the kinematic variables are reconstructed using the mo-
menta of the decay particles and the polar and azimuthal angles of the measured
scattered lepton. Neglecting the transverse momentum of the outgoing proton
with respect to its incoming momentum, the energy of the scattered positron can
be expressed as:

Ee′  [2Ee − (EV − pZ
V )]/(1 − cos θe′ ),

where Ee is the energy of the incident lepton; EV and pZ
V are the energy and

longitudinal momentum of the vector-meson V , and θe′ is the polar angle of the
scattered lepton. The value of Q2 was calculated from:

Q2 = 2Ee′Ee(1 + cos θe′).

The photonÄproton centre-of-mass energy, W , can be expressed as W 2 ≈
2Ep(E−pZ)V +Q2, where Ep is the laboratory energy of the incoming proton and
(E − pZ)V is the difference between the energy and the longitudinal momentum
of the vector meson. The fraction of the positron momentum carried by the
photon is calculated from y = (E − pZ)V /2Ee. The squared four-momentum
transfer at the proton vertex is given by |t| = (pe′ + pV )2X + (pe′ + pV )2Y .

2.6. Data Samples and Event Selection. The kinematic region for each
particular data sample can be found in Tables 2, 3. The Tables summarize all the
recent data discussed in this paper, for the overview of the pre-1997 experimental
data, see [10].

3. AN OVERVIEW OF THEORETICAL APPROACHES TO
DIFFRACTIVE SCATTERING

3.1. The Rudiments of the Regge Theory of Strong Interactions. As Bjorken
has emphasized, the foundations of the Regge theory are as solid as QCD it-
self [91]. Because the physics of diffractive scattering is permeated by ideas and
concepts from the Regge theory of strong interactions, a brief introduction into
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this subject is in order. For the more rigorous treatment and for technicalities
one must consult the textbooks [12, 13, 92], the review papers [93Ä95] and the
collection of reprints [96].

3.1.1. The s-Channel Asymptotics from the t-Channel Exchanges: Spin and
Energy Dependence. There is a deep connection between the high-energy behavior
of a binary reaction ab → cd and the spin, J , of the elementary particle with
mass M exchanged in the t channel:

Aab→cd(W 2, t) =
gac(t)gbd(t)

t − M2
(W 2)J , (27)

dσ(ab → cd)
dt

∝ g2
ac(t)g2

bd(t)
(t − M2)2

W 4(J−1). (28)

Although it follows in a straightforward manner from the analysis of Feynman
diagrams, it is instructive to look at (27) from the t-channel point of view. In the
crossed channel

ac̄ → b̄d

the total c.m.s. energy squared is t = (pa + pc̄)2 = (pa − pc)2 = M2, the
momentum transfer squared is (pa − pb̄)2 = s = (pa + pb)2, and the exchanged
particle emerges as a resonance at t = M2 in the partial wave J . The angular
dependence of this contribution to the scattering amplitude is given entirely by
the Legendre polynomial

Aσt

ab→cd(W
2, t) = AJ(t)PJ (cos θt) =

=
Gac̄(t)Gb̄d(t)

t − M2
[σt + (−1)J ]PJ (− cos θt), (29)

where (for the sake of simplicity we take ma = mb = mc = md = μ)

cos θt = 1 +
2W 2

t − 4μ2
. (30)

The so-called signature σt = ±1 separates the crossing-even and crossing-odd
amplitudes; for instance, in the crossing-even π0π0 scattering σt = +1 and the
contribution from the odd-partial waves to (29) vanishes identically.

The amplitude (29) depends on W 2 only through the Legendre polynomial
and can readily be continued analytically into the high energy domain of W 2 

M2, μ2, |t|, which amounts to − cos θt 
 1 and PJ (− cos θt) ∝ (− cos θt)J ∝
(W 2)J , i.e., we derived the asymptotics (27) by analytic continuation from the
t-channel to s-channel scattering.

3.1.2. The Regge Trajectories. On the one hand, the existence of high-spin
resonances is an ultimate truth of the physics of strong interactions; on the other
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hand, the exchange by elementary particles of spin J > 1 would con
ict the
fundamental Froissart bound [97]

A(W 2, t) < W 2 log2 W. (31)

The sole known way out of this trouble is offered by the Regge theory: one
must improve upon the above mock-up analytic continuation going from the sum
over integer (or half integer) partial waves to the SommerfeldÄWatson integral
over the complex angular momentum J with which the analytic continuation
to − cos θt 
 1 must be complemented with the appropriate deformation of
the integration contour on the complex-J plane [98]. The key point is that the
asymptotic behaviour of the s-channel amplitude will be controlled by singularities
of the partial wave AJ(t) in the complex-J plane. If the singularity is the (Regge)
pole

AJ (t) ∝ 1
J − αR(t)

, (32)

then one obtains precisely the amplitude of the form (27) with J = αR(t). The
t-channel unitarity dictates [98,99] that the Regge pole must be a moving one, i.e.,
it must have a ˇnite slope α′

R(t). Experimentally, the Regge trajectory αR(t) for
the s-channel scattering at t < 0 can be extracted from the energy dependence of
the differential cross sections, and can be linked to the resonance mass spectrum
by extrapolation of the mass-dependence of the spin of t-channel resonances,
Jn = αR(M2

n). Such ChewÄFrautschi plots are well approximated by straight
lines,

αR(M2
n) ≈ αR(0) + α′

Rt. (33)

For instance, for the ρ, ω, A2, f2 families of resonances with nonvacuum quantum
numbers such extrapolations suggest the intercept αR(0) ≈ 0.45, in very good
agreement with the results from the scattering experiments. To cite few examples,
the ρ trajectory is best studied in the charge-exchange π−p → π0n, the A2

trajectory is probed in π−p → ηn, the ω trajectory is probed in the regeneration
KL → KS on the isoscalar target, the π trajectory is probed in the charge-
exchange np → pn, etc. For classic reviews on the Regge trajectories see [95],
a more recent discussion of the ChewÄFrautschi plots is found in [100]. The
high-lying Pomeron, ρ, ω, A2, f2 are the natural spin-parity exchanges, i.e., the
spin J and parity P of particles lying on the corresponding Regge trajectory are
related by P = (−1)J . The unnatural spin-parity π, A1 exchnages, P = −(−1)J ,
have much lower intercepts, απ(0) ≈ αA1(0) ≈ 0.

3.1.3. The Universality Aspects of the Regge Exchange. The Ansatz (27)
bears all the salient features of the realistic reggeon-exchange amplitude:

1. The trajectory J = αR(t) is universal for all beam and target particles, it
only depends on the t-channel quantum numbers.
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2. Dependence on the initial and ˇnal state particles has a factorized form.
3. If one parameterizes the t dependence of the near forward differential cross

section by the so-called slope parameter B,

dσ

dt
∝ exp (−B|t|), (34)

then the factorization property entails

B(ab → cd) = Bac + Bbd + BR, (35)

where Bac and Bbd come from the form factors of the a → c and b → d
transitions, and BR characterizes the exchanged reggeon.

4. Notice that

(W 2)αR(t) = (W 2)αR(0)(W 2)α′
Rt = (W 2)αR(0) exp [−α′

R|t| log (W 2)], (36)

what entails Gribov's growth of the slope parameter with energy, alias the shrink-
age of the diffraction cone [99]:

BR = 2α′
R log

(
W 2

s0

)
. (37)

The slope of all the nonvacuum Regge trajectories is about the same,

α′
R ≈ 1

2m2
ρ

≈ 0.9 GeV−2, (38)

for the recent summary see [100].
5. The phase of the reggeon-exchange amplitude is uniquely ˇxed by the

analytic continuation of the signature factor η(σt, t) = σt + (−1)αR(t) = σt −
exp [−iπ(αR(t) − 1)]:

Re A(W 2, t)
Im A(W 2, t)

=

⎧⎨
⎩

tan
[π

2
(αR(t) − 1)

]
, if σt = +1,

cot
[π

2
(αR(t) − 1)

]
, if σt = −1.

(39)

3.1.4. The Vacuum Exchange: the Pomeron Trajectory from Hadronic Scat-
tering. Elastic scattering is driven via unitarity by strongly absorptive inelastic
multiproduction processes, which is nicely illustrated by the impact parameter
representation Å the high energy version of the partial wave expansion. In
high-energy elastic scattering the momentum transfer, Δ, is the two-dimensional
vector transverse to the beam momentum. The elastic scattering amplitude can
be cast in the form of the Fourier transform

1
W 2

A(W 2,Δ) = 2i

∫
d2b [1 − S(b)] exp (−ibΔ), (40)
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where S(b) = exp (2iδ(b)) is the S matrix for elastic scattering at an impact
parameter b and the angular momentum l = |p|·|b|. The total elastic and inelastic
cross sections equal

σel =
∫

d2b |1 − S(b)|2 ,

σin =
∫

d2b
[
1 − |S(b)|2

]
.

(41)

Strong absorption implies the predominantly imaginary scattering phase. One
often uses the so-called proˇle function Γ(b) = 1− S(b). The small momentum
transfer expansion in (40) gives

1
W 2

A(W 2,Δ) = 2i

∫
d2bΓ(b)

[
1 − 1

2
(bΔ)2

]
=

=
1

W 2
A(W 2, 0)

(
1 − 1

2
BΔ2

)
, (42)

so that the diffraction slope B is determined by the mean impact parameter
squared

B =
1
2
〈b2〉 =

1
2

∫
d2bb2Γ(b)∫
d2bΓ(b)

. (43)

The extreme case is the scattering on the absorbing black disc of radius R for
which |S(b)| = θ(R − |b|), which is a good approximation for the scattering of
nucleons off heavy nuclei. Then

σel = σin =
1
2
σtot = πR2 (44)

and the diffraction slope equals

Bel =
1
4
R2. (45)

Such a 
at, energy-independent, elastic scattering must be contrasted to the two-
body reactions with the nonvacuum exchange which constitute a tiny fraction of
high energy inelastic collisions of hadrons and have cross sections that vanish at
high energy,

σ(ab → cd) ∝ 1
W 4(1−αR(0))

<
1

W 2
. (46)

The importance of strong absorption for high-energy hadron interactions is
evident form the proximity of central partial waves of pp scattering to the unitarity
limit, Γ(b) � 1, [101], although the periphery of the nucleon is still gray, and
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for all the hadrons σel is still substantially smaller than σin, see the plots in
the Review of Particle Physics [102]. As emphasized ˇrst by Pomeranchuk, the
particleÄantiparticle cross-section differences vanish at high energy, see [102], and
from the t-channel viewpoint the elastic scattering is dominated by the vacuum
exchange. In 1961, Chew and Frautschi conjectured that the vacuum channel
can also be described by the reggeon Å ˇrst dubbed the Pomeranchukon, later
shortened to Pomeron, Å exchange with an appropriate spin-2, C-even, isoscalar,
positive parity resonance lying on the Pomeron trajectory (the early history of the
Pomeron is found in [96]).

If the Pomeron were a simple Regge pole, it would have been utterly distinct
from the nonvacuum reggeons:

• For all hadrons and real photons the total cross sections rise with energy
and the phenomenological Pomeron trajectory has αIP (0) = 1 + ΔIP ≈ 1.1 > 1
(notice that from now on the Δ is still used for the four-momentum exchanged,
but Δindex is used to deˇne the variation of the intercept of the coorrespondent
index trajectory from unity). Such a rise of the vacuum component of the total
cross section,

σvac = σIP ∝ (W 2)ΔIP (47)

cannot go forever, though. At asymptotic energies it would con
ict the Frois-
sart bound. Furthermore, the partial waves of elastic scattering would over-
shoot the unitarity bound. Indeed, in the often used exponential approximation,
1

W 2
A(W 2,Δ) ∝ exp

(
−1

2
BΔ2

)
, and neglecting the small real part of the

small-angle scattering amplitude, one ˇnds

Γ(b) =
σtot

4πB
exp

(
− b2

2B

)
(48)

and with the unlimited growth of σtot one would run into Γ(b) > 1. The unitarity
(absorption, multipomeron exchange, . . .) corrections, which must eventually tame
such a growth of Γ(b) and of σtot with energy, were shown to be substantial
already at moderate energies [103Ä105]. The multipomeron absorption affects
substantially the determination of ΔIP : the ˇrst estimate

ΔIP ∼ 0.13

with the perturbative treatment of absorption based on Gribov's reggeon ˇeld
theory [106,107] goes back to the 1974Ä1975 papers by Capella, Tran Thahn Van,
and Kaplan [103, 104]. Within a more realistic model for absorption, the ITEP
group [105] found the equally good description of the hadronic cross-section data
with substantially larger ΔIP ≈ 0.23. If one follows the DonnachieÄLandshoff
suggestion [108] to ignore the absorption corrections altogether and stick to the
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simpliˇed pole terms, then the Particle Data Group ˇnds ΔIP = 0.095 [109].
However, according to the 2002 edition of the Review of Particle Properties [102],
still better ˇt to the experimental data is provided by the parameterization [110]

σvac(ab) = σvac(āb) = Zab + 2B log2(W/W0), (49)

which is consistent with the Froissart bound, and from the Regge theory viewpoint
corresponds to the triple-pole singularity at j = 1, i.e., ΔIP ≡ 0!

• The shrinkage of the diffraction cone in elastic scattering suggests very
small slope of the Pomeron trajectory αIP (t): the combined analysis of the
experimental data on elastic pp, p̄p, π±p, K±p scattering at the CERN SPS/FNAL
and CERN ISR energies gave α′

IP ≈ 0.13 ± 0.025 GeV−2 ([111], for the review
see [112]). The extrapolation of these ˇts underpredicts the p̄p diffraction slope
at the Tevatron, which call for α′

IP ≈ 0.25 GeV−2. Incidentally, the last value of
α′

IP has been used by theorists ever since 1974Ä1975 [103, 104], but it must be
taken with the grain of salt: the observed growth of the diffraction cone can to
a large extent be due to the unitarity/absorption driven correlation, cf. Eqs. (44)
and (45), between the total cross section and the diffraction slope so that the
Tevatron data can well be reproduced with the still smaller values of α′

IP [113].
To summarize, the DonnachieÄLandshoff (DL) parameterization [108]

αsoft(t) = 1.1 + 0.25 GeV−2 · t (50)

must only be regarded as a convenient short-hand description of the local, W <
1 TeV, energy dependence of the vacuum component of the elastic scattering of
hadrons.

3.1.5. The Diffraction Slope: Variations from Elastic Scattering to Single to
Double Diffraction Excitation. The variation of the diffraction slope (35) from
elastic scattering to single (SD) to double (DD) diffraction excitation exhibits
certain universal features [93, 94, 114]. An excellent guidance is provided by a
comparison of elastic protonÄnucleus, pA → pA, to quasi-elastic, pA → p′A∗,
scattering. The latter reaction, in which one sums over all excitations and breakup
of the target nucleus without production of secondary particle, must be regarded
as diffraction excitation of the target nucleus.

The crucial point is that at a sufˇciently large (p, p′) momentum transfer
such that the recoil energy exceeds the typical nuclear binding energy, which
can be viewed as hard scattering, the t distribution of scattered protons in quasi-
elastic (nucleus-dissociative) pA → p′A∗ is the same as in elastic pp scattering,
Bdiss(pA → p′A∗) ≈ Bpp [115, 116]. The quasi-elastic pA → p′A∗ becomes
a sort of a deep inelastic scattering with quasi-free bound nucleons behaving as
partons of a nucleus and quasi-free pN → p′N scattering being a counterpart of
the Rutherford scattering of leptons off charged partons in DIS off the proton. The
summation over breakup of a nucleus into all continuum excitations is important,
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for excitation of the speciˇc discrete state A∗ of a target nucleus, pA → p′A∗,
the diffraction slope will still be large,

BAA∗ ∼ Bel ≈
1
4
R2

A. (51)

Now deˇne the ratio of differential cross sections

Ratio(diss/el)(t) =
dσdiss(pA → p′A∗)

dt

/
dσel(pA → p′A)

dt
. (52)

Elastic scattering: Ratio(diss/el)(t) 	 1 is the dominant process within the
diffraction cone, R2

A|t| 	 1. However, elastic scattering dies out rapidly for

Fig. 8. A comparison of elastic (�, 1) and
combined elastic plus nucleus-dissociative
(�, 2) p12C scattering data [117, 118]. The
theoretical calculations are from Czyz et
al. [116]

R2
A|t| ∼> 1, where quasi-elastic scatter-

ing takes over: Ratio(diss/el)(t)
1.
This point is clearly illustrated by the
experimental data [117,118] on elastic
and nucleus-dissociative p12C scatter-
ing shown in Fig. 8. Notice the dif-
fractive dip-bump structure, familiar
from optical diffraction, in the dif-
ferential cross section of pure elas-
tic scattering. For a sufˇciently hard
scattering, |t| = Δ2

∼> 0.06 GeV2,
the sum of the elastic and nucleus-
dissociative cross sections, dσsc =
dσel + dσdiss, is clearly dominated by
the nucleus-dissociative dσdiss.

In the regime of strong absorption
the integrated cross section of quasi-
elastic or nucleus-dissociative scatter-
ing is small [115],

σdiss(pA → p′A∗) 	

	 σel(pA → p′A) ≈ 1
2
σpA

tot . (53)

Exactly the same considerations apply
to elastic scattering and diffraction ex-
citation of hadrons and real photons,
a = p, π, K, γ on the free nucleon tar-
get, b = p. Let BN be the contribution to the diffraction slope of electric pp
scattering from the PomeronÄprotonÄproton vertex, so that

Bpp
el = 2BN + BIP . (54)
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In the single or target-dissociative (SD) reaction, pp → pY , and double dissoci-
ation (DD), pp → XY , one must distinguish the low-mass (LM = resonances,
low-mass continuum states, . . . ) and high-mass (HM) states X, Y . The boundary
between the low-mass (exclusive low-mass states, resonances, . . . ) and high-mass
continuum excitations is MX,Y ∼ 2 GeV. The case of small-mass excitation is
an exact counterpart of excitation of discrete nuclear states in pA → p′A∗. Then
(51) suggests that the contribution to the diffraction slope from the pY transition
BpY ≈ BN , so that for SD and DD into low-mass states we have

BSD(LM) = BpY + BN + BIP ≈
≈ BDD(LM, LM) = BpY +BpX + BIP ≈ Bel, (55)

is in good agreement with the experimental data from the CERN ISR and
FNAL experiments [119Ä123]. The SD into high-mass (HM) continuum,
pp → pY (HM), corresponds to the complete breakup of the target proton and
the reaction can be viewed as elastic scattering of the beam proton on one of the
constituents of the target. Consequently, the dependence on the size of the target
proton vanishes, BpY ≈ 0, and in SD into high-mass states (often referred to as
the triple-Pomeron region) and mixed low-and-high mass DD

BSD(HM) ≈ BDD(LM, HM) ≈ BN + BIP ≈ 1
2
Bel ≈ 6 GeV−2. (56)

In DD pp → X(HM)Y (HM) with excitation of high-mass states from both
the target and beam BpX ≈ BpY ≈ 0 and only the t-channel exchange BIP

contributes to diffraction slope. Experimentally, this component is abnormally
small [122,123]

BDD(HM, HM) ≈ BIP ∼ (1 − 2) GeV−2. (57)

Finally, although in πp, Kp, pp scattering only the central partial waves are close
to the strong absorption limit, and the ratios σel/σtot ∼ (0.15−0.25) are still
substantially smaller than 1/2 for the strongly absorbing nuclear target, the strong
inequality σdiss(pp → p′Y ) 	 σel(pp → pp) holds in close similarity to (53).
Typically, in pp interactions Rpp(diss/el) = σSD/σel ∼< 0.3, for the review
see [93,94,112].

3.2. The Regge Theory and QCD. In the realm of DIS the high-energy limit
amounts to the small-x limit. The SF's of small-x DIS are related to the total
cross sections as

FT,L(x, Q2) =
Q2

4π2αem
σT,L(x, Q2) .

Instead of the transverse SF one usually discusses F2(x, Q2) = FT (x, Q2) +
FL(x, Q2). The QCD parton model decomposition of the proton SF into the
valence and sea-quark contributions
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F2(x, Q2) = x
∑

f

e2
f [qf (x, Q2) + q̄f (x, Q2)] =

=
4
9
xuv(x, Q2) +

1
9
xdv(x, Q2) + 2x

∑
f

e2
f q̄f (x, Q2) (58)

must be viewed as a decomposition of the photoabsorption cross section into
the nonvacuum (nonsinglet) and vacuum (singlet) components. From the view-
point of the QCD evolution, the valence component corresponds to slowing down
of the valence quarks to x 	 1 and depends on the target. At small x, the
sea evolves from glue and will be the same for the proton and neutron as well
as antinucleon targets, i.e., it must be associated with the Pomeron exchange.
The density of small-x gluons exceeds greatly the density of charged partons,
which entails that (i) one can model high-energy inelastic interactions by pro-

duction of the multigluon ˇnal states and (ii) to the so-called leading-log
1
x

the

small-x evolution is driven by the splitting of gluons into gluons, with the split-
ting g → qq̄ only at the last stage of the evolution. As a result, the QCD vacuum
exchange is modeled by the tower of color-singlet two-gluon exchange diagrams
of Fig. 9, which is described in terms of the so-called unintegrated or differential
gluon density

F(x, κ2) =
∂G(x, κ2)
∂ log κ2

,

where κ is the gluon transverse momentum.

Fig. 9. a, b) The subset of two-gluon tower pQCD diagrams for the Pomeron exchange
contribution (c) to the Compton scattering (DIS) and diffractive vector-meson production.
Not shown are two more diagrams with q ↔ q̄

At not so small x, the Q2 dependence of the parton densities is governed
by the DGLAP evolution [124Ä126]. Here the evolution goes from smaller to
larger Q2, so that once the boundary condition is taken at a sufˇciently large
Q2

0, then one stays in the perturbative domain. However, in the language of
inelastic multiparticle states the DGLAP evolution amounts to summing only
the ˇnal states with strong ordering of transverse momentum and as such, it
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accounts to only a small part of the available transverse phase space. This
restriction on the transverse phase space becomes excessively prohibitive and must

be lifted at very small x. The practical method of summing the leading-log
1
x

contributions to the unintegrated gluon density F(x, κ2) without restrictions on
the transverse momenta of partons has been developed in 1975 by Fadin, Kuraev,
and Lipatov [35, 36] and reˇned further by Balitsky and Lipatov ([37, 127], for
the review see [128]). One has to pay a heavy price, though: the BFKL evolution
receives a substantial contribution from soft, nonperturbative transverse momenta
of ˇnal state partons, where the running strong coupling αS is not small and the
sensitivity to models of infrared-regularization cannot be eliminated ([129Ä133]
and references therein). Although the fully satisfactory quantitative solution to this
problem is as yet lacking, many of the properties of the QCD vacuum exchange
must be regarded as well established:

• Discard the asymptotic freedom, i.e., make the approximation αS = const
and allow the inˇnite propagation range for gluons. Such a model is free of
a dimensional parameter and possesses the scale-invariance property, which al-
lows for an exact solution. The j-plane singularity of the model is a ˇxed cut
(branching point) [35Ä37] at

−∞ < j � 1 + ΔBFKL = 1 +
12 log 2

π
αS (59)

with vanishing α′
BFKL = 0, which is natural in view of the lack of any dimensional

parameter in the model.
• One can cope with the asymptotic freedom within the BFKL approach only

at the expense of a certain regularization of the infrared growth of αS . One
only needs to account for the ˇnite propagation length, Rc, of perturbative gluons
as suggested, for instance, by the lattice QCD studies [50Ä52]. In their 1975
paper Fadin, Kuraev, and Lipatov remarked that in this case the branching point
is superseded by a sequence of moving Regge poles [35]. The positions of the
poles were estimated in 1986 by Lipatov [127]

Δn ≈ ΔBFKL

n + 1
. (60)

Herebelow, when discussing the pure Pomeron amplitudes, we shall refer to Δn

as the intercept, which must not cause a confusion. Within the color dipole
approach the poles differ by the number of nodes in the eigen-cross section as a
function of the dipole size r [134]. The rightmost pole has a node-free eigen-cross
section; the nodal structure of the eigen-cross sections and the n dependence of the
intercept of subleading vacuum poles found in [134] are very close to the quasi-
classical approximation results of Lipatov [127]. The intercept of the rightmost
pole ΔIP , the slopes of the emerging Regge trajectories and positions of nodes in
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the eigen-cross sections depend on the infrared regularization ([25,130,131] and
references therein).

3.3. Poor Man's Approximations to the QCD Pomeron. 3.3.1. The Q2

Independence of the Pomeron Intercept. For each and every pole the intercept
does not depend on the probe. In application to DIS that means an independence
of intercepts on Q2 [129Ä131,135], only the residues can depend on Q2, so that
the x dependence of structure functions will be of the form

F2(x, Q2) =
∑
n=0

F (n)(Q2)
(

1
x

)Δn

+ F soft
2 (Q2). (61)

Examples of such a BFKLÄRegge expansion for the proton and photon SF's
with energy-independent soft contribution F soft

2 (Q2), i.e., Δsoft = 0, are found
in [134, 136Ä138]. If one reinterprets the soft contribution in terms of the soft,
nonperturbative, unintegrated gluon density, then similar ReggeÄBFKL expan-
sions hold for the integrated gluon density, G(x, Q2), and the unintegrated gluon
density

F(x, κ2) =
∂G(x, κ2)
∂ log κ2

.

An example of the decomposition of F(x, κ2) into the soft and hard components
is found in [34,139] and is shown in Fig. 10.

From the viewpoint of the energy dependence, the Regge cut also can be
viewed as an inˇnite sequence of Regge poles. One can approximate the local x
dependence of the BFKLÄRegge expansion (61) by

F2(x, Q2) = F (Q2)
(

1
x

)Δ(Q2)

, (62)

which must not be interpreted that the Pomeron is a Regge pole with
Q2-dependent intercept, for such a warning see, for instance, Bjorken [91]. An
example of how the effective intercept Δ(Q2) changes with the range of x is
found in [135, 143, 144], the variations of the effective intercept from the un-

integrated gluon density F(x, κ2) ∝
(

1
x

)τ(κ2)

to the integrated gluon density

G(x, Q2) ∝
(

1
x

)λ(Q2)

and to the proton SF F2(x, Q2) are found in [34, 139],

see Fig. 11, where we show separately the intercept for the hard components
of F(x, κ2), G(x, Q2), F2(x, Q2) and for the same quantities with the soft con-
tributions included. These intercepts parameterize the local x dependence for
10−3 < x < 10−5. The striking ˇnding is that while τhard(κ2) and λhard(Q2)
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Fig. 10. The differential gluons structure function of the proton determined in [34, 139]
from the k⊥-factorization analysis of the experimental data on F2p(x,Q2). Notice the
transition from the x-independent soft component at small κ2 < 1 GeV2 (shown by
the dashed curve) to the hard component (the dotted curve), which converges to the
derivative ∂GDGLAP(x,κ2)/∂ log κ2 of the integrated gluon density determined from the
LO DGLAP ˇt to F2p(x, Q2). This particular example is for the GRV LO parameterization
[140], very similar results are found for the MRS [141] and CTEQ [142] parameterizations

exhibit a very strong scale dependence, i.e., the contributions form the sub-
leading BFKL poles are large, the Δhard(Q2) is about Q2-independent one,
Δhard(Q2) ∼ 0.35−0.45.

3.3.2. The Contributions from the Soft Region beyond pQCD. Here one faces
three major questions: (i) is the rise of soft hadronic cross sections driven by small
dipoles in hadrons, (ii) what is the mechanism of interaction of nonperturbative
large dipoles, and (iii) is the soft contribution relevant to the large-Q2 DIS?

The ˇrst question can be answered in the afˇrmative: the somewhat model-
dependent estimates suggest strongly that the rise of the hadronic and real pho-
toabsorption cross sections receive a large if not a predominant contribution from
the interaction of small-size color dipoles in hadrons [34, 136]. This suggests a
weak energy dependence of the genuine soft vacuum exchange: Δsoft ≈ 0. The
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Fig. 11. The effective intercepts τ (κ2), λ(Q2), Δ(Q2) of the local x dependence, 10−3 <
x < 10−5, of F(x,κ2), G(x,Q2), F2(x, Q2), respectively for the k⊥-factorization analy-
sis [34, 139] with the large-κ2 behavior of F(x,κ2) tuned to the GRV LO parameteriza-
tion [140] as described in the text. In aÄc the dashed lines are for the hard components,
the solid lines are found if the soft components are included; d shows how the intercepts
change from F(x,κ2) to G(x, Q2) to F2(x,Q2). The very close results are found for
intercepts of parameterizations tuned to converge at large Q2 to the MRS LO [141] and
CTEQ LO [142]

discussion of the potential importance of hard contributions to hadronic cross
section was initiated in [113], for the recent work along these lines see [145].

From the color dipole viewpoint, the pure pQCD considerations stop at
the dipole size r ∼> Rc ∼ (0.2−0.3) fm and cannot describe the bulk of the
hadronic cross sections. It is plausible that at such large dipole sizes the color
dipoles spanned between the constituent quarks do still remain the important
degrees of freedom, but the corresponding soft dipole cross section remains a
model-dependent phenomenological quantity, for which we only have constraints
from soft hadronic diffractive scattering or from real or moderate-Q2 photoab-
sorption [24, 34, 136, 138]. Such a soft dipole cross section can be modeled
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either by the nonperturbative two-gluon exchange [24,34,135,136] or within the
closely related model of the stochastic QCD vacuum suggested by the Heidel-
berg group [146]. Purely phenomenological attempts to guess the shape of this
soft cross section and its continuation into the hard region [147] should not be
disregarded as well.

From the practical point of view, the available models for the dipole cross
section suggest a smooth r dependence of the dipole cross section across r ∼ Rc

up to r ∼ 1 fm. Because the pQCD BFKL component of the dipole cross
section rises with energy much faster than the energy-independent soft dipole
cross section, at higher energies the dominance of the pQCD component of
the dipole cross section will extend beyond r ∼ Rc, for which reason the lower
boundary for the pQCD dominance will be lower than given by Eq. (13). One can
come to the same conclusions from the smooth κ2 dependence of the unintegrated
gluon density from soft to hard region and the dominance of the hard component

at large
1
x

which is clearly seen in Fig. 10.

Regarding the question (iii), even at very large Q2 the virtual photons contain
the hadronic size qq̄ components and the SF's receive a nonvanishing, even
substantial at x ∼ 10−2, contribution from the interaction of soft dipole. Within
the more familiar DGLAP approach such a contribution is hidden in the input
parton densities; the sensitivity of the DGLAP evolution to the input partons is
an old news, although eventually the rising perturbative QCD component would
take over at very large Q2 [134Ä136]. Recently there were many suggestions
to start with the Regge parameterization of photoabsorption at small to moderate

Q2 < Q2
b and take F

(Regge)
2 (x, Q2

b) as a boundary condition at Q2 = Q2
b for the

DGLAP evolution at large Q2
b ([148Ä150] and references therein).

3.3.3. The Two-Pomeron Approximation. The transition from the uninte-
grated gluon density, F(x, κ2), to the conventional, integrated one, G(x, Q2),

involves an integration, G(x, Q2) =
∫ Q2

(dκ2/κ2)F(x, κ2). Similarly, to the
DGLAP approximation the small-x SF involves an integration, F2(x, Q2) ∝∫ Q2

(dκ2/κ2)G(x, κ2). Each integration shifts the nodes to larger value of Q2

and, furthermore, enhances the relative contribution from the node-free rightmost
eigenfunction. The model-dependent estimates within the color dipole model
show that the QCD vacuum exchange contribution to DIS is numerically domi-
nated by the rightmost Pomeron pole plus the energy-independent soft exchange
contributions∗ because the subleading Pomeron pole contributions have a node in
the practically important region of Q2 ∼ 10−40 GeV2 [130, 135, 136, 138, 144].
This is the reason behind the remarkable 
at Q2 dependence of Δhard(Q2) shown

∗To this end it is instructive to recall the early doubts in the necessity of the hard Pomeron
contribution for description of the observed cross sections [151Ä153].
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in Fig. 11. Consequently, within the kinematical range of HERA, the hard con-
tribution to the proton SF can be well approximated by a simple Regge-pole
formula with the intercept Δhard ∼ 0.35−0.45 [34, 139]. This ˇnding is a dy-
namical justiˇcation of the two-pole approximation [145, 154, 155]. The speciˇc
models [34, 136, 138] give the concrete Q2 dependence of the residues; on gen-
eral grounds there are no reasons for decoupling of the effective hard Pomeron
from soft amplitudes, including the real photoproduction. We emphasize that the
two-Pomeron parameterization only holds in the limited range of x and should
not be extrapolated far beyond the kinematical range of HERA.

3.4. The Basics of the Theory of Diffractive Vector-Meson Production.
Here we comment brie
y on properties of diffractive vector-meson production
starting with the nonrelativistic quark model in conjunction with the vector dom-
inance model. It offers a useful insight into such fundamental issues as the 
avor
dependence, the relation between the vector-meson production and V 0 → e+e−

decay and the way the short-distance wave function of vector mesons is probed
in vector-meson production. Then we qualify those properties in the color dipole
approach.

3.4.1. The Flavor Dependence, the Relation to the Decay V 0 → e+e− and
VDM. On the one hand, the V 0 → e+e− decay amplitude can be parameterized
in terms of the matrix element of the electromagnetic current

〈0|Jμ|V 〉 = −
√

4παemgV cV Vμ, (63)

where Vμ is the vector-meson polarization vector, so that the decay width equals

Γ(V 0 → e+e−) =
4πα2

emg2
V c2

V

3m3
V

. (64)

Here the charge-isospin factors cV are cρ =
1√
2
(eu − ed) =

1√
2
, cω =

1√
2
(eu +

ed) =
1

3
√

2
, cφ = es = −1

3
, cJ/Ψ = ec =

2
3
, cΥ = eb = −1

3
. One also often

uses the parameter
1

fV
=

gV cV

m2
V

.

On the other hand, in the nonrelativistic quark model the vector meson is the
weakly bound spin-triplet, S-wave qq̄ state, and the decay V 0 → e+e− proceeds
via annihilation qq̄ → e+e−,

Γ(V 0 → e+e−) = |RV (0)|2〈vqq̄σ(qq̄ → e+e−)〉 =
4α2

emc2
V

m2
V

|RV (0)|2, (65)

where vqq̄ is the relative velocity of the quark and antiquark in the vector meson
and RV (0) is the radial wave function at the origin [156]. This gives a useful
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relationship

gV = RV (0)

√
3mV

π
, (66)

which amounts to the nonrelativistic calculation of the Feynman diagram of
Fig. 12.

Consequently, in the simpliˇed VDM approximation, for transverse photons,

T (γ∗p → V p) =
√

4παemgV cV

Q2 + m2
V

T (V p → V p), (67)

=

√
3Γ(V 0 → e+e−)

mV αem

m2
V

Q2 + m2
V

T (V p → V p), (68)

=
cV RV (0)

√
12αemmV

Q2 + m2
V

T (V p → V p). (69)

Precisely the same result is found if one computes the vector-meson production
amplitude through the diagrams of Fig. 13 and applies the additive quark model,

T (V p → V p) = T (qp → qp) + T (q̄p → q̄p). (70)

Fig. 12. The decay of the vector me-
son into the lepton pair via annihilation
qq̄ → e+e−

In the case of the ρp and ωp ˇnal states
a very good parameter-free description of
the E401ÄFNAL measurements of the dif-
ferential cross section of photoproduction
is found if one takes isoscalar elastic πN
scattering amplitudes for T (V p → V p)
( [43, 157] and references therein). The

sp, s̄p amplitudes needed for the φp state can be extracted from the πN, KN, K̄N
elastic scattering amplitudes

T (φp → φp) = T (K+p → K+p) + T (K−p → K−p) − T (π−p → π−p), (71)

which gives a perfect description of the t dependence of the E401ÄFNAL data
on photoproduction of φp [157]. Speciˇcally, (71) correctly reproduces the ex-
perimentally observed change of the diffraction slope from B(γp → ωp) =

Fig. 13. The Additive Quark Model approximation for the vector-meson production am-
plitude
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(12.6 ± 2.3) GeV−2 to B(γp → φp) = (6.8 ± 0.8) GeV−2. In terms of the
discussion in Subsubsec. 3.1.3, see Eq. (35), this inequality of diffraction slopes
suggests that the spatial size of the φ made of the heavier strange quarks is
substantially smaller than the spatial size of the ω made of the light u, d quarks.
However, the observed differential cross section is only a half of what is predicted
by (68) and (71). Within the color dipole approach the culprit is the oversimpli-
ˇed VDM approximation (71): the interaction of the quarkonium is controlled by
not the number and 
avor of quarks in the state but rather its size [158].

3.4.2. Vector-Meson Production in the Color Dipole Approach. In the color
dipole approach, thanks to Lorentz dilation of time at high energies, the par-
tonic 
uctuation (to the lowest order, qq̄ pair) of the incident photon is frozen
in transverse (impact parameter) space during the interaction with the target.
This allows one to cast the photoproduction amplitude in a quantum-mechanical
form [17,19,21]

T = 〈ΨV |σ̂dip|Ψγ〉 =
∫

dz d2r Ψ∗
V (r) σdip(x, r) Ψγ(r), (72)

where z and (1−z) are fractions of the photon's light-cone momentum carried by
the quark and antiquark, respectively. The basic quantity here, the cross section
of the color dipole interaction with the target σdip(r), can be calculated for the
forward scattering case through the unintegrated gluon distribution,

σdip(x, r) =
4π

3

∫
d2κ

κ4
F(x, κ)αs[max (κ2, A/r2)] [1 − exp (iκr)], (73)

where
A ∼ 9−10 (74)

follows from the properties of Bessel functions [33]. Equations (72) and (73)

sum to the leading log
1
x

the towers of two gluon exchange diagrams of Fig. 9,

as manifested by the unintegrated glue F(x, κ) in the integrand of (72). The x
dependence of the dipole cross section is governed by the color dipole BFKL
equation ([129,159,160], see also [161,162]), for the discussion of the choice

x = xg ≈ 0.4
Q2 + m2

V

W 2
(75)

see Subsec. 4.6 below.
In due turn, the unintegrated glue of the proton can be extracted from the

experimental data on the proton structure function [34, 139], so that there is a
microscopic QCD link between inclusive DIS and vector-meson production, if
the vector meson is treated in the qq̄ Fock-state approximation. For small dipoles
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there is a useful relationship to the integrated gluon structure function of the
proton [33,163]

σdip(x, r) =
π2

3
r2αS

(
A

r2

)
G

(
x,

A

r2

)
. (76)

Now comes the crucial point: the light-cone wave function of the virtual photon
shrinks with Q2, namely, Ψγ(r) ∝ exp (−εr), where [17Ä19]

ε2 = z(1 − z)Q2 + m2
f , (77)

where mf is mass of the quark of the 
avor f . Then, for a sufˇciently large
Q2, the dominant contribution to the virtual photoproduction amplitude will come
from r ∼ rS = 3/ε, so that

T ∝ cV r2
Sσdip(xg , rS)Ψ∗

V (z, rS) ∝ r4
SαS

(
A

r2
S

)
G

(
xg,

A

r2
S

)
, (78)

where in the integrand of (78) the z-dependent factors coming from the photon
wave function have been suppressed.

Note that the ®quark mass¯ term m2
f here must not be omitted even for

the light 
avors. This ®quark mass¯ serves as an effective parameter that
bounds from above the transverse size of the qq̄ state in a real photon. One
can discuss the large-size properties of the photon only under certain assump-
tions on the color-dipole cross section for large dipoles or the unintegrated
gluon density for nonperturbative soft gluon momenta: the early choice has been
mu,d ≈ 0.15 GeV [134,135], the more recent k⊥-factorization analysis [34] of the
low-Q2 F2p data suggests mu,d ≈ 0.22 GeV.

The result (78) has all the properties of the amplitude (69) subject to important
QCD modiˇcations:

• The color-dipole cross section is 
avor-independent, and the charge-isospin
factors are precisely the same as in the VDM.

• For rS 	 RV the vector-meson production is obviously short-distance
dominated and tractable within pQCD ([17Ä19, 22, 23], for reˇnements on the
applicability of pQCD see Collins [164]). The amplitude is proportional to the
vector meson wave function at vanishing transverse qq̄ separation, Ψ∗

V (z, 0),
which is closely related to the so-called vector meson distribution amplitu-
de [165,166].

• To the nonrelativistic approximation, z ∼ 1/2 and mV ≈ 2mq, one has

ε2 ≈ 1
4
(Q2 + m2

V ), and the factor r2
S ∝ 1/(Q2 + m2

V ) reproduces the Q2

dependence dictated by the vector meson propagator.
• However, σtot(V p → V p) which enters (69), is substituted for

σdip(xg , rS) ≈ 3π2

Q
2 αS(Q

2
)G(xg, Q

2
), (79)
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where we used (74) and (9) by which A/r2
S ≈ Q

2
. For large dipoles, rS ∼ RV ,

which dominate in real photoproduction, σdip(RV ) ≈ σtot(V p → V p), but for
small dipoles, rS 	 RV , which dominate electroproduction, σdip(xg, rS) 	
σtot(V p → V p) and the simpliˇed VDM is bound to fail.

• For small scanning radii, rS 	 RV , such that ΨV (z, rS) ≈ const, the
dependence on Q2 and the mass of the vector meson mV only enters through the
scanning radius rS . Hence the fundamental prediction [21] that cross sections for
different vector mesons taken at the same value of rS , i.e., the same value of
(Q2 + m2

V ), must exhibit similar dependence on energy and (Q2 + m2
V ).

• Vector-meson production probes the integrated gluon SF of the target proton

at hard scale Q
2

given by (8) ([20Ä22], for a more accurate deˇnition of Q
2

for
light vector mesons see [38]).

• Notice an inapplicability of the simpliˇed VDM to heavy quarkonia, for
which by virtue of small αS the Bohr radius

RV = aB ≈ 4
mV αS


 rS .

• Finally, as far as the t dependence is concerned, rS can be regarded as the
transverse size of the γ∗ → V transition vertex, so that for the ˇxed value of x
the diffraction slope is predicted [25,26] to decrease with (Q2 + m2

V ):

B(Q2) ∼ BN + Cr2
S ≈ BN +

const
Q2 + m2

V

. (80)

Because the color dipole cross section and the unintegrated gluon SF are
related by the Fourier transform, all the above results can be rederived in the
momentum space representation, often referred to as the k⊥ factorization or impact
factor representation. The relevant formalism goes back to the 1978 seminal
paper by Balitsky and Lipatov [37], although the term ®k⊥ factorization¯ has
been coined much later on by several groups [167Ä169]. The detailed application
of the k⊥ factorization to the vector-meson production is found in [54,170Ä172]
and will be reviewed in the following Sec. 4, the ˇrst momentum space derivation

of the leading log Q
2

approximation is due to Ryskin [22] and Brodsky et al. [23],

some corrections to the leading log Q
2

approximation were discussed by Levin et
al. [173]. Referring to Sec. 4 for a detailed discussion of the helicity amplitudes
within k⊥ factorization, here we only cite the gross features of the longitudinal
and transverse cross sections:

σT ∝ 1
(Q2 + m2

V )4
[
αS(Q

2
)G(xg , Q

2
)
]2

, (81)

σL ∝ Q2

m2
V

1
(Q2 + m2

V )4
[
αS(Q

2
)G(xg , Q

2
)
]2

. (82)
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Here the factor ∼ Q2/m2
V in the σL is a generic consequence of the electromag-

netic gauge invariance, as has been understood in early 70's [174,175].
The Heidelberg group [176] starts with the soft color dipole cross section

evaluated within the stochastic QCD vacuum model [146]. It shares with other
color dipole models the predictions for the Q2 dependence, but the energy de-
pendence does not follow from the ˇrst principles of the model and needs to be
introduced by hand [177].

3.4.3. Production of Excited Vector Mesons. The ρ0, ω0, φ0, and J/ψ are
the ground state vector mesons. The Ψ′(3686) is the well-established radial
excitation 2S-state, the Ψ′′(3770) is a solid candidate for the orbital excitation
D-wave state [47, 48], the radial vs. orbital excitation assignment in the ρ, ω, φ
family is not deˇnitive yet [102].

The salient feature of the 2S radial excitations is a node of the radial wave
function, Ψ2S(z, r), at r = rnode ∼ R(1S) = RV , which suppresses the V ′(2S)
production amplitude in comparison to the corresponding V (1S) production am-
plitude [17,18,49,178]. The strength of the node effect depends on the proximity
of the scanning radius rS to the node position rnode. At rS 	 rnode (in the
under-compensation regime), which can take place at high Q2 or for very heavy
mesons, the contribution from r > rnode is small and suppression is weak. The
under-compensation regime is relevant to the Ψ′(2S) production where the color
dipole model predicts the rise of the ratio σ(Ψ′(2S))/σ(J/ψ(1S)) with rising
Q2. For light vector mesons at small Q2 the over-compensation scenario of
rS ∼> rnode and strong cancellation is not excluded [26, 49, 178]. In this sce-
nario the V ′(2S) and V (1S) production amplitudes will be of the opposite sign,
which can be tested experimentally via the SéodingÄPumplin effect [179, 180],
and the differential cross sections dσ(V ′(2S))/dt may exhibit a sharp forward
dip [26, 49, 54]. In such a regime even a small shift of Q2 would strongly alter
the cancellation pattern, giving rise to an anomalous Q2 dependence of the ratio
σ(V ′(2S))/σ(V (1S)), of the t dependence of dσ(V ′(2S))/dt and of the ratio
σL/σT for the V ′(2S) Å the latter effect is due to a slightly different impact
of the node effect on different helicity amplitudes. A subsequent discussion of
sensitivity of the node effect to the wave function of vector mesons is found
in [181Ä184], the change of numerical results for the Ψ′(2S) from one model to
another must be regarded as marginal.

The case of the orbital excitation V ′′(D) is quite different [171]: here the
radial wave function vanishes at the origin, and the Q2 dependence of the V ′′(D)
production will be smooth. There are some subtle changes in the helicity ampli-
tudes: in both the V (1S) and V ′′(D), the qq̄ pair is in the spin-triplet state, but
the total spin of the pair is along, in V (1S), and opposite to, in V ′′(D), the spin
of the meson.

The node effects echoes in the hard scale for the V ′(2S) production. In
the under-compensation regime of relevance to the Ψ′(2S), the contribution to
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the production amplitude from large color dipoles, r > rnode, is canceled by the
contribution from small dipoles, r < rnode. As a result, the Ψ′(2S) produc-
tion amplitude is dominated by color dipoles of smaller size than it is the case
for the J/Ψ(1S) and color-dipoles models predict the hierarchy of hard scales

Q
2
(Ψ′(2S)) > Q

2
(J/Ψ(1S)). Consequently, the Ψ′(2S) production amplitude

must grow with energy faster than the J/Ψ(1S) production amplitude [49]. Fur-
thermore, the (negative valued) contribution to the production amplitude from
large dipoles, r > rnode, has a steeper t dependence than the (positive valued)
contribution from small dipoles, r > rnode. As a result, the diffraction slope in
the Ψ′(2S) production is predicted to be smaller than in the J/Ψ(1S) produc-
tion [26,49].

3.4.4. Unitarity and Saturation in the Color Dipole Language. The unita-
rization of rising scattering amplitudes in QCD remains one of the hot and as
yet unsolved issues. As is emphasized in Subsubsec. 3.1.4, the unlimited growth
of the model partial waves must be tamed and the unitarity bound Γ(b) � 1
must be met in a consistent treatment of high-energy scattering. The theory
is still in the formative stage, though. Some of the early works on unitariza-
tion have been mentioned in Subsubsec. 3.1.4, the problem of unitarity is most
acute for interactions with nuclei, in which case the impulse approximation par-
tial waves Γ0(b) ∝ A1/3. For the nuclear targets the presence of a new large
parameter Å the optical thickness of a nucleus Å leads to certain simpliˇcations
like the applicability of the eikonal approximation for the color dipoleÄnucleus
scattering [24, 185Ä189]. The recent development in imposing the unitarity on
nuclear amplitudes, often referred to as the color glass condensate, is summarized
in [190Ä193], for a review of the early works see [194, 195]. A review of the
enormous literature on the subject goes beyond the scope of this review, we rather
present a brief introduction into major ideas.

Let Γ0(r,b) be the proˇle function for the color dipoleÄnucleon scattering
evaluated in the single-Pomeron exchange approximation of Fig. 9. The Gaussian
approximation (48) is not imperative but convenient for the sake of illustration.
In the full 
edged QCD one needs to sum all multigluon t-channel exchanges
between the color dipole and nucleon, including interactions between all ex-
changes not shown in Fig. 14, a. A poor man's approximation to this as yet
unsolved problem ([196,197] and references therein) is the multiple exchange by
bare Pomerons, in general case the interactions between gluons from different
Pomerons must be included. When the multipomeron exchanges are evaluated in
the eikonal approximation, one obtains the ®unitarized¯ proˇle function [163]

Γ(r,b) = 1 − exp [−Γ0(r,b)], (83)

whereas the so-called K-matrix unitarization gives [163]

Γ(r,b) =
Γ0(r,b)

1 + Γ0(r,b)
. (84)
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The latter has been suggested also from the consideration of the so-called fan
diagrams ([198], similar results are found from different approximate nonlinear
evolution equations [199,200]), for the so-called U -matrix approach see [201].

Fig. 14. The multigluon t-channel exchange diagram contribution to the color dipole
scattering amplitude (a) and its approximation by multiple exchange by the two-gluon
Pomerons (b)

The principal point is that the unitarized partial waves do always respect the
unitarity bound Γ0(r,b) � 1. The partial waves saturate at the black-disc limit,
Γ(r,b) ≈ 1, for all impact parameters such that Γ0(r,b) 
 1, i.e.,

b2
∼< 2B(r) log Γ0(r,b = 0). (85)

The two unitarized forms (83) and (84) only differ by the rate of approach to the
black-disc limit, the K-matrix unitarized dipole cross section takes a particular
simple form [163]

σ(x, r) = 4πB(r) log
(

1 +
σ0(x, r)
4B(r)

)
, (86)

which shows clearly how the power-like small-x growth of the bare Pomeron cross

section σ0(x, r) ∝ x−ΔIP is superseded by the ∝ log
1
x

behavior, or ∝ log2 1
x

if

one allows the Regge growth of the diffraction slope B(x, r) [202].
Finally, the unitarization alters dramatically the r dependence of the dipole

cross section from (76). At asymptotically small x the unitarization is at work
already for small dipoles, where the r dependence of diffraction slope B(x, r) can
be neglected, see (80), so that the dipole cross section would saturate, σ(x, r) ≈
4πB, for dipoles

r2
∼> r2

sat =
12B

παS(r)G(x, q2 = A/r2)
. (87)

The smaller is x, the larger is the gluon SF in the numerator in the r.h.s. of (87)
and the smaller is the saturation scale r2

sat. Recently, speciˇc parameterizations
for the saturating dipole cross section without an explicit reference to the uni-
tarity properties of partial waves have been proposed [147, 203]. (In principle,
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the saturation rate and the saturated cross section must be adjusted to describe
the diffractive hadronic scattering and real photoproduction [3,24], which has not
been done in the model [147,203].) However, with the realistic dipole cross sec-
tions the unitarization effects for DIS [163] and for vector-meson production [21]
were found to be marginal. The extraction of the S matrix for the color dipole
scattering from the vector-meson production data by Munier, Mueller, and Stasto
also shows that the dipole-nucleon scattering is not yet close to the strong ab-
sorption regime [204]. Similar conclusion follows from the impact parameter
extension [205] of the saturation model [147, 203]. Those ˇndings are not sur-
prising, though: as shown in [4] in the limit of strong saturation the diffractive
rapidity gap DIS must make precisely 50 per cent of the total DIS cross section,
whereas experimentally the fraction of diffractive DIS is about 10 per cent [1,2].

To summarize, as soon as impact parameter dipole model has been adjusted
to ˇt the experimental data on DIS structure functions and the total cross section
and the t dependence of diffractive vector-meson production, it is expected to
have partial waves consistent with the unitarity constraints in the energy and Q2

range in which the experimental data are available. The same must be true of the
unintegrated gluon SF of the proton extracted in [34] from the DIS data. Applying
unitarity corrections to the vector-meson production amplitudes evaluated with
such an unintegrated gluon SF would be the double counting.

3.4.5. Color Dipole Model and Generalized VDM. The simpliˇed VDM must
be regarded as the leading term of the mass-dispersion relation calculation of
the Q2 dependence of the virtual photoproduction amplitude. The importance of
contributions from the more distant singularities Å the higher vector states and the
continuum, which we denote generically as Vi, Å rises with Q2 [174, 175, 206].
Within the resulting Generalized VDM (GVDM) for DIS the calculation of γ∗p →
γ∗p must allow for transitions of photons to all higher vector states, γ∗ → Vi,
followed by the diagonal and off-diagonal scattering Vip → Vjp and the transition
Vj → γ∗, see Fig. 15.

Fig. 15. The generalized vector dominance model diagrams for Compton scattering (DIS)
and diffractive vector-meson production

Similarly, the transitions γ∗ → Vi followed by the off-diagonal scattering
Vip → V p would contribute to the vector-meson production γ∗p → V p. If
viewed as the mass dispersion relation, the GVDM cannot fail, but the practical
application requires the knowledge of all the diagonal and off-diagonal amplitudes
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Vip → Vjp and of the Q2 dependence of transitions γ∗ → Vi. The color
dipole model provides the QCD input for the GVDM analysis [18, 207], the
equivalence of the two approaches emphasized in [24] has been elaborated by
Schildknecht et al. [208].

3.4.6. The s-Channel Helicity Nonconservation (SCHNC). The scattering of
the qq̄ dipole on the target via exchange of the two-gluon tower exactly conserves
the s-channel helicity of the quark and antiquark (for the QED case see [209,210]).
This does not imply the conservation of the helicity of photons in the off-forward
Compton scattering. As a spin-1 particle, photon is similar to the deuteron. In
the nonrelativistic case the pure S-wave deuteron with spin up consists of the
spin-up proton and spin-up neutron, the longitudinal deuteron consists of the
spin-up proton and spin-down neutron and vice versa.

The perturbative QED transition of the photon to the qq̄ pair is described
by the familiar vertex ef q̄γμqAμ. The longitudinal (scalar) virtual photon with
helicity λγ = 0 consists of the qq̄ Fock state with λ + λ = λγ = 0, in close simi-
larity to the S-wave deuteron. The crucial point is that the transverse photon with
helicity λγ = ±1 besides the qq̄ state with λ + λ = λγ = ±1 contains the state
with λ+ λ = 0 �= λγ , in which the helicity of the photon is carried by the orbital
angular momentum in the qq̄ system (see [211] for an early discussion of this
mechanism in application to the spin-
ip in the nucleon scattering). Furthermore,
it is precisely the chiral-even state with antiparallel helicities, λ + λ = 0, which
gives the dominant contribution to the absorption of transverse photons and the
proton SF F2p(x, Q2) in the Bjorken limit. The perturbative transition of trans-
verse photons to the chiral-odd state with parallel helicities, λ + λ = λγ = ±1,
vanishes in the massless quark limit.

The helicity structure of vector mesons is about the same. From the point
of view of the vector-meson production, it is important that the transverse and
longitudinal γ∗ and V share the intermediate qq̄ state with λ+λ = 0, which allows
the s-channel helicity nonconserving (SCHNC) transitions between the transverse
(longitudinal) γ∗ and longitudinal (transverse) vector meson V [170, 212]. This
mechanism of SCHNC does not require an applicability of pQCD.

Hereafter we only discuss the experimental data from HERA taken with un-
polarized protons, hence proton can be treated as a spinless particle, see, however,
a brief discussion in Subsec. 5.5. Depending on the spin-parity of the t-channel
exchange, the helicity amplitudes satisfy [213]

T−λV −λγ = ±(−1)λV −λγTλV λγ , (88)

where the +(−) sign applies to natural (unnatural) parity exchange. As discussed
in Subsubsec. 3.1.2, Pomeron and all the highest lying subleading reggeons have
the natural spin-parity. Under the dominance of the natural spin-parity exchange,



DIFFRACTIVE VECTOR-MESON PRODUCTION AT HERA: FROM SOFT TO HARD QCD 49

the number of independent helicity amplitudes is reduced to ˇve:

L → L ; T → T (λγ = λV ),
T → L ; L → T,

T → T ′ (λγ = −λV ). (89)

The ˇrst line contains helicity-conserving amplitudes. They are predicted and
found to be the dominant ones. They do not vanish for the forward production,
Δ = 0. The second line in (89) contains two single helicity-
ip amplitudes. They
must be proportional to |Δ| in the combination (e · Δ) or (V∗ · Δ), since there
is no other transverse vector at our disposal. The last line contains the double
helicity-
ip amplitude, which must be proportional to (e ·Δ)(V∗ · Δ).

One can thus predict that the s-channel helicity conserving amplitudes will
dominate in the almost forward production of mesons. As t increases, the relative
importance of helicity-
ip amplitudes will grow, and, at high enough t, they
might become competitive to the helicity conserving amplitudes.

3.4.7. Diffractive Vector-Meson Production from Extended BloomÄGilman
Duality. The BloomÄGilman inclusive-exclusive duality relates the x → 1 behav-
ior of DIS to elastic ep scattering [214]. Roughly speaking, if one stretches the x
dependence of the DIS cross section determined for the continuum masses W to
the elastic limit W → mp, then the DIS cross section integrated over the interval

0 < 1 − x <
W 2

0 − m2
p

Q2
(90)

will, with the judicious choice of the duality interval [m − p, W0], be equal to
the elastic ep cross section (for the recent active discussion of duality in DIS
in connection with the JLab data see [215]). Genovese et al. argued [216] that
similar parton-duality relationship must hold between the diffraction excitation of
the small mass continuum

ep → e′Xp′

and exclusive vector-meson production. In terms of the diffractive Bjorken vari-
able

β =
Q2

Q2 + M2
X

the diffractive structure functions for the transverse and longitudinal photons have
the large-β behavior [216Ä218]

FT (x, β, Q2) ∝ (1 − β)2G2(x, q2
T ), (91)

FT (x, β, Q2) ∝ 1
Q2

G2(x, q2
L). (92)
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The relevant hard scales equal [216,217,219]

q2
T ∼

m2
q

M2
X

(Q2 + M2
X), q2

L ∼ 1
4
(Q2 + M2

X). (93)

The integration over the duality interval [Mmin ∼ 2mq, MT,L], i.e., 1 − βT,L <
M2

T,L/Q2, yields the correct large-Q2 dependence of σL,T . Furthermore, both

hard scales q2
T,L tend to the scale Q

2
of Eq. (8) so that Eqs. (91), (92) yield

precisely the same dependence on the gluon structure function as in (80), (81).
Motivated by this observation [216], Martin et al. suggested to evaluate the
vector-meson production cross sections σT,L from the duality integral [220,221].
This way one encounters a very strong sensitivity of such evaluations of σT,L to
the duality interval,

σT ∝ (M6
T − M6

min), (94)

σL ∝ (M2
L − M2

min), (95)

which is especially strong in the case of σT .
Similar in spirit to the duality is the unorthodox color evaporation model

(CEM). In its original formulation [222] it simply states that the color of the qq̄
pair produced in γ∗g → qq̄ subprocess happens to be bleached by soft ˇnal-state
interactions leading to the rapidity gap events with the probability 1/9. Within
CEM the charmonium production is described by the formation of colored open
charm cc̄ states which masses Mcc̄ � 2mD, where mD is the mass of the D
meson [223]:

σonium =
1
9

2mD∫
2mc

dMcc̄
dσcc̄

dMcc̄
, (96)

where 1/9 is the color bleaching probability. Assuming that about 50% of the
onium goes into the J/Ψ, Amundson et al. were able to describe the photo- and
hadroproduction of the J/Ψ [224,225]. Gay Ducati et al. found similar agreement
with the total cross section of elastic charmonium photoproduction [226, 227].
Here we only notice that in the near-threshold process γ∗g → cc̄ produces the
spin-singlet S-wave cc̄ pair. Arguably, the color bleaching cannot 
ip the spin of
nonrelativistic heavy quarks and that must lead to strong suppression factor in the
estimate (96). In contrast to that, in hadronic collisions the near-threshold open
charm can be produced in the spin-triplet state via qq̄, gg → g → cc̄ and the spin
dynamics of heavy nonrelativistic quarks does not prohibit the formation of J/Ψ
by color bleaching.

3.4.8. Models which Respect the Froissart Bound. Only a limited range of
energy, x, and Q2 is spanned by the available experimental data. We already
mentioned an equally good description of the available soft cross-section data by
the soft Pomeron pole exchange and logarithmic parameterizations, see Subsub-
sec. 3.1.4. We also recall an observation by Buchméuller and Haidt [228] that
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gross features of the small-x proton structure function as measured at HERA are
reasonably well reproduced by a very simple parameterization

F2(x, Q2) = a + m log
x0

x
log

Q2

Q2
0

. (97)

From the Regge theory viewpoint this corresponds to the dipole singularity at
j = 1. The dipole singularity model for virtual photoproduction of vector mesons
has been proposed by Fiore et al. [229,230], in this speciˇc example the nonlinear
Pomeron trajectory with the branching point singularity at the two-pion threshold
in the t-channel is used. For each and every vector meson a good description
of the vector-meson production cross sections is found at the expense of ˇve
free parameters. A very closely related model was proposed by Martynov et
al. [231,232]. Troshin and Tyurin suggested a parameterization of vector-meson
production amplitudes in which the high energy growth is tamed by the U -matrix
unitarity constraints [201]. Haackman et al. [233] start with the soft Pomeron
with ΔIP > 0 and impose the unitarization by reggeon ˇeld theory methods
as mentioned in Subsubsec. 3.1.4. The drawback of such models is that the Q2

dependence of the vector-meson production is parameterized rather than predicted
from the microscopic QCD.

4. THE k⊥ FACTORIZATION: UNIFIED MICROSCOPIC QCD
DESCRIPTION OF DIS AND VECTOR-MESON PRODUCTION

4.1. The Leading log
1
x

and qq̄ Fock State Approximations. The color dipole

and kt-factorization approaches to small-x DIS are conjugate to each other, the
technical correspondence is given by Eq. (73). The advantage of the former
is in its simple quantum-mechanical representation, still some technical issues
such as the deˇnition of the light-cone wave functions, the separation of the S-
and D-wave states of vector mesons, and the role of the so-called skewed, or
off-diagonal, gluon distribution functions are more transparent in the momentum-
space representation.

The starting point is the BFKL diagram for small-x DIS, Fig. 9, and the
reference reaction is the nonforward Compton scattering γ∗p → γ∗(Δ)p(−Δ).
The vector-meson production is obtained from the Compton diagram replacing the
outgoing pointlike photon γ∗ by the nonpointlike vector meson V . To the leading

log
1
x

the effect of perturbative higher, qq̄g, qq̄gg, etc., Fock states in the pointlike

photon amounts to the BFKL evolution of the color dipole cross section or of
the unintegrated gluon SF while retaining the qq̄ Fock state approximation [35Ä
37, 129, 161, 162]. Namely, in the DIS counterpart of (72) one calculates the
photoabsorption cross section as an expectation value of the dipole cross section



52 IVANOV I. P., NIKOLAEV N.N., SAVIN A.A.

over the lowest qq̄ state of the photon:

σtot(γ∗p) =

1∫
0

dz

∫
d2rΨ∗

γ∗(z, r)σdip(x, r)Ψγ∗(z, r). (98)

4.2. The Helicity and Chiral Structure of the Photon. In the momentum
representation the chiral structure of the q̄γμqAμ vertex is as follows. The photon
polarization vectors are described in Subsubsec. 2.3.2, here we only notice that
in the Sudakov representation

eμ(L) = − 1
Q

(
q′ +

Q2

W 2
p′
)

, (99)

where the two Sudakov light-cone vectors are deˇnes as

P = p′ +
m2

p

W 2
q′; q = q′ − xP ; q′2 = p′2 = 0; x =

Q2

W 2
	 1. (100)

Hereafter it will be convenient to use twice the quark and antiquark helicity,
λ, λ = ±1, which should not cause a confusion. For the transverse photons,
λγ = ±1, in the momentum representation the perturbative QED vertex gives the
structure

q̄λγμqλeμ(λγ) =
1√

z(1 − z)

{
−
√

2mfδλγ ,λδλ,λ+

+ 2δλ,−λ[zδλγ ,λ − (1 − z)δλγ ,λ](k · e(λγ))
}

(101)

and for the longitudinal (scalar) photons

q̄λγμqλeμ(λγ = 0) = −2Q
√

z(1 − z)δλ,−λ. (102)

Here z and (1−z) are the fractions of the photon's light-cone momentum carried
by the quark and antiquark, respectively, and k and −k are the corresponding
transverse momenta. The perturbative chiral-odd component of the transverse
photon with parallel helicities vanishes for massless quarks. The scaling con-
tribution to the DIS structure function F2(x, Q2) comes from the chiral-even
component with antiparallel helicities.

4.3. The Light-Cone Helicity and Chiral Structure of Vector Mesons and
Rotation Invariance. In the vector meson, the quark and antiquark are in the
spin-triplet state and either S- or D-wave. The light-cone wave function ΨV (z,p)
is a probability amplitude for expansion of the vector meson in qq̄ states with
invariant mass

M2 =
k2 + m2

f

z(1 − z)
= 4(m2

f + p2). (103)
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One calculates ˇrst the amplitude of production of the qq̄ pair,

γ∗p → (qq̄)p′, (104)

and then projects it onto the vector state by weighting with ΨV (z,k) and the
relevant helicity factors. The use of the 3-dimensional momentum of the quark

in the qq̄ rest frame, p =
(
k,

(
z − 1

2

)
M

)
,

d3p
M

=
dzd2k

4z(1 − z)
, (105)

is helpful to see a link to the conventional quantum-mechanical description.
The helicity/chiral structure of the vector meson for the widely used V qq̄

extension of the QED vertex of the form

Vμq̄fγμqfΓV (z,k), (106)

is the same as for the photon subject to the substitution Q → M for the longi-
tudinal vector meson. The vertex (106) gives a certain admixture of the S and
D waves. The SD-mixing is familiar from the case of the deuteron, where it
originates from the pion-exchange tensor interaction, the presence of the potential-
dependent SD-mixing in vector mesons is a generic feature of potential models
(for the review see [47]).

The rotation-invariant light-cone description of the pure S- and D-wave states
and the corresponding vertices Sμ and Dμ are found in [54,171], for the related
discussion see also [234, 235]. To generate the pure S-wave state one needs to
add the generalized Pauli vertex. Upon applying the Gordon identities, the pure
S-wave vertex can be cast in the form

ΓS(z,k)q̄fSμqfVμ = ΓS(z,k)q̄f

{
γμ − 1

(M + 2m)
(pf − pf̄ )μ

}
qfVμ (107)

with the helicity/chiral structure

q̄λSμqλVμ(±1) =
1√

z(1 − z)
×

×
{
−
√

2mfδλV ,λδλ,λ + 2δλ,−λ[zδλV ,λ − (1 − z)δλV ,λ](k ·V(λV ))+

+
2(k ·V(λV ))

M + 2mf

[
mf (1 − 2z)δλ,−λ +

√
2(k ·V(−λ))δλ,λ

]}
,

(108)
q̄λSμqλVμ(0) = −2M

√
z(1 − z)δλ,−λ−

− M(1 − 2z)
(M + 2mf)

√
z(1 − z)

[
mf (1 − 2z)δλ,−λ +

√
2(k · V(−λ))δλ,λ

]
.
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Note that momenta pf and pf̄ correspond to on-mass-shell fermions, see details
in [54], which justiˇes the usage of the Gordon identity. The corresponding
vertex functions ΓS will only depend on the ®radial¯ variable M2 and can be
related to the momentum-space radial wave functions ψS(z,k):

ΓS,D(M2) = ψS(z,k)(M2 − m2
V ). (109)

An important part of the rotation-invariant description is that the transversity
condition must be imposed at the level of the qq̄ pair, which leads to the concept
of the running longitudinal polarization vector VL(M), which has the Sudakov
expansion

V (λV = 0) =
1
M

(
q′ − M2

W 2
p′
)

(110)

such that it is orthogonal to the 4-momentum of the on-mass-shell qq̄ pair,
(vqq̄VL(M)) = 0, where

vqq̄ = q′ +
M2

W 2
p′, v2

qq̄ = M2. (111)

This running polarization vector has been used in (108).
The light-cone extension of the considerations in Subsubsec. 3.4.1 gives the

V 0 → e+e− decay constant for the S-wave state [54]

gV = Nc

∫
d3p

(2π)3
ψS(p)

8
3
(M + mf ) =

= Nc

1∫
0

dz

∫
d2k

(2π)3z(1 − z)
ψS(p)

2
3
M(M + mf ) = gV

1∫
0

dzφV (z), (112)

where φV (z) is the so-called distribution amplitude for the pure S-wave vector
meson. The general phenomenology of distribution amplitudes can be found
in [166,236,237] and [238]. If the vector meson is saturated by the qq̄ state, then
(112) is supplemented by the normalization condition

1 =
Nc

(2π)3

∫
d3p 4M |ψS(p2)|2 =

Nc

(2π)3

∫
dzd2k

z(1 − z)
M2|ψS(p2)|2. (113)

The calculations with the ˇxed longitudinal polarization vector deˇned for
ˇxed M = mV break the rotation invariance, which is often the case with
parameterizations used in the literature [21,26,204,239Ä241]. In technical terms,
the ˇxed polarization vector leads to a mixing of the longitudinal spin-1 state
and spin-0 states. One of the drawbacks of the ˇxed polarization vector is
that the V → e+e− decay width would depend on the polarization state of the
vector meson, while the rotation invariant approach with the running longitudinal
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polarization vector guarantees that the decay constants for the transverse and
longitudinal vector mesons are identical. Quite often, in the ˇxed-polarization-
vector approaches, the manifestly different radial wave functions are introduced
for the transverse and longitudinal vector mesons [181,205].

The principal effect of the Pauli vertex in the helicity/chiral expansion (108) is
the chiral-odd parallel-helicity component of the transverse vector meson which
does not vanish for massless quark. Going back from vector mesons to real
photons, Ivanov et al. [242] argued that the related nonperturbative chiral-odd
component in the real photon is large. They relate the normalization of this
component of the real photon wave function to the quark condensate and its
magnetic susceptibility [243].

4.4. The Impact Factor Representation for the Helicity Amplitudes.
The k⊥ factorization, or impact factor, representation for the vector-meson pro-
duction repeats closely that for the Compton scattering amplitude in the case of

Fig. 16. The kinematical variables entering the
k⊥-factorization representation (116) for vector-
meson production amplitudes

DIS [37, 168]. The three changes
are: that now the momentum trans-
fer Δ �= 0, the vertex function for
the S-wave vector meson is differ-
ent from the γμ vertex (104) for the
photon, and the conventional unin-
tegrated gluon SF which describes
the t-channel exchange is replaced
by the off-forward (skewed) unin-
tegrated gluon structure function of
the target, F(x1, x2, κ1, κ2). Here

x1 ≈ Q2 + M2
1

W 2
,

(114)

x2 ≈ M2
1 − m2

V

W 2
,

and M1 is the invariant mass of the intermediate qq̄ pair, for the kinematical
variables see Fig. 16.

The imaginary part of the total amplitude can be written as [54,171]

Im T = W 2 cV

√
4παem

4π2

∫
d2κ

κ4
αS(max {κ2, ε2 + k2})F(x1, x2, κ1, κ2)×

×
∫

dzd2k
z(1 − z)

I(λV , λγ), (115)
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where for the pure S-wave vector mesons the integrands I(λV , λγ) have the form

IS(L, L) = 4QMz2(1 − z)2
[
1 +

(1 − 2z)2

4z(1 − z)
2mf

M + 2mf

]
Ψ∗

2Φ2; (116)

IS(T, T )λV =λγ = m2
fΨ∗

2Φ2 + [z2 + (1 − z)2](Ψ∗
1Φ1)+

+
mf

M + 2mf

[
(kΨ∗

1)Φ2 − (2z − 1)2(kΦ1)Ψ∗
2

]
; (117)

IS(T, T )λV =−λγ = 2z(1 − z)(Φ1xΨ∗
1x − Φ1yΨ∗

1y)−

− mf

M + 2mf

[
(kxΨ∗

1x − kyΨ∗
1y)Φ2 − (2z − 1)2(kxΦ1x − kyΦ1y)Ψ∗

2

]
; (118)

IS(L, T ) = −2Mz(1− z)(2z − 1)(eΦ1)Ψ∗
2

[
1 +

(1 − 2z)2

4z(1 − z)
2mf

M + 2mf

]
+

+
Mmf

M + 2mf
(2z − 1)(eΨ∗

1)Φ2; (119)

IS(T, L) =

= −2Qz(1− z)(2z − 1)
[
(V∗Ψ∗

1)Φ2 −
2mf

M + 2mf
(V∗k)Ψ∗

2Φ2

]
. (120)

Here r = k +
(

z − 1
2

)
Δ and

Φ2 = − 1
(r + κ)2 + ε2

− 1
(r − κ)2 + ε2

+

+
1

(r + Δ/2)2 + ε2
+

1
(r − Δ/2)2 + ε2

, (121)

Φ1 = − r + κ

(r + κ)2 + ε2
− r − κ

(r − κ)2 + ε2
+

+
r + Δ/2

(r + Δ/2)2 + ε2
+

r − Δ/2
(r − Δ/2)2 + ε2

, (122)

for the deˇnition of ε2, see Eq. (77). Here 1/(k2 + ε2) and Ψ2 ≡ ψV (z,k)
describe transitions into the q̄ states with the sum of helicities of the quark and
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antiquark λ + λ̄ = λγ∗,λV , whereas k/(k2 + ε2) and Ψ1 ≡ kψV (z,k) describe
transitions of transverse and vector meson into the q̄ states with λ + λ̄ = 0, in
which the helicity of the photon and vector meson is carried by the orbital angular
momentum in the qq̄ state.

In the calculation of the double helicity-
ip amplitude (118) the x axis is
chosen along the momentum transfer Δ. The point made in Subsubsec. 3.4.4 that
the helicity 
ip proceeds via the intermediate state with λ + λ̄ = 0 is manifest in
(117)Ä(119). The corresponding integrands for the D-wave states can be found
in [171].

The z dependence of the integrands shows that the end-point contributions
(z 	 1 or 1 − z 	 1) are suppressed in the longitudinal amplitude T (L, L)
already in the integrands, while for the other helicity amplitudes this suppression
comes from the wave functions, see discussion in Subsecs. 4.7 and 4.9 below.
The factor (2z − 1) in the integrands of the helicity-
ip amplitudes T (L, T ) and
T (T, L) corresponds to the longitudinal Fermi momentum of quarks in the vector
meson, which makes manifest the relativistic origin of helicity 
ip. The expected
hierarchy of the helicity 
ip amplitudes is as follows [170,212]. Roughly,

|T01|√
|T11|2 + |T00|2

∼
√
|t|√

Q2 + m2
V

, (123)

|T10|√
|T11|2 + |T00|2

∼
√
|t|√

Q2 + m2
V

QmV

Q2 + m2
V

, (124)

|T1−1|√
|T11|2 + |T00|2

∼ |t|
mV

√
Q2 + m2

V

. (125)

For heavy 
avour vector mesons, the helicity-
ip amplitudes are expected to
be further suppressed by the nonrelativistic Fermi motion. The real part of
the amplitude can be reconstructed from the imaginary part using the derivative
analyticity relation [244,245]:

Re
T

W 2
=

π

2
∂

∂ log W 2
Im

T
W 2

. (126)

4.5. The Off-Forward Unintegrated Gluon Density: the Δ Dependence
within the Diffraction Cone and the BFKL Pomeron Trajectory. Thanks to a
large amount of high-precision data on F2p both in the soft and hard regimes, the
simple, ready-to-use parameterizations for the forward unintegrated gluon density
F(x, κ2) are now available [34]. These parameterizations can be exploited in
different high-energy reactions and bring the gluon density of the proton under
control.
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For the practical application of the formalism of Subsec. 4.4, one needs the

off-forward unintegrated gluon distribution F
(

x1, x2, κ +
1
2
Δ,−κ +

1
2
Δ

)
. Its

dependence on the momentum transfer Δ comes from two courses. The ˇrst one
is the soft quantity that can be simulated by the two-gluon form factor of the
proton. The second is the Δ dependence of the BFKL two-gluon ladder. When
viewed in the impact parameter space, at each splitting of the gluon into two
gluons, g → gg, the hard gluon, which carries the large longitudinal momentum
of the parent gluon, emerges at the same impact parameter as the parent gluon,
whereas the soft one, which carries small longitudinal momentum, emerges at

an impact parameter |Δbi| ∼ 1
|κi|

from the parent gluon. Consequently, as

illustrated in Fig. 17, the splitting of gluons in the process of the log
1
x

evolution

is accompanied by the GribovÄFeinbergÄChernavski random walk [246, 247] of
small-x gluons to larger and larger impact parameters b. The asymptotic freedom,
i.e., the running αS , enhances the role of large random walks of the order of
the perturbative gluon propagation radius Rc. This suggests that 〈b2〉 will rise
proportionally to the number of gluon splittings, i.e.,

〈b2〉 ∝ R2
c log

1
x
∝ R2

c log W 2. (127)

Fig. 17. The sequential split-
ting of gluons in the Feyn-
man diagram (a) for produc-
tion of the multigluon ˇnal
state viewed as a random walk
in the impact parameter space
of gluons from the qq̄ pair of
the photon γ∗ to the proton
target

In conjunction with the Regge formula (37) and the deˇnition (43), this en-
tails the ˇnite slope α′

BFKL of the Regge trajectory of the hard BFKL Pomeron.
Evidently, the dimensionfull α′

BFKL is the soft parameter and as such it depends
manifestly on the infrared regularization of QCD. The solution of the color di-
pole BFKL equation with Yukawa-type cutoff and infrared freezing of αS gave
α′

BFKL = 0.12−0.15 GeV−2 [25, 134, 248]. The results for the shrinkage rate
α′

BFKL depend on the admixture of subleading BFKL poles and exhibit weak
dependence on κ2. The quoted value is found for the speciˇc boundary condi-
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tion, which gives a good description of the HERA results on the proton structure
function [134,136].

When viewed in the momentum space, the same GribovÄFeinbergÄChernavski
diffusion suggests the weakening of the κ-Δ correlation with the number of split-
tings. Indeed, Balitsky and Lipatov have shown that the dependence of the off-
forward gluon density (κ · Δ) corresponds to subleading singularities [37, 127],
and, arguably, can be neglected for HERA energy range.

Consequently, for small momentum transfers within the diffraction cone the
Δ dependence can be factored out as

F
(

x1, x2, κ +
1
2
Δ,−κ +

1
2
Δ

)
=

= F(x1, x2, κ,−κ) exp
(
−b3IPΔ2

2

)
. (128)

We parameterize b3IP as

b3IP = b2G + 2α′
BFKL log

W 2x0

Q2 + m2
V

, (129)

where the soft parameter b2G can be regarded as a slope of the form factor
of the proton as probed by the color singlet two-gluon state. In principle, one
can determine it experimentally isolating the BFKL contribution to diffractive
DIS into high-mass states. Strictly speaking, this parameter b2G as well as the
Pomeron slope α′ can change from the soft, nonperturbative, to hard, BFKL,
gluon density, taking [54, 55] the universal parameters, b2G = BN = 4 GeV−2

with x0 = 3.4 · 10−4 and the κ2-independent αsoft
IP = α′

BFKL = 0.25 GeV−2 is
the poor man's approximation.

4.6. The Off-Forward Unintegrated Gluon Density: the Dependence on
Skewness. Bartels was the ˇrst to observe [249] that two gluons enter the
amplitude at x2 �= x1 ≈ x, because the invariant mass squared M2

1 of the
intermediate qq̄ system is close to M2 ≈ m2

V for the ˇnal qq̄ state and is far from
the virtuality of the incident photon Å Q2. Such a skewed unintegrated gluon
density can be, in principle, accessed in DVCS [31], but that is not yet a practical
solution. Shuvaev et al. [250] and Radyushkin [251] argued that at small x the
skewed distribution can be related to the conventional one: if F ∝ x−λ, then

F(x1, x2 	 x1, κ,−κ) = RgF(x1, κ); Rg =
22λ+3

√
π

Γ
(

λ +
5
2

)
Γ(λ + 4)

. (130)

The above factor Rg can be effectively accounted for in a form of the x rescaling

Rg

(
1
x1

)λ

=
(

1
c(λ)x1

)λ

, (131)
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where c(λ) changes from ≈ 0.435 at λ = 0 to 0.4 at λ = 1. Given this very 
at
dependence, one can take ˇxed c = 0.41, so that

F(x, 0, κ,−κ) ≈ F(cx, κ). (132)

Hereafter we approximate the skewed gluon density by the forward density
taken at

xg = cx1 = c
Q2 + m2

V

W 2
. (133)

Of course, once this rescaling of x is implemented and the Fourier transform to
the color dipole representation is performed starting from Eqs. (115)Ä(120), the
color dipole and k⊥-factorization approaches will be identical to each other.

4.7. The Anséatze for the Wave Function. For the heavy quarkonia a good
insight into the functional form of the radial wave function (WF) ψV (p2) comes
from the potential model calculations [47, 48]. Here, at least for the Υ(1S),
the role of the QCD Coulomb interaction is substantial. It is less so for the
charmonium, whereas the gross properties of lighter vector mesons which have
a large size are entirely controlled by the conˇning interaction and here one is
bound to the model parameterizations [54]. The popular harmonic oscillator WF
emphasizes the conˇnement property, it decreases steeply at large p2,

ψ1S = c1 exp
(
−p2a2

1

2

)
; ψ2S = c2

(
ξnode − p2a2

2

)
exp

(
−p2a2

2

2

)
, (134)

which emphasizes the contrast between the nonpointlike vector meson and point-
like photon for which Γγ∗(z,k) =

√
4παem = const. The position of the node,

ξnode, is ˇxed from the orthogonality condition. The attractive pQCD Coulomb
interaction between the quark and antiquark enhances the WF at small Rqq̄ and/or
large relative momentum, the minimal relativization of the familiar Coulomb WF
suggests

ψ1S(p2) =
c1√
M

1
(1 + a2

1p2)2
; ψ2S(p2) =

c2√
M

(ξnode − a2
2p

2)
(1 + a2

2p2)3
, (135)

which decreases as an inverse power of p2, much slower than (134). The factor
1/

√
M in (135) is a model-dependent suppression to make the decay constant

(112) convergent. Arguably, those two extreme Anséatze give a good idea on
the model dependence of vector-meson production amplitudes. The radius a1

and the normalization c1 are ˇxed by the V0 → e+e− decay constant (112) and
the normalization condition (113). The hybrid model in which the short-distance
QCD Coulomb interaction in light vector mesons has been treated perturbatively
is found in [21,49].
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4.8. The Hard Scale Q
2
: the Link to the Leading log Q2 Approximation

and the Exponent of the W Dependence. For soft gluons,

κ2 	 (ε2 + k2) = z(1 − z)(Q2 + M2), (136)

one can expand Φ2 and Φ1 as [252] (for the sake of simplicity we consider
Δ = 0)

Φ2 ≈ 2(ε2 − k2)
(ε2 + k2)3

κ2 =

=
2

z2(1 − z)2(Q2 + M2)2

[
1 − 2k2

z(1 − z)(Q2 + M2)

]
κ2, (137)

Φ1 ≈ 4ε2k
(ε2 + k2)3

κ2 =

=
4k

z2(1 − z)2(Q2 + M2)2

[
1 − k2

z(1 − z)(Q2 + M2)

]
κ2. (138)

A natural approximation is M2 ≈ m2
V . Then the factor (Q2 + m2

V )−2 which
emerges in (137) and (138) corresponds to precisely the factor r4

S of the color
dipole approach, see Eqs. (78) and (79). The determination of the hard scale in
the gluon SF is a bit more subtle.

Expansions (137) and (138) deˇne the leading logQ
2

contribution with log-
arithmic integration over κ2:

z(1−z)(Q2+M2)∫
0

dκ2

κ2
F(xg, κ) = G(xg, z(1 − z)(Q2 + M2)). (139)

The emerging running hard scale depends on z and M2, for the heavy quarkonia

the wave function of the vector meson is peaked at z ∼ 1
2

and one can take

M2 ≈ m2
V , consequently, z(1 − z)(Q2 + M2) = Q

2
of Eq. (9).

The contribution from small dipoles, r < rS , or from hard gluons beyond

the leading log Q
2

domain, κ2
∼> Q

2
, is an integral part of the k⊥-factorization

approach [21,33,34]. In this region

Φ2 ≈ 2
(ε2 + k2)

, Φ1 ≈ 2k
(ε2 + k2)

(140)

and the correction to the leading log Q
2

result (139) can be cast as (see also [173])

Q
2
∫

Q
2

dκ2

(κ2)2
F(xg, κ) ≈ F(xg , Q

2
) log Cg, (141)
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where log Cg ∼ 1 and depends on the exact κ2 dependence of F(xg, κ). Follow-
ing [33,34] one can combine (139) and (141) as

G(xg, Q
2
) + F(xg, Q

2
) log Cg ≈ G(xg, CgQ

2
). (142)

Consequently, the gluon density is mapped at hard

Q
2

G = CgQ
2
, (143)

which is slightly different from Q
2
. As already mentioned above, IS(L, L) of

(116) is more peaked at z ∼ 1/2, whereas IS(T, T )λV =λγ of (117) extends more

to the end points z ∼ 0 and z ∼ 1. This leads to an inequality Q
2

GL > Q
2

GT and
implies that the typical dipole sizes in the T → T amplitude are somewhat larger
than for the L → L amplitude.

For a more quantitative analysis the κ2 integrations can be cast in the form

1
W 2

Im TLL,TT ≡
∫

dκ2

κ2
F(xg, κ)WL,T (Q2, κ2) ≡

≡ WL,T (Q2, 0)G
(
xg, Q

2

GL,GT

)
. (144)

The typical behaviour of normalized weight functions WL,T (Q2, κ2)/WL,T (Q2, 0)
is shown in Fig. 18 and for smooth F(xg, κ

2) they can be approximated by

the step-function θ
(
Q

2

GL,GT − κ2
)
, where Q

2

GL,GT are deˇned by the median,

WL,T

(
Q2, Q

2

GL,GT

)
=

1
2
WL,T (Q2, 0), the results are close to the ones found

in [21]. At moderately large Q2 the strong scaling violations in F(xg, κ
2) shown

in Fig. 10 have a strong impact on Q
2

GL,GT , as shown in Fig. 19. The inequality

Fig. 18. The normalized weight functions WL(Q2,κ2)/WL(0) (1) and
WT (Q2,κ2)/WT (0) (2) for the ρ production calculated at Q2 = 100 GeV2 in the
k⊥-factorization approach [38]
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Fig. 19. The scales Q
2

GT (1) and Q
2

GL (2) at which the ρ production maps the gluon
density as a function of Q2 found in the k⊥-factorization approach [38]. Shown also is

the heavy 
avor approximation Q
2

G = Q
2

=
1

4
(Q2 + m2

ρ) (3)

Fig. 20. The effect of different hard scales on the integrated gluon density (142) which
enters the dominant SCHC amplitudes TLL and TTT for the ρ production as found in the
k⊥-factorization approach [55]

Q
2

GL > Q
2

GT found in [21] is retained and the hierarchy of Q
2

GL,GT from light

to heavy 
avors is the same as of Q
2
.

This effect of Q
2

GL > Q
2

GT is demonstrated in Fig. 20 on an example of
G(xg , Q2

GT ) and G(xg , Q2
GL) for the ρ production: the ˇnding of G(xg, Q

2
GL) >

G(xg , Q2
GT ) re
ects the inequality Q

2

GL > QGT at equal Q2. For the same reason
different helicity amplitudes can have a slightly different energy dependence.
The effect of different scales diminishes at larger Q2 with weakening scaling
violations, see Fig. 10.

A tricky point is that the small-κ expansion for the double-
ip amplitude
starts with the constant and it is dominated by the soft-gluon exchange, the term
∝ κ2 is of higher twist [170,212].
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Of course, the above separation into the leading log Q
2

and hard regions
is redundant when either the color dipole and the full 
edged k⊥-factorization
approaches are used. The k⊥-factorization analysis reveals somewhat better the

role of k2 in (136) for the determination of the leading log Q
2

region. One
may call that the inclusion of the Fermi motion effects [239] is automatically
contained in the color dipole calculations and should not be discussed separately.
The speciˇc form of the Fermi motion correction suggested by Frankfurt et
al. [239] is not borne out by the k⊥-factorization analysis, though.

Finally, Eq. (144) clearly shows that the energy dependence of the production
amplitude is controlled by the xg dependence of the integrated gluon density, i.e.,

by the effective intercept λ(Q
2

GL,GT ) deˇned in Subsubsec. 3.3.1:

Im T (W 2, t = 0)LL,TT ∝
(

1
x

)1+λ(Q
2
GL,GT )

∝ (W 2)1+λ(Q
2
GL,GT ). (145)

4.9. The Production Amplitude and the Vector Meson Distribution Am-
plitude. At large Q2 there emerges one useful approximation usually referred to
as the collinear approximation. Speciˇcally, here the explicit k2 dependence in

Q
2

is neglected and the d2k integration can be factored out. In the color dipole
language this amounts to neglecting the r dependence of the vector meson wave
function and taking it at r = 0, but keeping its z dependence. The results are
best seen in the momentum representation. For instance, the factor z2(1 − z)2 in
IS(L, L), Eq. (117), cancels the factor z−2(1 − z)−2 in Eq. (137) for Φ2, and
the vector meson wave function enters TLL in the form of an integral

∫ k2<Q
2

d2kMψ∗
V (z,k)

[
1 +

(1 − 2z)2

4z(1 − z)
2mf

M + 2mf

]
(146)

which is very similar to the distribution amplitude deˇned by (112) at the fac-

torization scale Q
2
. We emphasize that the factor in the square brackets in

(146) depends on the SD-wave mixing. For the nonrelativistic heavy quarkonia
M ≈ mV , z ≈ 1/2, the proportionality of the two quantities is exact, and one
ˇnds, cf. (68),

dσL

d|t|

∣∣∣∣∣
t=0

=
π3

12αem

Q2

Q
8 mV Γ(V → e+e−)

[
αs(Q

2
)G(xg , Q

2

G)
]2

(147)

and

RV =
σL(γ∗p → V p)
σT (γ∗p → V p)

≈ Q2

m2
V

RLT (148)

with RLT = 1 if the slight possible difference of the t dependence for the L
and T cross sections is neglected. Since the proportionality RV ∝ Q2 at small
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Q2 is a generic consequence of the electromagnetic gauge invariance, the true
dynamical features of vector-meson production are manifested by the departure
of RLT from unity. We strongly advocate to represent the experimental data in
terms of this parameter.

4.10. The Ratio R = σL/σT and Short Distance Properties of Vector
Mesons. One word of caution on the ratio (148) is in order [253]. In the
Introduction we emphasized how the vector-meson production γ∗p → V p is
obtained by analytic continuation from the elastic Compton scattering γ∗p → γ∗p.
In the course of this analytic continuation one changes the pointlike γ∗qq̄ form
to the nonpointlike V qq̄ vertex.

Making use of the optical theorem for the Compton scattering, one ˇnds

RCompt =
∣∣∣∣A(γ∗

Lp → γ∗
Lp)

A(γ∗
T p → γ∗

T p)

∣∣∣∣
2

=
(

σL(γ∗p)
σT (γ∗p)

)2

= R2
DIS ≈ 4 · 10−2. (149)

Here we used the prediction [135] for inclusive DIS RDIS = σL(γ∗p)/σT (γ∗p) ≈
0.2, which is consistent with the indirect experimental evaluations at HERA [254].
This result RCompt 	 1 for the elastic scattering of pointlike photons γ∗p → γ∗p
must be contrasted to RV ∼ Q2/m2

V 
 1 when the pointlike γ∗ in the ˇnal state
is swapped for the nonpointlike vector meson. Evidently, the predictions for RV

are extremely sensitive to the presence in light vector mesons of quasi-pointlike
qq̄ component with the WF concentrated at short qq̄ separation. The crude model
estimates in [21,49] suggest that modiˇcations of the wave function by attractive
short-distance pQCD interaction do indeed lower the theoretical results for RV .

Here we just recall the pQCD radiative correction to the WeisskopfÄVan Ro-
yen nonrelativistic approximation (65) for the leptonic decay width ([255], see
also [256])

Γ(V 0 → e+e−) =
4α2

emc2
V

m2
V

|ΨV (0)|2
(

1 − 8
3π

αS(mf )
)2

, (150)

which even for the J/Ψ suppresses the decay width by a factor of ∼ 2. Remark-
ably, this particular NLO correction is of Abelian nature Å it derives from the
KarplusÄKlein QED radiative correction by a substitution αem → CF αS(m2

f ). In
the LO approach the conservative radii of vector mesons are ˇxed from Eq. (112)
without allowance for the pQCD correction (150). Although formula (150) can-
not be directly applied to light vector mesons, it is reasonable to wonder what
will happen to the vector-meson production phenomenology if the Celmaster and
Barbieri et al. correction for the ρ meson were a factor of 3. To a crude approxi-
mation, that will enhance the wave function at the origin by the factor ≈

√
3 and

decrease the radius of the vector meson by the factor ≈ 31/3 = 1.44, which is
not off-scale. We expect a substantial reduction of the predicted RV = σL/σT

for such a squeezed ρ meson.
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4.11. Perturbative QCD Calculations at High t. Vector-meson production
at large |t| is believed to be dominated by small impact parameters b ∼ 1/

√
|t|.

Simultaneously, the large |t| is expected to select the small-size conˇgurations
in the γ∗V transition vertex. Consequently, at |t| such that 1/

√
|t| 	 rS , i.e.,

|t| 
 Q
2
, it becomes the hard pQCD scale for the process. Arguably, in the real

photoproduction of heavy 
avour mesons the correct hard scale is |t| + m2
V .

Which |t| is large enough for |t| or |t|+m2
V to become the hard pQCD scale?

That can be decided only a posteriori, the answer depends on the normalization
of the hard pQCD amplitude and on how fast the soft amplitudes do vanish at
large Δ [46]. The large-t data taken at HERA correspond to the Regge regime
of |t| 	 W 2. In the real photoproduction one starts with the typical hadronic
γ → V transition, and our experience with large-t hadronic reactions is a very
discouraging one. At small-t within the diffraction cone the differential cross
sections have the exp (−B|t|) behaviour, but at larger t > 1 GeV2 the slowly
decreasing multiple-pomeron exchanges take over: the n-pomeron exchange gives

the t dependence ∝ exp
(
−B

n
|t|
)

(for the review and references see [93]). It

is fair to say that the unequivocal evidence for hard pQCD mechanism in high-
energy elastic protonÄproton scattering is as yet missing, the soft double-pomeron
mechanism dominates for t of several GeV2 quite irrespective of the speciˇc
model for the soft-pomeron amplitude (for the recent ˇts to elastic pp scattering
see [257]). The model-dependent estimates show that the rate of decrease of
the soft amplitude slows down dramatically at large |t|. For instance in ππ
elastic scattering at moderate energies the dominance of the hard pQCD amplitude
requires |t| ∼> 4 GeV2 [258]. The modern handbag mechanism for large-t two-
body reactions, as well as electromagnetic form factors of nucleons and pions,
relies on soft wave functions of hadrons ([259] and references therein).

Under these circumstances the single-BFKL Pomeron exchange interpretation
of the large-t vector meson data is at best the poor man's approximation. Under
this very strong assumption of two-gluon tower exchange, the k⊥-factorization
formalism expounded in Subsec. 4.4 is perfectly applicable at large |t|. The
approximation of Subsec. 4.5 for the unintegrated gluon density is only applicable
within the diffraction cone, Δ2R2

c ∼< 1, and must be modiˇed.
The available experimental data at large |t| are for the proton dissociate pho-

toproduction γp → V (Δ)Y , which at large t can be described in the equivalent
parton approximation of Ginzburg et al. [30],

dσV (γ∗p → V Y )
dtdx′ =

=

⎛
⎝81

16
g(x′, |t|) +

∑
f

[q(x′, |t|) + q̄(x′, |t|)]

⎞
⎠ dσV (γ∗q → V q′)

dt
, (151)
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where x′ = |t|/(m2
Y +|t|) is the fraction of proton's light-cone momentum carried

by the struck parton. It is reminiscent of the familiar collinear factorization, but
in the calculation of the hard cross section dσV (γ∗q → V q′)/dt the exchange by
soft gluons with the momentum |κ| 	 |Δ| must not be included. For instance, in
a splitting q → q′g with the q′−g relative transverse momentum p, the transverse
size of the q′g pair is rq′g ∼ 1/|p|. The exchanged gluons with the wavelength
λ = 1/|κ| 
 rq′g cannot resolve such a pair which will act as a pointlike color
triplet state indistinguishable from the parent quark q.

The ˇrst application of (151) by Ginzburg et al. was to the process γγ → V Y
treated in the two-gluon exchange approximation. In the more advanced BFKL
approach this constraint amounts to endowing the target partons in (151) by a
t-dependent nonpointlike structure; the practical prescription has been developed
by Forshaw and Ryskin ([53], see also [260]).

Notice that W 2
γq = x′W 2

γp and the Regge parameter for γ∗q → V q′ is

exp (Δη) =
x′W 2

m2
V − t

, (152)

where Δη is the rapidity gap between the produced vector meson and the hadronic
debris of the proton. The lower limit of the x′ integration, xmin < x′ < 1, is set
by the experimental cuts.

Hereafter we focus on real photoproduction. Beyond the leading order

pQCD the only working approximation for F
(

x1, x2, κ +
1
2
Δ,−κ +

1
2
Δ

)
in

the large-Δ regime is based on Lipatov's solution of the leading order BFKL
equation in the scaling approximation α = const. In contrast to the cases of
DIS or diffractive vector mesons at small Δ, where the BFKL evolution from
the proton side starts from the soft scale and becomes hard only on the virtual
photon end of the gluon ladder, at large |t| the large momentum transfer Δ 
ows
along the whole ladder which may make Lipatov's scaling approximation better
applicable at large |t|. Important point is that at large Δ the Δ − κ correla-

tion in F
(

x1, x2, κ +
1
2
Δ,−κ +

1
2
Δ

)
becomes very important, technically the

dependence on the azimuthal angle between Δ and κ is described by the con-
formal spin expansion. We wouldn't go into the technicalities of the formalism,
it is fair to say that for the leading helicity amplitudes the changes from pQCD
two-gluon exchange to scaling BFKL approximation are for the most part mar-
ginal. The sensitivity to the wave function of the vector meson and real photon
is dramatic, though. The detailed discussion is found in the recent paper by
Poludniowski et al. [261], here we summarize the major points.

The equivalent parton representation (151) makes it obvious that the helicity
properties of the target dissociative reaction do not depend on the target. In
their analysis of γγ → V Y to the perturbative two-gluon exchange approxima-
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tion Ginzburg et al. [30] allowed for the Fermi motion of quarks parameterized in
terms of vector meson distribution amplitudes with broad z distribution and found
the dominance by the spin-
ip transition γT → VL, cf. the large-t extension of
Eq. (123). The double-
ip and non
ip amplitudes have similar t dependence and
are suppressed. The found differential cross section is of the form

dσV (γT q → VLq′)
dt

∝ αemmvΓ(V → e+e−)
α4

S

|t|3 . (153)

The 
avour dependence is typical for the σL dominance, cf. Eqs. (147), (174).
The sensitivity to the wave function is obvious from the much discussed unrealistic
nonrelativistic limit of z ≡ 1/2. Here the helicity 
ip amplitude vanishes (see
Eq. (119)) and the SCHC transition dominates [262], also see Eq. (119), the
differential cross section (153) acquires the extra factor m2

V /|t| and, furthermore,
the predicted cross section exhibits an accidental, artiˇcial, zero at |t| = m2

V .
Upon the radiative corrections the electromagnetic vertex acquires the anom-

alous magnetic moment (Pauli) component ∝ σμνpγ
ν/2mf which, as we discussed

in Subsubsec. 4.3.3, contributes to the chiral-odd parallel-helicity wave function
of the photon. Schwinger's classic calculations show that for virtual photons the
form factor of such a perturbative Pauli vertex vanishes ∝ m2

f/Q2 (see §117 of
the textbook [263]). Ivanov et al. argued [242] that for real photons the non-
perturbative chiral-odd vertex is substantial Å they relate it to the product of the
quark condensate and the magnetic susceptibility of the vacuum [243] Å and
will enhance strongly the SCHC transition γT → VT .

The ideas of D. Ivanov et al. [242] have been extended to the scaling BFKL
approximation by Poludniowski et al. [261], where one can ˇnd references to
early studies. The crucial point is an enhancement of the SCHC amplitude by the
chiral-odd parallel-helicity component in the photon. The importance of realistic
z distributions in vector mesons is clearly seen from Fig. 21 which shows the
helicity amplitudes for the ρ production differential in z for chiral-even and
chiral-odd photon wave function. As we stated above, for the leading chiral-even
helicity amplitude T01 (M+0 in the notations of Poludniowski et al.), the changes
from the pQCD two-gluon to scaling BFKL approximation are marginal. The
BFKL approximation enhances further the chiral-odd contribution to the SCHC
non
ip amplitude and makes an approximate SCHC the dominant feature of
large-t vector-meson production in the studied region of |t| ∼< 6 GeV2. The
double-
ip amplitude also is enhanced.

Finally, making use of the scaling BFKL unintegrated glue one is committed
to the BFKL intercept (59) and prediction of the steep rise of the cross section
with energy

dσ

dt
∝

(
W 2

m2
V − t

)2ΔBFKL

, (154)

which has been emphasized by Ginzburg et al. already in 1986 [30].
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Fig. 21. The helicity amplitudes differential in z = u for pQCD two-gluon (1) and scaling
BFKL approximations (2) for |t| = 10 GeV2 and αSΔy ∼ 2.4, where Δy is the rapidity
gap between the vector meson and debris of the proton. The pQCD two-gluon results have
been multiplied by a factor of 3. (From Poludniowski et al. [261])

4.12. Beyond the Leading log
1
x

Approximation. The above-described

pQCD description of the vector-meson production is based on the manifestly

leading log
1
x

BFKL formalism. Going to the NLO log
1
x

BFKL remains the

major challenge to the theory. The principal feature of the leading log
1
x

ap-

proximation is that adding soft perturbative gluons, i.e., the higher Fock states,
to the color dipole can be reabsorbed into the x dependence of the color dipole
cross section, which is equally true for DIS and vector-meson production. Going

to the NLO log
1
x

approximation is much more tricky. While the nearly decade

long efforts have culminated in the derivation [264] of the NLO BFKL evolution
kernel, the matching calculations of the effect of hard gluons in the NLO impact
factors are missing. In the case of DIS those hard gluons are of perturbative
origin, but even so, despite the great progress [265, 266], the closed result for
the impact factor of the virtual photon is not yet available. In the case of vector
mesons, the evaluation of the NLO impact factor cannot be separated from the is-
sue of the higher, nonperturbative, qq̄g, Fock state of the vector meson, in which
the gluon carries a ˇnite fraction of the vector-meson's momentum. With the
reference to the nonrelativistic intuition, one may argue that an admixture of such
a nonperturbative qq̄g Fock state is small in the Υ, but not the lighter quarkonia,
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the nonrelativistic treatment of which is suspect. The issue of nonperturbative
qq̄g and higher Fock states in light vector mesons remains open. Hence we are

bound to stay within the qq̄ Fock state and leading log
1
x

approximations.

None of the NLO corrections is expected to change substantially the predicted
xg and Q2 dependences but they affect strongly the predicted cross section. For
instance, one often includes the correction for skewness (132) for the reason that

at small x and large-Q
2

it enhances the predicted cross section almost by a factor
of 2. Similarly, the real part of the dipole amplitude (126) is an NLO correction

which is substantial at large Q
2
. A consistent treatment of the potentially more

important Celmaster and Barbieri et al. correction (150) and its counterpart for the
impact factor is not available yet. In their analysis of NLO corrections Levin et al.
did not consider the Celmaster and Barbieri et al. correction but argued that by
analogy with the DrellÄYan production of lepton pairs the cross section of the
near threshold diffractive cc̄ pairs acquires the K factor [267]

K ≈ 1 +
2π

3
αS , (155)

which, by virtue of duality arguments, shall propagate to the vector-meson produc-
tion cross section, while Dremin asserts that NLO Sudakov effects rather suppress

the cross section [268]. The full 
edged NLO log
1
x

k⊥-factorization analysis

necessary for consistent treatment of all these corrections is not yet available.

5. HELICITY PROPERTIES OF VECTOR-MESON PRODUCTION

5.1. General Introduction. The angular distribution of the exclusive pro-
duction of vector mesons decaying into particleÄantiparticle ˇnal state is usually
described in the so-called helicity frame [42, 269]. For the unpolarized lepton
beam, such as that at HERA, the cross section depends on three angles explained
in Fig. 22 for the speciˇc case of ρ0 → π+π− production.

This angular distribution can be expressed in terms of the virtual photon
density matrix ρλ′

γλγ (Φh) (22), the helicity amplitudes of virtual photon transition
with helicity λγ into the vector meson with helicity λV , TλV ,λγ , and of the angular
factors that describe the vector meson decay into the ˇnal particleÄantiparticle
state. For the case of decay into scalars (ρ → π+π− and φ → K+K− decays),
these angular factors are given by spherical harmonics Y1,λV :

dσ

d cos θh dφh dΦh
≡ σW (cos θh, φh, Φh) =

=
∑

λγ ,λ′
γ ;λV λ′

V

TλV ,λγT ∗
λ′

V ,λ′
γ
Y1,λV (θh, φh)Y ∗

1,λ′
V
(θh, φh)ρλγλ′

γ
(Φh). (156)
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In the case of the J/Ψ production one measures the angular distribution of leptons
in the decay J/ψ → �+�−, then the D1/2(θh, φh) functions instead of spherical
harmonics will appear in (156). Since the photon density matrix ρλ′

γλγ and the
angular factors are known, the study of the angular dependence of the cross
section reveals the helicity structure of the γ∗p → V p transition.

Fig. 22. Kinematics of the process ep → eρ0p → eπ+π−p. The angular variables used
in the determination of the helicity amplitudes from the decay distributions: Φh, the
azimuthal angle between the (e, e′) scattering plane and the (ρ0, p′) production plane; φh,
the azimuthal angle between the production and decay planes; and θh, the polar angle of
the positively charged decay pion deˇned with respect to the direction of the ρ0 momentum
in the γ∗p c.m.s. system. Illustration is taken from [15]

The conservation of the s-channel helicity in the scattering of electrons in
the Coulomb ˇeld is known since 1954 ( [209], see also the textbook [210]).
Motivated by the early experimental data on vector meson photo- and electropro-
duction, Gilman et al. suggested the s-channel helicity conservation (SCHC) as
the fundamental feature of diffraction scattering ([269], for the discussion of the
pre-HERA experimental situation see [42]). Within diffraction cone, the helicity
of the vector meson λV coincides approximately with the helicity of the incident
photon λγ , see Subsubsec. 3.4.6. It is reasonable therefore to start with the case
of strict s-channel helicity conservation (SCHC), λV = λγ .

As emphasized in Subsubsec. 3.1.2, the Pomeron and all higher lying sec-
ondary reggeons are natural parity t-channel exchanges. Hereafter we analyze the
helicity properties of vector-meson production assuming natural parity exchange.
A good idea on why the possible contribution from unnatural parity exchange can
be neglected is given by the longitudinal double-spin asymmetry.
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Fig. 23. a, b) The x dependence of the lon-
gitudinal double-spin asymmetry Aρ

1 in ex-
clusive ρ0-meson electroproduction on the
proton (a) and deuteron (b). The data from
HERMES [272] are compared to the expec-
tations from Eq. (160) based on the DIS data
from the bottom plot, which shows the ratio
of polarized to unpolarized proton structure
function from the SMC, E143, and HER-
MES experiments. For the review and ref-
erences see [276]

5.2. Longitudinal Double-Spin
Asymmetry and Unnatural Parity
Exchange. One is familiar with the he-
licity structure function of the proton,
g1(x, Q2), which measures the mean
helicity of partons in the longitudinally
polarized proton. It is determined ex-
perimentally in the DIS of the longitu-
dinally polarized leptons off longitudi-
nally polarized proton target, where the
polarized leptons serve as the source
of circularly polarized photons. The
measured cross section is proportional
to the imaginary part of the helicity
conserving forward Compton scattering
amplitude,

TλγλN ,λγλN ∝ F1(x, Q2)+

+ λγλNg1(x, Q2) ∝ 1+

+ A
(DIS)
LL λγλN , (157)

where λγ , λN are the helicities of the
photon and target nucleon (λN = ±1).
Such a helicity dependence for trans-
verse photons emerges naturally for the
axial-vector (A1, . . .) meson exchange.
The term ∝ g1(x, Q2) changes the
sign when the circular polarization of
the photon is 
ipped and, from the
t-channel exchange point of view, cor-
responds to the unnatural parity ex-
change, see Eq. (88). As explained in
Subsec. 1.3, the vector-meson produc-
tion amplitude derives from the Comp-
ton amplitude by analytic continua-
tion in the virtuality of the photon to
the vector meson pole, which should
not change dramatically the asymme-
try parameter in the amplitude. Conse-

quently, if one parameterizes the unnatural parity exchange into the transverse
vector-meson production amplitude as
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TλV λN ,λγλN

∣∣
λV =λγ

∝ 1 +
1
2
AV

LLλγλN , (158)

then the natural expectation for the transverse cross section σT is [270]

AV
LL ≈ 2A

(DIS)
LL . (159)

There is a purposeful difference between expansions (157) and (158) because in
the vector-meson production one measures the differential cross section ∝ |T |2.
In σL-σT unseparated vector-meson production, the asymmetry is diluted for the
presence of σL,

AV
1 ≈ AV

LL

1 + RV
≈ 2A1

1 + RV
(160)

(here we are back to the usual notation A1 = A
(DIS)
LL ) hence the dilution factor (1+

RV ) in (160) compared to (159). As a matter of fact, such a relationship between
the longitudinal double-spin asymmetries for DIS and vector-meson production
has been suggested already in 1976 by Fraas on the basis of the vector dominance
model [271].

The results of the ˇrst experimental determination of Aρ
1 for the diffractive ρ

production in the HERMES experiment [272] are shown in Fig. 23 in comparison
with the estimates from the DIS data based on Eq. (160) but without the dilution
of AV

1 by the factor (1+RV ). A summary of the high-precision experimental data
on the ratio of polarized, helicity, g1(x, Q2), to unpolarized, F1(x, Q2), proton
structure function is shown in Fig. 23, the important point is that the effects of
unnatural parity exchange vanish at small x, for pQCD arguments in favor of that
see [273Ä275].

5.3. The Angular Distribution in the SCHC Approximation. 5.3.1. The-
oretical Expectation: Angular Distributions. Within SCHC and natural parity
exchange we are left with two independent helicity amplitudes, T11 and T00.
Then the angular dependence of reaction γ∗p → V p, with V decaying into two
scalars, is:

W (cos θh, φh, Φh) =
1
N

3
4π

[
ε|T00|2 cos2 θh +

1
2
|T11|2 sin2 θh+

+
1
2
ε|T11|2 sin2 θh cos 2(Φh − φh)−

−
√

2ε(1 + ε) Re (T11T ∗
00) sin θh cos θh cos (Φh − φh)

]
, (161)

where N = |T11|2 + ε|T00|2 and ε is deˇned in (22). The ˇrst line in (161) is the
contribution of diagonal terms of the photon density matrix, i.e., with λγ = λ′

γ ;
the second line is the interference of transverse photons with opposite helicities,
λγ = −λ′

γ = ±1; the last line is the interference between the transverse and
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longitudinal photons. Note that angular dependence (161) involves only a single
azimuthal angle ψ = Φh − φh between the (e, e′) and decay planes.

One can reparameterize, and analyze, the angular distribution (161) in terms
rα
ij , which compose the spin-density matrix of a vector meson [67]. The generic

case and the involved notations for the rα
ij are explained in Subsubsec. 5.3.1, here

we only notice that under the assumption of SCHC many the elements of rα
ij do

vanish and (161) takes the form:

W (cos θh, φh, Φh) =
3
4π

[
1
2
(1 − r04

00) +
1
2
(3r04

00 − 1) cos2 θh =

+ ε cos 2Φh

√
2 sin2 θh cos 2φhr1

1−1 − ε sin 2Φh sin2 θh sin 2φh Im {r2
1−1}−

−
√

2ε(1 + ε) cos Φh sin 2θh cos φh

√
2 Re {r5

10}+

+
√

2ε(1 + ε) sin Φh sin 2θh sin 2φh

√
2 Im {r6

10}
]
. (162)

It contains ˇve nonzero spin-density matrix elements among which only
three are independent due to the relations (88). Their expression via the helicity
amplitudes reads

r04
00 =

ε|T00|2
|T11|2 + ε|T00|2

; r1
1−1 = − Im {r2

1−1} =
1
2

|T11|2
|T11|2 + ε|T00|2

;

(163)

Re {r5
10} = − Im {r6

10} =
1

2
√

2
Re {T11T ∗

00}
|T11|2 + ε|T00|2

.

Under the SCHC conservation, the ratio of the longitudinal to transverse cross
sections, (26), is expressed only via matrix element r04

00 ,

RV =
1
ε

r04
00

1 − r04
00

, (164)

while the relative phase δ between the T11 and T00 amplitudes can be deter-
mined via

cos δ =
1 + ε RV√

RV /2

(
Re {r5

10} − Im {r6
10}

)
. (165)

5.3.2. Experimental Results. Figure 24 shows the results of ZEUS and H1
on the ˇve ®nonzero-SCHC¯ (hereafter just ®SCHC¯) matrix elements mentioned
above. These matrix elements are placed in aÄe. Figure 24, a corresponds to
diagonal terms; b and c are the interference of transverse photons with opposite
helicities; d and e are the interference between transverse and longitudinal photons.

The matrix element r04
00 is extracted from the single-differential cross section

dσ/d cos θh. The photoproduction measurements [68, 71, 277, 278] conˇrm that
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at Q2 = 0 the matrix element r04
00 is zero within experimental uncertainties for

ρ, φ, and J/ψ mesons. This should be expected, since in the limit Q2 → 0 the
longitudinal cross section must vanish. The behavior of r04

00 as a function of Q2,
W , and t for ρ mesons is shown in Figs. 24, 25. The steep Q2 dependence of
r04
00 is mainly due to the gauge invariance driven factor ∼ Q2/m2

V present in the
longitudinal cross section, see (81), (82). The pattern of the Q2 dependence is
very similar for all the light vector mesons and differs in the case of the J/ψ
(not shown). The matrix element r04

00 is the main source of the determination
of the ratio RV = σL/σT , whose Q2 behavior will be discussed in detail in
the forthcoming Subsec. 6.3. The t and W dependences of r04

00 are consistent

Fig. 24. The compilation of the ZEUS [15] and H1 [16] results on the Q2 behavior of
the ˇve s-channel helicity conserving amplitudes for ρ meson. a) The diagonal terms in
photon density matrix; b, c) the interference of transverse photons with opposite helicities;
d, e) the interference between transverse and longitudinal photons. The lines show the
kt-factorization predictions [54, 55]



76 IVANOV I. P., NIKOLAEV N.N., SAVIN A.A.

with being 
at. This indicates that the energy dependence of the longitudinal,
T00, and transverse, T11, amplitudes is very close to each other in agreement
with theoretical expectations. The same holds also for the t dependence of the
longitudinal and transverse amplitudes.

Fig. 25. a) The Q2 behavior of the spin density matrix element r04
00 for ρ production

measured by ZEUS [83]. The solid curve is a ˇt of the form r04
00 = 1/(1 + ξ(m2

ρ/Q2)κ)
with ξ = 2.17 ± 0.07, κ = 0.75 ± 0.3. bÄd) The spin-density matrix element r04

00 for
ρ-meson electroproduction as a function of Q2 (b), W (c), and t (d) measured by H1 and
ZEUS ([85] and references therein)
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The Q2 behavior of the other SCHC matrix elements can be read off from
Eq. (163). The elements r1

1−1 and Im {r2
1−1} should approach ±1/2, respectively,

in the photoproduction limit, and are expected to decrease with Q2 increase
approximately as 1/(2R). This tendency is well observed in the data. The
longitudinal-transverse (LT) interference driven elements Re {r5

10} and Im {r6
10}

should be ∝ Q at small Q2 and fall off with Q2 growth as 1/Q. The experimental
data from the ZEUS collaboration do follow this expectation, the experimental
data from H1 on r5,6

10 exhibit certain departure from the theoretical expectation.

Fig. 26. a) The theoretical expectation from the k⊥ factorization [54, 55] for the cosine
of the relative phase δ between the transverse, T11, and the longitudinal, T00, amplitudes.
b) The H1 determination of cos δ as a function of Q2 (b), W (c), and t (d) [16]

As we discussed in Subsubsec. 4.8.1, because of the slightly different hard

scales Q
2

L and Q
2

T the two helicity amplitudes T11 and T00 can have a slightly
different energy dependence, see Subsubsecs. 3.3.1Ä3.3.3 and the discussion of
the experimental data in Sec. 7. Then the derivative analyticity (126) would
predict the nonvanishing, but very small, in the range of 1−3◦, relative phase
δ of the two amplitudes. The results of the H1 determination [16] of cos δ
from Eq. (165) are shown in Fig. 26. The combined value of cos δ suggests the
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statistically signiˇcant departure from 1,

cos δ = 0.925± 0.022+0.011
−0.022, (166)

the sizeable relative phase δ ∼ 10−20◦ is difˇcult to accommodate in theory.
The error bars are large, though, it must be noted that ZEUS assumes δ = 0 and
still obtains good ˇts to the angular distribution.

5.4. Angular Dependence Beyond SCHC. 5.4.1. Theoretical Expectations.
Without the assumption of s-channel helicity conservation, and supposing the
natural parity exchange, see Subsubsec. 5.2.3, one is left with ˇve independent
helicity amplitudes. The angular dependence of the cross section (for spinless
particleÄantiparticle ˇnal state such as in the decay ρ → π+π−, φ → K+K−) is
parameterized in terms of 15 spin-density matrix elements [67]:

1
σ

dσ

d cos θh dφh dΦh
≡ W (cos θh, φh, Φh) =

=
3
4π

[
1
2
(1 − r04

00) +
1
2
(3r04

00 − 1) cos2 θh−

−
√

2Re {r04
10} sin 2θh cos φh − r04

1−1 sin2 θh cos 2φh−

− ε cos 2Φh

(
r1
11 sin2 θh + r1

00 cos2 θh −
√

2Re {r1
10} sin 2θh cos φh−

− r1
1−1 sin2 θh cos 2φh

)
− ε sin 2Φh

(√
2 Im {r2

10} sin 2θh sin φh+

+ Im {r2
1−1} sin2 θh sin 2φh

)
+

√
2ε(1 + ε) cos Φh

(
r5
11 sin2 θh + r5

00 cos2 θh−

−
√

2 Re {r5
10} sin 2θh cos φh − r5

1−1 sin2 θh cos 2φh

)
+

+
√

2ε(1 + ε) sin Φh

(√
2 Im {r6

10} sin 2θh sin φh+

+ Im {r6
1−1} sin2 θh sin 2φh

)]
. (167)

One can develop an intuition when reading this expression. The subscripts i, k =
−1, 0, 1 of the matrix elements rα

ik indicate the vector-meson helicities λV and
λ′

V of the amplitudes interfering. Dependence on Φh shows the helicities of the
photon of the interfering amplitudes. As before, the Φh-independent terms are
diagonal in photon helicities; they are accompanied by superscript 04. Terms
∝ cos 2Φh and ∝ sin 2Φh originate from the interference of the transverse
photons with opposite helicities; these are accompanied by superscripts 1 and 2.
Terms ∝ cos Φh and ∝ sin Φh appear from the interference of the transverse and
longitudinal photons; these are accompanied by superscripts 5 and 6. The nature
of each rα

ik can then be understood from its indices. For example, r1
11 comes
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from interference of photons of helicities +1 and −1 and from vector mesons
with both helicities equal to 1 or −1. Therefore, r1

11 must be proportional to the
double spin-
ip amplitude.

The correspondence between the matrix elements rα
ik , the helicity amplitudes,

and their SCHC and SCHNC properties is as follows:

SCHC

r04
00 = ε|T00|2 + |T01|2,

r1
1−1 =

1
2
|T11|2 +

1
2
|T1−1|2,

Im {r2
1−1} = −1

2
|T11|2 +

1
2
|T1−1|2,

Re {r5
10} =

1
2
√

2
Re {T11T �

00} +
1√
2

Re {T10T �
01}−

− 1
2
√

2
Re {T1−1T �

00},

Im {r6
10} = − 1

2
√

2
Re {T11T �

00} −
1

2
√

2
Re {T1−1T �

00};

(168)

strong SCHNC
from single-
ip
γT → VL,∝ T01

Re {r04
10} =

1
2

Re {T11T �
01} + ε Re {T10T �

00}+

+
1
2

Re {T1−1T �
0−1},

Re {r1
10} =

1
2

Re {T11T �
0−1} +

1
2

Re {T1−1T �
01},

Im {r2
10} = −1

2
Re {T11T �

0−1} +
1
2

Re {T1−1T �
01},

r5
00 =

√
2Re {T00T �

01};

(169)

weak SCHNC
from single-
ip
γL → VT , ∝ T10

r5
11 =

1√
2

Re {T10T �
11} −

1√
2

Re {T10T �
1−1},

r5
1−1 =

1√
2

Re {T11T �
−10} +

1√
2

Re {T10T �
−11},

Im {r6
1−1} = − 1√

2
Re {T−10T �

11} +
1√
2

Re {T10T �
−11};

(170)

double SCHNC
from the doub-
le-
ip, or two
single-
ips

r04
1−1 = −ε|T10|2 + Re {T11T �

1−1},
r1
11 = Re {T1−1T �

11},
r1
00 = −|T01|2.

(171)

It is understood that the r.h.s. of each and every line must be also divided by
ε(|T00|2 + 2|T10|2) + |T11|2 + |T1−1|2 + |T01|2.
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The classiˇcation of each set of density matrix elements (168)Ä(171) in the
left column of this Table can be understood as follows: At large Q2, the largest
SCHNC amplitude is T01 (the transverse photon-to-longitudinal vector meson
transition). Therefore, the stronger SCHC violation is expected in density matrix
elements of the second group, in particular, in r5

00. At small Q2, the double-
ip
T1−1 is predicted to be the largest SCHNC amplitude as it is soft-dominated and
does not require the longitudinal Fermi motion. Therefore, at small Q2 the largest
non-SCHC spin-density matrix elements are expected to be r04

1−1 and r1
00. The

amplitude T10 vanishes in the photoproduction limit, is of higher twist at large
Q2 and is expected to be always small.

As discussed in Subsubsec. 3.4.6, the small-t behavior of various amplitudes
is governed solely by the value of the helicity 
ip: the matrix elements from the
second, Eq. (169), and third, Eq. (170), groups are expected to be ∝

√
|t′|, the

elements in the last group, Eq. (170), are ∝ |t′|.
5.4.2. Experimental Results: Helicity Properties at Small t. In experiment,

the density matrix elements are obtained by minimizing the difference between
the three-dimensional (cos θh, φh, Φh) angular distributions of the data and those
of the simulated events. Figure 27 shows combined ZEUS [15] and H1 [16]
results of this procedure for the ρ meson production. Results for φ-mesons are
presented in Fig. 28.

All the matrix elements are placed in six rows. The ˇrst three rows, are the
same as in Fig. 24 and show the spin-density matrix elements coming from SCHC
transitions. The last three rows represent the SCHNC matrix elements, which
would vanish in the case of a strict SCHC, for the deˇnitions and classiˇcation
of SCHNC as strong, weak, and double see Eqs. (168)Ä(171) and discussion in
Subsubsec. 5.3.1. The fourth row shows the four matrix amplitudes proportional
to the single-
ip helicity amplitude T01, the ˇfth row shows the matrix elements
that are proportional to the single-
ip helicity amplitude T10, the last row shows
matrix elements with two helicity 
ips, either as a double-
ip amplitude or as a
product (square) of two single-
ip amplitudes.

Among the SCHNC spin-density matrix elements the best measured ones are
the combinations 2r1

11 + r1
00 and 2r5

11 + r5
00, which describe the cross section

single-differential in angle Φh after the integration over cos θh:

dσ

dΦh
∝ 1 +

√
2ε(1 + ε) cos Φh(r5

00 + 2r5
11) − ε cos 2Φh(r1

00 + 2r1
11). (172)

Figure 29 shows also the resent H1 measurement of the Q2 dependence of
these matrix elements for the case of ρ mesons [85]. The ˇrst combination is
signiˇcantly nonzero, while the second is compatible with zero. The results of
the direct ˇt to the entire angular distribution shown in Fig. 27 indicate that it is
large nonzero value of r5

00 which is a source of departure of the SCHC in the
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Fig. 27. The spin-density matrix elements measured in the reaction γ∗p → ρp as a function
of Q2. aÄe are the same as in Fig. 24 and show the SCHC matrix elements. The solid
symbols present the ZEUS [15]; and the open circles, the H1 [16] results. The curves
represent the kt-factorization calculations [54, 55]

ˇrst combination. Since this matrix element is proportional to the Re (T00T ∗
01), it

indicates that the single-
ip amplitude T01 is not zero. The data shown in Fig. 29
give an estimate of the relative strength of this amplitude at an average value of
|t| ≈ 0.15 GeV2

|T01|√
|T11|2 + |T00|2

≈ r5
00

√
1 + R

2R
≈ (8 ± 3)%. (173)
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Fig. 28. The spin-density matrix elements measured in the reaction γ∗p → φp as a function
of Q2. The notation is the same as in Fig. 27. The curves represent the kt-factorization
calculations [54, 55]

The dominance of r5
00 among the helicity violating amplitudes at large Q2

is in agreement with theoretical expectations [54, 170, 212]. All the other matrix
elements do not differ signiˇcantly from zero. There is, however, some indication
that the double-
ip amplitude is nonzero at small Q2, see the last row in Fig. 27.

The t dependence of the s-channel helicity violating amplitudes has already
been shown in Fig. 29 within the diffraction cone. In Fig. 30 the data [82] on
helicity violating matrix elements 2r1

11 + r1
00 and 2r5

11 + r5
00 within extended t

region, |t′| < 2 GeV2, are shown. The behavior of both of these combinations is
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Fig. 29. The H1 and ZEUS measurement ([85] and references therein) of the combinations
of SCHNC spin-density matrix elements r5

00+2r5
11 (aÄc) and r1

00+2r1
11 (dÄf) as a function

of Q2, W , and t
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compatible with ∝
√
|t′| and conˇrms the theoretical expectations. For compari-

son, in the same Figure we show the t behavior of the helicity conserving matrix
element r04

00 within the same region, which is compatible with constant.

Fig. 30. The H1 and ZEUS measurement ([82] and references therein) of the t′ dependence
of combinations of SCHNC spin-density matrix elements r5

00 +2r5
11 (a) and r1

00 +2r1
11 (b)

compared with the behavior of the SCHC matrix element r04
00 (c). The solid curves are

from pQCD calculations by Ivanov and Kirschner [212]

5.4.3. Experimental Results: Helicity Properties at Large t. At large t only
the proton dissociative reaction γp → V Y has been studied. The experimental
data on the spin-density matrix elements from the recent ZEUS measurement [77]
of the large-t ρ, φ, and J/ψ photoproduction are shown in Figs. 31, 32, 34 in
combination with the lower-t data [76]; the H1 results [79] are shown in Fig. 33.

The dominant feature of the DIS data within the diffraction cone, |t| ∼<
1 GeV2 was large r04

00 driven by the dominant σL from the transition γL → VL.
Such a transition is absent in real photoproduction. Figures 31, 32 show that the
matrix element r04

10 is positive valued, deˇnitely nonvanishing one. The results
for r04

00 show that the probability to produce longitudinal ρ or φ mesons from
a transverse photon increases with |t| up to 4−9 %, but is nowhere close to
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Fig. 31. The spin-density matrix elements for proton-dissociative ρ production (aÄc) and
φ production (dÄe) as a function of −t measured by ZEUS [77] (black symbols) and [76]
(open symbols). The SCHC prediction is shown by the dashed line

Fig. 32. The spin-density matrix elements for proton-dissociative J/ψ production as a
function of −t measured by ZEUS [77]. The SCHC prediction is shown by the dashed
line
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Fig. 33. The spin-density matrix elements for proton-dissociative J/ψ production as a
function of −t measured by H1 (solid symbols) [79]. The predictions for the BFKL
(solid curves) and pQCD two-gluon approximations (dashed curves) are shown for a
comparison [261]

Fig. 34. The spin-density matrix elements for proton-dissociative ρ (aÄc) and φ (dÄf)
production as a function of −t measured by ZEUS (solid symbols) [77]. The predictions
for the BFKL (solid curves) and pQCD two-gluon approximations (dashed curves) are
shown for a comparison [261]
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the SCHNC dominance of σL expected in the pQCD two-gluon model of Ginz-
burg et al. [30] with the chiral-even photonÄquarkÄantiquark vertex. The matrix
element r04

1−1 is numerically substantial and gives a solid evidence for a double-

ip contribution. All the spin-density matrix elements shown in Figs. 31, 32 are
small, so that the SCHC is the empirical feature of large-t production.

Within the theoretical approaches reviewed in Subsec. 4.10 the sole source
of approximate SCHC is the chiral-odd photonÄquarkÄantiquark vertex. The
theoretical calculations [261] are shown in Figs. 33 and 34. The pQCD two-gluon
approximation grossly overpredicts r04

00 for all vector mesons. The BFKL model
correctly reproduces the gross features of r04

00 and r04
1−1, but predicts the wrong

sign of r04
10 . The shown theoretical results are for the so-called asymptotic vector

meson distribution amplitude, but the sensitivity to the model wave function is
weak and cannot explain this sign con
ict with the experiment.

For the heavy quarks in the J/Ψ the Fermi motion is slow and the BFKL
calculations predict much smaller helicity 
ip effects compared to the results for
the light vector mesons, cf. Figs. 33 and 34.

6. THE Q2 DEPENDENCE

6.1. Total Cross Section γ∗p → V p. 6.1.1. Theoretical Expectations: What
is the Correct Hard Scale for the Q2 Dependence? As is emphasized in Introduc-
tion, see Subsec. 1.3, the vector meson production at a given Q2 probes the gluon

content of a target at pQCD factorization scale Q
2 ∼ (Q2 + m2

V )/4, see (9).
Theoretical predictions of the Q2 dependence of the vector-meson production
cross section in the color dipole approach were described in detail in Subsub-
sec. 3.4.2 and Subsec. 4.9. Besides, Subsec. 4.8 shows how the leading log-Q2

approximation results are recovered, and improved upon, in the more consistent
k⊥-factorization approach at large Q2.

The theoretical expectation for the shape of the Q2 dependence of the trans-
verse amplitude can be read off Eqs. (78), (79) and (147). Performing the t
integration in (147) and combining σT and σL, one ˇnds the nonrelativistic mas-
ter formula

σV = σT + σL ≈ π3mV Γ(V → e+e−)

12αembV (Q
2
)Q

8 ×

×
(

Q2 +
m2

V

RLT

)[
αs(Q

2
)G(xg , Q

2

GL)
]2

. (174)

Although the absolute normalization, the exact value of the pQCD scale Q
2

and
the departure of RLT from the nonrelativistic quark model expectation RLT = 1
do depend on the wave function of the vector meson, and the contribution from
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the helicity-
ip transitions has not been included, Eq. (174) contains all the
ingredients of the full pQCD description.

One can present σV either as σV = σT (1 + RV ) and use the theoretical
approximations for σT or substitute σT = σL/RV and test the theoretical pre-
dictions for σL. Brodsky et al. [23] argued that the end-point, z ∼ 0, z ∼ 1,
contributions are minimal in, and the pQCD evaluations are more reliable for, the
σL and our representation (174) corresponds to the latter, preferred, choice.

The longitudinal cross section is small at Q2
∼< m2

V , but becomes the domi-
nant feature at larger Q2 and tames further the decrease of the total cross section
at large Q2. In view of RLT ∼ 1 at small Q2, and because the M2

V term can

be neglected at large Q2, the factor

(
Q2 +

m2
V

RLT

)
in the master formula is not

very different from (Q2 + m2
V ). Then the Q2 behavior of the total cross section

would have been ∼ (Q
2
)−nV with the exponent nV = 3 modulated by the gluon

density squared. As we shall see below, RLT < 1 and steadily decreases with
Q2, so that even without the scaling violations the expected exponent nV < 3.

Finally, the Q2 dependence of the diffraction slope cannot be ignored. As we

argued in Subsubsec. 3.4.2, the diffraction slope bV (Q
2
) decreases with growing

(Q2 + m2
V ), which also enhances slightly σV at large Q2. As a matter of fact,

the diffraction slope too is a function of Q
2

rather than Q2.
To summarize, there are strong theoretical reasons [49,279] for the presen-

tation of the experimental data as a function of either the scanning radius rS or
(Q2 + m2

V ). In such a presentation the major 
avor dependence is in the explicit
factor mV Γ(V → e+e−). There is also a hidden dependence of the absolute nor-

malization, RLT and of the exact dependence of the hard scale Q
2

on (Q2 +m2
V )

all of which depend on the wave function of vector mesons [21,38].
6.1.2. Theoretical Expectations: the Impact of xg-Dependent Scaling Viola-

tions on the Q2 Dependence. The predicted Q2 dependence is driven mainly by
two phenomena: the shrinkage of the photon light-cone wave function with Q2

and the resulting decrease of the scanning radius, and the nontrivial Q2 depen-
dence of the gluon density at ˇxed W . The former property leads to the strong

decrease of the transverse cross section ∼ (Q
2
)−4 at a sufˇciently large Q

2
. The

gluon density, G(xg , Q
2

G), at a ˇxed W , depends on Q
2

also via xg ≈ Q
2
/W 2.

At small to moderately large Q2, one observes the quick rise of the small-xg

gluon density because of the scaling violations. At larger Q2 the values of xg are
larger, the scaling violations are weaker, and the decrease of the gluon density to-
wards large xg takes over, see Fig. 20. Because of such a convex Q2 dependence

of G(xg , Q
2

G) in the log σV − log Q
2

plot one must see the convex curve.
6.1.3. The Q2 Dependence: the Experimental Data. The change of the

character of the Q2 dependence from small to large Q2 is best seen in the data
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for light vector mesons. The experimental data on the Q2 dependence of the ρ0

production are shown in Fig. 35. Figure 35, a shows the ZEUS data. The low-Q2

data, Q2 < 1 GeV2, are dominated by σT (Q2) and were ˇtted to the form

σρ(Q2) ∝ 1 + Rρ(Q2)
(Q2 + m2

eff)nρ
, (175)

where Rρ(Q2) = σL/σT and the exponent nρ ≡ 2 as dictated by VDM. The
dotted line shows the result of the ˇt including the real photoproduction point.
The ˇt yields meff = (0.66 ± 0.11) GeV which is close to the mass of the ρ
meson as expected in VDM.

Fig. 35. The total cross section of diffractive ρ-meson production as a function of Q2.
a) ZEUS data from [81] ˇtted together with photoproduction point [68]. The curves
represent ˇts using the function σ(Q2) ∝ (1 + R(Q2))/(Q2 + m2

eff)2 (dotted line) and
function σ(Q2) ∝ 1/(Q2 + m2

ρ)
n (dashed line). b) Recent H1 data [85] compared with the

published data [16,81]. c) The kt-factorization predictions [54,55] based on the oscillator
(solid line) and Coulomb (dashed line) wave functions compared with the published H1
and ZEUS points

The VDM value of the exponent nρ = 2 for the low-Q2 data must be
compared to the large-Q2 pQCD expectation, n = 4, without scaling violations,
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see Eq. (81). Indeed, at higher Q2, the cross section of ρ production steadily
departs from the dotted line. The parameterization of the form

σV (Q2) ∝ 1
(Q2 + m2

V )nV
, (176)

yielded nρ = 2.32 ± 0.10 for ZEUS 95 data [81] at Q2 > 5 GeV2, nρ =
2.24± 0.09 for H1 96 data [16] and nρ = 2.60± 0.04 for preliminary H1 data at
Q2 > 8 GeV2 [85]. The effective exponent nρ of the Q2 decrease rises steadily
with the region being ˇtted, from 2 in the soft region to 2.6 at the highest Q2, in
good agreement with the theoretical expectations of the convex σV (Q2).

Now we comment on the comparison with theoretical predictions from the
k⊥ factorization [54, 55]. As we cautioned in Subsec. 1.4, the onset of the truly
pQCD hard regime for the light ρ mesons requires large Q2, see Eq. (13). At
smaller x the applicability of hard pQCD description somewhat improves, still
the soft-hard decomposition of the gluon density shown in Fig. 33 indicates
that the nonperturbative soft component of the gluon density remains substan-
tial at gluon momentum squared κ2

∼< (1−2) GeV2. According to the dis-
cussion in Subsec. 4.8, see especially Fig. 19, in order to have the hard scale

Q
2

∼> (1−2) GeV2 one needs Q2
∼> 10 GeV2. The ρ production at smaller Q2

is strongly affected by nonperturbative physics. Still we notice that the k⊥-fac-
torization predictions [54, 55] reproduce within the overall normalization factor
∼ 2 the measured cross section which drops by nearly four orders of magnitude
from the real photoproduction to the largest value of Q2. One must not be jubilant,
though, since the unintegrated gluon density in the soft region has been adjusted
to reproduce real photoabsorption and DIS at small Q2. At Q2

∼> 10 GeV2 there
is a very good agreement between experimentally observed and predicted Q2

dependence. In the nonperturbative region, the Coulomb WF is doing better job
at small Q2, but at higher Q2 the experimental data deviate from the curve for
the Coluomb WF and agree better with the results for the oscillator WF.

The similar pattern is seen in the φ production shown in Figs. 36, 37. The pre-

liminary high-Q
2

data shown in Fig. 37 do agree better with the k⊥-factorization
results for the oscillator WF.

Finally, the experimental results for J/ψ are shown in Fig. 38. These data

correspond to a sufˇciently large hard scale Q
2
. Correspondingly, once the theo-

retical curves are normalized to the photoproduction data as shown in Fig. 38, b Å
here we chose a normalization to the ZEUS point Å the curves for the oscil-
lator and Coulomb wave functions become indistinguishable and the resulting
description of the experimentally observed Q2 dependence is very good.

A parameterization of the Q2 dependence of the recent ZEUS data [90]
on the J/Ψ cross section in the same form as (176) with an appropriate change
of the meson mass yielded nJ/ψ = 2.44 ± 0.08 [84]. The impact of the mass
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Fig. 36. The published H1 (�) [87] and ZEUS (�) [278, 280] data on the total cross
section of diffractive φ-meson production as a function of Q2. The kt-factorization
predictions [54,55] for the oscillator (solid line) and Coulomb (dashed line) wave functions
are shown for a comparison

Fig. 37. The preliminary ZEUS data [88] on the φ-meson production cross section are
shown together with the published data shown in Fig. 36

term in Q
2

on the exponent nV is substantial which is well illustrated by the H1
analysis [87] of the combined H1 and ZEUS data on different vector mesons. A
ˇt performed on the H1 and ZEUS ρ data using the parameterization

σρ(Q2) ∝ a1

(Q2 + M2
V + a2)a3

(177)
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Fig. 38. a) Recent ZEUS results (solid symbols) on exclusive J/ψ electroproduction cross
section as a function of Q2 at 〈W 〉 = 90 GeV [90]. ZEUS photoproduction [71] and H1
electroproduction (open symbols) [89] cross sections are also shown. The full line is a ˇt to
the ZEUS data of the form (176). The inner error bars represent the statistical uncertainties,
the outer bars are the statistical and systematic uncertainties added in quadrature. b) The
kt-factorization predictions [54,55] based on oscillator (1) and Coulomb (2) wave functions
compared with the published data, 3 Å the k⊥-factorization result upon the normalization
to the photoproduction point with the rescaling factors shown in the ˇgure, the curves for
two wave functions merge within the thickness of lines

with the result a1 = (10689 ± 165) nb, a2 = (0.42 ± 0.09) GeV2 and a3 =
2.37 ± 0.10 is shown in the curve in Fig. 39. Notice, that the so-found exponent
a3 is close to the recent ZEUS result nJ/ψ = 2.44 ± 0.08. The Q2 + M2

V

dependence of the H1 data on φ and of the combined H1 and ZEUS data on J/ψ
were found to follow the same parameterization as shown in Fig. 39.

6.1.4. The Vector-Meson Production as a Probe of the Gluon Density in the
Proton. The deceptively simple Eq. (174) suggests that vector-meson production
cross section discriminates among the different models for the gluon density

G(xg , Q
2

G). M. Ryskin was the ˇrst to make this point [22], for early discussion
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Fig. 39. H1 and ZEUS measurements [16, 68, 70, 75, 80, 81, 89, 278, 280Ä283] of the total
cross sections σ(γ�p → V p) as a function of (Q2 +M2

V ) for elastic ρ-, ω-, φ-, J/ψ-, and
Υ-meson production, at the ˇxed value W = 75 GeV. The cross sections were scaled by
SU(5) charge-isospin factors. The curve is a ˇt by formula (177) to the H1 and ZEUS ρ
data, and the ratio D of the scaled ω, φ, and J/ψ cross sections to this parameterization
is presented in the insert

see [173]. As we saw above, in all the cases the color dipole/kt-factorization
model with the unintegrated glue adjusted to the proton structure function data is
doing a good job on the Q2 dependence of σV (Q2). The k⊥-factorization results
for σV (Q2) for the two extreme parameterizations of the wave function are shown
in Figs. 35, 36, 38. The choice of the wave function has a marginal impact on the
predicted Q2 dependence. The two curves do typically envelop the experimental
data points, but a mismatch of the factor ∼ 2 in the overall normalization between
the theory and experiment cannot be eliminated at the moment.

Here we illustrate the model dependence with the following example. Recent
ZEUS data on J/Ψ electroproduction were compared in [90] with predictions of
the three pQCD models by (i) the extended BloomÄGilman duality [216] based
estimates by Martin et al. (MRT, [221]) for different NLO DGLAP parameteri-
zations of the gluon density (making use of the NLO gluon densities with leading
order impact factors is being somewhat inconsistent, though): MRST02 [284],
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Fig. 40. The recent ZEUS data on Q2 dependence of J/ψ electroproduction at 〈W 〉 =
90 GeV [90]. The curves in a represent the predictions of the QCD models MRT FKS and
GLLMN (see text), the curves in b are the MRT results based on different gluon densities in
the proton. All theoretical curves are rescaled as indicated to ˇt the ZEUS photoproduction
point at 〈W 〉 = 90 GeV. The inner error bars represent the statistical uncertainties, the
outer bars are the statistical and systematic uncertainties added in quadrature. An overall
normalization uncertainty of +5%

−8% was not included

CTEQ6M [285], and ZEUS-S [286], (ii) leading log Q2 estimates with nonrela-
tivistic J/Ψ wave function by Frankfurt et al. (FKS, [239, 240]) for CTEQ4L
gluon density [142], and (iii) by the color dipole model with unitarity correc-
tions by Gotsman et al. (GLLMN, [287]). For the heavy J/Ψ the pQCD scale

Q
2

is sufˇciently large already for real photoproduction. The results are shown
in Fig. 40. After the absolute normalization is adjusted to the photoproduction
point, the resulting Q2 dependence is not much different from the k⊥-factorization
results shown in Fig. 38 and is consistent with the experimental data. The renor-
malization factors vary from 0.9 for the GLLMN model to 2.98 for the MRT
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model with the MRST02 gluon density. One would conclude that the predic-
tions for Q2 dependence from pQCD master formula (174) are to a large extent
model independent ones. Fortuitous models with good reproduction of the ab-
solute value of σV (Q2) would not be a wonder, but one should not rejoice with
that and in general must be content if the theoretical and experimental values of
σV (Q2) agree within ∼ 50%. Hereafter we only shall show the k⊥-factorization
results [54,55] for the oscillator parameterization of the wave functions.

6.2. The Flavour Dependence: Ratios σV /σρ. The mass term in the scanning

radius (8) and the corresponding hard scale Q
2

of Eq. (9) change dramatically
from the ρ, ω to φ to J/Ψ. For this reason a comparison of σV (Q2) for the differ-

Fig. 41. The ratios of the ω [86], φ [87] (the PHP point is calculated using [68,278]), and
J/ψ (calculated using only recent ZEUS data [68, 71, 81, 90], for H1 results see Figs. 42,
77) to the ρ0 cross sections as a function of Q2. The horizontal solid lines correspond
to the SU(4) predictions, while the horizontal dashed lines correspond to the pQCD
predictions in the nonrelativiatic approximation given by Eq. (178). As shadowed band
the corresponding predictions from the kt model for the oscillator wave functions [55]
are shown. The width of the band is taken just arbitrary and does not correspond to the
theoretical uncertainties. The kt-model prediction for the J/ψ/ρ ratio at Q2 = 100 GeV2

is shown separately as a dashed-dotted line
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ent vector mesons as a function of Q2 makes no sense. This is clearly seen from
Fig. 41 which shows the ratios of cross sections σV (Q2)/σρ(Q2) as a function of
Q2. They exhibit a very steep dependence on Q2 from real photoproduction to
large Q2: even for the φ the ratio rises by a factor of ≈ 3, whereas for the J/Ψ
it rises by more than two orders of magnitude. The experimentally observed Q2

dependence is well reproduced within the k⊥-factorization approach [55].
We reiterate the point of Subsec. 6.1 about the approximate restoration of


avour symmetry if the cross sections are scaled by the nonrelativistic factor

mV Γ(V → e+e−) and compared at equal hard scale Q
2
, i.e., at equal (Q2+m2

V ).
According to the Review of Particle Properties [102]

1

η
J/Ψ
V

=
mV Γ(V → e+e−)

mJ/ΨΓ(J/Ψ → e+e−)
=

= ρ : ω : φ : J/ψ = 0.32 : 0.029 : 0.077 : 1, (178)

(the uncertainties in the r.h.s. of (178) from the decay widths vary from several
to ∼ 7 per cent for light to heavy mesons and are not shown).

Fig. 42. A compilation of the 
avor-rescaled using k⊥ factorization Eq. (179) total cross

sections η
J/ψ
V σV (Q2) for the ρ,ω, φ, J/Ψ vector mesons [16,68,71,81,86,87,89,90,278,

280,288] as a function of Q2 + m2
V . Shown are also the corresponding predictions from

the kt model for the oscillator wave functions [55]
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The J/ψ has been chosen as the reference point as it is the best approximation
to a nonrelativistic quarkonium, for light vector mesons the nonrelativistic approx-
imation is evidently poor. As a test of theory one must rather compare the pre-
dictions for the 
avour dependence at a sufˇciently large (Q2 +m2

V ) ∼ 20 GeV2.
Here the k⊥-factorization predictions can be summarized as

1

η
J/Ψ
V

∣∣∣
k⊥−fact

= 0.68 : 0.068 : 0.155 : 1. (179)

There is a marginal change from the oscillator to Coulomb parameterization for
wave functions, the theoretical uncertainty in the r.h.s. of (179) is about 10 per

cent. In Fig. 42 we plot the 
avor-rescaled σV (Q2)ηJ/Ψ
V |k⊥−fact for all vector

mesons as a function of (Q2 + m2
V ). The universal (Q2 + m2

V ) dependence is
clearly seen and the overall agreement between the experimentally observed and
theoreticaly predicted 
avor dependence is good.

For uncertain reasons, perhaps by misinterpretation of the discussion in [239],
one often discusses the restoration of the SU(4) 
avor symmetry,

ρ0 : ω : φ : J/ψ = 1 : 1/9 : 2/9 : 8/9 = 1.125 : 0.125 : 0.22(2) : 1. (180)

Incidentally it is not much different from (179), except of J/ψ, see Fig. 41. We
caution that there are no sound reasons for such an SU(4) ratio of cross sections
even at very large Q2. The SU(4)-factor weighted empirical cross sections were
shown in Fig. 38 and can indeed be ˇtted by the 
avor-independent universal
curve, but this agreement with SU(4) ratios must be regarded as an accidental
one.

6.3. The Ratio RV = σL/σT . 6.3.1. Theoretical Expectations. For heavy vec-
tor mesons treated as a nonrelativistic quarkonium, the pQCD predicts

RV (Q2) =
Q2

m2
V

RLT with RLT = 1, see (148). Despite all the uncertainties

with the wave functions, important point is that for a meaningful evaluation of
RV (Q2) the transverse and longitudinal vector meson must be related by the
rotation-invariance. The Fermi motion effects in the longitudinal and transverse
amplitudes are different, though, the latter being more sensitive to the end point
contributions from z ∼ 0, z ∼ 1. Such corrections are automatically incorpo-
rated in the color dipole and k⊥-factorization calculations. First, as discussed in
Subsec. 4.8, the hard pQCD scales for transverse and longitudinal cross sections

do slightly differ, Q
2

GT ∼< Q
2

GL, which already leads to a substantial reduction
of RLT at large Q2, as it was found in [21]. Second, the SCHNC transitions
contribute for the most part to the transverse cross section, especially for light
vector mesons, further lowering RLT . Third, as discussed in Subsec. 4.10, the
predictions for RV (Q2) are potentially very sensitive to the presence of a hard,
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quasi-pointlike qq̄ component in the vector meson wave function. As a test of
this sensitivity we evaluate RV (Q2) for a squeezed ρ meson as discussed in
Subsec. 4.10.

One way to circumvent problems with the poorly known wave function of
vector mesons is to resort to the BloomÄGilman duality for diffractive DIS [216].
Because of the strikingly different dependence of the duality integrals for σL, σT

on the duality interval, see Eqs. (94), (95), the ability [220, 221] to reproduce
both σV (Q2) and RV (Q2) is not surprising. It is not clear, though, whether such
an evaluation is entirely consistent with the rotation invariance constraints or not.

In the color evaporation model discussed in Subsubsec. 3.4.7 the J/Ψ is a
part of the open-charm cross section and, arguably, the ratio σL/σT must be close
to that for the open charm, RV ≈ RDIS 	 1, which would con
ict the large-Q2

data on J/ψ production to be shown below.
6.3.2. Experimental Results. Figure 43 shows the ratio

Rρ(Q2) =
σL(γ∗p → ρp)
σT (γ∗p → ρp)

,

as a function of Q2 for the ρ-meson production. Figure 43, b shows the same
data presented in the form of

Rρ
LT (Q2) = Rρ(Q2)

m2
ρ

Q2
.

At small values of Q2 the ratio is an approximately linear function of Q2 and
RLT (0) ∼ 1, but RLT (Q2) decreases steadily with rising Q2 and the growth
of Rρ(Q2) slows down. Whereas some of the published data sets even sug-
gest 
attening of Rρ(Q2), the new preliminary data [83, 85] indicate the steady
large-Q2 rise of Rρ(Q2)

The dotted curve shows an evaluation Rρ(Q2) [220,221] based on the duality
approach [216]. Whereas in the k⊥ factorization one starts with the qq̄ continuum
production amplitudes, projects it onto the JP = 1− state and averages over the
masses M ∼ mV of the qq̄ state with the vector-meson wave function as the
weight function. In the duality approach [216] one rather calculates |T |2 for a
ˇxed diffractive mass M and then integrates over certain range of M around
mV . For the ρ meson Martin et al. take the duality interval M = [M1, M2] =
[600, 1050] MeV. Because of the different sensitivity of duality integrals for σL,T

to the duality interval, see Eqs. (93), (95), one readily ˇnds a good description
of the Q2 dependence of Rρ(Q2) and the expense of a possible con
ict with
the rotation invariance. Although the absolute value of Rρ(Q2) is essentially
adjusted to the data, the steady rise of Rρ(Q2) at large Q2 must be regarded as
the genuine pQCD prediction. For the uncertainties with the duality description
of the absolute cross section see Subsubsec. 3.4.7.
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Fig. 43. A compilation of the experimental data on the ratio Rρ = σL/σT (a) and Rρ
LT =

Rρm2
ρ/Q2 (b) for the ρ-meson production as a function of Q2. The recent preliminary

data from H1 [85] and ZEUS [83] measurements are just scanned from the plots of the
correspondent papers and shown together with the published results [16, 68, 81, 277]. The
theoretical predictions are as follows: the dotted curve shows the estimates by Martin et al.
based on the BloomÄGilman duality [220], the solid and dashed curves show the results
from the k⊥ factorization for the conservative radius of the ρ meson and the squeezed ρ
meson, respectively [54, 55]

The solid curve shows the result of the k⊥-factorization calculation with the
conservative radius of the ρ meson. Although at the largest Q2 ∼ 20 GeV2 the
predicted RLT ∼ 0.3 	 1, as found already in 1994 within the color dipole
model [21], there is an obvious disagreement with the large-Q2 data. A compari-
son between the data and the kt-factorization calculations in terms of σL and σT

separately shows [54] that the source of this discrepancy is the transverse cross
section σT , whose value at high Q2 is signiˇcantly underestimated by the model.
A strong sensitivity of predictions for Rρ(Q2) to the short-distance properties of
the vector meson is illustrated by the dotted curve which is the k⊥-factorization
result for the squeezed ρ meson. As anticipated in Subsec. 4.10, the prime effect
of higher short-distance density in the ρ meson is an enhancement of σT and
suppression of Rρ(Q2).

Figure 44 shows the ratio σL/σT for the J/ψ mesons compared with the
prediction of the kt-factorization model. The recent ZEUS result averaged over
Q2 is RLT = 0.52±0.16 [90]. The recent high-accuracy experimental results for
large-Q2 φ production are shown in Fig. 45. If compared against equal Q2/m2

V ,
the theoretical results and the experimental data for RLT show similar behavior
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Fig. 44. A compilation of the experimental data on the ratio RJ/ψ = σL/σT (a) and

R
J/ψ
LT = RJ/ψm2

J/ψ/Q2 (b) for the J/ψ-meson production as a function of Q2. The open
circles represent the H1 [89]; and solid symbols, the ZEUS J/ψ measurements [90]. The
solid curve is a prediction from the k⊥-factorization approach [55]

Fig. 45. A compilation of the
experimental data on the ratio
Rφ = σL/σT for the φ-me-
son production as a function of
Q2. Shown are the recent pre-
liminary data from ZEUS [88]
together with the published re-
sults from ZEUS [278, 280]
and H1 [87]. The solid curve
shows the ˇt of the form Rφ =
a(Q2/m2

φ)b with the parame-
ters cited in the ˇgure

for all three vector mesons: ρ, φ, and J/ψ. For instance, the ˇt to experimental
data on r04

00 for the ρ production shown in Fig. 25 can be reinterpreted, via
Eq. (164) with ε ≈ 1, as Rρ = a(Q2/m2

ρ)
b with a = 1/ξ = 0.46 ± 0.015 and

b = k = 0.75±0.3 which agrees perfectly with the recent ZEUS parameterization
for the φ production shown in Fig. 45: a = 0.51 ± 0.07 and b = 0.86 ± 0.11.
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7. THE ENERGY DEPENDENCE AND REGGE PROPERTIES OF
DIFFRACTIVE VECTOR-MESON PRODUCTION

7.1. Theoretical Expectations. The local energy dependence of
σγ∗p→V p(W 2, Q2) is usually parameterized as

σγ∗p→V p(W 2, Q2) ∝ W δ. (181)

The exponent δ for the t-integrated total cross section is controlled by the x
dependence of the integrated gluon density, see Eq. (145), and the shrinkage of
the diffraction cone. Within the standard exponential approximation for the t
dependence

σγ∗p→V p(W 2, Q2) ∝ Im T 2
LL(W 2, t = 0)

W 4bV (W 2, Q2)
(182)

and

δ = 4

[
λ(Q

2

G) − α′
IP

b(Q
2

G)

]
. (183)

The microscopic pQCD models of the Pomeron exchange, see Subsecs. 3.2,
3.3 and Eq. (60), suggest that the Pomeron is a more complex object than an
isolated single pole Å it is either the branching point or a sequence of Regge
poles. For this reason the exponent δ can depend on Q2, mV , the energy range,
helicities, etc. Equation (183) emphasizes the crucial point [21] that within

the color dipole and k⊥-factorization approaches, δ depends only on Q
2

G ∼
(Q2 + m2

V ). The corrections to the (Q2 + m2
V ) scaling are well understood and

marginal: a slight departure of the hard scale Q
2

G from Q
2

has been discussed
in Subsec. 4.8. Speciˇcally, at equal values of Q2 + m2

V , the ρ production is in
a somewhat softer regime than the J/ψ production and one can expect that δJ/ψ

should be slightly larger than for the δρ.
The k⊥-factorization phenomenology of DIS structure functions described

in Subsubsec. 3.3.3 strongly suggests that, for purely numerical reasons, within
the kinematical range of the HERA experiments the vacuum exchange can be
approximated by the two, soft and hard, Pomeron poles with approximately
Q2-independent intercepts. The values of the intercepts anticipated in this ap-
proximation were given in Subsubsec. 3.1.4 and Subsec. 3.3. They translate into
δ ∼ 0.2−0.4 in the soft region and much larger δ ∼> 1−1.5 when the interac-

tion becomes sufˇciently hard. Since the pQCD hard scale Q
2

increases not
only with Q2, but also with mV , the theory predicts the corresponding hierarchy
δJ/ψ > δφ > δρ at any Q2, including photoproduction; for exact values see
Fig. 46. On the other hand, the variations of δ from ρ, ω to φ to J/Ψ to Υ are
weak against the variable Q2 + m2

V .
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The energy dependence of the ψ(2S) production should be discussed sepa-
rately. As is pointed out in Subsubsec. 3.4.3, the node of the 2S radial wave
function leads to a partial compensation between contributions from dipoles with
the size below and above the node. As a result, the typical dipole sizes that con-
tribute to ψ(2S) production are smaller than for J/ψ production. This makes the
pQCD scale for ψ(2S) production somewhat harder than for J/ψ, which results
in δψ(2S) > δJ/ψ and the rise of the cross-section ratio σ(ψ(2S))/σ(J/ψ) with
growing energy is predicted [26,54].

Fig. 46. The kt-factorization predictions for the exponent δ of the ˇts σ ∝ W δ to the W
dependence for different vector mesons [54, 55]. Notice a strong 
avor dependence (a)
where δ is plotted as a function of Q2. The 
avor dependence is much weaker when δ is
plotted against Q2 + m2

V (b)

7.2. Experimental Results: Real Photoproduction. 7.2.1. Ground State
Vector Mesons. The summary of the experimental data on the energy dependence
of all vector meson photoproduction cross sections measured at HERA is shown
in Fig. 47 together with the total cross section σγp

tot and the results from ˇxed
target experiments. There is a clear pattern of variation of the exponent δ from
light to heavy mesons: For the light vector mesons, ω, ρ, and φ, the rise of
the cross sections with energy is well described by W 0.22 behavior. Already
the ˇrst measurement of the J/ψ photoproduction at HERA showed a much
steeper rise with W than that observed for the light vector mesons. The energy
dependence was found to be W (0.7−0.8), which implies the effective Pomeron
intercept around αIP (0) ≈ 1.2. The still larger δ has been found for Ψ(2S), the
experimental data on Υ production are not yet conclusive. Figure 48 summarises
the experimental data on the ρ photoproduction and Fig. 49 shows the recent
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Fig. 47. The total vector-meson photoproduction cross section as a function of W for
all vector mesons measured at HERA shown together with the results of ˇxed target
experiments and compared with the total photoabsorption cross section σγp

tot

ZEUS photoproduction measurement [71] of the J/ψ photoproduction in a wide
W range (20−300 GeV) together with earlier data from H1 and ˇxed target
experiments. The result of the ˇt in the form σ ∝ W δ to the ZEUS data with
W > 30 GeV yielded δ = 0.69 ± 0.02(stat.) ± 0.03(syst.).

The kt factorization and color dipole calculations, shown in Fig. 46, predict
precisely such a variation of the energy dependence with the mass of the vector
meson. The real photoproduction of light vector mesons is dominated by nonper-
turbative component of the unintegrated gluon density of the proton and/or soft
dipoles, and δ is small, but the contribution from hard gluons rises from light to
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Fig. 48. The W dependence of ex-
clusive ρ-photoproduction cross sec-
tion measured by the H1 (�) [277]
and ZEUS (�) [68] experiments com-
pared with predictions of the kt-fac-
torization model for the oscillator (1)
and Coulomb wave functions (2) of the
ρ meson

Fig. 49. A compilation of the experimental data on exclusive J/ψ-photoproduction cross
section as a function of W measured. The black points show the recent ZEUS data for
the J/ψ → μ+μ− and J/ψ → e+e− decay channels [71]. The inner bars indicate the
statistical uncertainties; the outer bars are the statistical and systematic uncertainties added
in quadrature. Results from the H1 [70] and ˇxed target experiments [289,290] are shown
by open symbols. Recently H1 reported about correction of the published cross sections
and they are now much closer to the ZEUS ones. The kt-factorization predictions [55] for
the oscillator and Coulomb wave functions are shown by the curves 1 and 2, respectively
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heavy vector mesons, which is a universal prediction from all pQCD motivated
models. The energy dependence from the speciˇc k⊥-factorization model [54,55]
comes out right for both ρ (Fig. 48) and J/Ψ mesons (Fig. 49).

7.2.2. Radially Excited Vector Mesons. The Ψ(2S) photoproduction was
studied by H1 [73] using tagged and untagged data samples of Ψ(2S) → ll
and Ψ(2S) → llππ decay channels, where ll stands for e+e− or μ+μ−. The
measurement of the ratio R of Ψ(2S) to J/ψ-photoproduction cross sections as

Fig. 50. The ratio of photoproduction cross sec-
tions Ψ(2S) over J/ψ as a function of W [73].
The kt-factorization predictions [55] are shown
for comparison (solid curve)

a function of W is shown in
Fig. 50. The suppression of this
ratio, R 	 1, is due to the node
effect, the resulting strong can-
cellations between the contribu-
tion from the large size and small
size components of the Ψ(2S)
make the predicted ratio strongly
dependent on the model for the
wave function. The experimen-
tal data agree with kt-factorization
predictions based on the oscilla-
tor wave function. The over-
all ratio for the data gives the
value R = 0.166± 0.007(stat.)±
0.008(syst.) ± 0.007(BR) in a
good agreement with the pre-
vious measurements [72] (for
the branching error calculation
see [73]). A ˇt to this ratio of
the form R ∝ WΔδ yields Δδ =
0.24 ± 0.17, which indicates that
the energy dependence of the Ψ(2S) photoproduction cross section is slightly
steeper than that for the J/ψ meson. This agrees with the color dipole model
expectations [26,49].

The deˇnitive ρ′(2S) assignment of the excited ρ states is still pending and
the experimental data on the ρ′(2S) production are not available yet. Here we
simply mention that all color dipole [178,181,182] and/or k⊥-factorization [54,55]
calculations based on the node effect predict σ(ρ′(2S))/σ(ρ(1S)) < 1 with very
steep Q2 dependence up to Q2

∼> (3−5) GeV2, whereas the duality relation
estimated by Martin, Ryskin, and Teubner [220] gives σ(ρ′(2S))/σ(ρ(1S)) > 1.
This simply shows that one must be careful with application of duality to radial
excitations: because the mass spectrum of the qq̄ pairs which enters the duality
integral does not exhibit any nonmonotonous Q2 dependence [3, 217], the steep
Q2 dependence driven by the node effect can easily be missed.



106 IVANOV I. P., NIKOLAEV N.N., SAVIN A.A.

7.2.3. Test of the Vector Dominance Model. In the color dipole language, the
success of the vector-dominance model (VDM) for real photoproduction derives
from the proximity of the (quark 
avor dependent) color dipole distributions in
the photon and light vector mesons. The straightforward extension of the VDM
approximation (67) to the γp elastic scattering amplitude reads

T (γp → γp) =
∑

V =ρ,ω,φ

√
4παem

fV
T (γp → V p). (184)

Assuming the pure imaginary amplitudes, which is a good approximation because

in real photoproduction
1
4
δ 	 1, one can extract the photoproduction amplitudes

from the forward differential cross sections, whereas the γp elastic scattering
amplitude is related by optical theorem to σtot(γp). This leads to the Stodolsky
sum rule [291]

σtot(γp) =

√
16π

dσγp→γp

dt

∣∣∣∣
t=0

=
∑

V =ρ0,ω,φ

√
16π

4πα

f2
V

dσγp→V p

dt

∣∣∣∣
t=0

. (185)

The test of VDM sum rule has been reported by the ZEUS collaboration [292].
The VDM analysis of the low-energy data gave f2

V /4π = 2.20, 23.6, and 18.4 [42]
for ρ0, ω, and φ, respectively. Then, based on the photoproduction data at 70 GeV,
the VDM sum rule gives a value of (111 ± 13(exp.))μb for the photonÄproton
total cross section at Wγp = 70 GeV. The ρ0 meson contributes about 85% of
this value. The interpolation of photonÄproton total cross section at a centre-of-
mass energy of Wγp = 70 GeV, obtained by interpolation between the present
measurement and the lower energy measurements using the Regge model ˇts, is
139 ± 4 μb. The two numbers are close to each other; the point that simpliˇed
VDM model does not saturate the sum rule is well known, for the review see [42].

7.3. Experimental Results: Vector Mesons in DIS. 7.3.1. The Impact of
Hard Scale on the Energy Dependence. The cross section for the exclusive ρ0

electroproduction measured by ZEUS [83] and H1 [85] as a function of W for
different values of Q2 is presented in Fig. 51. The curves represent the result of
the σ ∝ W δ ˇts to the data. The exponent of the energy dependence increases
with the Q2 growth from about 0.2 at low Q2 up to 0.8−1.0 at high Q2, in
agreement with theoretical expectations from the color dipole approach shown
in Fig. 46. In contrast to the ρ production, the J/ψ-production cross section
exhibits almost the same W dependence for all measured values of Q2, including
the photoproduction limit, see Fig. 52, in good agreement with the theoretical
prediction from the color dipole approach shown in Fig. 46.

The point that the correct hard scale is ∝ (Q2 + m2
V ) is clear from Fig. 53

which shows the dependence of the exponent δ on Q2 (a) and (Q2 + m2
V ) (b),
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Fig. 51. The W dependence of the ρ-electroproduction cross section for different values
of Q2 as measured by ZEUS [83] (a) and H1 [85] (b). The lines represent the results of
ˇtting σ ∝ W δ with the δ values indicated in the ˇgures. The shaded area in the ZEUS
case indicates additional normalization uncertainties due to proton dissociation background

Fig. 52. a) The recent ZEUS results on exclusive J/ψ-electroproduction cross section as a
function of W for four values of Q2 [90]. ZEUS photoproduction [71] and H1 electropro-
duction [89] cross sections are also shown. The solid lines are ˇts to the ZEUS data of the
form σ ∝ W δ. The inner error bars represent the statistical uncertainties, the outer bars
are the statistical and systematic uncertainties added in quadrature. An overall normal-
ization uncertainty of +5%

−8% was not included. b) The kt-factorization predictions [54, 55]
normalized to the ZEUS photoproduction cross section at 〈W 〉 = 90 GeV and compared
to the recent ZEUS data
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Fig. 53. The exponent δ of the ˇts σ ∝ W δ to the W dependence for the ρ production
as summarized in [83] including the PHP J/ψ point from [70] presented as a function of
Q2 (a) and combined ρ and J/ψ data [71,89,90] presented as a function of Q2 +m2

V (b).
The predictions from the kt-factorization approach [54, 55] are also shown by solid and
dotted curves

respectively. For the ρ mesons both the plots give a clear indication of the rise

of δ with Q2 and Q
2
. At the largest Q2 the exponent δ rises up to 1−1.2, which

implies the rise of the effective intercept of the Pomeron up to αIP (0) ≈ 1.3. If
it were to be plotted as a function of Q2, the exponent δ for the J/Ψ would be
completely out of the observed trend for the ρ meson, see Fig. 53, a, where only
the PHP point is shown. When plotted as a function of (Q2+m2

V ), the same result
for the J/Ψ is perfectly consistent with the results for the ρ at the same value
of (Q2 + m2

V ), conˇrming with the theoretical expectation of the (approximate)

avor symmetry in this variable. The theoretical values of δ shown in Fig. 53
were evaluated for the range W = 50−100 GeV. The overall agreement between
the experiment and k⊥-factorization approach is good. Figure 52, b shows the kt-
factorization predictions [54, 55] normalized to the ZEUS photoproduction cross
section at 〈W 〉 = 90 GeV; the quality of the theoretical description of the data
points is good.

7.3.2. Discriminating the Models for Gluon Density. The early discussion
of the J/Ψ production was centered around the idea [22] of stringent tests of
models for the gluon density G(x, Q2). An example of such a test based on the
experimental data which were available at that time is illustrated by Fig. 54, a. The
shown theoretical curves [173] are based on the 1995 updates of parameterizations
for the gluon density adjusted to the HERA data on the small-x growth of
F2p(x, Q2). The energy behavior of each vector-meson production can also
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be reproduced by a number of simple parameterizations within models described
in Subsubsecs. 3.1.4 and 3.4.8. An example of a ˇt to the J/Ψ-photoproduction
cross section in a model by Fiore et al. [229] in which Pomeron is the double-pole
at αIP (0) = 1 is shown in the r.h.s. plot of Fig. 54, b.

Fig. 54. a) Tests of models for the small-x gluon density using the early HERA data on
the energy dependence of J/Ψ photoproduction together with the data from ˇxed target
experiments. The plot taken from [173] shows the pQCD calculations for the GRV95 [293]
and MRS95 [294] parameterizations of the proton gluon density based on the pre-1995 data
on F2p(x,Q2) and illustrates the status of the subject at that time. b) The parameterization
of the energy dependence of J/ψ production in the Fiore et al. model of a double-pole
Pomeron with intercept αIP (0) = 1 [229]

The past decade brought great improvements in our understanding of the
small-x gluon densities and in the vector-meson productuon data compared to the
1995 situation shown in Fig. 55. The discrimination of the models remains weak,
though: for the reasons discussed in Subsec. 6.4, there are substantial uncertainties
in the absolute normalization which cannot be eliminated at the moment. This
point is further illustrated by the recent ZEUS data on J/Ψ electroproduction
shown in Fig. 40 in comparisons with the predictions from the more recent MRT,
FKS, and GLLMN models for the gluon density described in Subsec. 6.4. All
models need large rescaling to adjust the normalization to the photoproduction
at 〈W 〉 = 90 GeV. At the expense of such rescaling all model calculations rea-
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Fig. 55. The tests of the pQCD predictions for various models for the small-x gluon density
of the proton vs. the recent ZEUS data on J/ψ production as a function of W for different
values of Q2 [71, 90]. The curves in a represent the predictions of models MRT · 1.49
(solid curve), FKS · 1.7 (dashed curve), and GLLMN · 0.9 (dotted curve), the curves in b
are the MRT results based on different gluon densities in the proton: the solid curve Å
ZEUS-S ·1.49, the dashed curve Å CTEQ6M · 2.22, the dotted curve Å MRST02 · 2.98.
All theoretical curves are rescaled as indicated above to ˇt the ZEUS photoproduction
point at 〈W 〉 = 90 GeV. The inserts show the exponent δ of the parameterization σ ∝ W δ

for these models
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sonably reproduce the gross features of the energy dependence. For comparison,
the kt-factorization predictions [54,55] shown in Fig. 52, b give an equally good
description of the same data using a rescaling factor 0.86. One exception is
the MRT results for the MRST02 gluon density for small Q2; the likely reason

for the found strong discrepancy is that the corresponding values of Q
2

are too
close to the lower Q2 boundary of applicability of this particular set of parton
densities [284].

7.3.3. Comparison of Vector-Meson Production and Inclusive DIS from Regge
Model Viewpoint. We repeatedly made a point that the pQCD vacuum exchange
is not an isolated Regge pole. Subsec. 3.3 and Fig. 11 show how the effective
exponent of the 1/x dependence changes from τ(κ2) for the unintegrated glue
F(x, κ2) to λ(Q2) for the integrated glue G(x, Q2) to Δ(Q2) for F2(x, Q2) or

σγ∗p
tot (x, Q2). This entails the failure of naive Regge factorization in comparison

with the energy dependence of vector-meson production and inclusive DIS, which
was nicely demonstrated by ZEUS collaboration [295] in their study of the ratio

rV
tot =

σγ∗p→V p(W 2, Q2)

σγ∗p
tot (W 2, Q

2
)

. (186)

The argument is as follows. According to Eqs. (181), (183),

σ(γ∗p → V p) ∝ (W 2)2λV
tot(Q

2),

λV
tot(Q

2) =
1
4
δ ≈ λ(Q

2
) − α′

IP

b(W 2)
= αIP − α′

IP

b(W 2)
− 1,

(187)

where the last form in terms of αIP holds if the QCD Pomeron were an isolated
Regge pole. Notice, that λ(Q2) as deˇned in Subsubsec. 3.3.1 is different from
the exponent Δ(Q2) in

σγ∗p
tot ∝ (W 2)Δ(Q

2
) = (W 2)αIP−1, (188)

see a comparison in Fig. 10. Such a difference between the intercepts λ(Q2)
and Δ(Q2) and their substantial dependence on Q2 shown in Fig. 10 already
go beyond the rigours of the Regge theory. Still one can try to probe the
vacuum exchange in the numerator and denominator of rV equalizing the relevant

hard scales, i.e., evaluating the ratio rV
tot with σγ∗p

tot (W 2, Q
2
) taken at Q

2
=

(Q2 + m2
V )/4. In Fig. 56 we present λV

tot(Q
2) and Δ(Q

2
) plotted vs. common

hard scale. Only if one ignored the difference between λ(Q2) and Δ(Q2), the
W dependence in (187) and (188) would be controlled by one and the same αIP

and one would expect the W dependence of the ratio rV
tot of the form

rV
tot ∝ (W 2)η, η = αIP − α′

IP

b(W 2)
− 1. (189)
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Fig. 56. A test of the universality of the energy dependence of the proton structure function

F2p

(
x, Q

2
=

1

4
(Q2 + m2

ρ)

)
∝ x−Δ(Q

2
) as compiled in [296, 297] and of the ρ-virtual

photoproduction cross section, σρ(Q
2) ∝ (W 2)2λ

ρ
tot(Q

2): the plot with the exponent

Δ(Q
2
) along the y axis vs. the hard scale 4 × Q

2
along the x axis is overlayed by the

plot with the exponent λtot(Q
2) along the y axis vs. the hard scale 4(Q2 +m2

ρ) along the
x axis. The dashed and solid lines are the results from the k⊥-factorization model [54,55]

The experimental results on rV
tot for the ρ and J/Ψ are shown in Fig. 57, a, c.

They are consistent with little or no W dependence for the ρ production. Notice,
that an approximate constancy of rV for the ρ production at small Q2 is very
much reminiscent of the familiar very weak energy dependence of the ratio
σel/σtot in πN, KN, NN interaction, see plots in [102]. Here the smallness of
the exponent η is to a large extent due to the term α′

IP /b(W 2) from the shrinkage
of the diffraction cone. The W dependence of rV

tot for the J/Ψ production is
substantial. This hard-scale and process-dependence of η has been interpreted as
an evidence for the breaking of the Regge factorization.

The energy dependence of rV
tot expected from kt factorization is shown in

Fig. 57, b, d. It includes the effect of shrinkage of the diffraction cone. The theo-
retical results do correctly reproduce the trend of the experimental data shown in
Fig. 57, a, c. Although the ZEUS experimental results for the ρ mesons are consis-
tent with rV

tot = const, within the error bars they do not exclude the theoretically
expected weak energy dependence shown in Fig. 57, b, d. The k⊥ factorization
correctly describes the change of the energy dependence of rV

tot from the light ρ
to heavy J/Ψ.
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Fig. 57. The ratio rV = σV (Q2)/σtot(Q
2
) for the ρ production as a function of energy

for several values of Q
2

=
1

4
(Q2 + m2

V ): a, c) the experimental data on the ρ and

J/ψ production [295]; b, d) the corresponding theoretical expectations for the energy
dependence of rV [55]
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8. THE t DEPENDENCE AND PROPERTIES OF DIFFRACTIVE CONE

8.1. Low t: Proton-Elastic and Proton-Dissociative Events. The vector-
meson production differential cross section dσ/dt exhibits a pronounced forward
diffraction cone, which spans up to |t| ∼< 1.0 GeV2. Such a diffraction cone is fa-
miliar from hadronic scattering processes. Within diffraction cone, the differential
cross section falls off with |t| approximately exponentially, see Subsubsecs. 3.1.3
and 3.1.4. In close similarity to hadronic scattering, the dominant process here
is the proton-elastic (hereafter just ®elastic¯) production of ground state vector
mesons γp → V p, see Fig. 58, a, where the label ®elastic¯ is a reminder of
the VDM relationship between the photoproduction and V P elastic scattering
amplitude, recall Subsubsec. 3.4.1.

Fig. 58. Schematic diagram of proton-elastic (a) and proton-dissociative (b) vector-meson
production in ep interaction: ep → eV p and ep → eV Y

At larger t the elastic production dies out and the proton-dissociative reaction
γp → V Y takes over. One can argue [114] that the relative importance of
the elastic and proton-dissociative reaction is precisely the same as in protonÄ
nucleus and protonÄproton scattering described in Subsubsec. 3.1.5. At small t
within the diffraction cone the proton-dissociative production will be smaller than
the elastic production but still the biggest background contribution to the elastic
vector-meson production.

Experimentally, the direct separation of the two processes is only possible
if the leading proton is measured in the Leading (Forward) Proton Spectrometer
(LPS, FPS) or if the hadrons from the proton-dissociative system Y with a
sufˇciently high mass (> 3−4 GeV) are observed in the forward part of the
detector. Because the forward part of each detector has a beam-pipe hole the
smaller mass states Y will just escape undetected. In the case when the proton
or its excitation escapes through the beam-pipe hole undetected, one needs to
estimate the portion of the proton-dissociative events and subtract it from the
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visible cross section based on the Monte-Carlo modeling. Such a procedure leads
to sizeable systematic uncertainties.

If the Regge factorization decomposition (35) were exact, then the t depen-
dence from the γ → V transition vertex and from the t-channel exchange will
cancel in the ratio

Ratio(el/diss) =
dσ(γp → V p)

dt

/
dσ(γp → V N)

dt
, (190)

which must be 
avor independent and controlled by the change of the t de-
pendence from p → p to p → Y transition [114]. Furthermore, the Regge
factorization predicts that Ratio(el/diss) will not change from photoproduction
of vector mesons to pp scattering,

Ratio(el/diss)|pp =

=
dσ(pp → pp)

dt

/
dσ(pp → pN)

dt
≈ Ratio(el/diss)|γV . (191)

Fig. 59. a) The ratio of elastic to proton-dissociative differential cross sections as a function
of −t for vector-meson photoproduction [76], together with data from pp reactions [298]
at

√
s = 23.4 and 38.3 GeV. The curve is the result of combined ˇt to all the data.

b) The |t| distribution for the J/ψ sample as measured by H1 [89]. Curve 1 is the
result of a ˇt taking the background contributions into account. Curve 2 corresponds
to the elastic contribution assuming an exponential distribution. The contributions from
proton dissociation and nonresonant background are shown separately by curves 3 and 4,
respectively
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In Fig. 59 the experimentally measured ratio Ratio(el/diss) is shown as a
function of t for ρ, φ, and J/ψ mesons photoproduced at HERA. The same
ratio for the pp reaction is shown for comparison. All ratios coincide within the
errors, which is consistent with the hypothesis of Regge factorization and lends a
support to the separation procedure. The elastic reaction production dominates at
|t| ∼< 0.4−0.6 GeV2, the proton-dissociative production takes over at larger |t|.
Notice a close similarity to a comparison of the elastic and nucleus-dissociative
pA scattering shown in Fig. 8. Figure 59 shows the typical interplay of the t
dependence of the elastic and proton-dissociative production in electroproduction
of J/ψ as measured by H1 [89]. One sees that the relative contribution of
the proton-dissociative events is increasing rapidly with t making the elastic
measurement possible only at rather low-t values (typically |t| < 0.6−1.0 GeV2).

At still larger momentum transfers, |t| 
 1 GeV2, the vector-meson produc-
tion is dominated by proton-dissociative reaction. Besides that, the production
mechanism changes and the exponential fall-off of the differential cross section
is superseded by the inverse powers of |t| or (m2

V + |t|).
8.2. Diffraction Cone at Low t. 8.2.1. The Diffraction Slope Versus Hard

Scale: Theoretical Expectations. The t dependence of the differential cross
section at small t is usually parameterized in terms of the diffraction slope bV ,
see Eq. (34). The ˇtted values of bV depend slightly on the range of t, the more
reˇned parameterization

dσ

dt
∝ exp (−bV |t| − c|t|2)

with the curvature parameter c allows one to extend the ˇts of the experimental
data up to |t| ∼ 1 GeV2. The allowance for the curvature c does not shift the
value of ˇtted bV signiˇcantly. Several other deˇnitions of the effective slope can
be encountered in literature, e.g., the derivative of the logarithm of the differential
cross section at t = 0,

bV =
1
σ

dσ

dt

∣∣∣
t=0

,

or, less often, the deˇnition in terms of the average momentum transfer squa-
red, 〈|t|〉,

bV =
1

〈|t|〉 ,

they can differ from bV deˇned by ˇts to Eq. (34) by 1−2 GeV−2.
The decomposition (35) of the diffraction slope into the target transition,

beam transition and the t-channel exchange components is exact in the simple
Regge model. Similar decomposition holds also in the k⊥-factorization and
color dipole approaches despite breaking of the strict Regge factorization. In the
photoproduction, the key point is the shrinkage of the qq̄ state of the photon from
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light to heavy quarks accompanied by the related decrease of the radius of the
ground state vector meson, see Subsubsec. 3.4.2, which entail the hierarchy of
diffraction slopes

bel
J/ψ < bel

φ < bel
ρ . (192)

The Q2 dependence of the diffraction slope is driven by the decrease of
the scanning radius rS with Q2, see Subsubsec. 3.4.2, Eq. (80), and the Q2

dependence of the Regge shrinkage term through the Regge parameter W 2/(Q2+
m2

V ), see Subsec. 4.5, Eq. (128):

b(Q2) = b0 + 2α′
IP log

(
x0W

2

Q2 + m2
V

)
+

A

Q2 + m2
V

. (193)

For x0 = 8.3 · 10−4 as deˇned in Subsec. 4.5, b0 ≈ BN is the approximately

avor-independent contribution from the proton. The shrinkage of the diffraction
cone is for the most part a property of the xg-dependent skewed gluon density,
see Subsec. 4.5. Besides that, because the scaling violations do depend on xg , the

scanning radius and hard scale Q
2

will exhibit slight energy dependence, which
shall affect the energy dependence of the differential cross section [26,299]. The
net effect of such non-Regge corrections is a substantial reduction of the observed
α′

IP from the input α′
BFKL = 0.25 GeV−2 in the parameterization (129).

According to Eq. (80), the diffraction slopes for different vector mesons
should be close if taken at equal values of the scanning radius rS or equal values
of (Q2 + m2

V ) [25]. More detailed analysis in [26] has shown that for the J/ψ
the diffraction slope is slightly smaller, by ∼ 0.5 GeV−2, than for the ρ at the
same (Q2 + m2

V ). In addition, the arguments presented in Subsec. 4.8 suggest
a somewhat larger scanning radius and larger diffraction slope for the transverse
amplitude T11 compared with the longitudinal amplitude T00. The effect has been
suggested and evaluated for the ˇrst time in [26]. Even for light vector mesons
at small Q2 the expected difference is small, ∼ 0.5−1 GeV−2, for heavy vector
mesons the contribution to the diffraction slope from the scanning radius is small
and the effect is negligible.

The arguments of Subsubsec. 3.1.5 are fully applicable to vector-meson pro-
duction. For the proton dissociative photoproduction one expects a substantially
smaller diffraction slope

bdiss
V (Q2) ≈ bel

V (Q2) − BN . (194)

The principal point is that the difference of diffraction slopes for the elastic and
proton-dissociative reaction must be approximately Q2 and 
avor independent.

8.2.2. Experimental Results: Real Photoproduction. The experimental results
on the diffraction slope b measured in photoproduction at HERA are summarized
in Table 4.
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The values of diffraction slopes depend on the t region, where the ˇts are
performed, which is familiar from πp, pp scattering [111,300]. The 
avor depen-
dence is consistent with the theoretical expectations described in Subsubsec. 8.2.1:
the diffraction slope rises with the size of the meson with the exception of the
Ψ(2S). The charmonium models [47,48] suggest the radius of the Ψ(2S) as large
as the radius of the φ, so that the diffraction slope of elastic Ψ(2S)p scattering
would be the same as in φp elastic scattering. Then in the naive VDM one would
expect bψ(2S) ≈ bφ. In contrast to that, the counterintuitive

bΨ(2S) − bJ/Ψ ≈ −0.5 GeV−2 (195)

Fig. 60. a) The preliminary ZEUS data on dif-
fraction slope b for elastic and proton-dissociative
production of the ρ [84]. b) The recent
ZEUS [90] and H1 [89] data for elastic produc-
tion of the J/ψ mesons as a function of Q2

was predicted in [26] on the ba-
sis of node effect [18]. The H1
results for both elastic and proton-
dissociative Ψ(2S) production [73]
are consistent with this prediction.
Within the experimental error bars
Δb = bel − bdiss ≈ 4.5−5 GeV−2

is 
avor independent which agrees
perfectly with the theoretical ex-
pectation (56), (194) and must be
contrasted to a strong 
avor depen-
dence of bel.

Notice a very small bdiss(γp →
J/ψY ), which is consistent with
the equally small slope for the
double-dissociative hadronic dif-
fraction pp → XY , for the com-
pilation of the hadronic data from
the ˇxed target to ISR energies,
see [122,123].

8.2.3. Experimental Results:
Q2 Dependence of the Diffraction
Slope. Figure 60 shows the Q2 de-
pendence of the diffraction slopes
bρ(Q2) and bJ/ψ(Q2). In the case
of the ρ meson, a strong Q2 de-
pendence of the bρ is observed:
b ≈ 11 GeV−2 in the photopro-
duction limit and drops down to
4−5 GeV−2 in the hard electroproduction. In striking contrast, in the case
of J/ψ production the Q2 dependence is very weak or absent, bJ/ψ ≈ 4.5 GeV−2

was found throughout the entire Q2 range.
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Figure 60 shows also the comparison between the elastic and proton-dissocia-
tive slopes in ρ-meson production. One clearly sees an approximately
Q2-independent difference Δb = bel

ρ (Q2) − bdiss
ρ ≈ 4−5 GeV−2 between the

two data sets, which coincides with the photoproduction value shown in Table 4.
This is an important conˇrmation of the theoretical expectation (194).

Fig. 61. The diffraction slope b of elastic produc-
tion of the ρ (� Å H1 [16]; � Å ZEUS [68,81],
the data from [84] are not shown) and J/ψ
(� Å H1 [89]; � Å ZEUS [90]) mesons as a
function of Q2 + m2

V . The predictions of the
kt-factorization approach [54, 55] are shown

Figure 61 shows the above re-
sults for elastic slopes bel

ρ (Q2) and
bel
J/ψ(Q2) plotted as a function of

(Q2 + m2
V ). The strong 
avor

dependence obvious if one com-
pares the photoproduction values
bel
ρ (Q2 = 0) at bel

J/ψ(Q2 = 0) is
dramatically reduced in the vari-
able (Q2 + m2

V ). The theoretical
curves are from the kt-factorization
model [55]. Because of 
avor-
dependent departure of the hard

scale Q
2

from the simple estimate
(9), the theoretical predictions for
the J/ψ are slightly lower than
for the ρ. Similar results were
found earlier in the color dipole
model [26, 301]. The origin of the
weak Q2 dependence for the J/Ψ
is in a very small contribution to
bel
J/ψ(Q2) from bγ∗V (Q2) ∝ r2

S ∝
1/(Q2 +m2

V ), see Eqs. (80), (193).
The similar approximate

(Q2 + m2
V ) scaling holds for the

proton-dissociative reaction: the results for bdiss
ρ for the largest values of Q2 in

Fig. 60 are perfectly consistent with the photoproduction value for bdiss
J/Ψ from

Table 4.

8.3. Shrinkage of the Diffraction Cone and the Pomeron Trajectory.
8.3.1. The W -Dependence in Photoproduction. Figures 62 and 63 show the
energy dependence of the diffraction slope b for the ρ and J/ψ photoproduction,
respectively. One sees a steady growth of the diffraction slope, i.e., the shrinkage
of diffractive cone. When parameterized in terms of (37), the ρ-photoproduction
data yield α′

IP = (0.23 ± 0.15(stat.)+0.10
−0.07(syst.)) GeV−2 [68]. This result for

the soft reaction is consistent with α′
IP = 0.25 GeV−2 found in the simple

Regge pole description of elastic pp scattering. The J/Ψ photoproduction must
be regarded as a hard reaction, here the evidence for nonvanishing α′

IP is even
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stronger. Fitting to the form b = b0(90 GeV) + 4α′
IP ln (W/90) gave α′

IP =
(0.116 ± 0.026(stat.)+0.010

−0.025(syst.)) GeV−2 [71].

Fig. 62. The diffraction slope bρ as a function of W for ρ photoproduction [69]. The
continuous line shows the result of the ˇt of the form (37) to the recent H1 measurement,
other HERA and ˇxed target measurements are shown for comparison; the extrapolation
of the ˇt to the low W region is indicated by the dashed line

Fig. 63. The slope bJ/ψ as a func-
tion of W for J/ψ photoproduction
as measured by ZEUS [71]. The re-
sults of the kt-factorization calcula-
tions [54, 55] based on the oscillator
(solid line) and Coulomb (dashed line)
wave functions are compared with the
data

8.3.2. The Pomeron Trajectory. In addition to ˇtting the differential cross
section dσ/dt at given W and evaluating the diffraction slope b as a function of
W , one can study the W dependence of the differential cross sections at ˇxed
t. According to Eq. (28) the W dependence of the differential cross section is
∝ W 4(αIP (t)−1), so that one can extract αIP versus t , i.e., measure the effective
trajectory αIP (t) of the t-channel vacuum exchange.

Figures 64, 65 demonstrate the αIP (t) measure by ZEUS in the photopro-
duction of the ρ, φ, and J/ψ mesons. The obtained parameters of the effective
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Fig. 64. Determination of the Pomeron trajectory from the reactions γp → ρ0p (a) and
γp → φp (b). The dots are results of ZEUS measurements [76]. The solid lines are results
of the linear ˇt. The DL parameterization for the soft Pomeron trajectory [108] is shown
for comparison as a dashed line

Pomeron trajectories are:

αIP (ρ; t) = (1.096± 0.021) + (0.125 ± 0.038)t;
αIP (φ; t) = (1.081 ± 0.010) + (0.158± 0.028)t; (196)

αIP (J/Ψ; t) = (1.200 ± 0.009 ± +0.004
−0.010) + (0.115± 0.018 ± +0.008

−0.015)t

which must be compared with the DL parameterization (50). For all the vector
mesons the determined slope of the vacuum trajectory is signiˇcantly nonzero.
Within the error bars, the value of α′

IP appears to be insensitive to the particular
type of the vector meson. The dependence of the extracted Pomeron trajectory on
Q2 has been studied by ZEUS for the case of J/Ψ production. Figure 66 shows
comparison between the Pomeron trajectory at Q2 = 0 and Q2 = 6.8 GeV2.
The k⊥ factorization predicts a slight increase of the effective intercept with Q2,
see Fig. 46. Even if α′

BFKL in the parameterization (129) were a constant Å the
solutions of the color dipole BFKL equation [248] for the diffraction slope exhibit
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Fig. 65. a) Pomeron trajectory as obtained from J/ψ-photoproduction measurements by
ZEUS [71]. The results of H1 measurements [70] are shown for comparison. Linear
ˇts to the ZEUS and H1 data are shown and compared with the DL parameterization
for the soft Pomeron trajectory [108]. (b) The predictions from the kt-factorization ap-
proach [54, 55] are compared with the ZEUS data (solid line Å oscillator WF; dashed
line Å Coulomb WF)

Fig. 66. A comparison of the Pomeron trajectory extracted form the ZEUS data on real
photoproduction and electroproduction of the J/Ψ [71, 90]. The solid lines are results
of the linear ˇt. The DonnachieÄLandshoff parameterization [108] of the soft Pomeron
trajectory is shown for comparison as a dashed line
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Fig. 67. The kt-factorization model predictions [54, 55] for the Q2 dependence of the
slope of the effective Pomeron trajectory, α′

IP , for the ρ [68, 76] (a) and J/ψ [71, 90]
(b) production. The results for α′

IP obtained from the study of cone shrinkage b(W )
and from the trajectory analysis αIP (t) are shown separately by open and solid dots,
correspondingly

weak κ2 dependence of α′
BFKL, though [25], Å the above described extraction

will yield weakly Q2- and 
avor-dependent values of α′
IP . Such non-Regge

effects in the extracted α′
IP have been evaluated in [55, 299] and demonstrated

in Fig. 67. Because of the same non-Regge effects, the theoretical results for
the effective vacuum trajectory are sensitive to the wave function of the vector
meson. The effect can be seen at the bottom plot of Fig. 65, it is negligible for
all the practical purposes.

8.4. The Gluon-Probed Radius of the Proton and the Pomeron Exchange
Radius. The above-presented experimental data on the diffraction slope for the
J/Ψ production give

BN = b2G ≈ 4−4.5 GeV−2. (197)

It is the nonperturbative parameter which deˇnes the form factor of the proton

probed by color-singlet two-gluon current, G2G(t) ≈ exp
(

1
2
b2Gt

)
. It must be

compared to the electromagnetic form factor Gem(t), the familiar dipole parame-
terization for which, Gem(t) ∝ 1/(Λ2 − t)2 with Λ2 ≈ 0.7 GeV2, amounts to

Bem ≈ 4
Λ2

≈ 5.5−6 GeV−2. (198)

The departure of b2G from Bem must be regarded as substantial one. The photon
only couples to charged partons in the proton, whereas the gluonic form factor is
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sensitive to the distribution of all color charges Å the (anti)quarks and gluons Å
in the proton. Should one interpret the observed inequality b2G < Bem as an
evidence for the gluonic lump in the centre of the proton?

The same problem is present in πp, pp scattering. For instance, Schiz et al.
ˇnd that at 200 GeV the observed t dependence of scattering amplitudes is very
well reproduced by the product of the charge form factors of the beam and target
particles [300]. One would interpret that as an equality of the strong interaction
and electromagnetic radii, b2G ≈ Bem, at this particular energy. However, in
hadronic scattering the shrinkage of the diffraction cone is rapid, and at lower
energies ∼ 10 GeV, still in the applicability domain of the Regge model, both
bπp and bpp are substantially lower than at 200 GeV, and one runs into the same
problem with b2G < Bem.

A very small value of the gluon radius of the proton, as a matter of fact,
b2G 	 Bem, has been found by Braun et al. from the QCD sum rules [302]. The
QCD sum rule results depend on the interpolating ˇeld for the nucleon, though.
Braun et al. take the qqqg operator, whether the radius evaluated for the hybrid
higher Fock component of the proton applies to the whole proton or not remains
an open issue.

Another small parameter which emerges in small-t diffraction is the Pomeron
exchange radius which is probed either in the double proton-dissociative pp scat-
tering or in proton-dissociative vector-meson production at small scanning radius
rS such as γp → J/ΨY of the ρ production in large-Q2 DIS, γ∗p → ρY :

bIP ≈ b(pp → XY ) ∼ b(γp → J/ΨY ) ∼ b(γ∗p → ρY ) ∼ 1 GeV−2. (199)

The latter two reactions have a hard scale on the vector meson side, and one may
link the anomalously small bIP to the small propagation radius of perturbative
gluons Rc ∼ 1 GeV−1. The pp double diffraction reaction probes the soft
Pomeron, why do the soft and hard Pomeron exchanges have equally small
exchange radius is an open issue.

8.5. Beyond the Diffraction Cone: Large |t| as a Hard Scale. 8.5.1. Large-t
Vector Mesons as a MuellerÄNavelet Isolation of the Hard BFKL Exchange. The
basics of the pQCD treatment, and helicity properties, of large-t vector-meson
production were reviewed in Subsecs. 4.10 and 5.4. Here we focus on the t and
W 2 dependence of the large-t cross section.

On the theoretical side the large-|t| production of vector mesons is a very
promising testing ground for ideas on the BFKL Pomeron, because the large
momentum transfer Δ 
ows along the BFKL Pomeron from the target to the
projectile. There is a close analogy to the long sought MuellerÄNavelet isolation
of the hard BFKL exchange by selecting DIS events with one hard jet in the
target fragmentation region and the second hard jet in the photon fragmentation
region [303]. Within the effective parton description of the proton-dissociative
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γp → V Y in terms of the elastic scattering γq → V q′ the recoil quark (antiquark,
gluon) with large transverse momentum Δ gives rise to the target hard jet of
Mueller and Navelet, whereas the large-t vector meson is a substitute for the
MuellerÄNavelet hard jet in the photon fragmentation region. The vector-meson
production is even more advantageous because one has an access to larger rapidity
gaps between the vector meson and the system Y than it would be possible in
the MuellerÄNavelet two-jet process.

The pQCD two-gluon approximation misses the dependence on the rapidity
gap and the total normalization must be adjusted to the experimental cross section.
Otherwise, as we shall see below, it is doing a reasonable job on the t dependence.
The state of the art BFKL based calculations use Lipatov's leading order ˇxed-
αBFKL

S approximation for the unintegrated off-forward gluon density. By the
logics of the calculation one may expect

αBFKL
S ∼ αS(|t|) (200)

and expect the Regge energy dependence (154) with the BFKL trajectory given
by Eq. (59).

8.5.2. Theoretical Expectations for Flavor Dependence at Large t. A crude
reinterpretation of very involved theoretical calculations [46, 53, 261, 304, 305]
starting with the pQCD subprocess γ∗q → V q′ is as follows:

First, the relationship between the cross section of the theoretical partonic
subprocess γq → V q′ and the experimentally observed γp → V Y involves the
effective number of partons in the proton,

Np(t) =

1∫
xmin

dx′(x′)2(αIP (t)−1)×

×

⎛
⎝81

16
g(x′, t) +

∑
f

[q(x′, t) + q̄(x′, |t|)]

⎞
⎠ , (201)

where the Regge dependence on x′ is reabsorbed into the 
ux of equivalent
partons. After Np(t) is factored out, one obtains the cross section of the partonic
subprocess at a ˇxed energy Wγq:

dσ(γq → V q′)
dt

∣∣∣∣
Wγq=Wγp

=
1

Np(t)
dσ(γp → V Y )

dt
. (202)

The cut xmin = 0.01 used by ZEUS collaboration [77] gives Np(t) shown in
Fig. 68. H1 collaboration [79] imposes the cut M2

Y < M2
max = 900 GeV2, which

translates into

xmin =
|t|

M2
max + |t| . (203)
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Evidently, for αIP (t) = 1 the number of partons diverges as xmin → 0 and at
xmin = 0.01 it exhibits rise with |t| because of the scaling violations in the gluon
density, see Fig. 68. In the opposite to that, for the H1 cut (203) the decrease
of Np with |t| is driven by the rise of xmin, see Fig. 68. The sensitivity of Np

to the trajectory αIP (t) is very strong: for ΔIP = αIP (t) − 1 = 0 it is a true
number of partons, is very large and is a steep function of xmin, for ΔIP = 0.5
the integral (201) is reminiscent of the momentum sum rule integral and yields
weakly t-dependent Np ≈ 2.5, see Fig. 68.

Fig. 68. The t dependence of the effective number of partons Np(t) for the ZEUS (a) and
the H1 (b) kinematical cuts for different values of the intercept α = 1 + Δ [306]. Shown
also are the curves for the t-dependent trajectory αIP (t) parameterized by Eq. (209) and
shown in Fig. 71

Second, in view of an approximate SCHC with dominant σT the cross section
must be proportional to m3

V Γ(V → e+e−). That does not exhaust the 
avor
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dependence because the onset of the hard regime does obviously depend on the
mass of the heavy quark. The pQCD two-gluon exchange approximation suggests
that for slow Fermi motion in vector mesons the appropriate hard scale is

Q
2

t ≈ (m2
V + |t|) (204)

([261, 305] and references therein). Although the Fermi motion can change the
coefˇcient in front of m2

V , one must conclude that for the J/Ψ the large t means
|t| 
 m2

J/ψ ∼ 10 GeV2. The numerical studies by Poludniowski et al. [261]
show that even for light mesons the variation of the constituent quark mass from
mρ/4 to mρ/2 to mρ changes the predicted cross section by a factor of ∼ 2
even at |t| as large as 10 GeV2, see Fig. 69. Third, in the pQCD two-gluon

Fig. 69. An example of the sensitivity of predictions for the ρ-production cross section to
the mass m of the quark in the vector meson [261]

approximation the target quark is regarded as pointlike one and the t dependence

is entirely due to the γ → V transition vertex with the hard scale Q
2

t . Then, upon
the x integration in (151),

dσ2G(γq → V q′)
dt

∝ α2
S(Q

2

t )α
2
S(|t|)m3

V Γ(V → e+e−)

(Q
2

t )
4 , (205)

where we indicated the natural choice of the running couplings of gluons to the

target quark, αS(|t|), and to quarks in the vector meson, αS(Q
2

t ). Based on
the experimental data on vector meson decays [102] the prediction for 
avor

dependence of dσdiss
V /Np(t) at identical values of the hard scale Q

2

t is

ρ : ω : φ : J/ψ = 1 : 0.8 · 1
9

: 2.1 · 2
9

: 56 · 8
9
. (206)



DIFFRACTIVE VECTOR-MESON PRODUCTION AT HERA: FROM SOFT TO HARD QCD 129

Recall that in the studies of the Q2 dependence one had to compare the cross
sections at identical (Q2 + m2

V ).
Fourth, in the BFKL approximation the target quark becomes effectively non-

pointlike one and introduces the approximately 
avor-independent factor
∝ 1/|t| to the cross section, whereas the t dependence from the γ → V transition
vertex will be weaker:

dσBFKL(γq → V q′)
dt

∣∣∣∣
Wγq=W

∝

∝ α2
S(Q

2

t )α
2
S(|t|)m3

V Γ(V → e+e−)

|t|(Q2

t )
3

(
W 2

Q
2

t

)2ΔBFKL

. (207)

Consequently, the 
avor dependence (206) at identical values of the hard scale

Q
2

t must be tested for |t|N−1
p (t)(dσdiss

V /dt) rather than dσdiss
V /dt. Notice an

extra suppression ∝ 1/(Q
2

t )2ΔBFKL coming from the Regge parameter. To run
the strong couplings in (207) is to go beyond the accuracy of the scaling BFKL
approximation.

8.5.3. The Experimental Results: Measuring the Trajectory of the Hard BFKL
Pomeron. The W dependence of the proton-dissociative vector-meson production
has been measured by both ZEUS and H1 Collaborations.

The absolute W dependence of the J/ψ production has been measured by
H1 Collab. [79]. The experimental data are shown in Fig. 70, the results of the
Regge ˇts are presented in Table 5. These results from H1 give a solid evidence
for αIP (t) > 1 at large |t|. The found values of ΔIP = αIP (t) − 1 are close to
the leading order BFKL prediction with αBFKL

S ∼ 0.1−0.15, a comparison with
the NLO intercept is unwarranted at the moment. On the other hand, the large-t
extrapolation of the ZEUS results (197) suggests αIP (t) < 1 for |t| ∼> 2 GeV2.
(For the ρ and φ mesons the similar crossover takes place at |t| ∼ 1 GeV2,
one would readily attribute it to the process being still soft.) Now recall that
the shrinkage at small-t is driven by the infrared growth of αS by which the
low-t BFKL evolution becomes sensitive to the infrared region around the ˇ-
nite propagation radius Rc for perturbative gluons. In contrast to that, in the
MuellerÄNavelet large-t regime the large momentum transfer ∼ Δ 
ows through
propagators of all t-channel gluons, the infrared contribution will be suppressed

and gross features of the ˇxed αBFKL
S ∼ αS(t), leading log

1
x

, BFKL evolution

will be recovered. One can fancy the nonlinear |t| dependence of the vacuum
trajectory of the form

α(t) = 1.2 + (0.16 GeV−2)t
Λ6

|t|3 + Λ6
+ 0.16

t4

t4 + Λ8
(208)

shown in Fig. 71 for Λ2 = 2.5 GeV2.
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Fig. 70. The H1 results for the J/Ψ-
photoproduction cross section as a
function of Wγp in three bins of |t|
[79]. The inner error bars correspond
to the statistical error and the outer er-
ror bars are the statistical and system-
atic errors added in quadrature. The
solid lines show the predictions from
the BFKL model [307], the dashed-
dotted curve is the result from the
DGLAP model [308]

Table 5. The value of δ obtained when applying a ˇt to the data of the form σ(W ) ∝ W δ

for each |t| range, together with the corresponding vacuum trajectory α(t) obtained
from α(t) = (δ + 4)/4. The ˇrst uncertainty is statistical and the second is systematic

|t| range, GeV2 〈|t|〉, GeV2 δ α(t)

2−5 3.06 0.77 ± 0.14 ± 0.10 1.193 ± 0.035 ± 0.025
5−10 6.93 1.29 ± 0.23 ± 0.16 1.322 ± 0.057 ± 0.040
10−30 16.5 1.28 ± 0.39 ± 0.36 1.322 ± 0.097 ± 0.090

Fig. 71. A compilation of the ZEUS
and H1 results on the determination of
the Pomeron trajectory αIP (t) (Δ(t) =
αIP (t) − 1) from the J/Ψ photopro-
duction. The solid curve shows a pos-
sible interpolation from the regime of
shrinking diffraction cone at small t to
the hard BFKL regime at large t

The Ansatz (208) for the Pomeron trajectory turns over at |t| ∼ 1−2 GeV2,
which is close to the natural scale R−2

c ∼ 0.5−1 GeV2. The change of the sign of
the derivative α′(t) from small to large t is supported by the ZEUS experimental
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data shown in Figs. 72 and 73. Although the W dependence of the efˇciency
of the photoproduction tagger hinders the direct measurement of the absolute W
dependence and the determination of αIP (t) with the present ZEUS data [77], the
large-t slope of the vacuum exchange trajectory can be measured in the tagger
independent manner,

(dσ(W )/dt)
(dσ(W )/dt)|t=t0

∝ W 4α′(t−t0). (209)

Fig. 72. The dσ/dt ratios: a) for ρ- and b) for φ-production cross sections as a function
of W in ˇve (four) t intervals. The lines represent the result of the ˇt with Eq. (208)

Fig. 73. HERA results on α′ for
the elastic and proton-dissociative
(at |t| > 1.3 GeV2) vector-meson
production [68, 71, 76, 77, 79] com-
pared with the α′(t) from the pa-
rameterization (208). The reference
value for soft hadronic interactions
α′

soft = 0.25 GeV−2 is shown as
a dashed line. The points are put
in the centre of |t| range in which
α′ is measured. The vertical in-
ner bars indicate the statistical un-
certainty and the outer bars represent
the statistical and systematic uncer-
tainties added in quadrature
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The experimental data from ZEUS for this ratio and the found values of the slope
of the vacuum trajectory α′ are shown in Fig. 72. The summary of the low-t and
high-t results for α′ is presented in Fig. 73, where we also show α′(t) for the
parameterization (208).

8.5.4. The Experimental Results: the t Dependence for a Nucleon Target.
The t dependence of the ρ-, φ-, and J/ψ-meson proton-dissociative production
cross section at high t is shown in Figs. 74 and 75. It is much slower than the
exponential one typical of the diffraction cone and is in broad agreement with the
inverse power law as discussed in Subsec. 8.2.

Fig. 74. The ZEUS results for the different cross sections dσγp→V Y /d|t| in the range
80 < W < 120 GeV and x > 0.01 for ρ0 (a), φ (b) and J/ψ (c) [77] production. The
lines are results of the ˇt to the data with the function A(−t)−n. The shaded bands
represent the correlated uncertainties due to the modeling of the hadronic system Y

The quantitative interpretation of the experimental data taken at the mod-
erately large t depends on the choice of the hard scale. A ˇt to the observed
t dependence in the form dσ/d|t| ∝ |t|−nV yielded for the ZEUS data [77]
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the exponents

nρ = 3.21 ± 0.04(stat.) ± 0.15(syst.) (ZEUS, 1.2 < |t| < 10 GeV2); (210)

nφ = 2.7 ± 0.1(stat.) ± 0.2(syst.) (ZEUS, 1.2 < |t| < 6.5 GeV2); (211)

nJ/ψ = 1.7 ± 0.2(stat.) ± 0.3(syst.) (ZEUS, 1.2 < |t| < 6.5 GeV2) (212)

which must be compared to nV ≈ 4 expected from theory. The values of
|t| < 6.5 GeV2 in the ZEUS data on the J/Ψ production are arguably too small
for the onset of the true large-t behaviour. The J/Ψ-production data from H1 [79]
extend to |t| < 30 GeV2, see Fig. 75, and give the exponent

nJ/ψ = 3.00 ± 0.08(stat.) ± 0.05(syst.) (H1, 4.46 < |t| < 30 GeV2). (213)

A comparison of the results (212) and (213) shows an importance of the ˇnite
mass effects in the t dependence, see also Fig. 69. The theoretical calculations
by Poludniowski et al. [261] within the scaling BFKL approximation are shown
in Figs. 75, 76, and clearly show an improvement from the pQCD two-gluon to
BFKL approximation. The impact of the running strong coupling on the pQCD
two-gluon results for the t dependence is substantial, the BFKL calculations are
for the ˇxed coupling. The results for the φ and J/Ψ are based on the parameters
of the model which were adjusted to the ρ photoproduction.

Fig. 75. The differential cross section dσ(γp → V Y )/dt for the J/ψ photoproduction
at large t in the range 80 < W < 120 GeV and x′ > |t|/(900(GeV2) + |t|) from H1
Collaboration [79]. The theoretical results for the pQCD two-gluon exchange with ˇxed
and running αS and scaling BFKL approximations are from Poludniowski et al. [261]
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Fig. 76. The differential cross section dσ(γp → V Y )/dt for the ρ (a) and φ (b) pho-
toproduction at large t in the range 80 < W < 120 GeV and x′ > 0.01 from ZEUS
Collaboration [77]. The theoretical results for the pQCD two-gluon exchange with ˇxed
and running αS and scaling BFKL approximations are from Poludniowski et al. [261]

8.5.5. The Experimental Results: the Flavor and t Dependence for a Partonic
Subprocess γq → q′Y . The most direct test of the BFKL approach to large-t
vector mesons is provided by the reanalysis [309] of the experimental data in
terms of the cross section of partonic subprocess

|t|dσ(γq → V q′)
dt

∣∣∣∣
Wγq=Wγp

=
|t|

Np(t)
dσ(γp → V Y )

dt
∝ 1

(|t| + m2
V )nV

. (214)
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Here the residual t dependence in the r.h.s. probes the true dynamics of hard
γV transition, see Eq. (207). In such a representation the scale-invariant BFKL
approximation predicts the 
avor independent

nV = 3 + 2ΔBFKL ≈ 3.2−3.6. (215)

The major problem with the extraction of the partonic cross section is that the
absolute value and t dependence of the number of effective partons Np(t) ex-
hibits a strong sensitivity of the Pomeron trajectory, see Fig. 68. The resulting
uncertainty propagates into the magnitude and t dependence of the cross sec-
tion of |t|dσ(γq → V q′)/dt in (214) and, consequently, into the determination of
the exponents nV from the ˇt of the partonic cross section to the parameteriza-
tion (214).

For the consistency with direct experimental measurements of the Pomeron
trajectory one must use the parameterization (208) which correctly reproduces all
the features of the H1 and ZEUS data shown in Figs. 71 and 73. The resulting
ˇts to the ZEUS data [77] on the ρ, φ, and J/Ψ production at 〈Wγp〉 = 100 GeV
yield nρ = 2.08±0.06, nφ = 1.83±0.13, nJ/ψ(ZEUS) = 0.78±0.64. In the H1
data [79] on the J/Ψ production the energy 〈Wγp(t)〉 slightly rises with t which
introduces a certain bias into the t dependence and enhances nJ/ψ. Neglecting
that bias and excluding the point at the lowest t yields nJ/ψ(H1) = 2.55 ± 0.2.

The above-cited error bars do not include the theoretical uncertainties of
Np(t) connected to the parameterization of the t dependence of αIP (t). For the
sake of illustration, we cite here the results found if Np(t) is evaluated for ˇxed
αIP (t) = 1 + ΔBFKL ≈ 1.25, although such a 
at αIP (t) is inconsistent with
the H1 and ZEUS data shown in Figs. 71 and 73. In this case the t dependence
of Np(t) will be much weaker for both the ZEUS and H1 cuts, see Fig. 68, it
doesn't change substantially with the further increase of ΔBFKL. The partonic
cross sections extracted from the same data will have much steeper t dependence
and the ˇtted exponents nV will be substantially larger than for the Pomeron
trajectory of Eq. (208): nρ = 2.86 ± 0.05, nφ = 2.66 ± 0.12, nJ/ψ(ZEUS) =
3.88 ± 0.62 ∼ 3 for the ZEUS data and nJ/ψ(H1) 3.86 ± 0.26 for the H1 data.
The statistical error bars in ˇtted values of nV for the two choices of Np(t)
are misleading because the model dependence in the extraction of the exponent
nV of the t dependence is much larger than the statistical error bars. In their
scale-invariant BFKL calculations shown in Fig. 75, Poludniowski et al. [261] use
ˇxed αS = 0.25, which amounts to even larger ΔBFKL = 0.66 and nV ≈ 4.3.
Within those uncertainties, the data on different vector mesons do not exclude
the 
avor independent nV and the observed t dependence does not con
ict the
BFKL expectation (215).

A very large αIP (t) = 1 + ΔBFKL = 1.66 used in the theoretical calcula-
tions [261] con
icts the experimental data on the Pomeron trajectory shown in
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Figs. 71 and 73. Furthermore, the effective number of partons Np(t) evaluated
with ΔBFKL = 0.66 is by the factor of ∼ (5−10) smaller than for the experi-
mentally suggested trajectory shown in Fig. 71. This uncertainty is not discussed
in [261] and casts a shadow on the agreement between the theory and exper-
iment in the magnitude of the cross section. Before drawing ˇrm conclusions
on the status of the BFKL approach one needs much better understanding of the

Fig. 77. a) The ratio of the φ to ρ0 cross sections as a function of −t or Q2. The φ/ρ0

results as a function of −t for proton-dissociative photoproduction from this analysis are
shown with solid circles; and those from the ZEUS (1995) [76] measurement, with the
solid squares. The shaded bands represent the size of the correlated uncertainties due
to the modeling of the dissociative system, Y . Open triangles at Q2 ≈ 0 GeV2 [278],
Q2 = 7 GeV2 [86], and Q2 = 12.3 GeV2 [280] represent the φ/ρ0 ratio of the elastic
cross sections as a function of Q2 from ZEUS, while the open squares represent those from
H1 [87]. b) The ratio of the J/ψ to ρ0 cross sections as a function of −t or Q2. The same
convention for symbols as for φ/ρ0 ratio is used. Open triangles at Q2 ≈ 0 GeV2 [282]
and Q2 = 3.5, 13 GeV2 [81] represent the ZEUS measurements, while the open squares
represent those of H1 [16, 89]. The dashed lines correspond to the SU(4) predictions,
while the dotted and dashed-dotted correspond to the pQCD values given by Eqs. (206)
and (178), respectively
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Pomeron trajectory and incorporation of the realistic Pomeron trajectory into the
theoretical formalism.

The same model dependence of extraction of the partonic observable
|t|dσ(γq → V q′)/dt = |t|(dσ(γp → V Y )/dt)/Np(t) affects the discussion of
the 
avor dependence of large-t cross sections. First, the point that neither Q2

nor |t| are the correct hard scales to compare different vector mesons is illus-
trated by Fig. 77. Whereas for light φ meson the t dependence, as well as the
Q2 dependence of the ratio σφ/σρ is weak, the ratio σJ/ψ/σρ changes by more
than two orders of magnitude. The apparent approach to the SU(4) ratios at the
largest measured value |t| is misleading Å no true asymptotics can be reached at
|t| < m2

J/ψ.

Fig. 78. The t dependence of the large-t vector-meson production measured by ZEUS [77]
and H1 [79] presented as a differential cross section of the partonic subprocess
|t|dσ(γq → V q′)/dt = |t|(dσ(γp → V Y )/dt)/Np(t). The straight lines are results of
the ˇt by Eq. (214), the lowest-|t| data point of H1 has been excluded from the ˇt. a) The
results for the number of effective partons Np(t) evaluated for the Pomeron trajectory
αIP (t) of Eq. (208) shown in Fig. 71; b) is for Np(t) evaluated for the ˇxed ΔIP = 0.25

Strong departure from the SU(4) ratios is evident from Fig. 78, where we
show the ZEUS and H1 data in the form of the partonic subprocess observable
|t|dσ(γq → V q′)/dt = |t|(dσ(γp → V Y )/dt)/Np(t) plotted as a function of
(|t|+ m2

V ). Although the experimental data on the ρ, φ, and J/Ψ vector mesons
don't have an overlap in (|t| + m2

V ), it seems safe to extrapolate the ZEUS data
on the ρ and φ production to (|t| + m2

J/ψ) = 12.5 GeV2 typical of the ZEUS

data on the J/ψ production. The so-extrapolated ρ and φ cross sections have the
factor of ∼ 2 uncertainty.
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We recite from (206) the 
avor dependence of (1/Np(t))(dσdiss
V /dt) at iden-

tical (Q2 + m2
V ) based on the vector meson decay properties:

ρ : ω : φ : J/ψ = 1 : 0.8 × 1
9

: 2.1 × 2
9

: 56 × 8
9
. (216)

If the number of effective partons Np(t) is evaluated with the Pomeron trajectory
(208) which correctly reproduces the H1 and ZEUS data shown in Figs. 71 and 73,
then the extrapolation of the ρ and φ cross sections to (|t|+ m2

J/ψ) = 12.5 GeV2

gives the cross-section ratios (within the factor ∼ 2 extrapolation uncertainty)

ρ : φ : J/ψ = 1 :
1
2
× 2.1 × 2

9
:

1
15

× 56 × 8
9
. (217)

If Np(t) is evaluated for ΔBFKL = 0.25 = const, then the same extrapolation
gives slightly different cross-section ratios

ρ : φ : J/ψ ≈ 1 :
2
3
× 2.1 × 2

9
:

1
7
× 56 × 8

9
. (218)

For both the choices of the Np(t) the principal effect is an enhancement of
the light vector-meson production with respect to the J/Ψ production. Such an
enhancement due to the chiral-odd γqq̄ transitions [242] is present in calculations
of Poludniowski et al. [261].

9. SUMMARY AND CONCLUSIONS

Slightly more than a decade ago, quite unexpectedly, HERA has become a
unique facility for exploring the diffractive physics in an entirely new domain of
many different hard scales. Compared to the ˇxed target data, the centre-of-mass
energy W , the explored regions of Q2 and t were extended by one order of mag-
nitude. By now the principal features of the 
avor-, t-, Q2-, and W 2-dependences
of the observed cross sections, polarization properties of produced vector mesons
are well established. The high statistics of the data from HERA allowed for the
ˇrst observation of SCHNC in high-energy diffraction. Regarding the experimen-
tal situation, there is an overall consistency between the experimental data from
H1 and ZEUS Collaborations and the early data from ˇxed target experiments.

What did change in our understanding of high-energy diffractive scattering
after that decade of amassing high-precision experimental data by H1 and ZEUS
Collaborations at HERA? What was the impact of these data on theoretical ideas
on high-energy vacuum exchange in the t channel Å the Pomeron? How strongly
the post-HERA pQCD Pomeron differs from the pre-HERA Pomeron approxi-
mated by an isolated Regge pole with an intercept αsoft ≈ 1.1? Is our theoretical
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understanding of diffraction sufˇcient to get all the information we can, and
would like to, from the available experimental data?

The scaling violation in inclusive DIS is a classical short-distance phenom-
enon dominated by scales ∼ 1/Q [124Ä126]. Thanks to the 1970's groundbreak-
ing works by Fadin, Kuraev, Lipatov, and Balitsky [35Ä37] the theory was well
prepared to the observed departure from the DGLAP evolution and the BFKL
Pomeron reinterpretation of a steep small-x rise of structure functions discovered
at HERA.

The principal virtue of diffractive vector-meson production in DIS at HERA
is that it is a short-distance dominated process. At small to moderate t within
the diffraction cone, the short-distance property is quantiˇed by a scanning radius
rS [17Ä20], at large t the short scale is set by 1/

√
|t|. The early discussion of

importance of large-t photoproduction of vector mesons as a testing ground of
ideas on the pQCD Pomeron goes back to mid-80's work by Ginzburg, Panˇl,
and Serbo [30]. The idea of uniˇed color dipole description of inclusive DIS
and diffractive vector mesons, the concept of the scanning radius [17Ä20] and

the importance of Q
2

=
1
4
(Q2 + m2

V ) as a hard scale at small t [21, 22], and

the possibility of vector-meson production as a testing ground for models of
gluon density in the proton emerged in early 90's in works by Kopeliovich,
Nemchik, Zakharov et al. [20], Ryskin [22] and Brodsky et al. [23]. Ever since
then the collective effort by many groups has led to a fairly reˇned treatment
of vector-meson production at small to large |t| and to an understanding of an

accuracy and limitations of the leading log
1
x

pQCD approaches. The wealth of

the experimental data collected by H1 and ZEUS conˇrmed all the gross features
of the pQCD based description of the process.

An approximate (Q2 + m2
V ) scaling of all observables Å total cross sec-

tion [21], the diffraction slope [25], the exponent of the energy dependence [21] Å
alias the Pomeron intercept Å has been the recurrent theme in our discussion of
the experimental data, its experimental conˇrmation at HERA must be regarded
as a major discovery and an undoubted success of the pQCD approaches. The
pQCD dictated relationship between the energy dependence of vector-meson pro-
duction and inclusive DIS encoded in terms of the energy dependence of the
gluon density [20, 22, 23] has been conˇrmed experimentally beyond reasonable
doubt and is still another major discovery at HERA.

Success with theoretical predictions of the absolute cross sections is the
modest one. The (Q2 +m2

V ) as a hard scale for small-t diffractive vector mesons
is entirely analogous to Q2 as a hard scale in inclusive DIS. The pQCD only
predicts the dependence on those hard scales starting from certain soft input.
Within the color-dipole and k⊥-factorization approaches this input is universal
for vector-meson production and inclusive DIS, still it does not come from the
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ˇrst principles of pQCD. Only one leg of the Pomeron, which couples to the γ∗V
transition, rests on the hard pQCD ground, the second leg which couples to the
proton is always in the soft regime. Once the k⊥ factorization and other related
pQCD model predictions are normalized to the J/Ψ-photoproduction data, the
description of the observed Q2- and energy dependence of σJ/Ψ(Q2) is close to
a perfect one, which must be regarded as a real success of pQCD in the domain
of hard diffractive scattering.

Nonetheless, a factor of ∼ 2 sensitivity of pQCD model predictions to the
wave function of vector mesons is a well-established limitation of the leading

order log
1
x

formalism and cannot be eliminated at the moment. The ratio of

longitudinal and transverse cross sections, RV = σL/σT , is an example of an
observable which exhibits especially strong sensitivity to the wave function of
light vector mesons [253]. A very good demonstration of the sensitivity to the
wave function is a node effect in the Ψ(2S) production [17Ä19] which suppresses
the cross section, makes it grow with energy faster than the J/Ψ production and
leads to counterintuitive inequality of diffraction slopes for the Ψ(2S) and J/Ψ
production [26]. The further tests of pQCD predictions for diffractive vector-
meson production call upon the development of NLO k⊥-factorization formalism.
This includes the theoretical understanding of the effect of higher Fock states in
vector mesons and the derivation of the k⊥-factorization impact factors for the

γ∗V transition to NLO in log
1
x

.

The works by D. Ivanov and Kirschner [212] and Kuraev et al. [170], in con-
junction with Zakharov's [211] early pQCD motivated discussion of helicity 
ip
in hadronic scattering, have led to understanding of SCHNC as a generic property
of high-energy scattering the origin of which does not require an applicability
of pQCD. The emerging phenomenology of spin properties of diffractive vector
mesons has been very successful at small t, the SCHNC in high-energy small-t
diffractive scattering is sill another major discovery at HERA. On the theoretical
side, the chapter has not been closed Å further studies of the impact of chiral-odd
qq̄ components in the photon suggested by D. Ivanov et al. [242] are in order.
They were found to be crucial [261] for theoretical explanation of an approximate
SCHC in the large-t photoproduction data. Here the BFKL based phenomenology
of the absolute normalization and t dependence is in a reasonably good shape, a

y in the ointment is a sign discrepancy in the helicity-
ip amplitude found by
Poludniowski et al. [261].

What new did we learn about the hard Pomeron trajectory? In inclusive DIS
the pQCD Pomeron can only be probed at t = 0 and one cannot tell a difference
between the ˇxed branching point and moving pole options for the Pomeron.
In diffractive vector-meson production the full-t dependence of the Pomeron
exchange can be probed. The experimental observation by ZEUS Collab. of
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Gribov's shrinkage of the diffraction cone in J/Ψ production is an important
evidence for the hard Pomeron being a moving j-plane singularity Å this is
deˇnitely the ˇrst important new ˇnding on the hard Pomeron trajectory beyond
the reach of inclusive DIS. One option is that the pQCD Pomeron is a sequence
of isolated moving Regge poles as advocated in the pioneering FadinÄKuraevÄ
Lipatov work on the BFKL Pomeron [35]. Unfortunately, the accuracy of the
combined set of the proton structure function and vector-meson production data
does not yet allow one to resolve the ˇne structure of those poles. The theoretical
discussion has been conˇned to the evaluation of the slope of trajectories of
these poles [25], the large-t behavior of trajectories remains an open issue. The
color dipole approach predicts an approximately Q2-independent shrinkage of the
diffraction cone, there is a weak evidence for that from ZEUS measurements, but
the experimental situation is not conclusive yet.

Large t as a hard scale brings in new opportunities. In this case the pQCD
Pomeron is expected to be in hard regime all the way through from the target
to γ∗V transition. The experimental information on large-t vector mesons is
very exciting. The H1 data on large-t J/Ψ mesons gave a very interesting
evidence, supported also by ZEUS data, for the antishrinkage, α′

IP < 0, and
emergence of the hard BFKL Pomeron exchange with intercept αIP ∼ 1.3 at
|t| ∼> 3 GeV2. This is the second important new ˇnding on the hard Pomeron
trajectory beyond the reach of inclusive DIS. Such a transition from the shrinkage
to the antishrinkage is plausible, but has not yet been explored theoretically. Here
important issues for future theoretical studies are the sensitivity of the turn over
from shrinkage to antishrinkage to the infrared regularization of pQCD and its
(Q2 + m2

V ) dependence. To this end, an experimental study of the interplay of
two hard scales Å (Q2 + m2

V ) and |t| Å would be most interesting. The 
avour
and t dependence of large-t cross sections does not con
ict the estimates based
on the leading order BFKL approach [261], but higher precision data are needed
for more deˇnitive conclusions.

To summarize, the programme of diffractive vector-meson studies at HERA
was exceptionally fruitful one. The matching theoretical development followed,
still more work is needed: the pressing issues include the t dependence of the
Pomeron trajectory from small to large t, understaning the role of higher Fock
states in vector mesons and derivation of NLO k⊥ factorization, the further studies
of helicity properties of large-t vector mesons. On the experimental side, new
results on vector mesons are expected from several more years of run of HERA.
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Note Added. After the main body of this review has been completed,
D.Yu. Ivanov and his collaborators reported a long waited NLO analysis of γ∗V
production [310Ä312]. It is a very involved calculation and not yet a full 
edged
NLO k⊥-factorization analysis because the vector mesons have still been treated in
the collinear approximation. The major expectation was that the NLO calculations
would ˇx more reliably the magnitude of the production amplitude, speciˇcally,
the NLO amplitudes must have a stability window as a function of the so-called
factorization scale. To this end, the NLO results exhibit a discouraging instability
of the pQCD expansion. First, the NLO corrections are twice as large in the
magnitude, and of the opposite sign, than the LO amplitude of photoproduction
of the J/Ψ [311]. Second, the NLO amplitude for the electroproduction of the
ρ lacks an expected stability window vs. the factorization scale [312]. A further
analysis of NLO correction, for instance, studies of the sensitivity of the stability
window to models for skewed parton densities, and an independent rederivation
are called upon to clarify this important issue.
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