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The structure function method is considered, based on the renormalization group approach: when
combined with exact calculation at the lowest order of perturbation theory it allows one to calculate
the differential cross sections in leading and next-to-leading order approximations, again providing
the thousands accuracy.

The implementation of this method to calculation of radiative corrections is also done for some
processes on colliders. Among them are radiative corrections to DVCS tensor, πe2 decay, deep
inelasic scattering, muon decay, Bhabha scattering, electronÄpositron annihilation and others.

In some cases the explicit expression of nonleading terms (the so-called K factor) is given or
numerical estimation of it is done.

� ¸¸³ É·¨¢ ¥É¸Ö ³¥Éμ¤ ¸É·Ê±ÉÊ·´ÒÌ ËÊ´±Í¨°, μ¸´μ¢ ´´Ò° ´  ¨¸¶μ²Ó§μ¢ ´¨¨ ·¥´μ·³£·Ê¶¶μ-
¢μ£μ ¶μ¤Ìμ¤ , ¶μ§¢μ²ÖÕÐ¨° · ¸¸Î¨ÉÒ¢ ÉÓ · ¤¨ Í¨μ´´Ò¥ ¶μ¶· ¢±¨ ¢ ²¨¤¨·ÊÕÐ¥³ ¨ ¸²¥¤ÊÕÐ¥³
§  ²¨¤¨·ÊÕÐ¨³ ¶·¨¡²¨¦¥´¨¨ ´  μ¸´μ¢¥ · ¸Î¥É  ¢ ´¨§Ï¥³ ¶μ·Ö¤±¥ É¥μ·¨¨ ¢μ§³ÊÐ¥´¨°.

�·¨¢¥¤¥´Ò ¶·¨³¥·Ò · ¸Î¥Éμ¢ ¶·μÍ¥¸¸μ¢ ¤²Ö Ë¨§¨Î¥¸±¨ ¨´É¥·¥¸´ÒÌ ¸²ÊÎ ¥¢,   ¨³¥´´μ · -
¤¨ Í¨μ´´Ò¥ ¶μ¶· ¢±¨ ± £²Ê¡μ±μ´¥Ê¶·Ê£μ³Ê ¢¨·ÉÊ ²Ó´μ³Ê ±μ³¶Éμ´-É¥´§μ·Ê, £²Ê¡μ±μ´¥Ê¶·Ê£μ³Ê
· ¸¸¥Ö´¨Õ, · ¸¶ ¤Ê ³Õμ´ , ¡ ¡ -· ¸¸¥Ö´¨Õ, Ô²¥±É·μ´-¶μ§¨É·μ´´μ°  ´´¨£¨²ÖÍ¨¨ ¨ ³´. ¤·.

‚ ¡μ²ÓÏ¨´¸É¢¥ ¸²ÊÎ ¥¢ μÍ¥´±  ´¥²¨¤¨·ÊÕÐ¨Ì ¢±² ¤μ¢ ¤ ´  ¢ Ö¢´μ°  ´ ²¨É¨Î¥¸±μ° Ëμ·³¥.

PACS: 12.15.Lk; 12.20.-m; 12.20.Ds

To the blessed memory of Teachers Alexandr Ilich
Akhiezer, Sergej Semenovich Sannikov, and Vladimir
Naumovich Gribov

INTRODUCTION

The problem of infrared divergences (related to the zero-mass limit of the
®photon mass¯, λ) as well as the problem of the extraction of the electron mass
singularities are considered in this review. In the early sixties, it was understood
that the physical quantities, the measurable observables such as cross sections and
decay widths are ˇnite in the photon zero-mass limit, but contain an auxiliary
parameter, ε, the maximum energy carried by soft photons, which are emitted and
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escape the detection. The ε dependence turns out to have a universal exponent
form, associated to each charged particle.

The problem of the extraction of the main contributions to the cross section
of radiative processes, associated to the large logarithm L was solved in the Born
approximation, with the development of the QREM (see references).

Combining soft photon emission with QREM, the universal evolution equa-
tions for probability densities were built in the seventies by L. Lipatov in QED,
and in 1977 by G. Altarelli and G. Parisi for the QCD case.

These quantities Å probability density to ˇnd a parton of a given kind inside
the initial one (considering electrons and photons as a parton) can be classiˇed
by twist expansion. The lowest ones, of twist two, are named structure functions.

It was realized that all the QED processes can be described in the frame
of SF approach as cross section or widths written in the form of DrellÄYan
processes. This formalism manifests the factorization of long- and short-distance
contributions. From the formal point of view, it is the conversion of universal
SF (long distances) with the cross section in the Born approximation. This form
guarantees that RC are taken into account in the so-called Leading Logarithmic
Approximation:

α

π
� 1,

αL

π
∼ 1.

To increase the accuracy of these parton-type formulas, one introduces the so-
called K factor:

K(α, y) = 1 +
α

π
K(y)

as additional factor in the DrellÄYan formulae. The calculation of the deˇnite
expression of the K factor for the speciˇc processes is the object of several
Sections below.

The relevant quantities can be constructed for light charged bosons (pions).
When being applied to the description of heavy hadron decay, the logarithm of
mass ratio of heavy hadron and pion plays the role of ®large logarithm¯.

The application of SF approach to the analysis of DIS and to DVCS turns
out to be successful as well as of the annihilation through one virtual photon in
presence of narrow resonances with J C = 1− such as ω, φ, and J/ψ.

Throughout our paper we use the next designations:
DIS Å deep inelastic scattering
DVCS Å deep virtual Compton scattering
FD Å Feynman diagram
LBL Å light-by-light
LLA Å leading logarithmic approximation
LSF Å lepton structure functions
NLO Å next-to-leading order
QCD Å quantum chromodynamics
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QED Å quantum electrodynamics
QREM Å quasi-real electron method
RC Å radiative corrections
SF Å structure function.

1. STRUCTURE FUNCTION APPROACH

1.1. Process of ElectronÄPositron Annihilation into Hadrons through One-
Photon Exchange at High Energy as a DrellÄYan Process. The process of
electronÄpositron annihilation into hadrons through one-photon exchange can be
considered as the crossed process of DrellÄYan annihilation of hadrons into lepton
pairs at high energies.

The methods developed in QCD based on factorization of mass singularities
and on the renormalization group can be applied [10].

Let us consider electron, positron, and photon as a parton A, or Ā in DrellÄ
Yan approach, and calculate the cross section taking into account the emission of
any number of real and virtual photons from the initial leptons.

In the LLA
α

π
L ∼ 1,

α

π
� 1, L = ln

s

m2
e

(1.1)

the radiative corrected cross section σe+e−→hadrons
RC (s) can be written in the form

σe+e−→hadrons
RC (s) =

1∫
xmin
1

dx1

1∫
xmin
2

dx2Θ
(

x1 + x2 − 2 +
ΔE

E

)
×

×
∑

A=e+,e−,γ

DA
e−(x1, s)DĀ

e+(x2, s)σAĀ→hadrons
B (sx1x2), (1.2)

where the sum runs over the partons, DA
e−(x1, s) is the distribution function of

the energy fraction x1 of a parton of type A with momentum squared up to
s in the initial electron, σB(sx1x2) is the ®shifted¯ cross section in the Born
approximation, without taking into account radiative corrections to the initial
lepton's state.

This formula was derived in the frames of QCD for the DrellÄYan process
for creation of muon pair in hadron collisions. In QED the role of partons is
played by leptons and photons.

The distribution functions D(x, s) in LLA satisfy the Lipatov evolution [11]
equations known in QCD as DokshitzerÄGribovÄLipatovÄAltarelliÄParisi
(DGLAP) equations [7,8] which describe their dependence on the energy fraction
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and the momentum squared

De
e(x, s) = δ(1 − x) +

s∫
m2

dtα(t)
2πt

⎡⎣ 1∫
x

dy

y
De

e(y, t)P e
e

(
x

y

)
+

+

1∫
x

dy

y
Dγ

e (y, t)P e
γ

(
x

y

)⎤⎦ ,

Dē
e(x, s) =

s∫
m2

dtα(t)
2πt

⎡⎣ 1∫
x

dy

y
Dē

e(y, t)P ē
ē

(
x

y

)
+

1∫
x

dy

y
Dγ

e (y, t)P ē
γ

(
x

y

)⎤⎦ ,

(1.3)

Dγ
e (x, s) = −2

3

s∫
m2

dtα(t)
2πt

+

s∫
m2

dtα(t)
2πt

⎡⎣ 1∫
x

dy

y
De

e(y, t)P γ
e

(
x

y

)
+

+

1∫
x

dy

y
Dē

e(y, t)P γ
ē

(
x

y

)⎤⎦ ,

α(t) =
α

1 − α

3π
ln

t

m2

,

where t is the square of parton momentum; α(t) is the ®running¯ coupling
constant. The quantity

α(t)
2π

PB
A

(
x

y

)
dx dt

yt

is the differential probability of the decay of the parton A with energy fraction
y, into a pair of partons, provided that for one of them, the parton B, the energy
fraction lies in the interval x+ dx, x with x < y, and the momentum squared lies
in the interval t + dt, t. The kernels of these integral equations are

P e
e (z) = P ē

ē (z) = lim
Δ→0

[
1 + z2

1 − z
θ(1 − z − Δ)+

+δ(1 − z)
(

3
2

+ 2 lnΔ
)]

=
[
1 + z2

1 − z

]
+

,

P e
γ (z) = P ē

γ (z) = z2 + (1 − z)2, (1.4)

P γ
e (z) = P γ

ē (z) =
1
z
(1 + (1 − z)2).
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The singularities in P e
e (z) are cancelled out when integrating with any 	at func-

tion. This property of cancellation has the same origin as the cancellation of
infrared divergences from the contribution of virtual and soft real photon emis-
sion to the observable cross section (BlokhÄNordsic theorem). For instance, the
moments of the kernel P e

e (z) = P (z) are

Cn =

1∫
0

znP (z)dz =

1∫
0

1 + z2

1 − z
(zn − 1) =

3
2
− 2

k=n−1∑
k=1

1
k

+
1

(n + 1)(n + 2)
.

(1.5)

It is convenient to distinguish the singlet and nonsinglet contributions to the
structure function De

e [10,12]

De
e = DS + DNS, DS = Dē

e. (1.6)

DNS corresponds to Feynman diagrams in which the electron may emit a photon,
but the electron line arrives at the point of annihilation, DS , to the diagrams
where the electron is converted into a photon and then back into an electron
before reaching the annihilation point. The nonsinglet term satisˇes the equation

DNS(x, β) = δ(x − 1) +

s∫
m2

α(t)
2π

dt

t

1∫
x

dz

z
P (z)DNS

(x

z
, βt

)
.

βt =
α

2π

(
ln

t

m2
− 1

)
. (1.7)

In order to satisfy the requirement of accuracy at the level 0.1% (we note that

in reality the expansion parameter
α

π
L, L = ln s/m2

e is small. For LEP facility

it takes the value 0.05, with L ≈ 20), it is sufˇcient to retain in DS the leading
term of the expansion

DS(x, β) =
1
8

(
αL

π

)2

FS(x),
(1.8)

FS(x) =

1∫
x

dy

y
P γ

e (y)P e
γ

(
x

y

)
=

(1 − x)
3x

(4 + 7x + 4x2) + 2(1 + x) ln x.

Before analyzing the single-photon annihilation channel, let us remind some
properties of the nonsinglet structure function. Equation (1.7) is solved through



STRUCTURE FUNCTION APPROACH IN QED FOR HIGH-ENERGY PROCESSES 725

an iteration procedure which leads to the expansion

DNS(x, β) = δ(1 − x) +
k=∞∑
k=1

1
k!

βkP (k)(x),

P (1)(x) = P e
e (x) = P (x), P (2)(x) =

1∫
x

dy

y
P (y)P

(
x

y

)
, (1.9)

P (k)(x) =

1∫
x

dy

y
P (k−1)(y)P

(
x

y

)
, β =

α

2π
(L − 1),

where P (x) = P (1)(x) was given in (1.4). The explicit form of the higher
iterations P (k)(x) can be found in [12].

The smoothed form of D(x, β) is

D(x, β) = 2β(1 − x)2β−1

(
1 +

3
2
β

)
− β(1 + x) + O(β2). (1.10)

The distribution functions DNS obey the following properties:

1∫
0

DNS(x, β)dx = 1,

1∫
0

P (k)(x)dx = 0, k = 1, 2, . . . ,

(1.11)
1∫

x

dy

y
DNS(y, β1)DNS

(
x

y
, β2

)
= DNS(x, β1 + β2).

We note that the result for the cross section (1.2) is valid for the case
ΔE ∼ E as well. When ΔE � E, the conditions x1 + x2 > 2 − ΔE/E
and x1x2 > 1 − ΔE/E are equivalent. When the ratio ΔE/E is small, the
contribution of DS is negligible. For smooth functions as σ(s)/|1 − Π(s)|2
one has

σRC(s) =
σ0(s)

|1 − Π(s)|2 R

(
1 − ΔE

E
, s

)
,

(1.12)

R(x, s) =

1∫
x

dx1

1∫
x/x1

dx2 DNS(x1, β)DNS(x2, β).

The quantity R(z, s) satisˇes the integral equation

R(z, s) = 1 +

s∫
m2

α(t)dt

πt

1∫
z

dy P (y)R
(

z

y
, t

)
. (1.13)
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To solve this equation let us apply Mellin transform and deˇne the moments:

Rn(s) =

1∫
0

dxxn−1R(x, s). (1.14)

In terms of moments we have

Rn(s) =
1
n

+ Cn

s∫
m2

dt

t

α(t)
π

Rn(t), (1.15)

with Cn Å the moments of the kernel deˇned in Eq. (1.5). Using the inverse
Mellin transform we get

R(x, s) =
1

2πi

δ+i∞∫
δ−i∞

dn

n
x−n exp

⎡⎣Cn

s∫
m2

dt

t

α(t)
π

⎤⎦ . (1.16)

One can obtain an analytical expression for the case 1 − x + ΔE/E � 1, where
large values of n are essential. Using the asymptotic representation for Cn at
large n

Cn ≈ 3
2
− 2C − 2 ln n + O

(
1
n

)
(here C = 0.577 . . . is the Euler constant), we obtain

R(x, s) = exp
(

3
2
− 2C

)
ξ

1
2πi

i∞∫
−i∞

dn

n
n−2ξ e−n ln x,

(1.17)

ξ =

s∫
m2

dt

t

α(t)
π

= −3 ln
(
1 − α

3π
L
)

.

The ˇnal expression for R is

R

(
1 − ΔE

E
, s

)
=

(
ΔE

E

)ξ

e
3
4 ξ e−Cξ

Γ(1 + ξ)

(
1 + O

(
ΔE

E

))
. (1.18)

Expansion in LLA parameter αL/π has the form:

R

(
1 − ΔE

E
, s

)
≈ 1 +

2αL

π

(
ln

ΔE

E
+

3
4

)
+

+
(

αL

π

)2 [
2 ln2 ΔE

E
+

10
3

ln
ΔE

E
+

11
8

− π2

3

]
. (1.19)
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This result can be compared with the one obtained by Yu. Tsai [13]:

RTsai =
(
1 − α

3π
L
)6 ln ΔE

E − 9
2 ≈ 1 +

2αL

π

(
ln

ΔE

E
+

3
4

)
+

+
(

αL

π

)2 [
2 ln2 ΔE

E
+

10
3

ln
ΔE

E
+

11
8

]
, (1.20)

which differs from Eq. (1.19) by the term −(π2/3). The reason is that in [13]
the renormalization group arguments were applied to the total cross section Å
the quantity which has mass singularities, instead of those to the amplitudes.
Explicit calculations allow one to take into account the nonleading terms of sort
α(αL/π)n. It turns out that the real expansion parameter is

β =
α

2π
(L − 1). (1.21)

Next-to-leading order terms can be taken into account introducing a K factor
in the integrand of the DrellÄYan formula (1.2):

1 +
α

π
K = 1 +

α

π

(
π2

3
− 1

2

)
. (1.22)

So the ˇnal result can be expressed as (for simplicity DNS = D)

σRC(s) =

1∫
xmin
1

dx1

1∫
xmin
2

dx2 D(x1, β)D(x2, β)
σ0(sx1x2)

|1 − Π(sx1x2)|2
(
1 +

α

π
K
)

,

(1.23)
where D = Dγ + D± in the case when pair production is detected by the
experiment and D = Dγ if pairs are not detected. The explicit expressions for
expansion of Dγ , D±, which provides the precision of the theoretical formulae
on the level 0.1%, are [10]

DNS(x, β) = Dγ(x, β) =

= 2β(1 − x)2β−1

[
1 +

3
2
β − 1

3
β2

(
1
3
L + π2 − 47

8

)]
− β(1 + x)+

+
1
2
β2

[
4(1 + x) ln

1
1 − x

+
1 + 3x2

1 − x
ln

1
x
− 5 − x

]
+ O(β3),
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D±(x, β) =
( α

2π

)2
{

1
3(1 − x)

(
1 − x − 4m√

s

)2β (
L + 2 ln(1 − x) − 5

3

)2

×

×
[
1 + x2 +

2
3
β

(
L + 2 ln(1 − x) − 5

3

)]
+

+ L2

[
2
3

1 − x3

x
+

1
2
(1 − x) + (1 + x) ln

1
x

]}
θ

(
1 − x − 4m√

s

)
. (1.24)

The cross section can be expressed in terms of one-fold integral, introducing
a new variable x1x2 = 1 − x and performing the integration with the following
result:

σRC(s) =

xmax∫
0

dxF (x, s)
σ0(s(1 − x))

|1 − Π(s(1 − x))|2 , F = F γ + F±, (1.25)

where xmax is derived by the experimental constraint that s(1−xmax) > sthreshold =
4m2

π. The explicit form of the functions F γ and F± is

F γ(x, β) = 4βx4β−1

[
1 +

α

π

(
π2

3
− 1

2

)
+

+3β − 2
3
β2

(
1
3
L + 2π2 − 37

4

)]
− 2β(2 − x)+

+ 2β2

[
4(2 − x) ln

1
x

+
1
x

(1 + 3(1 − x)2) ln
1

1 − x
− 6 + x

]
+ O(β3), (1.26)

F±(x, β) =
(α

π

)2
{

1
6x

(
x − 4m√

s

)4β
[
(2 − 2x + x2)

(
L + 2 lnx − 5

3

)2

+

+
4
3
β

(
L + 2 lnx − 5

3

)3
]

+
1
2
L2

[
2
3

1 − (1 − x)3

1 − x
+

+(2 − x) ln(1 − x) +
1
2
x

]}
θ

(
x − 4m√

s

)
.

1.2. Differential Cross Section in LLA. The differential distributions of
process

A(pA) + B(pB) → a′(pa′) + b′(pb′) + (X) (1.27)
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as well can be expressed in terms of structure functions:

dσA+B→a+b+(X)

dOa dya dyb
(pA, pB) =

=
∑

e,f,c,d

∫
dxc

∫
dxdD

c
A(xc, β)Dd

B(xd, β)
dσ̄c+d→e+f

dOc
(pAx, pBy)×

× 1
xa

1
xb

Da
c

(
ya

xc
, β

)
Db

f

(
yb

xd
, β

)
. (1.28)

Hard subprocess cd → ef is considered in the c.m.f. of initial particles:

pA = ε(1, 1, 0, 0), pB = ε(1,−1, 0, 0), s = 4ε2 � m2. (1.29)

The shifted kinematics is deˇned by conservation law

c(xcpA) + d(xdpB) → e(pe) + f(pf), pe = εxe(1,ne), pf = εxf (1,nf),
(1.30)

with orts ne, nf along the three-momentum of scattered particles and

xc + xd = xe + xf , xc − xd = xece + xfcf , x2
es

2
e = x2

fs2
f , (1.31)

where ce,f = cos(p̂Ane,f ), se,f = sin(p̂Ane,f ). For the energy fraction of the
scattered particles of hard subprocess we can ˇnd

xe =
2xcxd

a
, xf =

x2
c + x2

d + ce(x2
d − x2

c)
a

,

(1.32)
a = X + Y, X = xc(1 − ce), Y = xd(1 + ce).

The relevant invariants we could put in the form (we imply that all particles
in the hard subprocess are massless):

s̃ = (xcpA + xdpB)2 = sxcxd, t̃ = (xcpA − pe)2 = −s
x2

cxd(1 − ce)
a

,

(1.33)

ũ = (xcpA − pf )2 = −s
xcx

2
d(1 + ce)

a
, s̃ + t̃ + ũ = 0.

Phase volume of ˇnal particle has the form:

dΓ2 =
1

(2π)2
d3pe

2εe

d3pf

2εf
δ4(xcpA + xdpB − pe − pf ) =

=
dOE

16π2

xe

xf
δ(xc + xd − xe − xf )dxe =

xcxd

8π2a2
dOe. (1.34)
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The list of relevant cross sections of hard subprocess for c, d, e, f = e±, γ, μ±,
π± are

dσe−e+→γγ

dOe
=

2α2

s

X2 + Y 2

a2XY
,

dσγγ→π−π+

dOe
=

4α2

s

1
a2

,

(1.35)
dσγe±→γe±

dOe
=

2α2(a2 + Y 2)
sY a3

,

dσγγ→e−e+

dOe
=

2α2

s

X2 + Y 2

a2XY
,

with the vacuum polarization inclusion

dσe−e−→e−e−

dOe
=

4α2

sa2

(
a2 + Y 2

2X2

1
(1 − Π(t̃))2

+
a2 + X2

2Y 2

1
(1 − Π(ũ))2

+

+
a2

XY

1
(1 − Π(t̃))(1 − Π(ũ))

)
,

dσe−e+→e−e+

dOe
=

4α2

sa2

(
a2 + Y 2

2X2

1
(1 − Π(t̃))2

+
Y 2 + X2

2a2

1
(1 − Π(s̃))2

−

− Y 2

Xa
Re

[
1

(1 − Π(t̃))(1 − Π(s̃))

])
, (1.36)

dσe−e+→μ−μ+

dOe
=

2α2

s

X2 + Y 2

a4

1
|1 − Π(s̃)|2 ,

dσe−e+→π−π+

dOe
=

2α2

s

XY

a4

1
|1 − Π(s̃)|2 ,

dσe−μ−→e−μ−

dOe
=

2α2

sa2

a2 + Y 2

X2

1
(1 − Π(t̃))2

and without it (here we put the limit Π(x) → 0):

dσe−e−→e−e−

dOe
=

4α2

sX2Y 2

(x2 + Y 2 + XY )2

a2
,

dσe−e+→e−e+

dOe
=

4α2

sX2

(X2 + Y 2 + XY )2

a4
,

dσe−e+→μ−μ+

dOe
=

2α2

s

X2 + Y 2

a4
, (1.37)
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dσe−e+→π−π+

dOe
=

2α2

s

XY

a4
,

dσe−μ−→e−μ−

dOe
=

2α2

sa2

a2 + Y 2

X2
.

Here in dσe−e+→γγ when integrating over O1, factor 1/2! should be included
due to the two identical particles in the ˇnal state.

When integrating Eq. (1.28) over the ˇnal particle energy fraction, we obtain
the differential distribution in the form:

dσA+B→a+b+(X)

dOa
(pA, pB) =

∑
c,d

∫
dxc

∫
dxdD

c
A(xc, β)×

× Dd
B(xd, β)

dσc+d→a+b

dOa
(pAxc, pBxd). (1.38)

1.3. Parton Picture of Electroweak Processes in High-Energy e+e− Colli-
sions. Let us remind the known formula derived in [14] for the cross section
of the process of creation of a system Φ of particles with invariant mass squared
s1 � s = 2p+p− = 4E2, in the collisions of high-energy electrons and positrons
through a two-photon production mechanism

σ(s)e+e−→e′+e′−Φ = β2

s∫
s0

ds1

s1
σγγ→Φ(s1)φγγ

(s1

s

)
, (1.39)

where σγγ→Φ(s1) is the total cross section for the creation of a system Φ by two
real photons; s0 is the threshold value of invariant mass squared, and φγγ(x) is
the BrodskyÄKinoshitaÄTerazawa function

φγγ(x) = (2 + x)2 ln
1
x
− 2(3 + x)(1 − x) = x

1∫
x

dz

z
P γ

e (z)P γ
e

(x

z

)
. (1.40)

It is known, however, that this formula has a rather low accuracy, which is of
the order of 20%. The differential invariant mass distribution has a much better
accuracy for the case of a large invariant mass squared s1 � m2

dσe+e−→e′+e′−Φ(s1, s)
ds1

=
β2

s1
σγγ→Φ(s1)φγγ

(s1

s

)
, s1 � m2. (1.41)

This process can be considered a DrellÄYan process as well. Using the
approximate solution of Lipatov's equations [12,15]:

DNS(x, β) = 2β

[(
1 +

3
2
β

)
(1 − x)2β−1 − 1

2
(1 + x)

]
,
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DS(x, β) =
1
2
β2

[
4x(1 + x) ln x +

1
3
(1 − x)(4 + 7x + 4x2)

]
, (1.42)

Dγ
e (x, β) =

β[1 + (1 − x)2]
x

+
β2

4

[
3 + 4 ln(1 − x)

1 + (1 − x)2

x
−

−2(2 − x) ln x +
2
x

(1 − x)(2x − 3)
]

,

we can build the differential cross sections for different systems in the ˇnal state,
created in e+e− collisions

dσe+e−→(eγ)Φ(s1, s)
ds1

=
1
s1

σeγ→Φ(s1)Φeγ

(s1

s
, β

)
,

dσe+e−→(e
′+e

′−)Φ(s1, s)
ds1

=
1
s1

σγγ→Φ(s1)Φγγ

(s1

s
, β

)
, (1.43)

dσe+e−→(γγ)Φ(s1, s)
ds1

=
1
s
σe+e−→Φ(s1)

1
|1 − Π(s1)|2

Φeē

(s1

s
, β

)
.

Here Π(s) =
α

3π

(
ln

s

m2
− 5

3

)
is the lepton contribution to the operator of

vacuum polarization; the (un)detected ˇnal particles are putted in brackets in the
left-hand side of the equations. The functions Φij (Φeē(x, β) = DNS(x, β) was
considered above in Eq. (1.42)) are the following:

Φγe(x, β) = 2β(1 + (1 − x)2)
(

1 +
3
2
β

)
(1 − x)2β+

+ 2β2[x(2 − x) ln x − (1 − x)(3 − 2x)],

Φγγ(x, β) = β2φγγ(x) + 8β3

[
4(2 + x)2

(
Li(x) − π2

6

)
+

+ x(4 + x) ln2 x − x(12 + 5x) ln x−

− (1 − x)(24 + 8x) ln(1 − x) + (1 − x)(10 + 8x)

]
. (1.44)

The DrellÄYan partons picture can be generalized for the case of colliding
e+e− beams with deˇnite chirality

σe+e−→Φ
λ+λ− =

∑
A,λA

∑
B,λB

∫
dx1

∫
dx2D

A,λA

e−λ−
(x1, β)DB,λB

e+λ+
(x2, β)σλAλB

AB→Φ(sx1x2),

(1.45)
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Let us denote D±(G±) Å the distribution densities of probability to ˇnd an
electron (photon) with chirality ®±¯ in the initial electron with chirality ®+¯.
Using the QCD technique for building the kernels of the evolution equations and
the chiral amplitudes [16,17] one obtains (neglecting DS):

D+(x, β) = δ(1 − x) +

L∫
0

dt α(t)
2π

1∫
x

dy

y

[
D+(y, βt)P

(
x

y

)
+

+G+(y, βt)P+
γ+

(
x

y

)
+ G−(y, βt)P+

γ−

(
x

y

)]
,

D−(x, β) =

L∫
0

dt α(t)
2π

1∫
x

dy

y

[
D+(y, βt)P

(
x

y

)
+

+G−(y, βt)P−
γ−

(
x

y

)
+ G+(y, βt)P−

γ+

(
x

y

)]
,

G+(x, β) = −2
3

L∫
0

dt α(t)
2π

G+(x, βt)+

+

L∫
0

dt α(t)
2π

1∫
x

dy

y

[
D+(y, βt)P

γ+
+

(
x

y

)
+ D−(y, βt)P

γ+
−

(
x

y

)]
,

G−(x, β) = −2
3

L∫
0

dt α(t)
2π

G−(x, βt)+

+

L∫
0

dt α(t)
2π

1∫
x

dy

y

[
D−(y, βt)P

γ−
−

(
x

y

)
+ D+(y, βt)P

γ+
+

(
x

y

)]
,

with D given in (1.10) and

D+ + D− = D, G+ + G− = G,

P γ+
+ (z) =

1
z
, P γ+

− (z) =
(1 − z)2

z
,

P+
γ+(z) = z2, P−

γ+(z) = (1 − z)2.

Due to parity conservation in QED, the chiral amplitudes obey the following
relations:

Pλ
γλ(z) = P−λ

γ−λ(z), P γλ
λ (z) = P γ−λ

−λ (z). (1.46)
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The approximate solutions of this system have the form:

D+(x, β) = D(x, β) − D−(x, β),

D−(x, β) =
β2

3x
(1 − x)3,

G+(x, β) =
β

x
+

β2

4x
[3 + 4 ln(1 − x) − (1 − x)(3 + x)],

G−(x, β) = β
(1 − x)2

x
+

β2

2x

[
(x2 − 2x) ln

1
x

+

+ 2(1 − x)2 ln(1 − x) + x(1 − x)
]
.

Using these results one can obtain the cross section for the case when both initial
leptons have the same (positive) chirality and the (un)detected particles Å the
scattering leptons Å move close to the beam axis in opposite directions:

dσ++

ds1
=

β2

s1

[
φ1

(s1

s

)
σ+−

γγ (s1) + φ2

(s1

s

)
σ++

γγ (s1)
]
. (1.47)

For the case of different chiralities of the initial leptons we have

dσ+−
ds1

=
β2

s1

[
φ2

(s1

s

)
σ+−

γγ (s1) + φ1

(s1

s

)
σ++

γγ (s1)
]
, (1.48)

with

φ1(x) = 2
[
ln

1
x
− 1

2
(1 − x)(3 − x)

]
,

φ2(x) = (2 + 4x + x2) ln
1
x
− 3(1 − x2),

and the superscripts in the cross sections in the right-hand side of the equations
denote the chiralities of photons.

For the case when the (un)detected particles are the positrons, scattered on a
small angle, and the photon moving in opposite direction we have

dσ++

ds1
=

1
s1

[
ψ1

(s1

s
, β

)
σ++

eγ (s1) + ψ2

(s1

s
, β

)
σ+−

eγ (s1)
]
,

(1.49)
dσ+−
ds1

=
1
s1

[
ψ2

(s1

s
, β

)
σ++

eγ (s1) + ψ1

(s1

s
, β

)
σ+−

eγ (s1)
]
,

with

ψ1(x, β) = βx2 +
3
4
β2(2x + x2 + 4 ln(1 − x)),
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ψ2(x, β) = β(1 − x)2 +
3
2
β2

[
(x2 − 2x) ln

1
x

+

+ 2(1 − x)2 ln(1 − x) + x(1 − x)
]
. (1.50)

For the case when photons are moving along beams direction we have the case
of annihilation

dσ++

ds1
=

β2

3s1

(
1 − s1

s

)3 1
|1 − Π(s1)|2

[σ+−
e+e−(s1) + σ−+

e+e−(s1)],

(1.51)
dσ+−
ds1

=
1
s1

1
|1 − Π(s1)|2

Φeē

(s1

s
, β

)
σ+−

e+e−(s1).

Below we give the explicit expressions for cross sections of some electroweak
processes which can be investigated at colliding electronÄpositron beams. For the
process of two W bosons production with tagging two gammas moving along the
beam directions we have

σeē→(γγ)W+W−
(s) =

ρ∫
1

dxΦeē

(
x

ρ
, β

)
σeē→W+W−

(x), (1.52)

with [16]

σeē→W+W−
(x) = σe,0

v

2x

[
1 + 4x + 8x2

8x2
l − 5

4
+

+
1

2(3x− 1)

[
8x + 1
8x2

l − 4x2 + 20x + 3
12x

]
+

v2(4x2 + 20x + 3)
24(3x− 1)2

]
, (1.53)

x =
s1

4M2
W

, ρ =
s

4M2
W

, v2 = 1 − 1
x

, l =
1
v

ln
1 + v

1 − v
,

with σe,0 = 51 pb.
For the process of two W bosons production after tagging e± which move

along the beam direction we have

σeē→(eē)W+W−
(s) = 4β2

ρ∫
1

dx

x
φγγ

(
x

ρ
, β

)
σγγ→W+W−

(x), (1.54)

where the same notations are used and

σγγ→W+W−
(x) = σγ,0v

[
1 +

3(1 + x)
16x2

− 3
16x2

(
1 − 1

2x

)
l

]
, (1.55)

with σγ,0 = 86 pb.
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For the process of Wν production after tagging positron and photon which
move along the beam direction we have

σeē→(e+γ)W−ν(s) = 2β

s/M2
W∫

1

dx

x

[
1 +

(
1 − xM2

W

s

)2
]

σeγ→Wν(x),

(1.56)

σeγ→Wν(x) = σW

[
2x2 + x + 1

x3
ln

1
x
− (1 − x)(4x2 + 5x + 7)

4x3

]
,

with σW = 47 pb.
For the process of two Zν bosons production after tagging positron and

photon which move along the beam direction we have

σeē→(e+γ)Ze(s) = 2β

s/M2
Z∫

1

dx

x

[
1 +

(
1 − xM2

Z

s

)2
]

σeγ→Ze(x),

(1.57)

σeγ→Ze(x) = σZ

[
x2 − 2x + 2

x3

[
24 + ln

(1 − x)2

x

]
− (1 − x)(x + 7)

2x3

]
,

with σZ = 6 nb. These formulae as well as the BrodskyÄKinoshitaÄTerazawa
formula have rather bad accuracy (∼ 20%) but can be used for rough estimations.
So for the year luminosity L ∼ 104 (pb)−1 and

√
s = 200 GeV one can expect a

number of W -meson pairs on the level 104 per year.
In photonÄphoton colliders there is a possibility of studying the interaction

of two charged leptons of different kinds. Tagging two leptons moving along the
photon beam axes we have

σγγ→l̄1 l̄2Φ = β1β2

s∫
sth

ds1

s1
η
(s1

s

)
σl1l2→Φ(s1), βi =

α

2π

(
ln

s

m2
i

− 1
)

,

(1.58)
with (compare with φγγ)

η(z) =

1∫
z

dx

x
P e

γ (x)P e
γ

( z

x

)
= (1 + 2z)2 ln

1
z
− 2(1 − z)(1 + 3z). (1.59)

1.4. Calculation of the Radiative Corrections to the Cross Section for
ElectronÄNucleus Scattering by the Method of Structure Function. To describe
the process of inelastic electronÄproton scattering

e(p1) + p(P) → e(p2) + X, (1.60)
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we employ the standard variables accepted for DIS,

q = p1 − p2, V = 2Pp1, x = − q2

2Pq
,

(1.61)

y =
2Pq

V
, τ =

M2

V
, Q2 = V xy,

with m (M ) Å the mass of the electron (target).
The general formula for the inclusive cross section for electron scattering has

the following form [17]:

ε2d
3σ(p1, p2)
d3p2

=

1∫
dz1

1∫
dz2

z2
2

∑
A,A′

DA
e (z1, βQ)D̄e

A′(z2, βQ)×

× ε̃2d
3σhard

AA′

d3p̃2
(z1p1, p̃2)

∣∣∣∣∣
p̃2=

p2
z2

, (1.62)

βQ =
α

2π

(
ln

Q2

m2
− 1

)
,

where DA
e (z, βQ) is the structure function giving the distribution with respect

to the energy fraction z of a speciˇc A parton with virtuality up to Q2 in the
electron; D̄e

A′(z, βQ) is the fragmentation function of a speciˇc A parton with
virtuality up to Q2 in the electron with energy fraction z; and σhard

AA′ is the hard
cross section for scattering of a parton A with transformation into a parton A′.
In QED, the role of the partons is played by electrons, positrons, and photons.
The lower limits of the z1 and z2 integrals in (1.62) are determined from the
kinematical conditions speciˇc to the parton process.

In the LLA, where in the RC one sums only terms that for each power of α
contain the factor ln(Q2/m2), in the formula (1.62) one must set A = A′ = e,
take the Born cross section in the electromagnetic interaction, for the cross sec-
tion σhard

AA′ , and use the GribovÄLipatov approximation DA
e (z, βQ) = D̄e

A(z, βQ).
Going over to the variables x and y and denoting De

e ≡ D, from (1.62) we obtain

dσ(x, y)
dx dy

=

1∫ 1∫
dz1 dz2D(z1, βQ)D(z2, βQ)

z2
2z1

y dσhard(x̃, ỹ)
ỹ dx̃d̃ y

, (1.63)

where the tilde denotes the corresponding variables for the parton process:

x̃ =
z1yx

z1z2 + y − 1
, ỹ =

z1z2 + y − 1
z1z2

, Q2 = V xy. (1.64)
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The structure function D(z, βQ) satisˇes Lipatov's evolution equations. A closed
form expression does not exist for them. However, since in practice the parameter
βQ is small (< 0.1), even in calculations with the accuracy 0.1% it is sufˇcient
to retain only two terms of the expansion in this parameter. This allows one to
use the obtained formulae in the whole region of variation of the variables x, y.

In the case of fully inclusive cross section, the function D takes the form:

D = Dγ + D±.

In experiments which ignore events with production of an additional e+e− pair,
one has D = Dγ (see (1.24)). In the LLA, the hard cross section appearing
in (1.63) coincides with the cross section calculated in the lowest order of PT in
the electromagnetic interaction:

dσhard(x, y)
dx dy

∣∣∣∣
LLA

=
dσ(0)(x, y)

dx dy
. (1.65)

The cross section dσ(0) is expressed in terms of the structure functions W1,2(x, Q2)
in a well-known way [18]. Expressing, in addition, the parton variables x̃ and ỹ
in terms of x and y, we obtain

dσ(0)(x̃, ỹ)
ỹ dx̃ dỹ

=
z2

z1
4πα2

(
z1

z2
Q2

)(
Q2xy2

)−1
[(

1 − y − M2

Q2
x2y2

)
×

× Q2

2Mx
W2

(
xz1y

z1z2 + y − 1
,
z1

z2
Q2

)
+ xy2MW1

(
xz1y

z1z2 + y − 1
,
z1

z2
Q2

)]
.

Here α(Q2) = α/|1 − Π(q2)|, and Π(q2) is the photon polarization operator.
The lower limits of the z1, z2 integrations in (1.63) are obtained from the

condition of existence of the parton cross section dσhard. One can identify the
following two contributions to the integral (1.63): the proper inelastic contribution
beginning at (P + q̃)2 = M2

th (where Mth is the inelastic threshold Mth = M +
mπ), and the radiative tail of the elastic peak (ERT), for which (P + q̃)2 = M2.
With the help of (1.61) and (1.63) we ˇnd that for the ˇrst contribution the region
of integration over z1 and z2 is limited by the inequality

z1z2 + y − 1 − xyz1 � z1δ, δ =
M2

th − M2

V
. (1.66)

For ERT, the region of integration degenerates into a curve which is obtained
from (1.66) by discarding the inequality and setting δ to zero. The contribution
of the curve to the double integral is nonzero because W1 and W2 contain
δ functions corresponding to the elastic process; thus, for scattering by a proton
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or neutron one has

MW1(x, Q2) =
1
2
δ(x − 1)

[
F1(q2) + F2(q2)

]2
,

(1.67)
1
M

W2(x, Q2) =
2

Q2
δ(x − 1)

[
F 2

1 (q2) +
Q2

4M2
F 2

2 (q2)
]

,

where F1,2 are the Pauli form factors.
It is possible to design an experiment in such a way as to select the events

where the structure of the target is not changed. In this case the ERT is of interest
in its own right.

Calculations beyond the leading logarithmic approximation were conside-
red in [17].

1.5. Radiative Tail in πe2 Decay and Some Comments on μÄe Universality.
The result of the lowest-order perturbation theory calculations of the photon
and positron spectra in radiative πe2 decay can be generalized to all orders of
perturbation theory using the structure-function method [18]. An additional source
of radiative corrections to the ratio of the positron and muon channels of pion
decay, due to emission of virtual and real photons and pairs, is considered. It
depends on details of the detection of the ˇnal particles and is large enough
to be taken into account in theoretical estimates with a level of accuracy of
0.1% [19,20].

As a ˇrst step in the calculation of the spectra of radiative pion decays, we
reproduce the earlier-obtained results (see review [21]), treating the pion as a
point-like particle. In these papers the positron energy spectrum in radiative pion
decay was calculated:

dΓ
Γ0dy

=
α

2π

[
1 + y2

1 − y
(L − 1) − 2(1 − y)−

−(1 − y) ln(1 − y) +
1 + y2

1 − y
(2 ln y + 1)

]
, (1.68)

ymin � y � 1 +
m2

e

m2
π

,

where y = 2εe/mπ is the positron energy fraction; εe is the positron energy (here
and below we have in mind the rest frame of the pion), L = ln(m2

π/m2
e) = 11.2

is the ®large logarithm¯, and mπ, me are the masses of the pion and positron.
The quantity

SfurthΓ0 =
G2|Vud|2

8π
f2

πm2
emπ

(
1 − m2

e

m2
π

)2

= 2.53 · 10−14 MeV (1.69)

is the total width of πe2 decay, calculated in the Born approximation.
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We will now calculate the photon spectrum. Consider ˇrst the emission of
a soft real photon. The corresponding contribution to the total width may be
obtained by the standard integration of the differential widths:

dΓsoft

Γ0
= − α

4π2

∫
d3k

ω

(
P

Pk
− pe

pek

)2
∣∣∣∣∣
ω�Δε�mπ/2

, (1.70)

where P, pe, k are the four-momenta of the pion, positron, and photon, respec-
tively; P 2 = m2

π, p2
e = m2

e , ω2 = k2 + λ2, and λ is the photon mass. The result
has the form

Γsoft

Γ0
=

α

π

[
−b(σ) ln

2Δε

λ
+ 1 − 1 + σ

2(1 − σ)
ln σ−

− 1 + σ

4(1 − σ)
ln2 σ − 1 + σ

1 − σ
Li2(1 − σ)

]
, (1.71)

where

b(σ) =
1 + σ

1 − σ
ln σ + 2, σ =

m2
e

m2
π

. (1.72)

Consider now the hard-photon emission process regarding pion to be a point-
like particle

π+(P ) → e+(pe) + νe(pν) + γ(k). (1.73)

The standard procedure of ˇnal-states summing of the squared modulus of its
matrix element

Mif =
GVud√

2
eū(pe)

[
−ε̂ − Pε

Pk
(P̂ − k̂)+

+
1

2pek
ε̂(p̂e + k̂ + m)P̂

]
(1 − γ5)v(pν), (1.74)

and integration over the neutrino phase volume leads to the spectral distribution
over the photon energy fraction x = 2k0/mπ:

dΓhard

Γ0dx
=

α

2π

x(1 − x − σ)
(1 − σ)2

[
−4(1 − σ)

x2
− 1

1 − x
+

+
1

x(1 − x − σ)

(
1
x

(1 + (1 − x)2) + 2σ − 2
σ2

x

)
ln

1 − x

σ

]
. (1.75)
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Further integration of this spectrum gives the result:

1−σ∫
xmin

dΓhard

Γ0dx
dx =

α

2π

[
−2b(σ) ln

1 − σ

xmin
− 2

1 + σ

1 − σ
Li2(1 − σ)+

+
3(1 − 2σ)
2(1 − σ)2

ln σ +
19 − 25σ

4(1 − σ)

]
, xmin =

2k0
min

mπ
. (1.76)

Putting k0
min = Δε in this formula and adding the soft photon contribution, we

obtain (in agreement with Kinoshita's 1959 result [20]) the contribution to the
width from inner bremsstrahlung of a point-like pion:

ΓIB

Γ0
=

α

π

{
b(σ)

[
ln

λ

mπ
− ln(1 − σ) − 1

4
ln σ +

3
4

]
−

−2
1 + σ

1 − σ
Li2(1 − σ) − σ(10 − 7σ)

4(1 − σ)2
ln σ +

15 − 21σ

8(1 − σ)

}
. (1.77)

Now let us return to the positron spectrum. The contributions containing
the large logarithm L may be associated with the known kernel of the AltarelliÄ
ParisiÄLipatov evolution equation (see (1.4)). Using the factorization theorem,
we may generalize this spectrum to include the leading logarithmic terms in all
orders of perturbation theory. This may be done in terms of nonsinglet structure
functions D(y, η). In the case of the photon spectrum, the function D(1 − x, η)
appears. The nonsinglet part of it works here, D = Dγ , explicit expression for it
is given above in (1.24). The expressions for the spectra are as follows:

dΓ
Γ0dy

= D(y, η)
[
1 +

α

π
Ke(y)

]
,

Ke(y) = −(1 − y)
(

1 +
1
2

ln(1 − y)
)

+
1 + y2

2(1 − y)
(2 ln y + 1), y =

2εe

mπ
,

(1.78)
dΓ

Γ0dx
= D(1 − x, η)

[
1 +

α

π
Kγ(x)

]
,

Kγ(x) = −1 − x

x
+

1 + (1 − x)2

2x
ln(1 − x), x =

2ω

mπ
, η =

α

2π

(
ln

1
σ
− 1

)
.

Let continue our consideration of the RC to πl2 decay in the lowest order
of perturbation theory. There are two kinds of sources of RC. The ˇrst one
connected with emission of soft and hard real photons must be completed with
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the contribution of virtual photons emission. The result is [20]

Γ
Γ0

= 1 + ρ, ρ =
α

π

[
3
2

ln
Λ

mπ
+

3
4

+ F (σ)
]

,

(1.79)

F (σ) = −b(σ) ln(1 − σ) − σ(8 − 5σ)
4(1 − σ)2

ln σ +
13 − 19σ

8(1 − σ)
− 2(1 + σ)

1 − σ
Li2(1 − σ),

with Λ-ultraviolet cut-off parameter. Besides we see that the quantity η is ˇnite
at electron zero-mass limit.

Studying the spectral distributions one can verify that the factor 1+
3α

2π
ln

Λ
mπ

is absorbed by (VudG)20 and turn them to the observable quantities (VudG)2.
As for the ratio of the widths of πe2 and πμ2 channels, the dependence on

the ultraviolet cut-off parameter disappears.
Another source of RC is the moving electron mass. The renormalization

group equation for the running mass m(q2) has the form [22]:

dm(q2)
dL̃

= −3α(L̃)
4π

m(q2), α(q2) =
α

1 − α

3π
L̃

,

(1.80)

m(0) = me, L̃ = ln
q2

m2
e

,

which solution is m(q2) = me

(
1 − α

3π
L̃
)9/4

. So the bare electron mass implied

at the beginning of our considerations must be replaced by the running one.
Working in the frames of the Standard Model the evolution of the coupling

constant from the momentum scales of order ρ-meson mass up to Z-, W -bosons
masses must be taken into account resulting in the factor [23]

SEW(mρ, mZ) = 1.0235. (1.81)

The total expression for the ratio

Rπl2 =
Γ(π → eν) + Γ(π → eνγ)
Γ(π → μν) + Γ(π → μνγ)

(1.82)

is

Rπl2 = R0SEW(mρ, mZ)
(
1 − α

3π
L
)9/2

[
1 +

α

π

[
13
8

− π2

3
− Fμ

]
+ δstr

]
=

= R0[1 + δpoint + δstr], δpoint = −0.01786, (1.83)
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with Fμ = F (m2
μ/m2

π) (see Eq. (1.79)) and

R0 =
m2

e

m2
μ

(1 − m2
e/m2

π)2

(1 − m2
μ/m2

π)2
= 1.28347 · 10−4. (1.84)

The quantity δstr re	ects the strong interactions manifestations. To estimate
its value is the nowadays problem of experimental efforts as well it can be
estimated in the frames of the strong interactions theoretical models [23Ä25].

1.6. QED Structure Function of Charged Pion. Multiple Production. The
kernel of the evolution equation for spinless charged particle can be extracted
from the contribution to the cross section of point-like pion pair in annihila-
tion of electronÄpositron with emission of a hard photon by pions. In leading
logarithmical approximation collinear kinematics is relevant, which leads to [26]:

dσeē→ππ̄γ

dν
=

α2

3s

2α

π

1 − ν

ν
L, (1.85)

where
√

s is the total energy in the center-of-mass frame; L = ln s/m2 Å
®large¯ logarithm; m Å pion mass; ν = 2ω/

√
s Å energy fraction of the

photon.
In analogy with the case of fermions we can construct the kernel of evolution

equation of scalar charged particle:

P π+

(1) (z) = P π−

(1) (z) =
[

2z

1 − z

]
+

= lim
Δ→0

[P π
Δδ(1 − z) + P π

θ (z)θ(1 − z − Δ)],

(1.86)

P π
Δ = 2 lnΔ + 2, P π

θ (z) =
2z

1 − z
.

In the usual way the higher iterations of pion kernel can be constructed:

P(n)(z) =

1∫
z

dx

x
P(n−1)(x)P(1)

( z

x

)
, (1.87)

with the property

1∫
0

ds P(n)(z) = 0, n = 1, 2, 3, . . . (1.88)

The corresponding nonsinglet structure function Dπ(z, βπ), βπ = αL/2π

Dπ(z, βπ) = δ(z − 1) + βπP π
(1)(z) +

1
2!

β2
πP π

(2)(z) + . . . (1.89)
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can be written in the smoothed form

Dπ(z, β) = Dπ(z, L) = 2β(1 − z)2β−1(1 + 2β) − 2β + O(β2). (1.90)

The differential cross section of creation of n charged pion or lepton, at high
energy collisions of particles a, b with the total center-of-mass frame (cms) energy√

s, which takes into account RC in LLA due to electromagnetic interaction of
particles in ˇnal state, neglecting the initial state interaction, can be put in the
form:

dσab→l1,l2,...,ln,X

dx1 · · · dxn
=

=

1∫
x1

dy1

y1
· · ·

1∫
xn

dyn

yn
Dl1

(
x1

y1
, β1

)
· · ·Dln

(
xn

yn
, βn

)
dσab→l1,l2,...,ln,X

B

dy1 · · · dyn
,

(1.91)

with βj =
α

2π
ln

s

m2
j

, dσB is the cross section in the Born approximation, xi Å

energy fractions of the created particles.
For the case of decay of a heavy particle H with mass M � mj , we obtain

in the same approximation:

dΓH→l1,l2,...,ln,X

dx1 · · ·dxn
=

=

1∫
x1

dy1

y1
· · ·

1∫
xn

dyn

yn
Dl1

(
x1

y1
, b1

)
· · ·Dln

(
xn

yn
, bn

)
dΓH→l1,l2,...,ln,X

B

dy1 · · · dyn
, (1.92)

with bj =
α

2π
ln

M2
H

m2
j

.

1.7. Radiative Corrections to DVCS Electron Tensor. An interesting
information about the structure of the proton can be found in radiative deep-
inelastic electronÄproton scattering experiments (DIS), analyzing the interference
between the amplitudes of the radiative electron block (BetheÄHeitler amplitude)
and the amplitudes of the radiative proton block. In the literature one can ˇnd
different suggestions for the determination of the relevant contributions to the
differential cross section, concerning in particular leptonÄhadron scattering [27].

In view of the large experimental programme which is underway or foreseen
at present accelerators and of the precision of the data in electronÄproton elastic
and inelastic scattering, the necessity to achieve an adequate precision in the
calculation of RC is a very actual problem.
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The theoretical description at the lowest order is based on the work of
Schwinger [28] and Mo and Tsai [29]. The last one contains an application
to ep radiative scattering to experimental data. A further improvement was given
in the known paper of Yennie, Frautschi, and Suura [30], where a simple formula
was derived to describe the emission of virtual and real (soft) photons with energy
lower than a value Δε, of the order of the experimental resolution. Such pho-
tons cannot be detected in exclusive experiments. In inclusive or semi-inclusive
experiments, the emission of hard, undetected photons should also be taken into
account, as it escapes the detection.

The emission of an additional photon (virtual or real) is associated with a
suppression factor of the order of α = 1/137, the ˇne structure constant. It
corresponds to a small correction to the cross section, which can be estimated to
be 0.5%. However, a precise calculation of RC at higher order of PT is highly
required in modern experiments at high energy. There are at least two reasons
for this. Firstly, due to the emission of photons by light charged leptons, RC
have an enhancement by a factor called ®large logarithm¯,

L = ln
Q2

m2
, (1.93)

where Q is the characteristic momentum or the energy parameter and considerably
exceeds the lepton rest mass m. Therefore the effective expansion parameter
becomes αL. Applying the general theorem about the factorization of soft and
virtual photon contribution [30], one obtains this factor in the form:

W ∼ β exp
[
(2β − 1) ln

Δε

ε

]
= 2β

(
Δε

ε

)2β−1

, (1.94)

where Δε is the energy of the photon emitted by an electron of energy ε.
Secondly, a kinematical effect, called ®returning¯ mechanism, due to hard

photon emission from one of the initial charged particles may become important,
in particular for processes where the cross section increases when the initial
energy decreases.

Both mechanisms were studied in the lowest order of PT. Including higher
orders brings, in general, large computing difˇculties. However, mostly due to
the study of QCD [7, 8] processes, a powerful method was developed based on
scale invariance (or renormalization group). In this frame, the behavior of the
amplitudes and of the cross section can be described in the limit of vanishing lep-
ton mass in the leading ∼ (αL)n and next-to-leading ∼ α(αL)n approximations.
The application of this method to the calculation of RC provides an accuracy at
the thousandth level.

The cross section including RC in LLA has the expression of the convolu-
tion of universal functions (lepton structure functions (LSF)) with a kinematically
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shifted cross section, calculated in the Born approximation. The NLA contribu-
tions are taken into account by a K factor. In this case, for two light leptons in
the initial channel, one can write:

dσ(p1, p2, . . .) =
∫

dx1 dx2D(x1, β)D(x2, β)dσB(x1p1, x2p2, . . .)
(
1 +

α

π
K
)

,

and, for the case of a single light lepton in the initial state:

dσ(p1, . . .) =
∫

dxD(x, β)
x

dσB(xp1, . . .)
(
1 +

α

π
K
)

.

The LSF D(x, β) obeys the evolution equations of a twist-2 operator. For most
QED applications it is sufˇcient to consider only the nonsinglet LSF, which has
been derived in [10].

Unpolarized and polarized DVCS data are considered to provide useful
information for the extraction of the properties of generalized parton distribu-
tions (GPD). When the accuracy of the experiment is better than 10%, the role
of radiative corrections becomes important and a careful study of higher order
contributions is mandatory. QED RC to virtual Compton scattering on proton
(ep → epγ) were calculated in the lowest order in [31], where a detailed study
of one-loop virtual corrections including ˇrst-order soft photon emission contri-
bution was done. Higher order RC were included by exponentiation procedure,
which is valid only for small Δε.

One can write schematically the cross section for the DVCS process as the
sum of three contributions:

dσtot(e−p → e−pγ) = dσBH + dσDVCS + dσodd, (1.95)

where dσBH is the BetheÄHeitler cross section (Fig. 1, a, b), dσDVCS corresponds
to the radiation of the photon from the proton (Fig. 1, c, d), and the last term
corresponds to the interference between these two mechanisms.

Below in the different Subsections we deˇne the kinematics and derive the
formalism for the odd part of the cross section of the radiative e−μ+ scattering
with RC taking into account RC in the LLA, consider the contributions of three

Fig. 1. The BornÄFeynman diagrams for virtual Compton scattering



STRUCTURE FUNCTION APPROACH IN QED FOR HIGH-ENERGY PROCESSES 747

gauge-invariant classes of one-loop virtual corrections, soft and additional hard
photon emissions in collinear kinematics. The relevant generalization for all
orders in LLA in the form of electron SF is performed. Further we extended
our calculation to ep scattering under realistic assumptions. We calculate the
charge-even and charge-odd contributions to the cross section for the reactions
e−p → e−pγ and e+p → e+pγ and the charge asymmetry, as well. The role of
RC in LLA is discussed.

1.7.1. Electron-Muon Radiative Scattering in the Born Approximation. Let
us consider the radiative e−μ+ scattering

e−(p−) + μ(p) → e−(p′−) + μ(p
′
) + γ(k1) (1.96)

as a model for DVCS in electronÄproton radiative scattering, considering the
muon as a structureless proton. The contribution to the differential cross section
of reaction (1.96), which corresponds to the so-called up-down interference of the
amplitudes describing the radiation from the electron and the muon blocks, in the
lowest order of PT, can be written as

(dσ)eμγ
odd =

4(4πα)3

stt1
HμνρE

μνρ
0 dΓ,

(1.97)

dΓ =
d3p′−
2ε′−

d3p′

2ε′
d3k

2ω

δ4(p− + p − p′− − p′ − k1)
(2π)5

,

p′− and ε′− (p− and ε−) are the momentum and the energy of the scattered electron
(muon). The odd DVCS tensors for electron and muon are

Eμνρ
0 (p−, k1, p

′
−) =

1
4
Tr p̂

′

−

(
γν p̂′− + k̂1

χ′
−

γμ − γμ p̂− − k̂1

χ−
γν

)
p̂−γρ,

(1.98)

Hμνρ =
1
4
Tr (p̂′ + M)

(
γρ

p̂ − k̂1 + M

−χ
γν + γν

p̂′ + k̂1 + M

χ′ γρ

)
(p̂ + M)γμ.

The on-mass shell conditions and kinematics invariants are deˇned:

p2
− = p

′2
− = m2, k2

1 = 0, p2 = p′2 = M2,

χ− = 2k1p−, χ′
− = 2k1p

′
−, χ = 2k1p, χ′ = 2k1p

′,

s = 2p−p, s1 = 2p′−p′, t = −Q2 = −2p−p′−,

t1 = q2
1 = 2M2 − 2pp′, u = −2p−p′, u1 = −2p′−p,

s + s1 + t + t1 + u + u1 = 0, (1.99)

where m and M are the electron and the muon (proton) masses. Throughout this
Subsection we will suppose

s ∼ s1 ∼ −t ∼ −t1 ∼ −u ∼ −u1 ∼ χ− ∼ χ′
− ∼ χ ∼ χ′ � m2, (1.100)
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and we will systematically omit terms of the order of m2/s compared to those of
order of unity. This kinematical region corresponds to large-angle ˇnal particle
emission in the lab frame, where the calculation is performed.

In order to make the comparison with the experimental data, we chose the
following set of four independent variables:

Q2 = −t, t1, xBj =
Q2

2pq
, q = p− − p′− and φ, (1.101)

where φ is the azimuthal angle between the plane containing the three-momenta
of the initial and the scattered electrons (p−,p′

−) and the hadronic plane, con-
taining the momentum transfer to the electron, q, and the scattered muon momen-
tum p′ [32].

The phase volume can be rewritten in terms of these variables (see details
in [33]) as

dΓ =
dΦ4

28π4R
, dΦ4 =

1
sxBj

dφ dQ2 dt1 dxBj, R =

[
1 +

4M2x2
Bj

Q2

]1/2

.

(1.102)

The Born cross section (in the lowest order of PT) has the form:

(dσ)eμγ
odd =

α3

2πstt1R
W dΦ4, W = 2HμνρE

μνρ
0 . (1.103)

In the case of massless muon we recover the result from [2]:

WM=0 = (s2 + s2
1 + u2 + u2

1)
[

s

χ−χ
+

s1

χ′
−χ′ +

u

χ′χ−
+

u1

χ′
−χ

]
. (1.104)

Below we consider the radiative corrections to this part of the differential cross
section. We show that when the energy fraction of the scattered electron is not
ˇxed, we obtain in LLA:

dσeμγ
odd

dΦ4
=

α3

2πsQ2t1

1∫
x0(φ)

dx

x
D(x, β)

W (x)
[1 − Π(xt)][1 − Π(t1)]

Ψ(x),

Ψ(x) =
1

R′I

[
1 − sxBj(1 − x)

Q2

]−1

, (1.105)

R′ =

√
1 +

4M2x
′2
Bj

xQ
, I =

∣∣∣∣dc′x
dc′

∣∣∣∣ ,
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where Π(Q2) is the contribution to vacuum polarization from the light lepton
(electron) and W (x) = W (p− → p−x), D(x, β) is the nonsinglet SF of the
electron Dγ (see Eq. (1.24)).

The physical requirements ε′− > 0 and the on-mass shell condition for the
real photon lead to the restrictions:

x > x0(φ), 1 − Q2

sxBj
> 0. (1.106)

The helicity-dependent part of DVCS cross section on proton is

d4Σ
dφ

=
1
2

(
dσ→

dφ
− dσ←

dφ

)
(1.107)

and it is sensitive to the imaginary part of the DVCS amplitude. Let us calculate
the proton Compton amplitude in the structureless approximation, and parame-
terize the nucleon structure by a general factor G.

The relevant part of the matrix element squared can be written as

Δ|M→|2 − Δ|M←|2 ∼ Im (G)[p− × p′
−]k F , (1.108)

with

F = (2t + 4m2)
(

1
χ1χ2

+
1

χ2χ′
1

)
+ 2(s − u1)

(
1

χ1χ2
− 1

χ2χ′
1

)
−

− 2χ2

(
1

χ1χ′
2

+
1

χ′
1χ

′
2

)
+

4(s − M2)
χ1χ2

+
4(u1 − M2)

χ′
1χ

′
2

. (1.109)

1.7.2. One-Loop Virtual Corrections. In LLA only FD, where a single
photon is transferred between the muon and the electron blocks, contribute to
cross section (see Fig. 2). In our considerations we omit FD with two virtual
exchanged photons due to the cancellation of such contributions when one includes
the amplitude corresponding to soft-photon emission between electron and muon
blocks. The details of this ®up-down cancellation¯, which holds in LLA, were

Fig. 2. Some one-loop FD for virtual Compton scattering
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discussed in [34] and refs. therein. The corresponding contribution goes beyond
the limits of accuracy of the present calculation.

In the calculation, only FD drawn in Fig. 2 can be considered. The corre-
sponding part of the total matrix element is denoted as Mγ . The total contribution
to the DVCS tensor can be restored from the interference of these amplitudes
(Fig. 2) with the Born one (Fig. 1, d or 1, c):

Evirt
μνρ = [1 − P (p− ↔ −p′−)]Mγ

μν(Mρ)�. (1.110)

The matrix element describing the electron self-energy (see Fig. 2, c, d) and the
vertex function of the real photon emission by the initial electron have the
form [6]:

α

2π
u(p′−)γμ

[
A1

(
ê − k̂1

ep−
k1p−

)
+ A2k̂1ê

]
u(p−). (1.111)

The contribution of the structure A1 disappears in the limit m → 0, whereas A2

survives, providing the following contribution to the DVCS tensor:

Evirt1
μνρ =

α

π

1
χ−

(
ln

χ−
m2

− 1
2

)
Sp p̂′−γμk̂1γν p̂−γρ. (1.112)

The contributions of the virtual photon emission vertex of type FD (Fig. 2, a) as
well as of the box-type (Fig. 2, b) have the form:

Evirt2
μνρ =

α

4π

∫
d4k

iπ2

{
S1

−χ−
+

S2

(p− − k)2 − m2

}
×

× 1
(k2 − λ2)[(p′− − k)2 − m2][(p− − k1 − k)2 − m2]

, (1.113)

where

S1 =
1
4
Sp p̂′−γλ(p̂′− − k̂)γμ(p̂′− − k̂1 − k̂)γλ(p̂− − k̂1)γν p̂−γρ,

(1.114)

S2 =
1
4
Sp p̂′−γλ(p̂′− − k̂)γμ(p̂′− − k̂1 − k̂)γν(p̂− − k̂)γλp̂−γρ.

Their calculation requires scalar, vector, and tensor (up to rank three) integrals
with three and four denominators, which are listed in [35].

Both Evirt1
μνρ and Evirt2

μνρ do not satisfy gauge invariance. Only the right-hand
side of the expression (1.110) restores the property of gauge invariance.

After applying (1.110), the sum of the vertex contributions excluding FD
with Dirac form factor (see Fig. 3) are:

Evirt
μνρ = Evirt1

μνρ + Evirt2
μνρ = E0

μνρ

α

π

[
−1

4
L2 +

1
2

ln
m2

λ2
(1 − L) +

3
4
L + O(∞)

]
.

(1.115)
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Fig. 3. Dirac and vacuum polarization contri-
bution for one-loop FD

In this expression it was assumed that
all terms proportional to k1ν give
a vanishing contribution, due to the
Lorentz condition e(k1)k1 = 0.

1.7.3. Soft Photon Emission and
Dirac Form Factor Contributions.
Finally let us consider the vertex-type
corrections to the electron scattering
vertex without real photon emission
(see Fig. 3, a) and the contribution of additional soft photon emission with energy
not exceeding Δε.

Both contributions are proportional to the Born DVCS terms:

Esoft+D
μνρ = E0

μνρ

(α

π
Γ1(q2) + δsoft

)
,

(1.116)

δsoft = − 4πα

(2π)3

∫
d3k2

2ω2

(
p−

p−k2
−

p′−
p′−k2

)2∣∣∣∣
ω2�Δε

,

where

α

π
Γ1(q2) =

α

π

[
ln

m

λ
(1 − L) − 1

4
L2 +

3
4
L +

π2

12
− 1

]
,

(1.117)

δsoft =
α

π

[
(L − 1) ln

(Δε)2m2

λ2ε−ε′−
+

1
2
L2 − 1

2
ln2 ε′−

ε−
− π2

3
+ Li2

(
cos2

θ

2

)]
,

where ε− is the energy of the incident electron and θ is electron scattering angle.
Combining all contributions containing large logarithms, we arrive to the

lowest order expansion of the right-hand side, which does not contain the auxiliary
parameter λ. Omitting the terms of order of unity we obtain

Esummed
μνρ = Evirt

μνρ + Esoft+D
μνρ = E0

μνρ

α

π

[
ln

(Δε)2

ε−ε′−
+

3
2

]
(L − 1). (1.118)

1.7.4. Additional Hard-Photon Emission Contribution. The contributions
arising from the emission of an additional hard photon with energy ω2 > Δε can
be written in the form of two terms. The ˇrst one, corresponding to collinear
kinematics, contains a large logarithm of type L and can be calculated with the
help of the quasi-real electron method [4]. It has a form:

α

2π

1−Δ1∫
x0(φ)

dx[P (x)(L1 − 1) + 1 − x]E0
μνρ(p−x, p′−, k1) (1.119)



752 ARBUZOV A.B. ET AL.

for the case of photon emission close to the initial electron, and

α

2π

1∫
y(1+Δ2)

dz

z

[
P

(y

z

)
(L2 − 1) + 1 − y

z

]
E0

μνρ

(
p−,

z

y
p′−, k1

)
(1.120)

for the case of photon emission close to the scattered electron with

Δ1 =
Δε

ε−
, Δ2 =

Δε

ε′−
, P (z) =

1 + z2

1 − z
, (1.121)

with

L1 = ln
ε2
−θ2

0

m2
, L2 = ln

ε′2−θ2
0

m2
. (1.122)

This contribution arises when the photons are emitted in a narrow cone, within
an angle θ0 � 1, along the directions of the initial and the scattered electrons.

The contribution from noncollinear kinematics θ > θ0 cancels the θ0 depen-
dence and does not contain large logarithms. Omitting nonleading terms, we can
write L1 = L2 = L.

By summing up all contributions, we can put the cross section of the radiative
production in the form:

Eμνρ(p−, p′−, k1) =

1∫
0

dxD(x, β)

1∫
y

dz

z
D

(y

z
, β

) E0
μνρ

(
xp−,

z

y
p′−, k1

)
q2(x, z)q2

1

×

× 1
[1 − Π(q2(x, z))][1 − Π(q2

1)]
. (1.123)

Here 1/[1 − Π(q2(x, z)], q2(x, z) = q2xz/y is the polarization vacuum factor;
D(x, β) is deˇned at (1.9).

This expression is in agreement with the result previously obtained for the
whole differential cross section in [36] where the RC to the muon block were also
taken into account. Performing the integration on the scattered electron energy
fraction y and using the normalization property of the LSF (1.11), we recover the
expression (1.105).

The differential cross section for reaction (1.96) in LLA can therefore be
expressed in terms of the shifted Born cross section as [36]:

dσe±μ→e±μγ(p±, . . .) =
∫

dxD(x, β)
[1 − Π(xt)][1 − Π(t1)]

dσe±μ→e±μγ
B (xp±, . . .),

(1.124)
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with the following expression:

dσe±μ→e±μγ
B (p±, . . .) =

27π3α3

stt1

(
s2 + s2

1 + u2 + u2
1

)
×

×
[
− t1

χ−χ′
−

− t

χχ′ ∓
(

u

χ−χ′ +
u1

χ′
−χ

+
s

χ−χ
+

s1

χ′
−χ′

)]
dΓ (1.125)

for the nonshifted cross section. The explicit expression for the shifted cross sec-
tion is derived in a straightforward way, by replacement of the shifted kinematics.

1.7.5. Numerical Calculation. Application to ep DVCS. Let us consider the
case of unpolarized electron and unpolarized proton target and give an estimation
of the RC to the cross section calculated in the Born approximation. We consider,
in particular, the calculation for reaction (1.96) as a model for e±+p → e±+p+γ,
replacing the muon mass by the proton one.

The four-fold differential cross section, d4σ(φ), has been calculated according
to Eqs. (1.124), (1.125) for kinematical conditions as in [47]. The results for
electron (plot a) and positron (plot b) scattering are shown in Fig. 4 before (solid
line) and after (dashed line) applying radiative corrections. One can see that at
φ = π the cross section for electrons (positrons) has a minimum (maximum) and
that RC induce a φ-dependent relative correction.

The calculated relative effect may be applied to the experimental data. In [47],
RC were calculated for e− + p → e− + p + γ following [31] and applied to the

Fig. 4. a) Azimuthal distributions for e−p → e−pγ (i.e., e−μ → e−μγ with Mμ =1 GeV)
for the kinematics corresponding to [47]: Q2 = 2.3 GeV2, −t1 = 0.28 GeV2, xBj = 0.36
(solid line). The result after applying radiative correction is also shown (dashed line).
b) The same for positron scattering
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data with the help of a Monte Carlo simulation. This procedure resulted in a
correction of the yield by a factor F = 0.91±0.02 which is constant with respect
to φ, convoluted with Δε-dependent corrections, which were included in a Monte
Carlo simulation together with acceptance corrections. The overall effect was to
increase the experimental yield of about 20%, roughly constant with φ.

In case of e−p, LLA radiative corrections induce, on the one side, a lowering
of the cross section, with respect to the calculated Born cross section, and on the
other side, a change of the φ dependence. This strong φ dependence is an effect
of hard photon emission. In an exclusive measurements, where the four momenta
of all the particles involved are precisely determined, the importance of this effect
could be quantitatively determined.

Let now consider the charge asymmetry:

Ach =
dσe−μ→e−μγ − dσe+μ→e+μγ

dσe−μ→e−μγ + dσe+μ→e+μγ
. (1.126)

We can consider the calculation of Ach as a model for radiative ep scattering
(after replacing the muon mass with the proton mass). In the Born and LLA
approximation Ach is shown in Fig. 5, a, and the relative difference in Fig. 5, b.

The charge asymmetry is large, and may exceed 0.5 for in-plane kinematics.
Radiative corrections are of the order of 5% with a smooth φ dependence. This
quantity is especially interesting as it is in principle measurable at electronÄ
positron rings with ˇxed target.

The helicity-dependent cross section Eq. (1.107) and the radiative corrections,
calculated in LLA as a function of φ, is shown in Fig. 6. As expected, we obtain

Fig. 5. a) Azimuthal angle dependence of the charge asymmetry (Eq. (1.125)) in the Born
(solid line) and LLA (dashed line) approximation. b) The relative value in per cent. The
same kinematics as in Fig. 4



STRUCTURE FUNCTION APPROACH IN QED FOR HIGH-ENERGY PROCESSES 755

Fig. 6. a) Azimuthal dependence of the helicity asymmetry: Born calculation (solid line),
radiative corrected (dashed line). b) Relative value of the corrections in per cent (bottom).
The same kinematics as in Fig. 4

an antisymmetric function, that can be expanded in harmonics by sin φ, sin 2φ . . .,
the coefˇcients of which have physical meaning of all order twist contributions.

The radiative corrections to the helicity-dependent cross section are of the
order of several per cent, with a small modulation in φ.

Let us summarize this Subsection. We calculated radiative corrections to VCS
in the high-energy limit. The emission of hard photon in collinear kinematics is
also included. The sum of all contributions (including soft photon emission) does
not depend neither on the ˇctitious photon mass λ or on the soft photon energy
Δε, and it is consistent with the renormalization group prediction.

We applied the calculation, which is rigorous for the μ case, to proton
scattering, after correcting for the mass. The proton structure can be taken into
account in terms of electromagnetic form factors, which are function of t1 and are
not in	uenced by the conversion procedure to the shifted kinematics. However,
let us note that taking into account nucleon form factors may violate the current
conservation condition [48]. A self-consistent procedure requires an ad hoc
modiˇcation of the nucleon propagator. This can be done including the excited
states of the nucleon, such as the Δ resonance [49, 50]. It appears that elastic
and inelastic processes partly compensate the effects of the strong interaction.
Based on arguments of analyticity and unitarity [1, 50], one can expect that,
taking into account the complete set of inelastic states in the intermediate state
of the virtual Compton amplitude, an almost complete cancellation takes place,
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up to the contribution of structureless proton. This is the reason for which the
approximation of structureless proton can be considered realistic. Moreover, if
one builds the relevant ratios, such as Ach, the effect of form factors is essentially
canceled.

The effect of hard photon emission is considerable, and the ®returning mecha-
nism¯ which is essentially expressed in the form of convolution of the shifted Born
cross section with the electron LSF, may become important. At our knowledge,
such mechanism was not considered in the previous literature for the reaction
under consideration here.

Comparing with the scheme adopted to correct the experimental data (i.e.,
taking into account the ˇrst order RC, partly calculated with the help of a Monte
Carlo and partly applying a constant factor to the ˇnal results), the present ap-
proach suggests a φ-dependent correction, mostly due to hard photon emission.
The importance of this effect could be tested in a truly exclusive experiment and
it may affect the extraction of the physical information from the Fourier analysis
of the φ dependence of the relevant observables.

1.8. Deep Inelastic Scattering (DIS) in the Limit y → 1. There is a believe
that the kinematic region 1 − y � 1 in DIS experiments cannot be described
correctly due to huge RC which exceed the lowest order by more than 100% [44]

y =
2p1q

2p1P
, q = p1 − p2, (1.127)

here p1, p2 are 4-momenta of initial and ˇnal electrons; P is 4-momentum of
proton.

This fact is the reason why the experimental results at y > 0.8 region as a
rule are excluded from data processing. We argue here [51] that for the correct
description of high y region RC, all orders of PT must be taken into account.

For the solution of this task the renormalization group approach is modiˇed
in such a way to include Sudakov-type suppression form factor. We will consider
here the experimental setup with no emission of hard photons along an initial
lepton.

For this aim let us consider two lowest order RC of PT. The emission of
additional soft pions and soft pairs of the same order of energy as the one ε2 of
a scattered lepton do not exceeding Δε � ε becomes relevant:

Δε ∼ ε2 = ε(1 − y) � ε1 = ε. (1.128)

The cross section with RC can be put in the form:

dσ

dσB
= 1 + δ, δ =

α

π
Δ(1) +

(α

π

)2

Δ(2) + . . . , (1.129)
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while the lowest order RC are

Δ(1) = (lt − 1)
(

ln
Δε

ε1
+ ln

Δε

ε2

)
+

3
2
lt −

1
2

ln2(1 − y)−

− π2

6
− 2 + Li2

(
1 + c

2

)
, (1.130)

with

−t = 2ε2(1 − y)(1 − c) � m2
e, lt = ln

(
−t

m2
e

)
, c = cos θ, (1.131)

where θ = p̂1p2 and ε2 are the scattering angle and the energy of the scattered
lepton in the laboratory frame. The mentioned above reasons allow us to put:

ln
Δε

ε1
+ ln

Δε

ε2
= ln(1 − y). (1.132)

As a result, we have some deviation from the well-known Δ-part of evolution
equation kernel (1.4). In our approach θ-part does not work, Δ = 1 − y (see the
term containing lt in (1.130)):

P
(1)
Δ = 2 lnΔ +

3
2
→

(
2 ln(1 − y) +

3
2

)
− ln(1 − y). (1.133)

At the second order of PT the emission of two soft photons and soft pair
(with total energy not exceeding Δε) as well as a single-photon emission with
1-loop RC and, ˇnally the 2-loop virtual corrections must be taken into account:
Δ(2) = δγγ + δsp. We will not consider here the contribution from emission of
real and virtual pairs. It can be taken into account by replacing the coupling
constant by the moving one.

Contributions to RC from virtual and real photons emission have the form:

δγγ =
1
2
(Δ(1))2 − π2

3
(lt − 1)2 +

3
2
lt

(
2 +

π2

6
− Li2

(
1 + c

2

))
+ O(1).

(1.134)

This result agrees with RG predictions [10] at y = 0 and, in addition, contains the
terms of type ln2(1− y), lt ln(1− y), which become relevant in the limit y → 1.

Let us discuss this points more closely. We suppose that there is no hard
photon emission by the initial lepton which can provide the ®returning to reso-
nance¯ mechanism. Really this mechanism for the case ε2/ε = 1 − y � 1 will
correspond to very small transversal momentum squared Q2

1 ∼ ε2(1− y)2 � Q2.
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Let us now average DIS cross section over a small interval Q̃2 ∼ Q2 intro-
ducing an additional integration in the right part of formula (1.63):∫

dQ̃2δ

((
z1xQ2

z2

)
− Q̃2

)
, x = 1 −

(
Δε

ε

)
. (1.135)

Small variations of transfer momentum arise from RC emission of soft real and
virtual partons (photons and leptons). Taking into account that the hard cross
section in this region is 	at, we obtain for the ratio of DIS cross sections with
and without RC:

dσ

dσB
= F (x, βt) =

∫ ∫
D(z1, βt)D(z2, βt)dz1 dz2 θ(xz1 − z2),

(1.136)
βt =

α

2π
(lt − 1).

Using the differential evolution equations for nonsinglet structure functions D(x, βt)

∂D

∂lt
=

α(lt)
2π

1∫
x

dy

y
P

(
x

y

)
D(y, lt), D(y, 0) = δ(1 − y),

one can obtain a differential equation for F (x, βt)

∂F

∂lt
=

α(lt)
π

1∫
x

dz P
(x

z

)
F (z, βt), F (x, 0) = 1. (1.137)

This equation was solved in [10]:

F (x, βt) =
(

ln
1
x

)2χ exp[χ(3/2 − 2CE)]
Γ(1 + 2χ)

, χ = −3 ln
(
1 − α

3π
lt

)
. (1.138)

Terms containing ln(1− y) are not taken into account in the evolution procedure.
We argue here that there is a reason to take them into account as a general factor
which can be obtained from the known factor of Yienie, Frautchi, and Suura [30],
with replacement of the logarithm of the ratio of the photon to the lepton mass
by ln Δ, Δ = Δε/ε in accordance with the BlochÄNordsick theorem.

Replacing ln(1/x) = 1 − y we obtain for DIS cross section:

dσ

dσB

∣∣∣∣
y→1

= R
(
1 +

α

π
K
)

,
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R =
1

(1 − Π(Q2))2
(1 − y)2χ

Γ(1 + 2χ)
exp

(
(3/2 − 2CE)χ−

− α

2π
(ln2(1 − y) + 2lt ln(1 − y))

)
, (1.139)

|K| ∼ 1, χ = −3 ln
(
1 − α

3π
lt

)
=

α

π
lt +

α2

6π2
l2t + . . . ,

Fig. 7. Ratio R = dσ/dσB for x = 0.1 (solid
line), x = 0.01 (dashed line) and x = 0.001
(dotted line) versus y for 0.7 � y � 0.999 at
HERMES kinematic condition

where CE = 0.577 is the Euler con-
stant and dσB is the DIS cross section
in the Born approximation. One can
be convinced that Eq. (1.139) agrees
with the results of the lowest order
calculation (1.133), (1.134) up to non-
leading terms, which are parameter-
ized in the form of K factor. Equa-
tion (1.139) provides us for |K| ∼ 1
with the accuracy on the level of 1%.
The behavior of quantity R(x, y) for
different values of the Bjorken para-
meter x at HERMES kinematic con-
ditions is illustrated in Fig. 7.

1.9. 2γ and 3γ Annihilation of
High-Energy e+e− Beams. In this
Subsection we study the process of
Compton scattering, namely the anni-
hilation of electron and positron in 2γ
(3γ), in the high-energy region, which
is under consideration here:

e−(p−) + e+(p+) → γ(k1) + γ(k2), s = (p− + p+)2 � m2
e = m2

(1.140)
e−(p−) + e+(p+) → γ(k1) + γ(k2) + γ(k3)

including RC. This process was ˇrst considered in the well-known papers by
L. Brown and R. Feynman, and H.Harris and L. Brown in the early 1950s and
then revised in 1973 by H.Berends and R.Gastmans [37Ä39].

Nowadays these processes are used at colliders, as normalization processes
which provide an independent way to measure the luminosity of beams. The
large-angle emission of ˇnal photons provides a clean signal for an independent
method for measuring the luminosity. The precise knowledge of this process
must also be taken into account when estimating the background in channels with
neutral meson production.
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The differential cross section of two-gamma production in the Born approx-
imation has the form

dσB

dO1
=

α2

sv

[
1 + v2c2

1 − v2c2
+ 2v2(1 − v2)

1 − c2

(1 − v2c2)2

]
, (1.141)

with v =
√

1 − (4m2/s), c = cos θ and θ being the polar angle between the
initial electron and photon (with momentum k1 in the center-of-mass reference
frame, which is implied below). In the high-energy limit for large-angle photon
emission we can put v = 1 in (1.141) and obtain

dσB

dO1
=

α2(1 + c2)
s(1 − c2)

.

The conservation law, on-mass shell conditions and kinematic invariants are de-
ˇned for the eē → γγ process as

p+ + p− = k1 + k2, p2
+ = p2

− = m2, k2
1 = k2

2 = 0,
(1.142)

χ1,2 = 2p−ki, χ1 + χ2 = s.

The corresponding ®total¯ cross section estimated for the region χ1 ∼ χ2 ∼ s is
of the order of πα2/s, which is rather large compared to the processes involving
weak and strong interactions. Their knowledge with RC of higher order is urgent
since these processes of QED nature provide large background in the studies of
interactions of different nature than QED.

The beam calibration based on annihilation processes has an essential advan-
tage compared to the methods based on Bhabha scattering and annihilation into
a pair of charged particles eē → μμ̄, τ τ̄ . Indeed, the process of 2γ annihilation
at large angles is of the same order of magnitude as Bhabha scattering, but does
not encounter the problems related to ˇnal state interactions, taking into account
the vacuum polarization.

The theorem on factorization [8, 11] of hard and soft momenta in the cross
section of exclusive processes permits one to include RC in the leading logarithmic
approximation

α

π
� 1,

α

π
L ∼ 1, L = log

s

m2
, (1.143)

in all orders of perturbation theory in terms of structure functions of electron and
positron D(x, β). The differential cross section of annihilation in two quanta can
be written as

dσ(p−, p+) =

1∫
0

dxD(x, β)

1∫
0

dy D(y, β)dσB(xp−, yp+)
(
1 +

α

π
K2

)
,

(1.144)
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with the ®shifted¯ Born cross section of the form:

dσB(xp−, yp+) =
2α2

sxy

x2(1 − c)2 + y2(1 + c)2

[x(1 − c) + y(1 + c)]2
dO1. (1.145)

The main attention should be devoted to calculation of K factor K = 1 +
(α/π)K2; its knowledge permits one to increase the accuracy of theoretical de-
scription up to 10−3 level.

The list of all relevant cross sections can be ˇnd in Subsec. 1.2.
1.9.1. Virtual, Soft Real, and Hard Collinear Photon Emission Contribution.

Using the known results of calculation of virtual corrections [37Ä39], we obtain

dσvirt

dσB
= δV =

α

π

[
−1

2
L2 − (L − 1) ln

m2

λ2
+

3
2
(L − 1) + KV

]
. (1.146)

The emission of an additional soft photon which escapes detection has an
energy which does not exceed some small quantity. The contribution for ΔE �
E =

√
s/2 is

dσsoft

dσB
= δS = − α

4π2

∫
d3k

ω

(
p−
p−k

− p+

p+k

)2
∣∣∣∣∣
ω<ΔE

=

=
α

π

[
−1

2
L2 + L + 2(L − 1) ln

(
2ΔE

λ

)
+ KS

]
, (1.147)

with KS = −π2/3. The total sum of virtual and real soft-photon emission has
the form:

dσvirt

dσB
+

dσsoft

dσB
=

α

π

[
(L − 1)

[
2 ln

ΔE

E
+

3
2

]
+ KSV

]
, (1.148)

with

KSV =
π2

3
+

1
4(1 + c2)

[
(5 − 6c + c2) ln

1 + c

2
+ (5 + 2c + c2) ln2 1 + c

2
+

+(5 + 6c + c2) ln
1 − c

2
+ (5 − 2c + c2) ln2 1 − c

2

]
. (1.149)

In Fig. 8 we show the dependence of KSV(c). The contribution from emission
of a hard photon in collinear kinematics can be obtained using the method of
quasi-real electrons [4, 5]. For this purpose we introduce a numerically small
angle θ0 and consider the emission of an additional hard photon inside the cones
θ < θ0 along the electron and positron direction of motion. The chiral amplitude
method cannot be applied to this kinematical region since chirality is not a good
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Fig. 8. Angular dependence of KSV(c) (see (1.149))

quantum number for collinear kinematics. We distinguish emission along the
initial electron θ < θ0, where θ is the angle between 3-momenta of electron (we
choose this direction as the z axis), and photon with energy ω

dσcoll
e− (p−, p+) =

α

2π

1−ΔE
E∫

0

dx

[
1 + x2

1 − x
(Lθ − 1) + 1 − x

]
dσB(xp−, p+),

(1.150)
x = 1 − ω

E
.

The emission along the positron, π − θ < θ0:

dσcoll
e+ (p−, p+) =

α

2π

1−ΔE
E∫

0

dx

[
1 + x2

1 − x
(Lθ − 1) + 1 − x

]
dσB(p−, xp+),

(1.151)

with Lθ = L+ln(θ0/2)2, θ0 � 1 and the expressions for the shifted cross sections
are given in (1.145).

1.9.2. Hard-Photon Emission Correction. Form of Khard. The contribution
of the kinematics when all three hard photons are emitted in the so-called non-
collinear kinematics (all three photons are emitted outside cones θ < θ0, π−θ �
θ0) can be obtained using the chiral amplitude method [2,3]

dσ3γ(p+, p−) =
16α3

3π2s
R dΦ, (1.152)
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with∗

R =
ν2
3(1 + c2

3)
ν2
1ν2

2 (1 − c2
1)(1 − c2

2)
+

ν2
2(1 + c2

2)
ν2
1ν2

3 (1 − c2
1)(1 − c2

3)
+

ν2
1(1 + c2

1)
ν2
3ν2

2 (1 − c2
3)(1 − c2

2)
(1.153)

and

dΦ =
1
s

d3q1

2ω1

d3q2

2ω2

d3q3

2ω3
δ4(p− + p+ − k1 − k2 − k3) =

=
(1 − ν1)ν1dν1

16(2 − ν1(1 − c13))2
dO1 dO3, c13 = 1 − 2(1 − ν2)

ν1ν3
, (1.154)

c1, c2, c3 are the cosines of the photon emission angles to the initial electron
3-momentum and νi = ωi/E are the fractions of energy of ˇnal photons.

It can be seen that the dependence on the auxiliary parameters (ΔE/E) and
θ0 will be canceled in the expression of Khard deˇned as

α

π
dσB(p−, p+)Khard =

∫
dσ3γ(p+, p−)ΘdΦ+

+
α

2π

1−ΔE
E∫

0

dx

1 − x

[
(1 + x2) ln

θ2
0

4
+ (1 − x)2

]
[dσ2γ(xp−, p+)+dσ2γ(p−, xp+)].

(1.155)

Here the symbol Θ indicates the limits on the manifold of integration variable
(additional hard photon) dΦ. Such limitations are: all three energy fractions
should be larger than ΔE/E (hardness condition). Moreover, conservation laws
restrict k1 + k2 + k3 = 0. In particular,

c1ν1 + c2ν2 + c3ν3 = 0, ν1 + ν2 + ν3 = 2,
ΔE

E
< νi < 1. (1.156)

Terms containing ®large logarithm¯ L can be written in the form

β

⎡⎣ 1∫
0

dxP (1)(x) dσ2γ
B (xp−, p+) +

1∫
0

dxP (1)(x) dσ2γ
B (p−, xp+)

⎤⎦ . (1.157)

The parameter x can be interpreted as the energy fraction of electron consid-
ered as a parton in the initial electron. In such a way, one can obtain the general
form of cross section in the form of cross section of DrellÄYan process given
above (see (1.144)). The total value of K2 is K2 = KVS + Khard.

∗In paper [41] in the right-hand sides of 4.3 and 4.6, the factors 1/3! and 1/2 are missing.
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1.9.3. 3γ Annihilation Channel. For completeness, we also give the cross
section of 3γ annihilation. In [42], it was shown that, in the leading logarith-
mical approximation, it has the form (1.144) with replacement dσB by dσ3γ

(see (1.155)). The value of K factor (K = K3) is a complicated function of
kinematical invariants. When calculating RC to the process eē → 3γ one has to
consider two kinds of 1-loop FD. One of them describes the interaction of the
initial particles eē. The relevant integrals including pentagon are presented in
Subsec. 2.1. Another type contains the LBL block of conversion of virtual photon
to 3 real ones.

A realistic estimation can be obtained by using the averaging procedure:
replacing the ratio of amplitudes of nonleading contributions by an amplitude of
leading contributions expressed in terms of cross sections. The cross section of
3γ annihilation through the light-by-light mechanism turns out to be dominant
among nonleading terms. This contribution does not contain large logarithms L.

This cross section was calculated in [43]

σe+e−→3γ
lbl (s) =

α5

18π2s
N,

(1.158)

N = 200ξ5 − 8π2ξ3 +
7
15

π4 − 128ξ3 +
41
3

π2 − 124 ≈ 15.

In [40], the so-called ®total¯ cross section of the process e+e− → 3γ in the
lowest order of PT was obtained. The detection energy threshold of ˇnal photons
2ωi/E = νi > η. Moreover it was implied ψ0, (cosψ0 = z ∼ 1) is the minimal
angle between the plane of the photons momentum and beam axis was ˇxed. It
has the form:

σtot(z) =
2α3

s
[φ1(z) ln η + φ2(z)]. (1.159)

The explicit form of the functions φ1(z), φ2(z) are:

φ1(z) = −2 ln(1 − z2) − 3
2

ln2(1 − z2) − 2Li2(z2), (1.160)

φ2(z) = −1
2

ln2(1 − z2) +
1
6
π2

(
2z2

1 − z2
− ln(1 − z2)

)
+

1
6

ln3(1 − z2)−

−
(

2
1 − z2

+ 2 ln
z2

1 − z2

)
Li2(z2) +

3
2

z2∫
0

dx

x
ln2(1 − x)−

− 2

z2∫
0

dx

x
ln x ln(1 − x). (1.161)
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Keeping in mind the smooth behavior of the nonleading contributions in the
kinematic region of large-angle photon emission, we estimate the K3 using the
®total cross section® approximation:

1 +
α

π
K3 ≈ 1 + 2

√
σlbl

σtot
, K3 =

1
3

√
N

φ1(z) ln η + φ2(z)
. (1.162)

Numerical estimation for z = 0.3 and η = 0.05 leads to 1 + (α/π)K3 ≈ 1.01.
1.10. Initial State Radiative Corrections to the Annihilation of Electron and

Positron to Hadrons Process. Cancellation of θ0 Dependence. Born matrix ele-
ment of annihilation of electron and positron to hadrons have the form:

MB =
4πα

s
Jμ

Q(q)JHμ(q), s = (p+ + p−)2 = q2, (1.163)

with p+, p− Å the 4-momenta of positron and electron, and the information on
the hadronic state is suppressed. The conserved QED current has the form:

Jμ
Q = v̄(p+)γμu(p−), Jμ

Qqμ = 0.

Using the conservation of the hadronic current the relation can be written as∫
dΓHJHμJ∗

Hν =
1
3

(
gμν − qμqν

q2

)∫
dΓH

∑
λ

|JHλ|2, (1.164)

where the integration over the whole phase volume ΓH of hadrons is implied.
For the cross section in the Born approximation we obtain

dσB(s) =
8π2α2

3s2

∫
dΓH(−|JHμ|2). (1.165)

We note that both currents are the space-like 4-vectors so −|JHμ|2 > 0.
Taking into account the radiative corrections due to emission of virtual and

real soft photons by the initial leptons results as

σSV

σB
= 1 +

2α

π

[
(L − 1)

(
ln

Δε

ε
+

3
4

)
+

1
2
K

]
, K =

1
3
π2 − 1

2
, (1.166)

where Δε � ε is the maximal energy of the soft photon in the cms frame, s = 4ε2

and L = ln s/m2.
Let us consider now the emission of a hard-photon process. We will suppose

that the energy of photon exceeds Δε. It is convenient to use the ®quasi-real
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electrons¯ method [4, 5]. It takes into account the emission of real hard photon
in a narrow cone along the directions of electron and positron:

σ<(s) =
2α

π

1∫
Δ

dx

x

[(
1 − x +

x2

2

)(
L − 1 + ln

θ2
0

4

)
+

x2

2

]
σB(s(1 − x)),

(1.167)
Δ =

Δε

ε
,

with θ Å the emission angle of photon measured from the initial electron direction
of motion. The matrix element of photon emission at large angles θ > θ0, π−θ >
θ0 is

Mγ =
(4πα)3/2

q2
1

Jγ
Q,μJμ

H , (1.168)

with q1 = q − k and

Jγ
Q,μ = −v̄(p+)

[
γμ

p̂− − k̂

χ−
ê(k) + ê(k)

−p̂+ + k̂

χ+

]
u(p−), (1.169)

with χ± = 2kp± = (s/2)x(1 ± c), c = cos θ and polarization 4-vector of the
photon is e(k). Summation on the spin states of the module squared of QED
current leads to

∑
|Jγ

Q,μ|2 = −8
[
χ+

χ−
+

χ−
χ+

2ss1

χ+χ−

]
, (1.170)

with s1 = q2
1 = s(1 − x), x = ω/ε. Further integration on θ is straightforward

with the result:

σ> =
2α

π

1∫
Δ

dx

x
σ(s(1 − x))

[(
1 − x +

x2

2

)
ln

4
θ2
0

− x2

2

]
. (1.171)

It can be seen that the auxiliary parameter θ0 drops out from the sum σγ =
σ< + σ>. The result of the total correction is

σ(s) =

1∫
0

dx

1∫
0

dyDNS(x, β)DNS(y, β)σB(sxy)
(
1 +

α

π
K
)

. (1.172)
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1.11. Radiative Corrections to Muon Decay in Leading and Next-to-Leading
Approximation. Electron Spectrum. The lowest order RC to the muon weak
decay width were calculated about ˇfty years ago [45]. The result for the electron
spectrum in muon decay including RC was obtained in the form

dW (1)(x)
dx

=
dWB(x)

dx

[
1 +

α

2π
h(x)

]
, x =

Ee

Emax
≈ Ee

M
,

(1.173)

h(x) = A(x) + LB(x), L = ln
M2

m2
,

with the spectrum in the Born approximation

dWB(x)
dx

= 2WBx2(3 − 2x), WB =
G2M5

192π3
. (1.174)

Here M is the muon mass; m is the electron mass; L is the so-called ®large
logarithm¯ (L ≈ 12). The result of the lowest order RC is presented in the
expression h(x), or in the functions A(x) and B(x) [9]

A(x) = 4Li2(x)−2π2

3
−4+2 [3 ln(1 − x) − 2 lnx + 1] lnx−2

1 + x

x
ln(1−x)+

+
(1 − x)(5 + 17x − 16x2)

3x2(3 − 2x)
ln x +

(1 − x)(−22x + 34x2)
3x2(3 − 2x)

, (1.175)

B(x) = 3 + 4 ln
1 − x

x
+

(1 − x)(5 + 17x − 34x2)
3x2(3 − 2x)

.

One must remark that the result of the calculations does not suffer from the ultra-
violet and the infrared divergences. Besides, it satisˇes KinoshitaÄLeeÄNauenberg
(KLN) theorem [46] about the cancellation of mass singularities, namely the total
width is ˇnite in the limit of zero electron mass∫

dx,
dWB(x)

dx
B(x) = 0, (1.176)

besides, ∫
dxx2(3 − 2x)h(x) =

25
8

− π2

2
. (1.177)

The mechanism of the realization of KLN theorem can be understand from
the positions of parton interpretation of QED. Really, one can be convinced in
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the validity of the relation [52]

1
2
x2(3 − 2x)h(x) = (L − 1)

1∫
x

dy

y
y2(3 − 2y)P

(
x

y

)
+ K(x),

(1.178)

K(x) =
1
2
x2(3 − 2x)(A(x) + B(x)),

where P (z) is the kernel (1.4) of the evolution equation of twist two operators.

Using the property
1∫
0

dxP (x) = 0, one can validate Eq. (1.176):

WB

1∫
0

dxx2(3 − 2x)B(x) =

1∫
0

dx

1∫
x

dy

y

dWB(y)
dy

P

(
x

y

)
=

=

1∫
0

dy
dWB(y)

dy

y∫
0

dx

y
P

(
x

y

)
= 0.

Considering the process in the Born approximation as a ®hard¯ process and ap-
plying Collins factorization theorem about the contributions of the short and long
distances, one can generalize the lowest order result to include all terms of the
sort (αL/π)n (LLA) as well as the terms of the sort α(αL/π)n (NLO) in the form:

dW (x)
dx

=

1∫
x

dy

y

dWB(y)
dy

D

(
x

y
, η

)(
1 +

α

π
K(y)

)
, η =

α

2π
(L − 1), (1.179)

and D(z, η) is given in (1.10),

K(y) = y2(3 − 2y)
[
2Li2(y) − π2

3
− 1

2
+ [3 ln(1 − y) − 2 ln y + 1] ln y−

−1 + y

y
ln(1 − y) + 2 ln

1 − y

y

]
+

+
1
6
(1 − y)

[
(5 + 17y − 16y2) ln y + 5(1 − y)

]
. (1.180)

The total width as well will not contain ®large logarithms¯ due to the property
of D(x, η) (see Subsec. 1.11). With the K factor in the lowest order of PT we
obtain (compare with (1.177))

W = WB

[
1 − α

2π

[
π2 − 25

4

]]
.

In the paper [53] the correction of order α2 was calculated.
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One can ˇnd useful relation

1∫
x

dy

y2
D

(
x

y
, η

)
Ψ(y) =

1∫
x

dy

y2
D

(
x

y
, η

)
[Ψ(y) − Ψ(x)] +

+
1
x

Ψ(x)

1∫
x

dz D(z, η) (1.181)

with

Ψ(y) = y3(3 − 2y)
(
1 +

α

π
K(y)

)
.

For the comparison we give in Fig. 9 the numerical values of the quantity
96π3

G2M5

(
dW (1)(x)

dx
− dWB(x)

dx

)
π

α
=

1
2
x2(3 − 2x)h(x) Å the dashed curve

(RC in the lowest order of PT, see (1.173)), and the quantity
96π3

G2M5

(
dW (x)

dx
−

dWB(x)
dx

)
π

α
Å the solid curve, calculated in LLA and NLO approximations at

all orders of PT (see (1.179)). One can see that the spectrum contrary to the
result of the lowest order of PT is well deˇned in the whole region of x including
x → 0 and x → 1. A similar result was obtained in [54]. Explicit expressions
for the NLO terms of the two-loop level spectra as well as the creation of
e+e− pairs in μ decay was considered in [55].

Fig. 9. The deviation of the electron spectrum in muon decay from the spectrum in the
Born approximation: for the lowest order (dashed line), for all orders (solid line) of
perturbation theory
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1.12. Processes eē → eē and eē → μμ̄ in the Region of the Narrow Res-
onances. In the energy range of initial particles close to the mass of narrow
resonance, the differential cross sections of the simplest QED processes are mod-
iˇed. The relevant amplitude besides the usual Born level form contains the
additional terms taking into account the presence of resonance state in the anni-
hilation channel.

For the case of elastic electronÄpositron scattering we obtain for the differ-
ential cross section in the lowest order approximation:

dσeē→eē
B (Δ)
dOe

=
α2

M2

[
1 + c4

1

2s4
1

+
1
2
(c4

1 + s4
1)

∣∣∣∣1 +
(12π)2B2

eγ2

Δ + iγ

∣∣∣∣2 −
− c4

1

s2
1

Re
[
1 +

(12π)2B2
eγ2

Δ + iγ

]]
. (1.182)

For the case of the process of muon pair production we have

dσeē→μμ̄
B (Δ)

dOe
=

α2

2M2

[
1
2
(c4

1 + s4
1)

∣∣∣∣1 +
(12π)2BeBμγ2

Δ + iγ

∣∣∣∣2
]

, (1.183)

where Be,μ = Γe,μ/Γ Å the branching ratio of the relevant mode of resonance de-
cay; γ is the total width of the resonance, γ = Γ/M , c1, s1 = cos (θ/2), sin (θ/2);
θ is the scattering angle (center of mass of the initial beam is implied) between the
negative charged initial and the scattered particles, and ˇnally Δ = (s−M2)/M2,
M is the resonance mass. We imply Δ � 1.

For the case when the energies of ˇnal particles are not speciˇed (we imply
the measurement of only the scattering angle) and beside the experiment is charge-
blind (charge-odd effects are neglected) only emission of virtual and soft real
photons by the initial leptons is relevant. Keeping in mind the relation

1∫
x

dy

y
D(y, β)D

(
x

y
, β

)
= D(x, 2β) (1.184)

and the approximate relation

D(x, 2β) = 4β

[
(1 − x)4β−1(1 + 3β) − 1

2
(1 + x)

]
+ O(β2), (1.185)

we can write down the cross section in the form

dσ

dO
=

1∫
0

dxD(x, 2β)
dσB(Δ − (1 − x))

dO
. (1.186)
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Fig. 10. The dependence of value Φ(θ, Δ) =
( s

α2

) dσeē→μμ̄

dΩ
as a function of Δ =

s − M2
Z

s
= 2

(
2E − MZ

MZ

)
in the range |2E − MZ | < 5ΓZ . The angle θ is ˇxed

The distributions on Δ for the quantity (s/α2)dσeē→μμ̄/dO are presented for
several values of the scattering angles for both processes considered above (see
Fig. 10) for the energy range close to Z-boson mass.

2. TABLE OF INTEGRALS. ONE-LOOP FEYNMAN INTEGRALS

2.1. Integrals for the Process e+e− → 3γ. Consider now the integrals
which appear in calculation of one-loop corrections to the process

e+(p+) + e−(p−) → γ(k1) + γ(k2) + γ(k3), (2.1)

with the kinematics deˇned as

s = (p− + p+)2, χi = 2p−ki, χ′
i = 2p+k′

i,
(2.2)

mij = 2kikj , p2
± = m2, k2

i = 0, i = 1, 2, 3.

One-loop Feynman integrals contain the denominators:

(0) = k2 − λ2, (1) = (p− − k)2 − m2, (2) = (−p+ − k)2 − m2,
(2.3)

(3) = (p− − k1 − k)2 − m2, (4) = (−p+ + k3 − k)2 − m2.

To calculate the 5-denominator Feynman integral (pentagon) we use the method
developed in paper [56].
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The answer reads as

w2J01234 = J1234N1234 + J0234N0234 + J0134N0134+
+ J0123N0123 + J0124N0124, (2.4)

with

N1234 = 2Δ4 − w

4∑
1

vi, N0234 = wv1, N0134 = wv2,

(2.5)

N0124 = wv3, N0123 = wv4, w =
4∑
1

riwi, Δ4 = ep1p2p3p4ep1p2p3p4

and we use the notation eμp1p2p3 = eμβγδp1βp2γp3δ, e0123 = +1, eαβγδ Å
antisymmetric LeviÄCivita tensor. For our case we have:

r1 = r2 = 0, r3 = −χ1, r4 = −χ′
3,

p1 = −p−, p2 = p+, p3 = −p− + k1, p4 = p+ − k3
(2.6)

vμ
1 = eμp+k2k3 , vμ

2 = eμp−k1k2 , vμ
3 = eμp−p+k3 , vμ

4 = eμp−p+k2 ,

wμ = −χ1v
μ
3 − χ′

3v
μ
4 ,

∑
i

vi = eμqk3k1 , q = p+ + p−.

A straightforward (but tedious) calculation leads to

w2 = −1
4
sχ1χ

′
3m12m23,

N1234 =
1
8
{(sm13)2 − sm13[χ3(s − m23)+

+ χ′
1(s − sm12)] + (χ3χ

′
1 − χ1χ

′
3)(s − m12)(s − m23)},

N0234 =
1
8
χ′

3[sχ
′
2m13 − sχ1m23 − sχ′

3m12 + (χ′
3χ2 − χ′

2χ3)(s − m23)],

N0124 =
1
8
χ′

3[2χ1χ3 + χ1χ
′
3 + χ3χ

′
1 − sm13],

N0134 =
1
8
χ1[sχ2m13 − sχ1m23 − sχ′

3m12 + (χ1χ
′
2 − χ2χ

′
1)(s − m12)],

N0123 =
1
8
χ1[2χ′

1χ
′
3 + χ1χ

′
3 + χ3χ

′
1 − sm13]. (2.7)

Real part of relevant integrals with four denominators

Re J0123 =
1

sχ1

[
8ξ2 − LsLλ − L2

s + 2Ls ln
m23

χ1

]
,
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Re J0124 = Re J0123 (m23 → m12, χ1 → χ′
3) ,

ReJ0234 =
1

m23χ′
3

[
6ξ2 − 2Li2

(
1 − χ′

3

χ1

)
− ln2

(
m23χ

′
3

m2χ1

)]
, (2.8)

Re J0134 = Re J0234 (m23 → m12, χ3 → χ′
1) ,

ReJ1234 =
1

m12m23

[
−ξ2 + ln2

(m12m23

m2s

)]
.

The 3-denominator integrals are

J024 =
1
χ′

3

[
−2ξ2 +

1
2

ln2

(
χ′

3

m2

)]
,

Re J012 =
1
2s

[
2 ln

s

m2
ln

m2

λ2
+ ln

s

m2
− 8ξ2

]
,

J013 = − 1
χ1

[
−4ξ2 +

1
2

ln2
( χ1

m2

)]
,

Re J014 =
1

s − χ3

[
−5ξ2 + 2Li2

(
−m13

χ′
3

)
+

1
2

ln2

(
m12

χ′
3

)
+

+ ln
m12

s
ln

(s − χ3)
2

χ3m2

]
,

J034 =
1

2 (χ′
3 − χ1)

[
ln2

( χ1

m2

)
− ln2

(
χ′

3

m2

)]
, (2.9)

Re J023 =
1

s − χ′
1

[
−5ξ2 + 2Li2

(
−m23

χ1

)
+

1
2

ln2

(
m13

χ1

)
+

+ ln
m23

s
ln

(s − χ′
1)

2

χ1m2

]
,

Re J134 =
1

m12

[
−3ξ2 +

1
2

ln2
(m12

m2

)]
,

J124 =
−1

s − m23

{
−ξ2 + Li2

(
s − m12

m23 − m12

)
+ Li2

(m23

s

)
−

−Li2

(
m23 (s − m12)
s (m23 − m12)

)}
,

Re J234 =
1

m23

[
−3ξ2 +

1
2

ln2
(m23

m2

)]
,
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J123 =
−1

s − m23

{
ln

m23

s
ln

m23

m2
+ Li2

(
1 − m23

s

)}
−

− 1
m23

Li2

(
1 − s

m23

)
and, besides,

J013 = J023 =
1
χ1

[
−2ξ2 −

1
2
l2s

]
, Re J012 =

1
s

[
2ls ln

m2

λ2
+

1
2
l2s − 4ξ2

]
,

Re J123 =
1
s

[
−3ξ2 +

1
2
l2s

]
, J0123 =

1
sχ1

[
3ξ2 − ls ln

m2

λ2
− 2lsl1

]
,

ls = ln
s

m2
, l1 = ln

χ1

m2
. (2.10)

Algebraic system permits one to obtain vector and tensor integrals with three and
four denominators.
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