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WAVE PACKETS IN QUANTUM THEORY OF
COLLISIONS
M. I. Shirokov∗

Joint Institute for Nuclear Research, Dubna

Two methodological troubles of the quantum theory of collisions are considered. The ˇrst is the
undesirable interference of the incident and scattered waves in the stationary approach to scattering.
The second concerns the nonstationary approach to the theory of collisions of the type a+ b → c+d.
In order to calculate the cross section one uses the matrix element 〈cd|S|ab〉 of the S matrix.
The element is proportional to δ function expressing the energy conservation. The corresponding
probability |〈cd|S|ab〉|2 contains δ2 which is mathematically senseless. The known regular way to
overcome the difˇculty seems to be unsatisfactory. In this paper, both the troubles are resolved using
wave packets of incident particles.

� ¸¸³ É·¨¢ ÕÉ¸Ö ¤¢¥ ³¥Éμ¤μ²μ£¨Î¥¸±¨¥ É·Ê¤´μ¸É¨ ±¢ ´Éμ¢μ° É¥μ·¨¨ ¸Éμ²±´μ¢¥´¨°. �¥·¢ Ö
± ¸ ¥É¸Ö É· ±Éμ¢±¨ ¨´É¥·Ë¥·¥´Í¨¨ ¶ ¤ ÕÐ¥° ¨ · ¸¸¥Ö´´μ° ¢μ²´ ¢ ¸É Í¨μ´ ·´μ³ ¶μ¤Ìμ¤¥ ±
· ¸¸¥Ö´¨Õ. ‚Éμ· Ö ¢μ§´¨± ¥É ¢ ´¥¸É Í¨μ´ ·´μ³ ¶μ¤Ìμ¤¥ ± É¥μ·¨¨ ¸Éμ²±´μ¢¥´¨° É¨¶  a + b →
c + d. ‚ ÔÉμ³ ¶μ¤Ìμ¤¥ ¤²Ö ¢ÒÎ¨¸²¥´¨Ö ¶μ¶¥·¥Î´μ£μ ¸¥Î¥´¨Ö ¨¸¶μ²Ó§Ê¥É¸Ö S-³ É·¨Î´Ò° Ô²¥³¥´É
〈cd|S|ab〉. �´ ¶·μ¶μ·Í¨μ´ ²¥´ δ-ËÊ´±Í¨¨, ¢Ò· ¦ ÕÐ¥° ¸μÌ· ´¥´¨¥ Ô´¥·£¨¨. ‘μμÉ¢¥É¸É¢ÊÕÐ Ö
¢¥·μÖÉ´μ¸ÉÓ |〈cd|S|ab〉|2 ¸μ¤¥·¦¨É δ2, ÎÉμ ³ É¥³ É¨Î¥¸±¨ ¡¥¸¸³Ò¸²¥´´μ. ˆ§¢¥¸É´ Ö Ë¨§¨Î¥¸± Ö
É· ±Éμ¢±  δ2 ¶·¥¤¸É ¢²Ö¥É¸Ö ´¥Ê¤μ¢²¥É¢μ·¨É¥²Ó´μ°. �¡¥ É·Ê¤´μ¸É¨ ¶·¥μ¤μ²¥¢ ÕÉ¸Ö ¢ ´ ¸ÉμÖÐ¥°
· ¡μÉ¥ ¶μ¸·¥¤¸É¢μ³ ¨¸¶μ²Ó§μ¢ ´¨Ö ¢μ²´μ¢ÒÌ ¶ ±¥Éμ¢ ¶ ¤ ÕÐ¨Ì Î ¸É¨Í.

PACS: 03.65 Nk

INTRODUCTION

An approach to the theory of scattering is known which may be called
stationary. The scattering is considered as a stationary process: there is a steady
	ux of particles incident on a potential V (the target). Scattered particles are
also described by a steady 	ux. The state of the system is described by a vector
which is constant in time. The vector is an eigenstate of the total Hamiltonian
H = H0 + V which belongs to the continuous spectrum of H : Hψk = Ekψk.
The eigenstate is known to be the superposition of the incident wave Ik(x)
and scattered wave Sk(x), their asymptotic behavior being

Ψk(x) = Ik(x) + Sk(x), Ik(x) = eikx, Sk(x) = A(ϑ, ϕ) eikr/r. (1)
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Here k =
√

2mEk and x = (r, ϑ, ϕ), ϑ being the angle between k and x. The
axis z is chosen to be parallel to the momentum k of the incident particle (x
being its position).

The stationary approach uses the probability 	ux or its density

j(x) =
i

2m
[∇ψ∗(x)ψ(x) − ψ∗(x)∇ψ(x)] (2)

instead of the usual probability |ψ(x)|2, e.g., see [3, Ch. IV, § 29]; [5, Ch. II, § 15,
Ch.XI, § 95]; [10, Ch. II.7]. The probability 	ux generated by Ψk = Ik + Sk

(see Eq. (1)) is

jk =
i

2m
(∇I∗k · Ik − c.c.) +

i

2m
(∇S∗

k · Sk − c.c.)+

+
i

2m
(∇S∗

k · Ik − c.c.) +
i

2m
(∇I∗k · Sk − c.c.) . (3)

The cross section is determined by the ratio of the scattered 	ux (the second
term in Eq. (3)) to the incident one (the ˇrst term in Eq. (3)), see Sec. 1 below.
Besides these 	uxes, the total 	ux jk contains the interference terms (the third
and fourth in Eq. (3)). Their physical sense is unclear. It is unknown what
contribution the interference terms may bring in the cross section. One may
conjecture that they must vanish if one replaces the plane incident wave Ik by an
incident wave packet, see [9, Ch.X.5]; [10, Ch.V, end of § 18]. This conjecture
is conˇrmed in Sec. 2. The wave packet is used which tends to the plane wave
Ik = exp (ikx) when packet dimension increases. Other ways of the packet
introduction are possible. For example, Messiah [9] used a classical ensemble of
small packets which have different impact parameters. Finally, averaging over
the ensemble is carried out, see [9, Ch.X].

The stationary theory of scattering is nonrelativistic and is inapplicable,
e. g., to the photon scattering (photon position operator and density of 	ux have no
satisfactory deˇnitions). The nonstationary approach is applicable to any process
of the type a+b → c+d. It is based on the solution of the Schroedinger equation
for the operator U(t, t0) of evolution in time. Initially, at the moment t0, the
system is in a state Ψ(t0) = |ab〉. At the moment t, the system state is described
by the vector Ψ(t) = U(t, t0)Ψ(t0). The probability to ˇnd a ˇnal state |cd〉 at
the moment t is equal to |〈cd|U(t, t0)|ab〉|2. The limit t0 → −∞, t → +∞,
i. e., S matrix, is usually considered.

The approach has the following trouble. The matrix element 〈cd|S|ab〉 is
known to be proportional to the δ function which expresses the total energy
conservation: the total initial energy Ea +Eb is equal to the ˇnal energy Ec +Ed

〈cd|S|ab〉 ∼ δ(E), E = (Ec + Ed) − (Ea + Eb). (4)
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The probability |〈cd|S|ab〉|2 is proportional to the square δ2 of this δ function.
This quantity does not exist mathematically (see [1]). Physicists gave to δ2 an
interpretation, see the end of Sec. 3, but it cannot be recognized as satisfactory.
Another resolution of this trouble is known, e. g., see [7, Ch. I4]; [10, Ch.VIII].
It is presented in Sec. 3 using the packet description of the initial state |ab〉.

So a packet description of the incident particle allows us to resolve two
troubles of the collision theory stated above.

1. DEFINITIONS OF CROSS SECTION

The density of the incident 	ux F is deˇned as the number of incident
particles crossing per unit time a unit surface placed perpendicular to the direction
of propagation. Let ρ be the number of particles per unit volume and v be the
velocity of the incident particles. Then F = ρv. If there is one particle in 1 cm3,
then F = v.

Let us assume that the coordinate origin is in the center of a target. Let jr

be the density of the probability 	ux of the scattered particles. The probability
(or the number of particles) going through the area element rdϕr sin ϑdϑ ≡ r2dΩ
during one unit of time is equal to jrr

2dΩ. This is the probability ΔN to detect
the particle in the solid angle ΔΩ during one unit of time (e. g., one second)

ΔN = jrr
2ΔΩ. (5)

The quantity ΔN may be related to the probability ΔW (t) of the particle detection
in the solid angle at the moment t. One may assume

ΔN = ΔW (t + 1 s) − ΔW (t) ∼=
d

dt
ΔW (t)1 s. (6)

Usually another relation is assumed

ΔN =
W (t)

t
. (7)

Relations (6) and (7) coincide if time derivative dΔW (t)/dt is constant. One has
the relation

jrr
2ΔΩ = ΔN =

ΔW (t)
t

. (8)

Therefore, the deˇnition

Δσ =
jr

F
r2dΩ (9)

of the cross section (see [3, Ch.XIII]; [5, Ch.XI, § 95]) is equivalent to

Δσ =
ΔN

F
, (10)

cf. [9, Ch. 10].
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2. PACKETS IN STATIONARY APPROACH

There is the conjecture that the description of an incident particle by a packet
(instead of the plane wave) will turn into zero interference terms in the total
	ux (the third and fourth terms in Eq. (3)). Let us give a conˇrmation of this
conjecture.

The introduction of a packet implies that scattering is no longer a stationary
process. Even if the scattering potential is absent, the (free) packet shifts and
spreads.

One possible setting of the problem of a packet scattering will be considered
here (for another approach, see, e. g., [9, Ch.X]). The deˇnition of the cross
section as the ratio of 	uxes (see Eq. (9)) will be retained though 	uxes will
not be stationary. The natural requirement is assumed (and ensured): in the
limit when the packet turns into a plane wave the result should go to the usual
stationary one.

Consider a superposition

Ψ(x) =
∫

d3kĨkΨk(x) (11)

of the H eigenfunctions HΨk = EkΨk, for Ĩk see below. The superposition is
not H eigenfunction, but the vector

Ψ(x, t) =
∫

d3k e−iEkt Ψk(x)Ik (12)

is a solution of the equation i∂Ψ(t)/∂t = HΨ(t).
The vector Ψ(x, t) consists of two parts

Ψ(x, t) = I(x, t) + S(x, t), (13)

I(x, t) =
∫

d3k e−iEktĨk eikx, (14)

S(x, t) =
∫

d3k e−iEktĨkA(ϑ, ϕ)eikr/r. (15)

The vector I(x, t) is the known description of the moving free packet (it is
assumed that the spectrum of H = H0 + V is the same as the H0 spectrum). In
order to calculate S(x, t) and the cross section, the following program is accepted.

(a) The initial wave packet I(x, 0) will be chosen.
(b) This determines the coefˇcients Ĩk in Eqs. (11), (15) and, therefore,

S(x, t) may be calculated.
(c) Absence of the interference terms will be veriˇed.
(d) Incident and scattering 	uxes may then be found as well as the cross

section.
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(a) Choice of I(x, 0).
Consider the auxiliary wave function f(x) which is concentrated in a ball of

the radius RI (VI being the ball volume). The ball will be named ®support of
f(x)¯.

Note. In other words ®support¯ is deˇned here as the volume outside which
the function practically vanishes (or is unobservably small). In mathematics a
different deˇnition is accepted: the support is the volume outside which the
function is exactly zero.

If f(x) is spherically symmetric, then the average position

∫
d3xxf∗(x)f(x)

is zero. Fourier transform of f(x) is also spherically symmetric and, therefore, the
average momentum also equals zero. The average position of the shifted function
f(x − a) ≡ Ia(x) is equal to a, average momentum being zero as before. One
may verify that the function eipxf(x) ≡ Ip(x) has average momentum p. At
last, consider the shifted function Ip(x), i.e., the function

Ip(x − a) = eip(x−a)f(x− a) ≡ Ipa(x). (16)

Its average position is a and average momentum is p (the factor exp (−ipa) may
be omitted).

Let us assume

f(x) =
{

0, outside the ball VI ,
1, inside VI .

(17)

This means that Ip(x) = f(x) exp (ipx) is equal to exp (ipx) inside VI . When
RI → ∞, the vector Ip(x) tends to the plane wave whose wave function is equal

to exp (ipx) everywhere. We have

∫
d3x|Ip(x)|2 = VI : there is one particle in

the unit volume.
The initial (at the moment t = 0) wave function of the incident packet is

chosen to be equal to
Ip(x) = eipxf(x). (18)

Here p is the packet average momentum. At the moment t = 0 the packet centre a
is in the point 0 on the z axis, i. e., in the centre of potential V .

(b) Choosing Ip(x) one may calculate S(x, t) (see (15)) using the Fourier
transform f̃(p−k) of Ip(x). If the packet Ip(x) has a macroscopical dimension
(e. g., 1 cm), then f̃(p−k) has a sharp maximum at k ∼= p. Therefore, Ek

∼= Ep

and |k| ∼= |p|. Let us calculate S(x, t) approximately using the expansions of Ek

and |k| in Taylor series about the point p:

Ek
∼= Ep + (k − p)v, |k| ∼= |p| + (k − p)u, (19)

v =
p
m

, u =
p
p

, v = uv. (20)



266 SHIROKOV M. I.

The scattering amplitude A(ϑk, ϕk) is simply replaced by A(ϑp, ϕp), ϑk and ϑp

being the angles between x and k, p, respectively, cf. Eq. (1). One obtains

S(x, t) = A(ϑp, ϕp)
1
r

exp i(pr − Ept)
∫

d3k ei(k−p)(ur−vt)f̃(p − k). (21)

After the change k′ = p − k of variables in

∫
d3k . . . one gets

S(x, t) = A
1
r

exp i(pr − Ept)
∫

d3k′f̃(k′) ei(k′b),

b ≡ −u(r − vt).

Here

∫
d3k′f̃(k′) exp (ik′b) is Fourier representation of f(b). Therefore

S(x, t) = A
1
r

exp i(pr − Ept)f(−u(r − vt)). (22)

Remind that f(b) = 1 when |b| � RI , i.e., when

| − u(r − vt)| � RI . (23)

Here |u| = 1 and f is spherically symmetric. Therefore Eq. (23) may be re-
written as

|r − vt| � RI . (24)

Equation (24) determines the movement of the support of the scattered wave
S(x, t). Let us compare it with the movement of the initial incident packet
Ip(x) = f(x) exp ipx (see Eq. (18)). The latter is the shift x → x−vt along the
z axis if the spreading is neglected (e.g., see [12, Ch. 10.4]):

Ip(x, t) = Ip(x − vt, 0) = f(x− vt) exp ip(x − vt), v =
p
m

. (25)

This means the shift of the packet support, i.e., the ball of the radius RI (the phase
factor exp ipvt is inessential). The shifted ball is described by the inequality

|x − vt| � RI . (26)

The shifted ball is not a spherically symmetric region (excluding the case when
the packet centre coincides with the coordinate origin, i.e., potential centre).
Meanwhile, inequality (24) describes a spherically symmetric region at all times:
(24) does not contain angles ϑ, ϕ of the vector x but contains only |x| = r. At
ˇxed t, the support region is the spherical layer between the spheres of the radii
vt−RI and vt + RI . The thickness of the layer is equal to 2RI . As t increases,
this layer ®in	ates¯ preserving its thickness.
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(c) We obtain that the scattered packet is in the spherical layer described
above, while the support of the incident packet moves along the z axis. The
moving-packets' supports do not practically intersect if r 
 RI . Therefore,
S(x, t)Ip(x, t) = 0: S is zero, where I is nonzero and vice versa. So the
interference of the incident and scattered waves is absent (with the exception of
small values of the angle ϑ).

(d) The used expressions (25) and (22) for incident and scattered wave packets
differ from the corresponding Ik and Sk waves in Eq. (1) only in one respect:
the former have an additional factor f which is equal to unity inside the moving
packets and vanishes outside them. Therefore, the incident and scattered 	uxes
inside packets are the same as in the stationary case. However, these 	uxes
are nonstationary: their supports move in space. One may retain the previous
deˇnition (9) for the cross section having in mind that the 	uxes F and jr in (9)
are intrapacket ones.

Note once more that the used packet's description of scattering turns into the
ordinary stationary one when RI → ∞ (the condition r 
 RI being implied).

3. PACKETS IN NONSTATIONARY APPROACH

The nonstationary approach to the collision theory uses the evolution operator
U(t, t0) (interaction or Dirac picture is in mind). For the reaction a + b → c + d
one must calculate the matrix element of the type 〈cd|U(t, t0)|ab〉. Let us assume
that the initial state |i〉 = |ab〉 is the product of packets |a〉, |b〉 (see Sec. 2), for
example,

|a〉 =
∫

d3k|k〉a(k).

The packets have ˇnite supports in the coordinate space. The supports are sup-
posed to be of macroscopically large dimensions and, therefore, packet spreading
may be neglected, see [6, Ch. 3.1]; [12, Ch. 10.4].

The particles do not interact if their supports do not intersect. So the inter-
action lasts during a ˇnite interval T of time. In the following I let t0 = −T/2,
t = T/2.

Let us consider the matrix element of the expansion of U(T/2,−T/2) in the
perturbation series

Ufi(T ) ≡ 〈f |U
(

T

2
− T

2

)
|i〉 = 〈f |i〉 + i

T/2∫
−T/2

dt ei(Ef−Ei)t〈f |Hs
int|i〉+

+ i2
∑
m

T/2∫
−T/2

dt1 ei(Ef−Em)t1

t1∫
−T/2

dt2 ei(Em−Ei)t2〈f |Hs
int|m〉〈m|Hs

int|i〉, (27)
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cf. [8, Chs. 1.2 and 1.3]; [11, Ch. 11.6]. Here Ef denotes the ˇnal total energy
Ef ≡ Ec +Ed. Analogously, Ei ≡ Ea +Eb (Ea and Eb being average energies);
Em is the total energy of the intermediate state |m〉; Hs

int is the interaction
Hamiltonian in the Schroedinger picture. One may suppose that 〈f |i〉 = 0.

The second term in Eq. (27) is proportional to

2πδT (E) ≡
T/2∫

−T/2

dt eiEt =
2 sinET/2

E
, E ≡ Ef − Ei. (28)

The third term contains the integral over t2

t1∫
−T/2

dt2 ei(Em−Ei)t2 =
ei(Em−Ei)t1 − ei(Em−Ei)(−T/2)

i(Em − Ei)
. (29)

The contribution to (29) originating from the lower limit −T/2 tends to zero as
T → ∞ due to fast oscillations of exp i(Em − Ei)T/2. For a strict proof of
this statement one must use the packet description of |i〉 and RiemannÄLebesque
lemma, see, e.g., [11, Ch. 11 after Eq. (11.165)]. Neglecting this contribution
one obtains that the remaining integral over t1 is equal to 2πδT (E), Eq. (28).
Analogously, one may argue that in all orders of the expansion (27) Ufi(T ) is
proportional to δT (Ef − Ei)

Ufi(T ) ∼= δT (Ef − Ei)〈f |R|i〉, (30)

where 〈f |R|i〉 ceases to depend upon T as T → ∞. Note that δT (E) → δ(E) as
T → ∞. In this limit Eq. (27) turns into

Sfi = 2πδ(Ef − Ei)〈f |R|i〉, (31)

where S is the S matrix. One gets that the probability |〈f |U(∞,−∞)|i〉|2 is
proportional to δ2. The square of the δ function has no mathematical sense,
see [11, part III, Sec. 12.5].

However, for the cross section we need probability in unit of time, see Sec. 1.
It may be deˇned as |Ufi(T )|2/T . It follows from Eqs. (30) and (28) that

|Ufi(T )|2
T

∼ 4 sin2 ET/2
TE2

. (32)

The r.h.s. of Eq. (32) tends to 2πδ(E) as T → ∞, not to δ2(E), see [7, Ch. 2,
Eq. (8.19)]. So we obtain the following value for the probability in unit time:

lim
T→∞

|Ufi(T )|2
T

= 2πδ(Ef − Ei)|〈f |R|i〉|2. (33)
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The probability in unit time may be deˇned in a different way, namely as
d|Ufi(T )|2/dT . We have

d

dT
|Ufi(T )|2 ∼ d

dT

4 sin2 ET/2
E2

=
2
E

sin ET. (34)

In the limit T → ∞ one gets in the r.h.s. of Eq. (33) the δ(E) function as above,
cf. [11, Ch. 11, Eq. (11.91)].

The usual way to calculate the cross section is to start with the S-matrix
element 〈f |U(∞,−∞)|i〉. The reason is that it is relativistic invariant, allows
renormalization, etc., unlike 〈f |U(t, t0)|i〉. But the probability |〈f |S|i〉|2 is pro-
portional to δ2(Ef −Ei) and this is senseless. The trouble is usually overcome in
the following manner (see, e.g., [8, Ch. 1.2]; [11, Ch. I4.1]; [2, Ch. 5, § 37]; [4]).
In the product δ(E)δ(E) one of the δ functions is replaced by δ(0) because of
the presence of the other δ function. Basing on the representation

δ(E) = lim
T→∞

1
2π

T/2∫
−T/2

eiEtdt (35)

δ(0) is replaced by T/2π. In order to obtain the probability in unit of time one
divides |〈f |S|i〉|2 by T . So one gets

|〈f |S|i〉|2
T

∼ δ(E)

which is a sensible result.
However, the argumentation is not satisfactory: δ(E) does not depend on T

unlike δT (E), see Eq. (28) (δ(E) is the limit of (28) as T → ∞). Instead of (35)
one may use the representation

δ(E) = lim
T→∞

1
2π

T∫
−T

eiEtdt

and analogously obtain δ(0) = 2T/2π instead of δ(0) = T/2π.
Nevertheless, the resulting ®probability in unit time¯ obtained in the books

cited above coincides with the r.h.s. of Eq. (33) obtained here.

CONCLUSION

As has been expected, the interference of the incident and scattered waves in
the stationary theory of scattering is absent if the waves are described by packets.
The cause is the nonintersection of the packets' supports (excepting the limitingly
small scattering angles).
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Consideration of the δ2 trouble arising in the nonstationary approach needs
the determination of the ®probability in unit time¯ ΔN(T ). In Sec. 3, for this
purpose the evolution operator U(T/2,−T/2) was used, ΔN(T ) being deˇned as

ΔN(T ) =
|〈f |U(T/2,−T/2)|i〉|2

T
. (36)

In the limit T → ∞, one gets (see Sec. 3),

lim ΔN(T ) ∼ δ(E), E = Ef − Ei. (37)

The result is free of the δ2 trouble.
Another way to get ®probability in unit time¯ is given in books on quantum

ˇeld theory, e.g., see [2, 4, 8, 11]. [8, 11, 2, 4]. At ˇrst, one considers the
limU(T/2,−T/2) as T → ∞, i.e., the S matrix (in our way the limit T → ∞ is
carried out later, see (36), (37)). The S-matrix elements 〈f |S|i〉 are proportional
to δ(E). The corresponding probability |〈f |S|i〉|2 is proportional to δ2(E), which
is senseless. In the books δ2 is treated in an unsatisfactory manner presented and
criticized at the end of Sec. 3.

Both the ways give the same result which is represented by the r.h.s. of
Eq. (33). Here the satisfactory way of getting the result is considered.
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