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We consider the high-energy processes in QED frames in peripheral kinematics. The key feature
of this kinematics is that processes have large cross sections which do not decrease with the increasing
of the initial center-of-mass energy. Two purposes to study peripheral processes are: the background
processes with large total cross sections and the structure of jets in the fragmentation region.

We describe various QED peripheral processes in terms of Impact Factors (IF) and give the
explicit expressions for the differential distributions and spin correlation effects, as well as estimates
of the total cross section of peripheral processes in photonÄphoton, photonÄlepton, and leptonÄlepton
collisions.

A special attention is paid to the small-angle Bhabha scattering process which is relevant for
beam monitoring at LEP I, LEP II.

Based on analytical properties of the amplitudes, some relations (QED sum rules) between the
high-energy asymptotics of the cross sections of inelastic processes in e+e− collisions and higher-
order perturbative contributions to the electron Dirac and Pauli form factors are derived.

For practical using we present some loop momentum integrals.
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INTRODUCTION

The increasing accuracy of modern experiments which investigate the mani-
festations of weak and strong interactions require an adequate knowledge of the
background reactions. The origin of the background is mainly due to electro-
dynamics interaction. As a rule, it is sizable and can imitate the characteristic
features of the predictions from the SM (for the complete list of abbreviations
see the end of Introduction) and the strong interaction of hadrons.

Modern methods developed in the frames of QCD, when applied to the
problems of QED, allow one to take into account the contributions of QED
nature with sufˇcient accuracy to be used in experiments.

In the study of processes at high energies, two expansion parameters are
relevant; ˇrstly, the power corrections in the variable (m2/s)n, where m is the
electron mass. Here

√
s is the total energy in the center of mass of initial colliding

particles, which is supposed to be much larger than the characteristic masses of
particles taking part in the process.

The second important parameter which enters in the description of processes
at high energies is the so-called ®large logarithm¯ L = ln (s/m2), where m is
the smallest mass of charged particle (lepton or pion) taking part in the process.
This logarithm for modern experimental facilities can reach a value of 20. In
high-energy QED, the quantity (α/π)L plays the role of expansion parameter in
a perturbative expansion on the ˇne structure constant α = 1/137, therefore it
appears unavoidable to take into account higher powers of the expansion.

A wide class of processes at high energy of initial colliding particles has a
cross section which does not decrease with

√
s. These processes (called peripheral

processes) correspond to large values of orbital momentum of the initial state.
Main purpose of this investigation is rigorous estimation of background processes
of QED origin at colliders in experiments on ®new physics¯ searching. The other
possibility is to investigate the jet content in QED as a realistic model for similar
problems in QCD.

These processes have a large cross section and have a practical interest for
precision measurements as monitoring the intensity of the beam and its polariza-
tion properties.

In 1966, the picture of these processes was built by H. Cheng and T. T.Wu,
describing high-energy small transfer momentum (peripheral) kinematics of the
elastic scattering amplitudes in terms of Impact Factors (IF). These universal
quantities describe the fragmentation property of each individual particle. For the
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subprocesses of γγ∗ → e+e−, π+π−, electronÄphoton scattering with additional
lepton and pion pair creation the relevant cross sections and matrix element in
terms of chiral amplitudes are calculated. In Sec. 1 the radiative corrections to the
IF for photon, electron with taking into account additional soft and hard-photon
emission are presented. All leading logarithm contributions are taken into account
in the frames of structure function approach.

For small-angle Bhabha scattering the estimation of the cross section in two-
loop approximation is done.

At the end of Introduction we put the sum rules for processes of electronÄ
positron and closely related electronÄproton scattering. Using the analytical prop-
erties of the amplitudes we put the relation between nucleon form factors and a
difference of proton and neutron differential electroproduction cross sections. In
particular, for the case of small transferred momenta, one ˇnally derives a sum
rule, relating the Dirac proton mean square radius and anomalous magnetic mo-
ments of proton and neutron to the integral over a difference of the total proton
and neutron photoproduction cross sections

In Sec. 2 we give the tables for one-loop Feynman integrals of scalar, vector,
and tensor types, with two, three, four, and ˇve denominators. All formulae
are presented with the accuracy up to the terms of the order of the ratio of the
electron to the muon masses squared, and the kinematic invariants are assumed
to be large compared to the electron mass squared.

Throughout our paper we use the next designations:
FD Å Feynman diagram
IF Å impact factor
LBL Å light-by-light
LC Å light-cone
LLA Å leading logarithmic approximation
QCD Å quantum chromodynamics
QED Å quantum electrodynamics
RC Å radiative corrections
SM Å Standard Model.

1. PERIPHERAL PROCESSES

1.1. QED Processes in Peripheral Kinematics at Polarized γγ, e±γ, ee±

Colliders. QED processes with production of two up to six particles by high-
energy colliding beams have attracted both theoretical and experimental attention
during the last four decades. Accelerators with high-energy colliding e+e−, γe,
γγ, and μ+μ− beams are now widely used or designed to study fundamen-
tal interactions [1]. Some processes of QED might play an important role at
these colliders, especially those inelastic processes which cross section does not
decrease with increasing energy. Polarization is also included in future plans,
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therefore these QED processes have to be described in more detail, including
the calculation of cross sections with deˇnite helicities of the initial particles Å
leptons (� = e or μ) and photons γ. These reactions have the form of a two-jet
process with exchange of a virtual photon γ∗ in the t channel (see Fig. 1).

A lot of attention was paid in the literature to the calculation of helicity
amplitudes of QED processes at high-energy colliders (see [2] and references
therein). Keeping in mind the possible physical programme at γγ and lepton-γ
colliders, a precise knowledge of calibration and monitoring processes is needed,
as suggested, for example, in [3]. The calibration processes are known QED
processes with sufˇciently large cross sections, which have clear signatures for the
detection. A wide domain of physics can be investigated in peripheral processes
such as heavy leptons and mesons (scalar and pseudoscalar) production, where
the relevant QED monitoring processes have to be measured.

The general feature of peripheral processes is the important property of their
nondecreasing cross sections in the limit of high total energy

√
s in CMS of the

initial particles. It is then possible to produce and measure jets containing two or
three particles.

The helicity amplitudes for subprocesses of type 2 → 3 have in general a
complicated form. We do not give explicit expressions for the corresponding
cross sections, indicating only the general procedure for deriving them.

Keeping in mind the increasing accuracy of the experiments, RC must be
taken into account. For this aim the subprocess of pair creation by real and virtual
photon with one-loop RC is considered, as well as the crossing subprocess Å the
real photon emission in virtual photonÄelectron collisions.

1.1.1. Kinematics in Quasi-Peripheral Region. Throughout the Section it is
implied that the energy fractions of the jet components are positive quantities
with values of the order of unity (the sum of the energy fractions of each jet is
unity) and that the values of the components of the three-momentum transversal
to the beam direction are much larger compared to their rest masses. Therefore
the mass of the jet particles can be neglected.

Fig. 1. Exchange of a virtual photon γ∗ in the t channel of the processes γγ, and γl
(l = e, μ)
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The corresponding amplitudes include several FD. Fortunately, in the high-
energy limit the number of essential FD contributing to the ®leading¯ approxima-
tion greatly reduces. The method that we use here, has the advantage to estimate
the uncertainty due to ®nonleading¯ contributions which are of the order of

m2

s1
,

s1

s
,

s2

s
,

α

π
ln

s

m2
, (1.1)

where s1,2 are the invariant masses squared of the jets 1, 2. The last term in (1.1)
corresponds to the lowest RC, which will not be considered in this Section. The
angles θi between the emitted particles and the corresponding projectile directions
(see Fig. 2) are assumed to be of the order:

mi√
s
� θi ∼

√
si√
s

� 1, (1.2)

where mi is the typical mass of the jet particle.
In this approach we can consider the initial particles (with four-momenta p1,

p2) as massless and use the Sudakov parameterization of four-momenta of the
particles as [4]:

qi = αip2 + βip1 + qi⊥, qi⊥p1,2 = 0, q2
i⊥ = −q 2

i < 0. (1.3)

The Sudakov parameters βi are quantities of the order of unity for the momenta of
the particles belonging to the jet1 and obeying the conservation law

∑
jet1 βi = 1.

The components of the particle momenta of jet1 along the four-momentum p2

are small positive numbers which can be determined from the on-mass-shell
conditions of the jet1 particles:

q2
i = sαiβi − q2

i ≈ 0, αi =
q2

i

sβi
� 1. (1.4)

Here q is the transverse part of 4-momentum vector q, and in this Section we
will imply this designation for all 2-fold vectors.

Fig. 2. Scheme of collision of initial beams with detection of two jets moving in cones
within the angle θ
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Similar considerations hold for the 4-momenta of the particles belonging to
the jet2, namely, αj ∼ 1,

∑
jet2 αj = 1, βj = q2

j/(sαj) � 1.
Among all possible FD, describing the process in the lowest (Born) order

of PT, only one should be considered, the one which gives a contribution to the
cross section which does not decrease with increasing s. It corresponds to a
photon t-channel one-particle state.

It is known [5, 6] that the matrix elements of the peripheral processes have
a factorized form and the cross section can be written in terms of the so-called
IF, which describe the subprocess where the interaction of the internal virtual
photon with one of the initial particles produces a jet along a direction close
to the projectile momentum. Therefore the problem can be formulated in terms
of computation of IF. For processes with initial photons in a deˇnite state of
polarization (described in terms of Stoke's parameters) we construct the relevant
chiral matrices from bilinear combinations of chiral amplitudes. The last step
consists in the calculation of the differential cross sections.

The matrix element, which corresponds to the main (®leading¯) contribution
to the cross section, has the form

M = iJμ
1

gμν

q2
Jν

2 , (1.5)

where Jμ
1 and Jν

2 are the currents of the upper (associated with jet1) and of the
lower blocks of the relevant FD, respectively, and gμν is the metric tensor. The
current Jμ

1 describes the scattering of an incoming particle of momentum p1 with
a virtual photon and the subsequent transition to the ˇrst jet (similar to Jν

2 ). The
matrix elements (1.5) can be written in the form (see the Appendices in [4])

M = 2i
s

q2
I1I2, I1 =

1
s
Jμ

1 p2μ, I2 =
1
s
Jν

2 p1ν , (1.6)

which follows from the Gribov representation of the metric tensor,

gμν =
2
s
(pμ

2pν
1 + pν

2pμ
1 ) + gμν

⊥ ≈ 2
s
pμ
2pν

1 . (1.7)

I1 and I2 will be referred to as LC projections. The invariant mass squared of the
jets can be also expressed in terms of the Sudakov parameters of the exchanged
photon

q = αp2 + βp1 + q⊥, (q + p1)2 = s1 = −q2 + sα,
(1.8)

(−q + p2)2 = s2 = −q2 − sβ, q2 = sαβ − q2 ≈ −q2,

q is the momentum of virtual photon (photon exchange between particles with
impulses p1 and p2). Here and below we use the symbol ≈ for the approximation
where we neglect the terms which do not contribute in the limit s → ∞.
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The singularity of the matrix element (1.6) at q = 0 is ˇctitious (excluding
the elastic scattering case). Indeed, one can see that it cancels due to the current
conservation

qμJμ
1 ≈ (αp2 + q⊥)μJμ

1 = 0, p2μJμ
1 =

s

sα
qJ1,

(1.9)
qνJν

2 ≈ (βp1 + q⊥)νJν
2 = 0, p1νJν

2 =
s

sβ
qJ2.

We obtain the modiˇed form of the matrix element for peripheral processes:

M [a(p1, η1) + b(p2, η2) → jet1λ1
+ jet2λ2

] = i(4πα)
n1+n2

2
2s

q2
mη1

1λ1
mη2

2λ2
,

(1.10)
n1,2 � 2, η, λ = ±1,

where ηi describe the polarization states of the projectile i = a, b; λi describes
the polarization states of participants of the corresponding jet. The numbers of
the QED vertices in the upper and lower blocks of FD (see Fig. 1) are denoted
by n1,2.

For the matrix elements m1,2 of the subprocesses γ∗(q) + a(p1, η1) →
jet1(λ1) and γ∗(q) + b(p2, η2) → jet2(λ2) we give here two alternative forms:

mη1
1λ1

=
1
s
p2μJη1μ

1λ1
, mη1

1λ1
=

qJη1
1λ1

s1 + q2
. (1.11)

Similar expressions hold for the lower block. The second representation is used
below. Equation (1.11) can be used as a check of validity of gauge invariance,
verifying that the matrix elements vanish in the limit q → 0.

Let us verify that the differential cross section of peripheral processes does
not depend on the total CMS energy

√
s. For that we rewrite the phase volume

of the ˇnal two-jet kinematical state in a more convenient form:

dF = (2π)4δ4

⎛⎝p1 + p2 −
∑

i

p
(1)
i −

∑
j

p
(2)
j

⎞⎠ dF (1)dF (2) =

= (2π)4d4qδ4
(1)δ

4
(2)dF (1)dF (2),

δ4
(1) = δ4

(
p1 + q −

∑
i

p
(1)
i

)
, δ4

(2) = δ4

⎛⎝p2 − q −
∑

j

p
(2)
j

⎞⎠ , (1.12)

dF (1,2) = Πi
d3p

(1,2)
i

2ε
(1,2)
i (2π)3

.
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Using Sudakov's parameterization for the transferred four-momentum q

d4q =
s

2
dα dβ d2q⊥ =

1
2s

ds1 ds2 d2q⊥, (1.13)

where s1,2 is the invariant mass squared of the jets, the phase volume can be
written in a factorized form:

dF =
(2π)4

2s
d2q⊥ ds1 dF (1)δ4

(1) ds2 dF (2)δ4
(2). (1.14)

Using Eq. (1.14) for the matrix element and the phase volume for the cross
section of the peripheral process in the case of polarized initial particles (photons
or electrons), the cross section is

dση1η2 =
αn1+n2π2(4π)2+n1+n2 d2q⊥

(q2)2
dΦη1

1 (q) dΦη2
2 (q), (1.15)

where the differential IF dΦηi

i are deˇned as:

dΦηi

i (q) =
∫

dsi

∑
λj

|mηi

iλj
|2 dFiδ

4
(i), i = 1, 2. (1.16)

Below we use the term ®impact factor¯ or ®chiral amplitudes of subprocess¯
instead of ®differential impact factor¯ for simplicity. The ®impact factor¯ as
deˇned in the paper of ChengÄWu [5] is introduced to describe elastic amplitudes
for the process a + b → a + b in the case of small angle high-energy scattering.
This will be considered in Subsec. 1.3.

The matrix elements for deˇnite chiral states of all particles mηi

i(λ), where the

subscript (λ) denotes the set of chiral parameters of the ˇnal state, are calculated
and listed below.

In the case of initial polarized photons, a description in terms of Stoke's
parameters ξ1,2,3, ξ2

1 + ξ2
2 + ξ2

3 � 1 is commonly used. The matrix element
squared in the right-hand side (r.h.s.) of Eq. (1.16) should be replaced by [7,8]

Tγ = Tr(mρ) =
1
2

Tr
(

m++ m+−

m−+ m−−

)(
1 + ξ2 iξ1 − ξ3

−iξ1 − ξ3 1 − ξ2

)
, (1.17)

where the elements of the spin matrix m are:

m++ =
∑

λ

|m+
(λ)|

2, m+− =
∑

λ

m+
(λ)(m

−
(λ))

∗,

(1.18)
m−− =

∑
λ

|m−
(λ)|

2, m−+ = (m+−)∗.
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In the case of initial fermion we choose its polarization equal to ηi = +1.
The matrix element squared for electron scattering must be summed over the
polarization of the ˇnal particles:

Te =
∑

λ

|m+
(λ)|

2. (1.19)

The cross section dσn1,n2 of the process of type 2 → n1 + n2 with production of
two jets

a(p1, η1) + b(p2, η2) →
→ a1(r1, λ1) + . . . + an1(rn1 , λn1) + b1(q1, σ1) + . . . + bn2(qn2 , σn2), (1.20)

where the energy fractions x1, . . . , xn1 ,
∑

xi = 1, the transversal components of
momenta r1, . . . , rn1 ,

∑
ri = q of jet a and similar quantities yi,qi,

∑
yi =

1,
∑

qi = −q for the other jet b, are:

dσ22 =
α4

22π4
T

(1)
a→2T

(2)
b→2

d2q

(q2)2
d2r1 d2q1

dx1 dy1

x1x2y1y2
, (1.21)

dσ23 =
α5

24π6
T

(1)
a→2T

(2)
b→3

d2q

(q2)2
d2r1 d2q1 d2q2

dx1dy1 dy2

x1x2y1y2y3
, (1.22)

dσ33 =
α6

26π8
T

(1)
a→3T

(2)
b→3

d2q

(q2)2
d2q1 d2q2d

2r1 d2r2
dx1 dx2 dy1 dy2

x1x2x3y1y2y3
, (1.23)

a, b = e, γ.

1.1.2. The Subprocesses γγ∗ → e+e−, π+π−. Let us consider ˇrst the
contribution of the lepton pair production subprocess to the photon IF:

γ(k1, η) + γ∗(q) → e−(q−, λ) + e+(q+,−λ). (1.24)

The matrix element of the subprocess has the form (we omit the factor 4πα)

mημ
1λ = −ūλ(q−)

[
ε̂η q̂− − k̂1

κ1−
γμ + γμ−q̂+ + k̂1

κ1+
ε̂η
]
v−λ(q+),

(1.25)

ūλ = ū ω−λ, vλ = ω−λv, κ1± = 2k1q±, ωλ =
1
2
(1 + λγ5).

We imply that all the particles are massless. A deˇnite chiral state of the initial
photon polarization vector has the form [9,10]:

ε̂λ
1 = N1[q̂−q̂+k̂1ω−λ− k̂1q̂−q̂+ωλ], N2

1 =
2

s1κ1+κ1−
, s1 = 2q+q−. (1.26)
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The chiral amplitudes mη
λ = (1/s)mημ

1(λ)p2μ have the form:

m+
1+ = −N1

s
ūq̂+q̂p̂2ω+v, m+

1− = −N1

s
ūp̂2q̂q̂−ω−v,

(1.27)

m−
1− = −N1

s
ūq̂+q̂p̂2ω−v, m−

1+ = −N1

s
ūp̂2q̂q̂−ω+v.

The elements of spin matrix m (see Eq. (1.18)) in the case of lepton pair produc-
tion are:

m++
e+e− = m−−

e+e− =
2q2

q2
+q2

−
x+x−(x2

+ + x2
−),

(1.28)

m+−
e+e− = (m−+

e+e−)∗ = − 4q2

q2
+q2

−
(x+x−)2e2iθ,

where x± are the energy fractions carried out by the components of the pair, with
x+ + x− = 1, θ is the angle between two Euclidean vectors q = q− + q+ and
Q = x+q− − x−q+.

In the case of charged pion pair production

γ(p1, η) + γ∗(q) → π+(q+) + π−(q−) (1.29)

we have

mη =
1
s
εη
1νpμ

2mν
μ =

x+

p1q−
εη
1q− +

x−
p1q+

εη
1q+ − 2

s
(εη

1p2) . (1.30)

Using the photon polarization vector written as

εη
1μ = N1[(q+p1)q−μ − (q−p1)q+μ + iηεμαβγqα

−qβ
+pγ

1 ] , (1.31)

we obtain the chiral amplitude of the pion pair production process (here we use
εαβγδp

α
1 pβ

2qγ
−qδ

+ = (s/2)[q−q+]z, with εαβγδ being the antisymmetric tensor,
with ε0123 = 1)

mη = −N1(Qq + iη[Q,q]z) = −N1|q| |Q| eiηθ, θ = q̂Q, (1.32)

where we imply that the direction of the z axis is along the photon three-
momentum and use the relation [q−,q+]z = [Q,q]z . The pion chiral matrix
can be written as

m++
π+π− = m−−

π+π− =
2q2

q2
+q2

−
(x+x−)2,

(1.33)

m+−
π+π− = (m−+

π+π−)∗ =
2q2

q2
+q2

−
(x+x−)2 e2iθ.
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For the two-pair production process

γ1(p1, ξ1) + γ2(p2, ξ2) → a(q−) + ā(q+) + b(p−) + b̄(p+),
(1.34)

q± = α±p2 + x±p1 + q±⊥, p± = y±p2 + β±p1 + p±⊥,

the differential cross section (assuming that the pair aā moves along the direction
of the photon 1 and the pair bb̄ moves along the direction of the photon 2) has
the form (1.21), (1.22) with:

T
(1)
γ→2 =

q2

q2
+q2

−
(x+x−)2[1 − ξ3 cos(2θ) + ξ1 sin(2θ)] for π+, π−, (1.35)

T
(1)
γ→2 =

q2

q2
+q2

−
(x+x−){x2

+ + x2
− + 2x+x−[ξ3 cos(2θ) + ξ1 sin(2θ)]} for e+, e−

(1.36)

with a similar expression for T (2)∗. We remind that the formulae obtained here
are valid at large transverse component of the jet particle momentum, compared
to the masses of the particles,

q2
− ∼ q2

+ ∼ p2
+ ∼ p2

− � m2, q+ = q − q−, p+ = −q − p−, (1.37)

and for ˇnite energy fractions x± ∼ y± ∼ 1, which correspond to emission angles
of jet particles θi = |qi|/(xiε) � m/ε which are considerably larger than the
mass-to-energy ratio (ε is the energy of the initial particle in CMS).

1.1.3. Subprocesses γγ∗ → e+e−γ, π+π−γ. Here and below for sub-
processes of type 2 → 3 we restrict ourselves to the calculation of the chiral
amplitudes and to the check of their gauge invariance properties.

The subprocess

γ(k, λ) + γ∗(q) → e+(q+,−λ−) + e−(q−, λ−) + γ(k1, λ1) (1.38)

is described by six FD. A standard calculation of chiral amplitudes mλ
λ1λ−

leads to

m+
++ = −s1NN1

s
ū(q−)q̂+q̂p̂2ω+v(q+) = (m−

−−)∗,

m+
+− = −s1NN1

s
ū(q−)p̂2q̂q̂−ω−v(q+) = (m−

−+)∗,
(1.39)

m+
−+ =

NN1

s
ū(q−)A+

−+ω+v(q+) = (m−
+−)∗,

m+
−− =

NN1

s
ū(q−)A+

−−ω−v(q+) = (m−
++)∗,

∗In paper [12] Eq. (2.36) contains a misprint in the sign of ξ
(1,2)
3 .
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with A+
−−(k, k1) = A+

−+(−k1,−k),

N2 =
2

s1κ−κ+
, N2

1 =
2

s1κ1+κ1−
,

(1.40)
s1 = 2q+q−, κ± = 2kq±, κ1± = 2k1q±

and the following expression for A+
−+

A+
−+ =

s1

(q+ − q)2
k̂q̂+k̂1(−q̂+ + q̂)p̂2 − q̂+(q̂− − k̂)p̂2(q̂+ + k̂1)q̂−

− s1

(q− − q)2
p̂2(q̂− − q̂)k̂q̂−k̂1. (1.41)

Substituting

p̂2 ≈ 1
α

(q̂ − q̂⊥) =
s

sα
[q̂+ + k̂1 + (q̂− − k̂) − q̂⊥]

in the second term of r.h.s. of Eq. (1.41), we have

A+
−+ = −ss1κ1+

[
x+

(q+ − q)2
+

1
sα

]
k̂ − ss1κ−

[
x−

(q− − q)2
+

1
sα

]
k̂1+

+
s1

(q+ − q)2
k̂q̂+k̂1q̂⊥p̂2 +

s1

(q− − q)2
p̂2q̂⊥k̂q̂−k̂1+

+
s

sα
q̂+(q̂− − k̂)q̂⊥(q̂+ + k̂1)q̂−, (1.42)

with

(q± − q)2 = −q2 + 2qq± − sαx±, sα =
k2

1

x1
+

q2
−

x−
+

q2
+

x+
,

(1.43)

x1 + x− + x+ = 1, κ± =
q2
±

x±
, κ1± =

1
x1x±

(x1q± − x±k1)2,

and x± = 2p2q±/s, x1 = 2p2k1/s. The gauge invariance property (the chiral
amplitudes must vanish as q → 0) can be seen explicitly.

The procedure of constructing the chiral matrix is straightforward and can be
performed in terms of simple traces. We will not explicate it here.

Let us consider the subprocess

γ(k, λ) + γ∗(q) → π+(q+) + π−(q−) + γ(k1, λ1). (1.44)

The matrix element is described by 12 FD. Its expression can be considerably
simpliˇed following the formalism of [15] for the photon polarization vectors
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(compare with (1.31)):

ελ
μ(k) =

N

2
Sp (γμq̂−q̂+k̂ωλ), ελ1

μ (k1) =
N1

2
Sp (γμq̂−q̂+k̂1ωλ), (1.45)

with similar expressions for N, N1 as in the case of the γγ∗ → e+e−γ sub-
process. The polarization vectors are chosen in such a form, that to satisfy the
Lorentz conditions ε(k)k = 0, ε(k1)k1 = 0 and the gauge condition ε(k)q− =
= ε(k1)q− = 0.

The matrix element has the form (at this stage the Bose symmetry is lost):

mλ
λ1

=
1
s
pρ
2ε

μ(k)ε∗σ
1 (k1)Oρμσ =

=
4x−

(q− − q)2
[ (ε1q+)(εq)

κ1+
− (ε1q)(εq+)

κ+

]
+

4(εp2)(ε1q+)
sκ1+

−

− 4(ε1p2)(εq+)
sκ+

+ 2(εε1)
[ x+

(q+ − q)2
− x−

(q− − q)2
]
, (1.46)

where we imply ε = ελ, ε1 = ελ1
1 and x± = 2p2q±/s, x1 = 2p2k1/s, where

x+ + x− + x1 = 1.
For λ1 = λ we have

mλ
λ = s1NN1[A1 + iλB1], A1 = −Qq,

(1.47)
B1 = [Q× q]z , Q = q−x+ − q+x−.

For the case of opposite chiralities we have

mλ
−λ = s1NN1[A + iλB],

A =
1

2x1x−x+

[
Q2k2

1 − q 2
−(x1q+ − x+k1)2 − q 2

+ (x1q− − x−k1)2
]
×

×
(

x+

(q+ − q)2
− x−

(q− − q)2

)
− Qq, (1.48)

B =
(

x+

(q+ − q)2
+

x−
(q− − q)2

)
×

×(sα[q− × q+]z − sα−[q × q+]z + sα+[q × q−]z)+2[q−×q+]z−[Q×q]z,

sα± =
q2
±

x±
, sα =

k2
1

x1
+ sα+ + sα−.

We can see that the Bose symmetry is restored.
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1.1.4. Subprocesses eγ∗ → eγ, e + γ + γ. Consider ˇrst the Compton
subprocess∗

e(p, λ1) + γ∗(q) → γ(k, λ) + e(p′, λ1). (1.49)

For the chiral matrix elements we have (we choose λ1 = +1)

m+
λ =

N

s
ū(p′)[−p̂ωλ(p̂′ + k̂)p̂2 − p̂2(p̂ − k̂)p̂′ω−λ]ω+u(p),

m+
+ = −N

s
ū(p′)p̂q̂p̂2ω+u(p), (1.50)

m+
− = −N

s
ū(p′)p̂2q̂p̂

′ω+u(p), N2 =
1

(pp′)κκ′ ,

and κ, κ′ are deˇned in (1.52). The sum of module squared of the matrix
elements is

Te = 2
q2

κκ′ [1 + x′2], (1.51)

with

κ = 2kp =
k2

x
, κ′ = 2kp′ =

1
xx′ (p

′x − kx′)2, (1.52)

and x = 2kp2/2pp2, x′ = 1 − x are the energy fractions of the photon and the
electron in the ˇnal state.

Consider now the double Compton subprocess (see Fig. 3, a):

e(p, η) + γ∗(q) → e(p′, η) + γ(k1, λ1) + γ(k2, λ2). (1.53)

The chiral matrix elements mη
λ1λ2

are

m+
++ = (m−

−−)∗ = −s1N1N2

s
ū(p′)p̂q̂p̂2ω+u(p),

m+
−− = (m−

++)∗ = −s1N1N2

s
ū(p′)p̂2q̂p̂

′ω+u(p),
(1.54)

m+
+− = (m−

−+)∗ =
N1N2

s
ū(p′)A+

+−ω+u(p),

m+
−+ = (m−

+−)∗ =
N1N2

s
ū(p′)A+

−+ω+u(p),

∗The case of real initial photons was considered in paper [12].
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Fig. 3. Feynman diagrams describing: the subprocess γ∗e− → γγe− (a); the subprocesses
of pair production γ∗e → eaā by bremsstrahlung (b) and double photon mechanisms (c)

with A+
−+(k1, k2) = A+

+−(k2, k1) and

A+
+−(k1, k2) =

s1

(p′ − q)2
p̂2(p̂′ − q̂)k̂1p̂

′k̂2 + p̂(p̂′ + k̂1)p̂2(p̂ − k̂2)p̂′+

+
s1

(p + q)2
k̂1p̂k̂2(p̂ + q̂)p̂2, (1.55)

with

s1 = 2pp′, N2
i =

2
s1κiκ′

i

, κi = 2pki, κ′
i = 2p′ki. (1.56)

To check the gauge invariance property of two last amplitudes, let us substitute
p2 = (q − q⊥)/αq in the r.h.s. of Eq. (1.55) and obtain:

A+
+−(k1, k2) = ss1κ

′
1(

x′

(p′ − q)2
+

1
sαq

)k̂2 + ss1κ2(
1

(p + q)2
− 1

sαq
)k̂1+

+
s1

(p + q)2
k̂1p̂k̂2q̂⊥p̂2 −

s1

(p′ − q)2
p̂2q̂⊥k̂1p̂

′k̂2 − p̂(p̂′ + k̂1)q̂⊥(p̂ − k̂2)p̂′
s

sαq
.

(1.57)

We can verify that this expression vanishes at q = 0, using the following relations:

(p′ − q)2 = −q 2 + 2p
′
q − sx′αq, (p + q)2 = −q 2 + sαq,

αq = α′ + α1 + α2, x′ + x1 + x2 = 1, sα′ =
(p

′
)2

x′ , sαi =
k2

i

xi
, (1.58)

κi = sαi, κ′
i =

1
x′xi

(kix
′ − p

′
xi)2,

here we use Sudakov decomposition (1.3), and x1,2 = 2k1,2p/2pp2, x′ = 1 −
x1 − x2 are the energy fractions of photons and scattered electron.

One can proceed further in the calculation of the chiral matrix, with a similar
procedure as detailed in the previous Section.
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1.1.5. Subprocesses eγ∗ → eπ+π−, eμ+μ−. The matrix element of the pion
pair production subprocess

e(p, η) + γ∗(q) → π+(q+) + π−(q−) + e(p′, η) (1.59)

can be written in the form

mη = ū(p′)[B̂ + D̂]ωηu(p), (1.60)

where B̂ and D̂ arise respectively from the bremsstrahlung and the double photon
mechanisms (see Fig. 3, b, c):

B̂ =
1
q2
1

[
Bq̂1 +

1
s(p + q)2

q̂1q̂p̂2 −
1

s(p′ − q)2
p̂2q̂q̂1

]
,

D̂ =
1
q2
2

[
D(2q̂− + q̂2) − 2

x−
(q − q−)2

q̂⊥ +
2(q2 − 2qq−)

s(q − q−)2
p̂2

]
, (1.61)

q1 = q+ + q−, q2 = p′ − p,

with B and D given by

B =
x′

(p′ − q)2
+

1
(p + q)2

, D =
x−

(q− − q)2
− x+

(q − q+)2
,

(1.62)

x± =
2p2q±

s
, x′ =

2p2p
′

s
, x+ + x− + x′ = 1.

For the squares of modulo of the chiral amplitudes, which enter in (1.22), (1.23),
we have for eπ+π−:

T
(1)
e→3 = |m+|2 = Sp (p̂′(B̂ + D̂)p̂(B̂ + D̂)ω+). (1.63)

For the subprocess of the muon pair production

e(p, η) + γ∗(q) → μ+(q+) + μ−(q−) + e(p′, η), (1.64)

the bremsstrahlung and the two-photon mechanisms as well must be taken into
account (see Fig. 3, b, c)

m+
λ =

1
q2
1

ū(p′)Bμω+u(p) × ū(q−)γμωλv(q+)+

+
1
q2
2

ū(p′)γνω+u(p) × ū(q−)Dνωλv(q+), (1.65)



PERIPHERAL PROCESSES IN QED AT HIGH ENERGIES 1129

with the double photon mechanism contribution

Dν = Dγν +
1

s(q − q+)2
γν q̂p̂2 −

1
s(q − q−)2

p̂2q̂γν , (1.66)

and the bremsstrahlung mechanism

Bμ = Bγμ − 1
s(p′ − q)2

p̂2q̂γμ +
1

s(p + q)2
γμq̂p̂2, (1.67)

B and D are deˇned in Eq. (1.62).
To perform the conversion to the Lorentz indices μ, ν in Eq. (1.65), one can

use the projection operators. For the case of equal chiralities η = λ = +1, we
choose the projection operator as

P+ =
ū(p)q̂+ω+u(q−)
ū(p)q̂+ω+u(q−)

. (1.68)

Inserting it in Eq. (1.65) and using the relation ω+u(p)ū(p) = ω+p̂, we obtain

m+
+ =

−2
ū(p)q̂+ω+u(q−)

ū(p′)
{(

D

q2
2

+
B

q2
1

)
q̂−q̂+p̂+

+
q̂−q̂+p̂q̂⊥p̂2

s

[
1

q2
2(q − q+)2

− 1
q2
1(p + q)2

]
+

+
p̂2q̂⊥q̂−q̂+p̂

s

[
1

q2
2(q− − q)2

− 1
q2
1(p′ − q)2

]}
ω+v(q+) =

=
−2

ū(p)q̂+ω+u(q)−
ū(p′)A+

+ω+v(q+). (1.69)

For the case of opposite chiralities η = −λ = +1, we use the projection operator

P− =
ū(p)ω−u(q−)
ū(p)ω−u(q−)

.

Similar calculations lead to the result

m+
− =

2
ū(p)ω−u(q−)

ū(p′)
{(

D

q2
2

+
B

q2
1

)
2(pq−) +

+ 2
p̂q̂−q̂⊥p̂2

s

[
1

q2
2(q − q+)2

+
1

q2
1(p1 − q−)2

]
−

− p̂q̂⊥p̂2q̂−
s

[
1

q2
2(q − q−)2

+
1

q2
1(p + q)2

]
−

− q̂−p̂2q̂⊥p̂

s

[
1

q2
2(q − q−)2

+
1

q2
1(p + q)2

]}
ω−v(q+) =

=
2

ū(p)ω−u(q−)
ū(p′)A+

−ω−v(q+). (1.70)
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The property, following from gauge invariance, that A+
+, A+

− vanish when |q| → 0
can be explicitly seen from (1.69), (1.70).

For the sum of chiral amplitudes squared, one ˇnds for eμ+μ− subsystem

T
(1)
e→3 =

1
(pq+)(q−q+)

Sp (p̂′A+
+q̂+Ã+

+ω+) +
2

pq−
Sp(p̂′A+

−q̂+Ã+
−ω+) . (1.71)

The magnitude of the cross sections of Eqs. (1.21)Ä(1.23) is of the order of
αn/μ2 � αn/s, n = 4, 5, 6 where μ2 = max(s1, s2). It is large enough to be
measured, and does not depend on s. The strategy of calculation of cross section,
using the helicity amplitudes of subprocesses 2 → 3, described above, can be
implemented to numerical programmes for a realistic simulation of experiments.

1.1.6. Subprocess eγ∗ → eeē. The particle momenta for the subprocess
eγ∗ → eeē are deˇned as

e(p, lp) + γ∗(q) → e(p1, l1) + e(p2, l2) + ē(p+, t),

where li, t = ± are the chiralities of initial and ˇnal fermions. Without loss of
generality we will consider below lp = +. For the sum on the chiral states of the
module squared of the relevant matrix elements we obtain∑

|M lp
l1l2t|

2 = 2[|M+
++−|2 + |M+

+−+|2 + |M+
−++|2]. (1.72)

Eight Feynman diagrams enter in the description of this subprocess, which
form four gauge-invariant sets of amplitudes. The general form of the chiral
amplitudes is

M+
l1l2t = − 1

s1
(4πα)3/2 { δl1,+δt,−l2 [ū

l2(p2)γλvt(p+)ūl1(p1)Aλu+(p)+

+ ūl1(p1)γσu+(p)ūl2(p2)Bσvt(p+)]−
− δl2,+δt,−l1 [ū

l1(p1)γηvt(p+)ūl2(p2)Dηu+(p)+

+ ūl2(p2)γδū
+(p)ūl1(p1)Cδv

t(p+)] } . (1.73)

Applying projection operators to provide the contraction on vector indices
we have

|M+
++−|2 =

(4πα)3

2s2
1pp+

[
1

p2p+

1
4
Sp(p̂1m

(1)
++−p̂+(m(1)

++−)+) +

+
1

p+p1

1
4
Sp(p̂2m

(2)
++−p̂+(m(2)

++−)+) −

− 2
p1p+p2p+

1
4
Sp(p̂1m

(1)
++−p̂+(m(2)

++−)+p̂2p̂+)
]

,
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|M+
+−+|2 =

(4πα)3

2s2
1pp2

1
4
Sp(p̂1m+−+p̂+(m+−+)+),

|M+
−++|2 =

(4πα)3

2s2
1pp1

1
4
Sp(p̂2m−++p̂+(m−++)+),

with

m+−+ = γσ p̂p̂2Bσ + Aλp̂p̂2γλ, m−++ = γδp̂p̂1Cδ + Dηp̂p̂1γη,

m
(1)
++− = Aλp̂p̂+p̂2γλ + γσp̂p̂+p̂2Bσ, m

(2)
++− = γσ p̂p̂+p̂1Cσ + Dηp̂p̂+p̂1γη,

q2
1Aλ =

q̂⊥(p̂1−q̂)γλ

(p1 − q)2
+

γλ(p̂+q̂)q̂⊥
(p+q)2

, q2
2Bσ =

q̂⊥(p̂2−q̂)γσ

(p2−q)2
+

γσ(q̂−p̂+)q̂⊥
(p+−q)2

,

q2
4Cσ =

q̂⊥(p̂1−q̂)γσ

(p1−q)2
+

γσ(q̂−p̂+)q̂⊥
(q−p+)2

, q2
3Dη =

q̂⊥(p̂2−q̂)γη

(p2−q)2
+

γη(p̂+q̂)q̂⊥
(p+q)2

,

q2
1 = (p2 + q+)2, q2

2 = (p − p1)2, q2
3 = (p1 + q+)2, q2

4 = (p − p2)2.

1.2. Radiative Corrections to Chiral Amplitudes. 1.2.1. Photon Impact
Factor: Virtual and Real Soft-Photon Emission Contribution. In the Born ap-
proximation there present two Feynman diagrams describing the subprocess

γ(p1) + γ∗(q) → e−(q−) + e+(q+).

The one-loop level radiative correction to the corresponding amplitude is de-
scribed in terms of eight Feynman diagrams. The whole set of them can be
separated in two classes: one corresponds to the case when the virtual photon is
absorbed by electron line, and the second when the photon is absorbed by the
positron line. One can restrict oneself to consideration of one of them, as well
as the other can be obtained by exchanges of chirality and four-momenta of the
particles:

Φγ,+−
− = Φγ,++

+ (q− ↔ q+). (1.74)

Here the subscript describes the absorbtion of the virtual photon by the elect-
ron (−) or the positron (+) line, superscript denotes polarizations of initial photon
and ˇnal electron.

One class of RC to the electron IF consists of the renormalized electron
mass operator and the vertex function with only one off-mass-shell electron. Its
contribution can be written in the form [11]:

Φγ,λσ
−,V Σ =

(4πα)3/2

16π2
ū(q−)

p̂2

s

p̂1 − q̂+

−χ+

[
êλ(3 − 2ll + l+)+

+
∫

d4k

iπ2

γμ(−q̂+ + p̂1 − k̂)êλ(−q̂+ − k̂)γμ

(0)(2̃)(q)

]
ωσv(q+), (1.75)
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where the χ+ denominators (0), (2̃), (q) are deˇned in Subsec. 2.1 and l+ =
ln(χ+/m2), ll = ln(m2/λ2).

After multiplying with the corresponding Born amplitude and integrating over
the four-momentum k we obtain

2Φγ,+−
−,V Σ(Φγ,+−

B )∗ =
8α2

χ+χ−
(qq−)

(
l+ − 1

2

)
, (1.76)

when the polarization of the ˇnal electron is positive. Here we used the Sudakov
parameterization:

q = αp1 + βp2 + q⊥, q± = x±p1 + β±p2 + q±⊥,
(1.77)

q2
⊥ = −q2, q2

±⊥ = −q2
±.

The contribution of the other polarization (when the virtual photon is absorbed
by the electron line) is equal to zero. All other contributions with different
polarization and absorbtion of virtual photon by positron line can be obtained
with the substitution (1.74).

The contribution of the vertex function with a virtual photon can be written
in the form:

Φγ,λσ
V,− =

(4πα)3/2

−16π2χ+

∫
d4k

iπ2

1
(0)(2)(q)

×

× ū(q−)γμ(q̂− − k̂)
p̂2

s
(q̂− − q̂ − k̂)γμ(p̂1 − q̂+)êλωσv(q+). (1.78)

Using the tables of integrals (see Subsec. 2.1) we obtain

2Φγ1+−
V,− (Φγ1+−

B )∗ = −2A−|Φγ1+−
B |2,

A− =
α

2π

[
−1

2
L − 1

4
− χ+ + 2q2

2a
l+ +

3q2

2a
lq − q2J02q

]
, (1.79)

a = χ+ − q2, lq = ln
q2

m2
, L = ln

Λ2

m2
,

with Λ-ultraviolet cut-off parameter. We remind that we work in the frame
of unrenormalized ˇeld theory. The regularization procedure consists in the
replacement L → 2ll − 9/2 [7, 8].

The most complicated case is the calculation of box-type contribution. It can
be written in the form:

Φγ,λσ
−,box =

(4πα)3/2

16π2

∫
d4k

iπ2

1
(0)(1)(2)(q)

×

× ū(q−)(q̂− − k̂)
p̂2

s
(q̂− − q̂ − k̂)êλ(−q̂+ − k̂)ωσv(q+). (1.80)
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All the details about loop calculation and relevant integrals can be found in
Subsec. 2.1. It is worth to mention that in the case of box-type contribution all
polarizations have nonzero value.

The contribution of additional real soft-photon emission to the light cone
projector has a standard form

Φγ
soft = Φγ

B

√
4πα

(
q−
q−k

− q+

q+k

)
e(k). (1.81)

The corresponding contribution to the differential IF dτγ is∫
d3k

16ωπ3

∑
|Φγ

soft|2 (1.82)

for ω < Δε � ε. The result can be expressed in terms of the Born differential
IF dτγ

B as

dτγ
soft =

α

π
dτγ

B

{
(ls − 1)

[
ll + ln

Δ2

x+x−

]
+

1
2
l2s − 1

2
ln2 x+

x−
− π2

6

}
, (1.83)

Δ =
Δε

ε
, ls = ln

s1

m2
.

We took into account the fact that the emission angle between the three-momenta
of the pair components in the center-of-mass frame of the colliding particles
is small.

After summing all contributions (1.75), (1.78), (1.80), including the soft-
photon contribution (1.83), we explicitly see the cancellation of the auxiliary
parameter λ and of the large logarithm squared:

2
(
dτγ,+±

±,box + dτγ,+±
∓,V +Σ + dτγ,+±

∓,V

)
+ dτγ±

soft =

=
α

π
dτγ±

B

{
(ls − 1)

[
2 ln Δ +

3
2
− ln (x+x−)

]
+ Kγ,±

SV

}
.

The analytic form of Kγ,±
SV is rather complicated (see [11]). The leading logarithm

contribution is proportional to the Born cross section, which is in agreement with
the predictions of the structure function approach, namely the leading logarithm
contribution is exactly the Δ part of the evolution equation kernel. All nonleading
terms are gathered in the so-called K-factor, a smooth function of the order of
magnitude of about unity.

The contribution from the emission of hard photon can be presented as the
sum of two parts, corresponding to collinear and noncollinear kinematics. It will
be considered below.
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1.2.2. Electron Impact Factor: Virtual and Real Soft-Photon Contribution. Sub-
process of the Compton scattering in the Born approximation

e(p1) + γ∗(q) → e(p′1) + γ(k′) (1.84)

is described by two Feynman diagrams, whereas in 1-loop approximation one
must take into account eight Feynman diagrams. All the relevant amplitudes can
be classiˇed into six sets, the contribution of three of them to the light cone
projector can be obtained by the substitution:

Φe,+−
i = Φe,++

f (p1 ↔ −p′1), (1.85)

where the subscript corresponds to the interaction of the virtual photon with the
initial i or the scattered f electron.

We take into account the contributions from self-energy, vertex, and
box-type FD:

Φe,+λ
i,V =

(4πα)3/2

−16π2κ

∫
d4k

iπ2

ū(p′1)
p̂2

s
(p̂1 − k̂′γμ(p̂′1−k̂−k̂′êλ)(p̂1−k̂)γμω+u(p1)

(0)(2)(q)
,

Φe,+λ
i,Σ =

(4πα)3/2

−16π2κ
(lt − 2lλ + 3)ū(p′1)ω−

p̂2

s
(p̂′1 − q̂)êλω+u(p1),

(1.86)

Φe,+λ
i,H =

(4πα)3/2

−16π2κ

∫
d4k

iπ2

ū(p′1)γμ(p̂′1−k̂)
p̂2

s
(p̂′1−k̂−q̂)γμ(p̂1 − k̂1)eλω+u(p1)

(0)(1)(q)
,

Φe,+λ
i,box =

(4πα)3/2

16π2

∫
d4k

iπ2

ū(p′1)γμ(p̂′1 − k̂)
p̂2

s
(p̂′1 − k̂ − q̂)êλγμω+u(p1)

(0)(1)(2)(q)
,

κ = 2p1k
′, κ′ = 2p′1k

′.

The ˇrst three contributions are (see details in Subsec. 2.1)

2Φ++
vi (Φ++

B )∗ = 2A|Φ++
B |2,

A =
α

2π

[
−1

2
L − 1

4
− q2I01q̃ +

3q2

2d
lq +

κ′ − 2q2

2d
lκ′

]
,

(1.87)

d = κ′ − q2, lκ′ = ln
κ′

m2
− iπ,

2Φ+−
Σvi(Φ

+−
B )∗ =

8α2

κκ′ (
1
2
− lκ)x′[x′k′ − xp1]q, k′ + p = q.

The soft photon contribution has a standard form

dτ+±
soft =dτ+±

B

α

π

{
(lu − 1)[ll+2 lnΔ−ln(x′)]+

1
2
l2u−

1
2

ln2(x′)− π2

6

}
, (1.88)
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where lu = lnu/m2, u = 2p′1p1, E, E′ = x′E are the energies of the initial and
the scattered electrons. We can write the contribution to the electron IFs with
deˇnite chiral state:

2
[
dτe,+±

i,V + dτe,+±
i,Σ + dτe,+±

i,V + dτe,+±
i,box

]
+ dτ+±

soft =

= dτ+±
B

α

π

[
(lu − 1)

(
2 ln Δ +

3
2
− ln x′

)
+ K+±

e,SV

]
. (1.89)

Again here we can see the cancellation of auxiliary ®photon mass¯ parameter λ
and the agreement with the predictions of the structure functions approach.

The analytic expressions of K+±
e,SV , K+±

γ,SV can be found in [11].

1.2.3. Hard-Photon Emission in Collinear Kinematics. For appropriate con-
sideration of RC to chiral amplitudes, we have to consider additional
hard collinear photon emission. It is convenient to distinguish the collinear
and noncollinear kinematics of emission of a hard photon. For this aim we in-
troduce an auxiliary small parameter θ0 � 1. Collinear kinematics corresponds
to the case when the photon is emitted by the charged particle at an angle of
θ � θ0 with respect to the direction of motion of the (initial or ˇnal) charged
particle. Noncollinear kinematics corresponds to larger emission angles: θ > θ0.
The chiral amplitudes in noncollinear kinematics can be calculated using the
methods developed by the CALCUL Collaboration [9]. The contribution from
collinear kinematics can be obtained using the quasi-real electron method de-
veloped in [13, 14]. The total sum does not depend on the parameter θ0. The
cancellation of the θ0 dependence constitutes also a check of the calculations. The
nonleading contributions from additional hard-photon emission essentially depend
on the experimental setup. These are included as K factors in the structure func-
tion picture of IFs.

The contribution to the photon IF in collinear kinematics is

dτλ
γ,coll=

α

2π

1∫
x−(1+Δ)

dz−
z−

[
1+x̃2

−
1−x̃−

(ls+r−+ln θ2
0−1)+1−x̃−

]
dτλγγ∗

B

(
q−
z−

, q+

)
+

+
α

2π

1∫
x+(1+Δ)

dz+

z+

[
1 + x̃2

+

1 − x̃+

(
ls + r+ + ln θ2

0 − 1
)
+1−x̃+

]
dτλγγ∗

B

(
q−,

q+

z+

)
,

(1.90)

where the ˇrst term in square brackets corresponds to the emission of the hard
photon along the electron and the second one along the positron (from the created
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pair). Moreover, we use the notations

x̃± =
x±
z±

, ls = ln
2q+q−

m2
= ln

2E2x+x−(1 − c±)
m2

, r± = ln
x±

2x∓(1 − c±)
,

(1.91)
where the quantity c± is the cosine of the angle between the pair momenta in
CMS of the colliding beams. The ®shifted¯ photon IF (the conservation law reads
as p1 + q = q−/z− + q+/z+) is

dτλγγ∗

B

(
q+

z+
,
q−
z−

, x±

)
=

4α2

q2
+q2

−
x̃2
±d2q−dx̃−, x̃+ + x̃− = 1,

(1.92)

q =
1
z−

q− +
1
z+

q+.

A similar method can be applied to the problem of the calculation of the
contribution to the IF of electron of collinear photon emission with the result

dτλ
e,coll =

α

2π

1−Δ∫
0

dz1

[
1 + z2

1

1 − z1
(lu + l1 + ln θ2

0 − 1) + 1 − z1

]
dτλeγ∗

B (p1z1, p
′
1)+

+
α

2π

1∫
x′(1+Δ)

dz2

z2

[
1 + (x′/z2)2

1 − (x′/z2)
(lu + l2 + ln θ2

0 − 1)dτλeγ∗

B

(
p1,

1
z2

p′1

)]
,

(1.93)

where the ˇrst term in the square brackets describes the emission from the initial
electron and the second term describes the emission from the scattered electron.
Here we use the next deˇnitions:

lu = ln
2p1p

′
1

m2
= ln

2E2x′(1 − c)
m2

, l1 = ln
z2
1

2x′(1 − c)
, l2 = ln

x′

2z2
2(1 − c)

,

(1.94)
where c is the cosine of the angle between the initial and the scattered electrons
momenta in CMS of the initial particles.

The ®shifted¯ electron IF in the Born approximation (the four-momentum
conservation law reads as z1p1 + q = p′1/z2 + k1) is

dτ±
eγ

(
z1p1,

p′1
z2

)
=

4α2q2

κκ′ η± z2d
2kdx1

x1x′ , η+ = z2
1 , η− =

(
x′

z2

)2

,

(1.95)

κ =
z1

x
k2

1 κ′ =
z2

(
p′

1x1 − k1
x′

z2

)2

x1x′ , x1 +
x′

z2
= 1, q = k1 +

1
z2

p′
1.
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The terms containing ®large¯ logarithms ls − 1, lu − 1 will be included in the
lepton nonsinglet structure functions in the form of the DrellÄYan IFs, whereas the
remaining terms contribute to the relevant K factors. The results for the electron
IF can therefore be rewritten in the frame of the structure function approach (the
chiral indices are suppressed)

dτe,coll =

1∫
0

dz1

[
Pθ(z1)

α

2π
(lu − 1) +

α

π
Ki

coll

]
dτ i,e(z1p1, p

′
1) + dτ i

comp+

+

1∫
0

dz2

z2

[
Pθ

(
x′

z2

)
α

2π
(lu − 1) +

α

π
Kf

coll

]
dτf,e

(
p1,

p′1
z2

)
+ dτf

comp. (1.96)

For the photon IF we have

dτγ,coll =

⎡⎣ 1∫
0

dz−
z−

Pθ

(
x−
z−

)
α

2π
(ls − 1) +

α

π
Kf

coll

⎤⎦ dτ

(
q−
z−

, q+

)
+dτ−,γ

comp+

+

⎡⎣ 1∫
0

dz+

z+
Pθ

(
x+

z+

)
α

2π
(ls − 1) +

α

π
Kf

coll

⎤⎦ dτ

(
q−,

q+

z+

)
+ dτ+,γ

comp, (1.97)

where

Pθ(z) =
1 + z2

1 − z
θ(1 − z − Δ), (1.98)

and

dτ−,γ
comp(coll) =

α

2π

1∫
0

dz−
z−

Pθ

(
x−
z−

)
dτγ

B

(
q−
z−

, q+

)
ln θ2

0(r− + 1 − x̃−),

dτ+,γ
comp(coll) =

α

2π

1∫
0

dz+

z+
Pθ

(
x+

z+

)
dτγ

B

(
q−,

q+

z+

)
ln θ2

0(r+ − 1 − x̃+),

(1.99)

dτ i,e
comp(coll) =

α

2π

1∫
0

dz1Pθ(z1)dτe
B(z1p1, p

′
1) ln θ2

0(l1 + 1 − z1),

dτf,e
comp(coll) =

α

2π

1∫
0

dz2

z2
Pθ

(
x′

z2

)
dτe

B

(
p1,

p′1
z2

)
ln θ2

0(l2 + 1 − x′

x2
).
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1.2.4. Noncollinear Hard-Photon Emission Contribution to the Electron and
Photon Impact Factor. Contribution to electron IF from the channel of double
Compton scattering process

e(p1, λ1) + γ∗(q) → γ(k1, λ1) + γ(k2λ2) + e(p′1, λe),
(1.100)

u = 2p1p
′
1, κi = 2kip1, κ′

i = 2kip
′
1,

with emission of both the ˇnal electrons outside a narrow cone deˇned by θ > θ0,
can be calculated using the chiral amplitudes technique [9]. The result is

dτeγγ
λeλ1λ2

=
α3

2π2
|mλe

λ1λ2
|2 d2k1d

2k2dx1dx2

x1x2x′ |θ1,2>θ0 ,

(1.101)
x′ = 1 − x1 − x2, q = k1 + k2 + p′

1,

with

|m+
++|2 =

4q2u

κ1κ2κ′
1κ

′
2

,

|m+
−−|2 =

4(x′)2q2u

κ1κ2κ′
1κ

′
2

,

(1.102)
|m+

−+(k1, k2)|2 = |m+
+−(k2, k1)|2,

|m+
+−(k2, k1)|2 =

4
u2κ1κ2κ′

1κ
′
2

Sp
[
p̂′1B

+
+−ω+p̂1B̃

+
+−
]
,

and

B+
+− = − 1

(p1 + q)2
p̂1k̂1p̂

′
1p̂1k̂2(p̂1 + q̂)

p̂2

s
−

− 1
(p′1 − q)2

p̂2

s
(p̂′1 − q̂)k̂1p̂

′
1p̂1k̂2p̂

′
1p̂1(p̂′1 + k̂1)

p̂2

s
(p̂1 − k̂2)p̂′1. (1.103)

It was explicitly shown [11] that the quantity B+
+−(k1, k2, q) vanishes at |q| → 0.

This property is the consequence of gauge invariance implement for the virtual
photon with momentum q.

For the aim of checking the cancellation of the θ0 dependence of the sum of
the contributions of collinear and noncollinear kinematics, we write the limiting
expressions for |m+

ij |2 for the emission of real photons kinematics

θ1 > θ0, θ1 → θ0, θ2 � θ0, (1.104)
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where θ1 is the angle of emission of a photon with momentum k1 with respect to
the initial or ˇnal electron momentum. These limiting values are

(|m+
+−|2 + |m+

++|2)κ1→0 =
4q2

κ1

[(x′)2 + (1 − x1)2]
x1(1 − x1)2κ2κ′

2

,

(|m+
+−|2 + |m+

++|2)κ′
1→0 =

4q2

κ′
1

x′

x1κ2κ′
2

[1 + (1 − x2)2],

(1.105)

(|m+
−+|2 + |m+

−−|2)κ1→0 =
4q2

κ1

1
x1κ2κ′

2

[(x′)2 + (1 − x1)2],

(|m+
−+|2 + |m+

−−|2)κ′
1→0 =

4q2

κ′
1

(x′)3

x1(1 − x2)2κ2κ′
2

[1 + (1 − x2)2].

For small emission angles we can express all the invariants in terms of angular
two-dimensional vectors in the plane transversal to the beam axis:

k1 = Ex1θ1, p1
′ = Ex′θ′,

∫
θ1>θ0

d2k1

κ1
= πx1 ln

1
θ2
0

+ . . . ,

(1.106)∫
d2k1

κ′
1

=
x1

x′

∫
|θ1−θ′|>θ0

d2θ1

(θ1 − θ′)2
=

πx1

x′ ln
1
θ2
0

+ . . .

One can be convinced that explicitly the sum of collinear and noncollinear contri-
butions to the electron IF, summed over the chiral states of the ˇnal hard photon,
is independent of θ0:

dτe
hard, nc =

∑
λ1λ2

(dτeγγ
+λ1,λ2

+ dτ i,e
comp + dτf,e

comp). (1.107)

Its value, however, depends essentially on the experimental photon detection
setup.

Similar calculations for the hard photon emitted in noncollinear kinematics
for photon impact factor:

γ(k, λ) + γ∗(q) → e−(q−, λ−) + e+(q+,−λ−) + γ(k1, λ1),
(1.108)

s1 = 2q−q+, κ± = 2kq±, κ1± = 2k1q±,

with chiral amplitudes deˇned as mλ
λ1λ−

, gives

dτe+e−γ
λλ1λ−

=
α3

2π2
|mλ

λ1λ− |
2 d2q−d2q+dx+dx−

x1x+x−
,

(1.109)
x1 = 1 − x+ − x−, q = q− + q+ + k1,
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with

|m+
++|2 =

4q2s1x
2
+

κ−κ1−κ+κ1+
,

|m+
+−|2 =

4q2s1x
2
−

κ−κ1−κ+κ1+
,

(1.110)

|m+
−+|2 =

4
s2
1κ−κ1−κ+κ1+

Sp
[
q̂−A+

−+ω+q̂+Ã+
−+

]
,

|m+
−−(k, k1)|2 = |m+

−+(−k1,−k)|2,

and

A+
−+ =

s1

(q+ − q)2
k̂q̂+k̂1(−q̂+ + q̂)

p̂2

s
− s1

(q− − q)2
p̂2

s
(q̂− − q̂)k̂q̂−k̂1−

− q̂+(q̂− − k̂)
p̂2

s
(q̂+ + k̂1)q̂−. (1.111)

Again it was demonstrated in [11] the proportionality A+
−+ ∼ |q| at small |q|.

To check the cancellation of θ0 dependence let us consider the limiting values
of |m+

λ−λ1
|2 for emission angles close to the direction of the momentum of one

of charged particles.

(|m+
++|2 + |m+

+−|2)κ1−→0 =
4q2

κ1−

(x+)2x−
x1(1 − x+)2κ+κ−

[x2
− + (1 − x+)2],

(|m+
−+|2 + |m+

−−|2)κ1−→0 =
4q2

κ1−

x−
x1κ+κ−

[x2
− + (1 − x+)2],

(1.112)

(|m+
−+|2 + |m+

−−|2)κ1+→0 =
4q2

κ1−

x+x−
x1(1 − x−)2κ+κ−

[x2
+ + (1 − x−)2],

(|m+
++|2 + |m+

+−|2)κ1+→0 =
4q2

κ1−

x−
x1κ+κ−

[x2
+ + (1 − x−)2].

One can verify the cancellation of the θ0 dependence in the sum of the collinear
kinematics of the noncollinear contributions to the photon IF, summed on hard-
photon chiral states:

dτγ
hard, nc = dτe+e−γ

+λ,λ + dτ−,γ
comp + dτ+,γ

comp. (1.113)

The numerical value of dτγ
hard, nc depends also on the experimental setup and will

not be considered here.
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1.2.5. DrellÄYan Picture of Process. We have obtained that the IFs of both
electron and photon in LLA can be written in the partonic form of the DrellÄYan
process, in terms of structure functions for any chiral states of initial and ˇnal
particles (the chiral indices are suppressed):

(dτB + dτSV +
∑

dτhard)γ(q−, q+) =

=

1∫
x−

dz−
z−

1∫
x+

dz+

z+
D

(
x−
z−

)
D

(
x+

z+

)
dτγ

B

(
q−
z−

,
q+

z+

)
×

×
(
1 +

α

π
[Kγ

SV + Kγ
coll + Kγ

ncol]
)

, (1.114)

(dτB + dτSV + dτhard)e(p1, p
′
1) =

=

1∫
0

dz1

1∫
x′

dz2

z2
D(z1)D

(
x′

z2

)
dτe

B

(
z1p1,

p′1
z2

)
×

×
(
1 +

α

π
[Ke

SV + Ke
coll + Ke

hard]
)

, (1.115)

where D(z) = D(z, ls) is the nonsinglet structure function of a fermion (the
deˇntion could be ˇnd in [58]). Kcoll can be derived from Eq. (1.96), where the
terms containing ln θ0 are eliminated. The form of Kncol (after proper regular-
ization, compensating the divergent terms in the limit θ0 → 0) strongly depends
on the details of experiment Å tagging the additional hard photon.

The contributions from pairs production channels to the electron IF are not
discussed here.

1.3. Radiative Corrections to the ChengÄWu Electron Impact Factor. It
is well known (see [4Ä6]) that the QED peripheral scattering amplitude for the
process A + B → A′ + B′ (with internal quantum numbers a, b, a′, b′) at high
energy

A(pA, a) + B(pB, b) → A(p′A, a′) + B(p′B, b′),
(1.116)

s = (pA + pB)2 � −t = −(pA − p′A)2 ∼ m2

can be written in the form

A(s, t) =
is

(2π)2

∫
d2k τA(k, r) τB(k, r)

[(k + r)2 + λ2][(k − r)2 + λ2]
(1.117)(

1 + O
(

t

s

))
, 4r2 = −t > 0,
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where τ i is the so-called ChengÄWu IF, associated with the particle i. This form
was found to be valid in the ˇrst nontrivial order of the perturbation theory. Here
λ is the photon mass and the two-dimensional vectors r and k are orthogonal to
the momenta pA, pB of the initial particles. The IF τ describes the inner structure
of the colliding particles. For the electron τe = 4παδij , where indices i, j deˇne
its polarization states. The expression for the impact factor of an on-mass-shell
photon can be written in the form [5]:

τγ
ij = 8α2

1∫
0

dy

1∫
0

dx+ dx−δ(x+ + x− − 1)(Aij − Bij), (1.118)

with

Aij =
1

4r2x2
+y(1−y)+m2

{
8x3

+x−y(1−y)rirj−x2
+r2

[
1−8x+x−

(
y − 1

2

)
2

]
δij

}
,

Bij =
1

4Q2y(1−y)+m2

{
8x+x−y(1−y)QiQj−Q2

[
1−8x+x−

(
y− 1

2

)
2

]
δij

}
,

Q =
1
2
(k + r) − x+r,

where i, j describe the photon polarization states.
In the case of small angle e+e− scattering, the amplitude for the diagrams

with the multiphoton exchange has the eikonal representation

A(s, t) = A0(s, t) eiδ(t),

A0(s, t) = 4πα
2
st

ū(p′1)p̂2u(p1)v̄(p2)p̂1v(p′2) = 4πα
2s

t
N1N2, (1.119)∑

pol

|Ni|2 = 2, δ(t) = −iα ln
−t

λ2
.

Here we use the fact, that at high energies only the longitudinal polarizations of
the t-channel virtual photons are important:

ū(p′1)γμu(p1)v̄(p2)γνv(p′2)G
μν(q), Gμν(q) =

1
q2

2 pμ
2pν

1

s
, q2 = t. (1.120)

Radiative corrections to A0 due to the so-called ®decorated boxes¯ diagrams are
assumed to lead to a generalized eikonal representation:

A = A0(s, t)[Γ1(t)]2 eiδ(t), (1.121)

where Γ1(t) is the Dirac form factor of electron

V μ(t) = γμΓ1(t) +
σμνqν

2m
Γ2(t), Γ1(t) = 1 +

α

π
Γ(2)

1 (t) + . . . (1.122)
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Note, that one should include in δ(t) also corrections to the virtual photon Green
function, leading in particular to the electric charge renormalization.

In the next Subsection we verify the generalized eikonal representation for
the so-called ®decorated boxes¯ amplitudes [16].

1.3.1. One-Loop Correction to the Electron IF. Keeping in mind that the
amplitude for the near forward scattering with the two-photon exchange is pure
imaginary (we omit the corrections of the order of m2/s), we can calculate its
s-channel discontinuity. There are RC to this discontinuity from the virtual
photons and from the emission of the real photon in the intermediate state. We
will separate the last contribution in two parts corresponding to the emission of
soft and hard photons.

The virtual photon contribution contains the electron vertex function for the
case when the initial and ˇnal electrons are on mass shell:

Δτvirt
e =

α

π
τ (0)
e [F (2)

1 (k2) + F
(2)
1 (k

′2)],

F
(2)
1 (t) = −G(t) ln

m

λ
− G1(t) − T (t),

G(t) =
1 + a2

2a
ln b − 1, G1(t) = 1 − 1 + 2a2

4a
ln b,

(1.123)

T (t) =
1 + a2

2a

⎡⎣−1
4

ln2 b + ln b ln(1 + b) −
b∫

1

dx

x
ln(1 + x)

⎤⎦ ,

a =

√
1 − 4m2

t
, b =

a + 1
a − 1

, t < 0,

k = p − p1, k′ = p1 − p′1,

where the momenta of initial and ˇnal electrons are p, p′1 and the momentum of
electron in the intermediate state is p1.

The contribution from the emission of a soft photon has the classical form:

− α

4π2

∫ (
p1

p1k1
− p

pk1

)(
p1

p1k1
− p′1

p′1k1

)
τ (0)
e

d3k1

ω1

∣∣∣
ω1<δE

,

(1.124)
δE � E =

√
s/2.

The energies of initial, intermediate, and ˇnal particles are approximately equal
(but large in comparison with the electron mass), and for small scattering angles
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we can use the relations:

1
2π

∫
d3k1

ω1

m2

(pik1)2
=2Le,

1
2π

∫
d3k1

ω1

pipj

(pik1)(pjk1)
=

1+a2

a

⎡⎣Le ln b− 1
4

ln2 b+ln b ln(1+b)−
b∫

1

dx

x
ln(1+x)

⎤⎦,
(1.125)

Le = ln Δ + ln
m

λ
, t = (pi − pj)2, Δ =

δE

E
� 1,

with the quantities a, b deˇned above. Thus, we obtain

Δτ soft
e =

α

π
[
(
G(k2) + G(k′2) − G(t)

)
Le + T (k2) + T (k′2) − T (t)],

where T (t), G(t) are deˇned above.
At last we consider the hard-photon emission. Its contribution to the imag-

inary part of the electronÄelectron scattering amplitude can be presented in the
form

ImsA(s, t) = −s
α3

2π2

∫
d2k

k2k′2
N1N2

d2k1dx

x(1 − x)
I(x, k1, k), Δ < x < 1,

(1.126)
where x is the energy fraction of the hard photon. We obtain

I(x, k1, k) =
1

d1d2
(−4m2 + 2t1z) +

1
d1d′1

(−4m2x2(1 − x) + 2tz(1 − x))+

+
1

d2d′1
(−4m2 + 2t2z) − 2z

1
d1

− 4z
1
d2

+
8m2

d2
2

− 2z
1
d′1

,

z = 1 + (1 − x)2, (1.127)

where

d1 = (p − k1)2 − m2 = − 1
x

[m2x2 + k2
1],

d2 = (p1 + k1)2 − m2 =
1

x(1 − x)
[m2x2 + (xk − k1)2],

d′1 = (p′1 − k1)2 − m2 = − 1
x

[m2x2 + (xq − k1)2], (1.128)

2pp1 = t1 =
1

1 − x
[m2z + (k − k1)2],

2p1p
′
1 = t2 =

1
1 − x

[m2z + (xq + k1 − k)2].



PERIPHERAL PROCESSES IN QED AT HIGH ENERGIES 1145

The subsequent integration is straightforward and gives the result:

Δτhard
e = τ (0)

e

α

π

[(
G(k2)+G(k

′2) − G(t)
)

ln
1
Δ

+ G1(k2) + G1(k
′2) − G1(t)

]
.

The interference of two amplitudes with the photon emitted by two initial
particles is small ∼ O(t/s). This fact is known in literature as the up-down
cancellation. The contribution of the diagrams with the two-photon exchange is
pure imaginary and, consequently, does not interfere with the real Born amplitude.
Adding together all contributions we obtain the ˇnal result for one-loop RC to
the electron IF

Δτe =
α

π
τ (0)
e F

(2)
1 (t), τ (0)

e = 4πα. (1.129)

This result agrees with the generalized eikonal form of the small-angle scattering
amplitude. But in the upper orders the eikonal representation is violated, as it
will be shown below.

1.3.2. Generalized Eikonal Representation. The above result for RC to the
electron IF can be obtained in a simple way. Let us consider again the case of the
decorated box, when the positron block corresponds to the Born diagram whereas
the electron one contains the set of four Feynman's graphs with a virtual photon.
We express the components of the exchanged photon momentum in terms of
the squared invariant energies s1, s2 for electron and positron blocks using the
Sudakov parameters

k = αp2 + βp1 + k⊥, d4k =
1
2s

ds1ds2d
2k⊥, k2

⊥ = −k2,

s1 = (k − p1)2 = −sα − k2 + m2, s2 = (k + p2)2 = sβ − k2 + m2.

Performing the s2 integration by residue from the propagator of the inter-
mediate positron (it takes into account also the diagram with the crossed photon
lines), we obtain the following expression for the total RC:

4 α

s (2π)2

∫
d2k

(k2 + λ2)((q − k)2 + λ2)

∫
C

ds1p
μ
2pν

2 ū(p′1)Aμνu(p1), (1.130)

where ū(p′1)Aμνu(p1) is the Compton scattering amplitude, corresponding to
the Feynman diagrams having only s-channel singularities and the contour C is
situated above these singularities. The amplitude has the pole at s1 = m2, which
corresponds to the electron intermediate state, and the right-hand cut starting from
s1 = (m + λ)2, which corresponds to one-electron and one-photon intermediate
state.
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Using the Sudakov parameterization for the photon momentum k we can
present pμ

2 in the form

pμ
2 =

1
α

(k − k⊥ − βp1) ≈ − s

s1 + k2
(k − k⊥)μ (1.131)

omitting the small contribution ∼ 1/s proportional to βp1.
Let us consider the product of two terms in the right-hand side of this equation

with the Compton amplitude Aμν . The contribution of the term ∼ k⊥ is zero:

|k|spν
2

∫
C

ds1k
μ
⊥

(s1 + k2)|k| ū(p′1)Aμν(s1, k, k′)u(p1) = 0. (1.132)

This conclusion follows from the convergence of the integral over the large circle
in the s1 plane and the absence of the left cut. This property is valid for the
planar Feynman graphs. The convergence of the integral is a consequence of
the fact that for the physical (transverse) polarizations of the virtual photon the
quantity eμpν

2Aμν , e = k⊥/|k| behaves at large s1 as m2/s1.
Applying the Ward identity for the ˇrst contribution ∼ kμ we obtain:

pμ
2pν

2 ū(p′1)Aμν(s1)u(p1) = −se2

s1
pν
2 ū(p′1)Γ

ν(q)u(p1), s1 � m2. (1.133)

Now the integral over the large semicircle gives the generalized eikonal result
∼ Γν , which means, in particular, that for physical t < 0 the total contribution
of the various intermediate states is not zero. In particular, we see that RC to IF
of electron containing infrared divergences cancel only in the total cross section
with the contribution of the inelastic process Å the photon emission.

In the case of the n-photon exchange, the eikonal result for the scattering
amplitude corresponds to the classical picture in which all intermediate fermions
are on their mass shell. It is a consequence of the fact, that the Born amplitude for
the t-channel photon interactions with external particles tends to zero as (pA ki)−2

when (pA ki) → ∞, which gives a possibility of calculating all integrals over
(pA ki) by residues. For RC corresponding to the decorated diagrams with one
additional virtual photon we can use the arguments similar to the two-photon case.
The physical reason for the generalized eikonal result for their total contribution
is that the integration over the invariant si, corresponding to the virtuality of the
inner fermion line, to which the virtual gluon line is attached, gives zero because
after the cancellation of the renormalization effects due to the Ward identity the
amplitude at large si behaves as 1/s2

i . The nonvanishing result is obtained only
from the diagrams in which the virtual gluon line is attached to the external
fermion lines but in this case we obtain the generalized eikonal result. This
argument is not valid for nonplanar diagrams because they have the left and right
singularities in si planes.
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1.3.3. Impact Factors in the Two-Loop Approximation. In RC to the photon
IF the infrared divergencies are cancelled in the sum of contributions from the
e+e−γ and e+e− intermediate states. With the use of the crossing relations for
t = 0 [17] one can express the contribution to τγ from the e+e−γ intermediate
state in terms of the contribution to τe from the eγγ intermediate state which
was investigated in papers [18Ä20]. We estimate here RC for t = 0 only at small
virtualities of the exchanged photon k2. Their value can be extracted from the
results of paper [21], where the one-loop correction to the cross section of pair
production by photon on the coulomb ˇeld of nuclei was calculated:

2∑
i=1

[τ + Δτ ]γii(k, 0) =
28k2α2

9m2
[1 + δp], k2 � m2,

(1.134)

δp =
α

π

9
14

(
1128
35

ζ(3) − 6971
210

)
= 0.009.

RC to the photon IF can be found easily also in the region k2 � m2 where one
can use the DGLAP evolution equations [22,23].

Let us consider now RC to the electron IF. The generalized eikonal (GE)
hypothesis is violated in the 2-loop approximation. (This fact was veriˇed ex-
plicitly for t = 0.) Indeed, if the GE hypothesis would be valid, the complete
compensation of contributions from the transition of the initial electron to the
intermediate states e, eγ and eγγ would take place. However, it was shown,
that the total contribution is not zero and is equal to an interference term for the
e+e−-pair production amplitudes.

To clarify this result, let us write down the impact factor in the form

τA =
∫
C

ds1

2π i

1
s2

J (A)
μν pμ

Bpν
B, (1.135)

where the quantity (1/s2)J (A)
μν pμ

Bpν
B is expressed in terms of amplitudes J (A) for

the scattering of the virtual photon on the initial particles and does not depend on
s at s → ∞. Je

μν corresponds to contributions of all possible diagrams contrary
to the planar amplitude Aμν discussed in the previous section. The integration
contour C is displaced in correspondence with the Feynman prescription between
the right- and left-hand side singularities of the amplitude. The right singularities
are the poles at s1 = m2 and the cuts at s1 > (m+λ)2, s1 > (m+2λ)2, and s1 >
9m2. There are also left singularities at the same points for the crossing variable
u1 = −s1 − t− 2m2 +k2 + (q−k)2. The additional e+e− pair can be produced
according to the BetheÄHeitler or bremsstrahlung mechanisms. There are also
interference terms taking into account the identity of the ˇnal electrons. The most
important contribution is from the BetheÄHeitler mechanism, corresponding to the
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e+e− pair production by two virtual photons. The corresponding impact factor
contains the divergency in s1 related to the presence of two-photon intermediate
states in the crossing channel. For the case of t = 0 this contribution was
calculated in [26]. We write down it here only in the WeizsackerÄWilliams
approximation, where it has the form of the sum rule for the Borselino formulae
for the total cross section σ(s1) for the e+e− pair production in the electronÄ
photon collisions through the BetheÄHeitler mechanism:

τe
BHe

= k2

s∫
sth

d s1

π

σ(s1)γe→eeē

s1
=

α3k2

πm2

(
a ln2 s

m2
+ b ln

s

m2
+ c
)

,

(1.136)

a =
14
9

, b = −218
27

, c =
418
27

− 13
2

ζ(2).

As it was discussed above, the logarithmic dependence on the upper limit s
in the integral over s1 should be subtracted in a self-consistent way to avoid
the double counting, because the logarithmic contributions are summed by the
BetheÄSaltpeter equation (cf. the analogous procedure for the BFKL Pomeron in
the next-to-leading approximation [24] (and references therein)).

For the muon production we have

τe
BHμ

=
α3k2

πM2

(
a1 ln2 s

M2
+ b1 ln

s

M2
+ c1

)
,

(1.137)

a1 =
14
9

, b1 = −218
27

+
28
9

ln
(

M

m

)
, c1 =

3011
324

− 28
9

ζ(2) − 107
9

ln
(

M

m

)
.

Here m and M are masses of electron and muon, correspondingly.
In the case of the bremsstrahlung mechanism of the e+e− pair production its

contribution should be added with the corresponding two-loop RC to the electron
form factor for the elastic intermediate state and leads to the result corresponding
to the generalized eikonal approximation due to the fact, that the corresponding
diagrams are planar.

Among many Feynman's graphs obtained from the interference between the
various amplitudes for the pair production there are only four nonplanar diagrams
corresponding to the identity of electrons in the ˇnal state in the BetheÄHeitler
mechanism. Only they give nonvanishing result for τe at t = 0. The corre-
sponding contribution in the WeizsackerÄWilliams approximation was calculated
in [17]:

τ
(e)
int ≈ k2

m2

α3

π

(
221
315

+
41549
6300

ζ(2) − 216
105

ζ(3) − 792
105

ξ(2) ln 2
)

≈

≈ k2

m2

α3

π
(−3.57). (1.138)
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It leads to the sum rules for the integrals from the one- and two-photon bremsstrah-
lung cross sections and the slope of the Dirac form factor at t = 0 [20].

Finally, the total two-loop contribution to the electron impact factor can be
written as follows:

τe =
α2

π2
τ0
e F

(4)
1 + τe

BH. (1.139)

Here F
(4)
1 is the full two-loop correction to the Dirac form factor (including

nonplanar diagrams and the diagrams with the inner fermion loop). The term
τe
BH is the total contribution from the imaginary part corresponding to the BetheÄ

Heitler mechanism of the pair production including the interference effects, related

with the identity of the produced electrons (τe
BH = τe

BHe
+ τe

BHμ
+ τ

(e)
int for

t = k2 = 0).
The physical meaning of this formula is obvious: the nontrivial corrections

to IF are related only with the charged particle production in the intermediate
states.

1.3.4. Higher Order Radiative Corrections to Impact Factor. In the three-
loop approximation to the photon impact factor the most important contribution
corresponds to the diagram with two fermion loops connected in the t channel
by two photons. It contains the logarithmic divergency ∼ ln(s/m2) because of
the imaginary part of the corresponding amplitude proportional to s1 for large
s1. In particular, for t = k2 = 0 the impact factor can be expressed in terms of
the integral from the cross section for the transition of two real photons into two
e+e− pairs.

The growth of the impact factor ∼ ln(s/m2) is related to the logarithmic
increase of the number of the dipoles (lepton pairs) at large energies. The effect
of fermion's identity in the intermediate state does not have any in	uence on this
growth. Also the contribution from the diagrams with one e+e− pair and several
photons gives a ˇnite contribution to the photon impact factor.

Let us consider now three-loop corrections to the electron impact factor.
The most important contribution ∼ ln2(s/m2) appears from one-loop RC to the
BetheÄHeitler mechanism of the e+e− production. Other diagrams lead to ˇnite
terms. The generalized eikonal representation is violated due to the nonplanar
diagrams related to the e+e− pair production, but there is another reason for
its violation. It is related with the charge parity conservation in QED. Indeed,
two external photons with their momenta k and q − k cannot pass through the
fermion loop to the three-photon intermediate state in the t channel. Therefore
the generalized eikonal representation, containing in particular the form factor
corresponding to the transition of the external photon through the fermion loop
into the three-photon state, cannot be valid in three-loop approximation.

The methods, which were developed above for QED, can be used also for
QCD, where we urgently need to calculate the radiative corrections to impact
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factors of the virtual photon and other particles to ˇnd the energy region of
applicability of the BFKL theory in the next-to-leading approximation [24].

1.4. Small Angle Processes. 1.4.1. Bremsstrahlung at Bhabha Scattering
and Crossed Process. For the case when one of projectile is elastically scattered,
differential cross sections are logarithmically enhanced. It is well-known phenom-
enon called WeizsackerÄWilliams approximation. Using the inˇnite momentum
technique one can calculate the cross section with power accuracy-improving the
logarithmical ones.

Let us demonstrate this method considering the bremsstrahlung in electronÄ
positron (electron) scattering (see [4, 7, 8, 33] and references therein)

e−(p1) + e+(p2) → (e−(p′1) + γ(k1)) + e+(p′2),

s = (p1 + p2)2 � m2, −t = −k2 = −(p2 − p′2)
2 ∼ m2, m = me,

k = p′2 − p2, q = p1 − p′1.

The main contribution, nondecreasing with energy, arises from the kinematical
region when the scattered electron with photon form a jet moving close to the
direction of motion of the initial electron (the center of mass of initial electron
and positron is implied). The typical scattering angles are of the order of m/E,
4E2 = s. The spectator-positron scattered in backward direction as well moves
close to the direction of initial positron.

Let us write down the 4-momenta of particles and the momentum transferred
between fermions k in terms of Sudakov's variables (closely related to inˇnite
momentum approach):

k = αp̃2 + βp̃1 + k⊥, p′1 = α′p̃2 + β′p̃1 + p′1⊥
, a2

⊥ = −a2 < 0,
(1.140)

k1 = α1p̃2 + β1p̃1 + k1⊥, a⊥p1 = a⊥p2 = 0, p̃1,2 = p1,2 − p2,1
m2

s
.

Although the ˇne structure constant and part of momentum k have the same
designation α, we do not think they can be mixed.

Four-vectors p̃1,2 are almost light-like ones p̃2
1,2 = O(m6/s2). Using the

on-mass-shell condition of the scattered positron

p
′2
2 − m2 = (p2 + k)2 − m2 = m2α + sβ(1 + α) − k2 = 0,

one can see that the square of momentum transferred

k2 = −k2 + α2m2

1 + α
< 0

is nonzero negative quantity. Components of jet particles momenta along p1

(quantities of the order of unity) as well as transversal ones obey the conser-
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vation low

k + p′
1 + k1 = 0, β1 + β′ = 1, x = 1 − β1. (1.141)

Small components of jet particles momenta (ones along p2) can be found using
the on-mass-shell conditions p′21 = m2, k2

1 = 0:

sα1 =
k2

1

1 − x
, s(α + α1) = − (1 − x)m2 + q2

x
, q = k + k1. (1.142)

The value of Sudakov parameter α can be related with invariant mass square of
jet s1 = (p1 − k)2 = (p′1 + k1)2 = m2 − sα − k2.

We note that the square of momentum transfer is negative and is restricted
by the magnitude below |k2| > m2γ−4, γ = m/E, as well as the jet invariant
mass in the region of maximal contribution to the cross section is of the order of
electron mass.

The phase volume of the ˇnal particles can be expressed in terms of Su-
dakov's variables in full analogy with the previous section and has the form:

dΓ =
d3p′1
E′

1

d3k1

ω1

d3p′2
E′

2

(2π)4

(2π)9
δ4(p1 + p2 − k1 − p′1 − p′2) =

=
1
4s

1
(2π)5

dxd2kd2q
x(1 − x)

. (1.143)

Matrix element of the process of radiative Bhabha scattering has a contribution
from eight Feynman diagrams. Contribution of only two of them, of scattering
type survive in the region of high energies. Using Gribov's prescription for the
Green function of the virtual photon we can write it in the form:

M e+e−→e+(e−γ) =
2s(4πα)3/2

k2
ερ(k1)N2ū(p′1)V

ρu(p1),

N2 =
1
s
v̄(p2)p̂1v(p′2), (1.144)

V ρ = γρ
p̂1 − k̂ + m

(p1 − k)2 − m2

p̂2

s
+

p̂2

s

p̂1 − k̂1 + m

(p1 − k1)2 − m2
γρ,

with ε(k1) Å the polarization vector of photon. Denominators of the electron
Green functions can be expressed in terms of Sudakov's variables:

(p1 − k)2 − m2 = −k2 +
(1 − x)m2 + q2

x
+

(q − k)2

1 − x
=

d

x(1 − x)
,

(1.145)

(p1 − k1)2 − m2 = −(q − k)2 − (1 − x)m2 − x

1 − x
(q − k)2 = − d1

1 − x
.
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Further manipulations to obtain the differential cross section are standard. Differ-
ential cross section of radiative Bhabha scattering with emission of hard photon
along the initial electron is

dσe+e−→e+(e−γ) =
2α3

π2

1 − x

d2d2
1

[k2(1+x2)dd1 − 2x(d − d1)2m2]
d2q d2k dx

(k2 + m2α2)2
,

d = (1 − x)2m2 + (q − xk)2, d1 = (1 − x)2m2 + (q − k)2, (1.146)

α = −q2 + (1 − x)2m2

sx(1 − x)
.

In the case of radiative scattering of electron on a heavy nuclei, k is the momentum
transferred to it in the rest frame of nuclei and the quantity α must be re-
placed by

mα = − (1 − x)2m2 + q2

2Ex(1 − x)
, (1.147)

with E Å the energy of the initial electron in the nuclei rest frame.
The differential cross section in this form is convenient both for further

numerical or analytical investigation. For instance, we can obtain, by integrating
it on momentum transferred to the nuclei, the distribution on photon transversal
momentum and its energy fraction (in agreement with the result of paper [27]):

σe+e−→e+(e−γ) =
2α3

πm4

1 − x

c2
×

×
[
2[1 + x2 − 4x(1 − x)2

c
+

4x(1 − x)4

c2
] ln

sx

(1 − x)m2
−

− (1 + x)2 +
16x(1 − x)2

c
− 16x(1 − x)4

c2

]
dxd2k1, (1.148)

x = 1 − ω

E
, c = (1 − x)2 +

k2
1

m2
.

The same form has the distribution on photon parameters emitted along the
initial positron. The total spectrum can be obtained by integration on transversal
momentum of photon and further multiplying on factor 2:

dσe+e−→e+e−γ

dx
=

=
4α3

m2(1 − x)

[
4
3
x + (1 − x)2

] [
2 ln

s

m2
+ 2 ln

x

1 − x
− 1
]

. (1.149)
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In the same way one can obtain the inclusive distribution on the scattered electron
(in agreement with [28]):

dσe+e−→e+(e−γ)

dx d2q
=

4α3(1 − x)
πm2a2

[[
1 + x2 − 4x(1 − x)2q2

m2a2

] [
ln

s

m2
+ lnx

]
+

+
x ln x

1 − x

[
1 + x2 +

4x2(3 − x)q2

m2a2

]
− (1 + x2)2

2(1 − x)2
+

8x(1 − x + x2)q2

m2a2
−

− xa(1 + x2 + 4x2/a)
(1 − x)2r

ln
x[2(1 − x) − a + r

2x(1 − x) + a + r

]
, (1.150)

r =
√

a(a + 4x), a = (1 − x)2 +
q2

m2
.

For the case of scattering on a heavy nuclei Y the logarithmical term ln s/m2

must be replaced by ln 2E/m. This formula can be considerably simpliˇed for
sufˇciently large electron scattering angle θ = |q|/xE � m/E = 1/γ and
1 − x ∼ 1:

dσee±→(eγ)e±

dxdθ2
=

4α3(1+x2)
x2θ4E2(1−x)

[
(1−x+x2) ln

4E2

m2
+lnx− 1

2
(1+x2)+x ln

θ2

4

]
,

(1.151)

dσeY →(eγ)Y

dxdθ2
=

4α3(1 + x2)
x2θ4E2(1 − x)

[
(1 + x2)

(
ln

2E

m
− 1

2

)
+ lnx + x ln

θ2

4

]
.

We put for completeness the distribution on angles of emission of both the scat-
tered electron and the positron assuming them to be large compared
with 1/γ:

dσ

dθ2
+ dθ2

− dϕ
=

4α3

πs

F (ρ, c) + F (1/ρ, c)
θ2
+θ2

−(θ2
+ + θ2

− + 2θ+θ−c)
, (1.152)

where ρ = θ+/θ−, c = cosϕ, ϕ is the azimuthal angle between the planes
containing the beam axes and the scattered electron and positron, θ± is the polar
angle of scattered positron and electron. The function F has the form:

F (ρ, c) =
1
2

+ 2cρ +
1
2
(−1 + ρ2 − 2cρ − 4c2ρ2) ln

ρ2 + 2cρ + 1
ρ2

+

+ (1 + cρ + 2(cρ)2 + 4(cρ)3 − ρ2 − 3cρ3)

arctan

(√
1 − c2

ρ + c

)
ρ
√

1 − c2
, (1.153)

we suppose here θ± � 1/γ.
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Quite similar calculation can be applied to the problem of the double bremss-
trahlung process for the case of emission by electron and positive(negative)
charged muon (photons are emitted in opposite directions in the center-of-mass
reference frame). The relevant cross section has the form:

dσe+e−→(e+γ)(e−γ)

d2k d2q1 d2q2 dx dy
=

α4(1 − x)(1 − y)
π4(k2)2

R1R2

(d1d2d3d4)2
,

R1 = k2d1d2(1 + x2) − 2xm2
1(d1 − d2)2,

R2 = k2d3d4(1 + y2) − 2ym2
2(d3 − d4)2,

d1 = m2
1(1 − x)2 + (q1 − kx)2,

(1.154)
d2 = m2

1(1 − x)2 + (q1 − k)2,

d3 = m2
2(1 − y)2 + (q2 + ky)2,

d4 = m2
2(1 − y)2 + (q2 + k)2.

Here x,−q1 are the energy fraction and the transversal momentum of the scattered
electron, y,−q2 Å the corresponding values for muon, m1,2 Å their masses.

Differential cross section of double photon emission in the same direction
has much more complicated form [29]. It will be considered in kinematics of
large angles emission later.

In the similar way the mechanisms of electroproduction of electron or muon
pairs at colliding e+e± were investigated.

The two-photon mechanism of electroproduction was considered ˇrst in [30,
31], and later in more detail in [26,32,33]; bremsstrahlung ones Å in [29]. The
effect of identity of fermions in the ˇnal state was considered in [17]. Spectra in
fragmentation region including the charge-odd contributions as well as fermion
statistics were investigated in [34]. We refer for details to the cited papers.

Differential cross sections of different processes in fragmentation region with
the same content of initial and ˇnal particles are connected with each other due
to crossing relation. Cross sections of processes one of which can be obtained
from another by rearrangement of initial particle with one of ˇnal ones from its
jet with the subsequent replacing them by antiparticles, turns out to be related by
some algebraical transformation [35]. Namely, the summed on spin states of all
particles matrix element squared are connected by relation∑

|Ma→c(k, β; ki, βi; s)|2 =

= ηca

∑∣∣∣Mc̄→ā

(
k

β
, 1/β; ki − k

βi

β
,−βi

β
;−sβ

) ∣∣∣2, (1.155)

with k, β Å transversal momentum and the energy fraction of particle c; ki, βi Å
the similar quantities for other particles from that jet; ηac equals +1, if both
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touched particles are of the same statistic, and −1 in the case when one of them
is fermion and the other is boson. In particular the spectra related as

dσb+a→c+...

dβ
= ϕa→c(β, s) = −βηacϕc̄→ā

(
1
β

,−sβ

)
. (1.156)

For instance, starting from the spectral distribution on the photon energy fraction
in the process of photon emission along electron in electronÄpositron scattering
inferred above we have

dσea→(eγ)a

dy
= ϕ(y, s) =

2α3

y

[
4
3
(1 − y) + y2

] [
2 ln

s(1 − y)
m2y

− 1
]

, y =
ω

E
,

(1.157)
dσγa→e−e+a

dz
= ψ(z) =

2α3

m2

[
1 − 4

3
z(1 − z)

] [
2 ln

sz(1 − z)
m2

− 1
]

, z =
E−
ω

.

One can be convinced in the validity of the relation ψ(z, s) = zϕ(1/z,−sz).
Let us consider now the spectrum of emission of two photons by electron and
positron [36]:

dσe−e+→(e−γ)(e+γ)

dy1 dy2
=

=
8α4

πm2

(1 − y1)(1 − y2)η1 + η2[y2
1(1 − y2) + y2

2(1 − y1)] + η3y
2
1y

2
2

y1y2
,

η1 =
5
4

+
7
8
ξ3, η2 =

1
2

+
7
8
ξ3 η3 =

7
8
ξ3, ξ3 =

∞∑
1

1
n3

≈ 1.202 . . . ,

with y1,2 = ω1,2/E Å the energy fractions of photons. Multiplying the right-
hand part of this equation on x1x2 and performing the substitution y1,2 → 1/x1,2,
we obtain the spectral distribution on the energy fractions x1, x2 of electrons in
the process of two-pair production at photons collision:

dσγγ→(e−(x1)e
+)(e−(x2)e

+)

dx1dx2
=

8α4

πm2
[x1(1 − x1)x2(1 − x2)η1−

− η2[x1(1 − x2) + x2(1 − x1)] + η3]. (1.158)

Integration of this spectrum on the energy fractions gives the known result for
the total cross section of the process of two electronÄpositron pairs production in
two-photon high energy collisions [37]:

σγγ→2e+2e−
=

α4

πm2

[
175
36

ξ3 −
19
18

]
. (1.159)

Starting from the double emission in opposite directions spectrum, one can ob-
tain the spectrum of bremsstrahlung at pair creation in the high-energy photon
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electron collisions:

dσγe→(e−e+)(eγ)

dy1 dy
=

8α4

πm2

[
[η2−η1y(1−y)]

(
1
y1

−1
)

+η3y1−η2y1y(1−y)
]
,

(1.160)
with y1 = ω/E, y = E−/E Å the energy fractions of the emitted photon and
the electron from the pair created.

It must be noted that the crossing relation discussed above is violated beyond
Born approximation since the amplitudes become in general complex.

1.4.2. Inclusive Distributions for Two-Pair Production Processes at Photon
Collisions. Starting from early 70th the processes with colliding photon beams
become close interest. In papers [37] the total cross sections of processes γγ →
2e+2e−; e+e−μ+μ− were calculated. These QED processes can be used as a
calibration ones for the planned photon colliding beams in full analogy with the
double-photon emission process at electron collisions. Besides, such a type of
processes is an essential background in any physical processes to be studied.
More possibilities can be obtained using the polarized beams.

For calibration purposes the differential inclusive cross sections for the case
of large scattered angles of the ˇnal particles become relevant. In paper [38]
it was shown that the inclusive cross sections weakly depend on the circular
polarization of initial photon beams, but the effects of linear polarization can be
rather big (∼ 19%). The polarization effects weakly manifest themselves in the
total cross sections.

Let us consider the process of two-pair production at photon collisions

γ(k2) + γ(k1) → (μ+(p+) + μ−(p−)) + (e−(q−) + e+(q+)). (1.161)

There present many Feynman diagrammes contributing to matrix element
(about 40). In high-energy limit only eight of them survive (i.e, give the nonvan-
ishing contribution in high-energy limit); restricting ourselves with the case when
muon pair moves along photon with momentum k1 and electron pair moves in op-
posite direction, only four Feynman diagrams become relevant. Using Sudakov's
parameterization of 4-momenta of the problem

p− = α−k2 + xk1 + p−⊥, q− = yk2 + β−k1 + q−⊥,

k = αk2 + βk1 + k⊥, k2
1 = k2

2 = 0,
(1.162)

d4k =
ds1 ds2

2s
d2k⊥, d4p− =

s

2
dα− dx d2p−⊥,

d4q− =
s

2
dβ− dy d2q−⊥,

where k is the momentum transferred between pairs, energy fractions x, y are
the positive quantities of the order of unity, s1 = (k1 + k)2 = −k2 + sα,
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s2 = (k2 − k)2 = −k2 − sβ are the invariant masses squared of jets which
are supposed to be much smaller compared with the total CMS energy square
s = (k1 +k2)2. Using the arguments given above the cross section can be written
in the frames of impact picture form of H. Cheng and T. T. Wu as

dσγγ→eēμμ̄ =
α4

4π

∫
d2k

π(k2)2
dΦe(k, x, ε1, p−⊥) dΦμ(k, y, ε2, q−⊥), (1.163)

with ε1,2 Å polarization vectors of photons and the impact factors deˇned as

dΦe =
dx d2p−⊥
πx(1 − x)

∑∣∣∣∣1sT γγ∗→eē
μν eμ

1kν
2

∣∣∣∣2 ,

(1.164)

dΦμ =
dy d2q−⊥
πy(1 − y)

∑∣∣∣∣1sT γγ∗→μ−μ+

αβ eα
1 kβ

1

∣∣∣∣2 .

In the lowest order of PT we have∑∣∣∣∣1sT γγ∗→eē
μν eμ

1kν
2

∣∣∣∣2 = 8x2(1 − x)2×

×
[

k2(e1e∗1)
4x(1 − x)a+a−

− (e1p+)(e∗1p+)
a2
+

− (e1p−)(e∗1p−)
a2
−

−

− 1
a+a−

((e1p+)(e∗1p−) + (e1p−)(e∗1p+))

]
,

a± = p2
± + m2, p+ + p− = k.

The similar expression can be obtained for the muon impact factor. Performing
the integration on the transversal momenta of pair component at ˇxed momentum
transfer k, we obtain the spectral distribution:

dσγγ→e+e−μ+μ−
=

16α4

π

∫
d2k

π((k)2)2
×

×
[
(e1e∗1(−ψ + 2x(1 − x)(ϕ − ψ)) + 2

(e1k)(e∗1k)
k2

x(1 − x)(2ψ − ϕ))
]
×

× [e1 → e2; x → y; ψ → ψ′; ϕ → ϕ′, m → M ], (1.165)

with ϕ = −1 + (1 + 2z)Lz, ψ = zLz, z = k2/(4m2); m, M are the masses of

electron and muon, and Lz =
ln(

√
z +

√
z + 1)√

z(z + 1)
. Functions ϕ′, ψ′ are deˇned as

ϕ′ = ϕ(z̃), ψ′ = ψ(z̃), z̃ =
k2

4M2
. (1.166)
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Introducing the spin density matrix of photons∑
λ

eλ
αeλ∗

β =
1
2
(1 + σξ)αβ , e∗αeα = 1, (1.167)

with ξ1, ξ2, ξ3 Å Stokes parameters, using the relations

4
∫

dk2

(k2)2
ψ(z)ψ(z̃) =

1
4
l2 + l + 2,

4
∫

dk2

(k2)2
ϕ(z)ϕ(z̃) =

2
3
l2 +

14
9

l +
154
27

,

(1.168)

4
∫

dk2

(k2)2
ψ(z)ϕ(z̃) =

1
3
l2 +

13
9

l +
80
27

,

4
∫

dk2

(k2)2
ϕ(z)ψ(z̃) =

1
2
l2 + l + 4, l = ln

M2

m2

and performing the integration on the energy fractions, we obtain for the total
cross section

σγγ→e+e−μ+μ−
=

8α4

πM2

[
7
54

l2+
103
162

l+
485
486

]
+

2α4

27πM2

(
l − 1

3

)
a+O

(
m2

M2

)
,

a = l1l2 cos(2γ),

with l1 = [ξ2
1 +ξ2

3 ]1/2 Å the degree of polarization of the photon with momentum
k1; l2 Å the similar quantity for the photon with momentum k2; γ is the angle
between the directions of their maximal polarization.

The similar results can be obtained for the process of electronÄpositron pair
creation with a pair of charged pions (we suggest pions to be point-like or
structureless)

π
dΦπ

d2q−⊥dy
= −4y(1 − y)

(
(e2q−)(e∗2q−)

a2
−

+
(e2q+)(e∗2q+)

a2
+

+

+
1

a+a−
((e2q+)(e∗2q−) + (e2q−)(e∗2q+))

)
,

a± = q2
± + M2

π , q+ + q− = −k.

For the total cross section we have

σγγ→eēππ̄ =
4α4

27πM2
π

[
L2

π +
16
3

Lπ +
163
18

− 3Lπ − 1
12

a

]
, Lπ = ln

M2
π

m2
.

(1.169)
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The integrated over muon 4-impulses (moving along photon with momentum
k1) distribution has the form [38]

dσ

d2q⊥ dx
=

2α4

3π2M4
μ

[F0 + F3Σ3 + F−Σ− + F+Σ+ + F ′
3Σ

′
3], (1.170)

with

Σ3 = l1 cos (2γ1), Σ± = l1l2 cos (2(γ1 ± γ2)), Σ′
3 = l2 cos (2γ2), (1.171)

γ1(γ2) is the azimuthal angle between transversal vectors of meson momentum
q and the direction of maximal polarization of photon with momentum k1(k2).
The coefˇcient functions are

F0 =
R

(1 + ρ)2
− 2x(1 − x)

(1 + ρ)4
[(1 + ρ2)R − (2L + 1)(ρ2 − 4ρ + 1)−

− 2l(ρ2 − 8ρ + 3) − 4ρ],

F3 =
4ρx(1 − x)
(1 + ρ)4

[
R − 6L − 3 +

1
ρ2

(−9ρ2 + 4ρ + 1)l − 1
ρ
− ρ

]
,

F− =
x(1 − x)
(1 + ρ)4

[
L + 2l − 3 + 3ρ +

1
2
ρ2

]
,

F+ =
x(1 − x)
(1 + ρ)4

[
ρ2(L − 3) +

17
2

+ 8ρ +
3
ρ
− l

(
3
ρ2

+
10
ρ

+ 12 + 6ρ − ρ2

)]
,

F ′
3 = − (ρ + 1)l − ρ

ρ(ρ + 1)2
− x(1−x)

(1+ρ)4

[
2ρL + 4ρ2 − 5ρ + 2 − 2l

(
1
ρ

+3+ρ+ρ2

)]
,

with

ρ =
q2

M2
, l = ln(1 + ρ), L = ln

M2

m2
,

(1.172)

R = L2 + 2(2L + 1)l + L + 4l2 +
π2

3
− 2 + 2Li2(−ρ).

The dependence of the inclusive cross section on the parameters of the ®alien¯
photon with momentum k2 is deˇned by the ratio F±/F0, F ′

3/F0 and is weak
(of the order of 3%). The dependence on the polarization of ®his¯ photon (k1) is
deˇned by the ratio F3/F0. At ρ = 1.2, x = 0.5 this quantity equals 0.19.

1.4.3. Small-Angle Bhabha Scattering. An accurate veriˇcation of the SM
was one of the primary aims of LEP facility [39]. The small-angle Bhabha scatter-
ing process was used to measure the luminosity of electronÄpositron colliders. At
LEP, an experimental accuracy on the luminosity of the order of |δσ|/σ < 0.001
has been reached. However, to obtain the total accuracy, a systematic theoretical
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error must also be added. This precision calls for an equally accurate theoretical
expression for the Bhabha scattering cross section in order to extract the SM pa-
rameters from the observed distributions. The knowledge of Bhabha cross section
in the Born approximation

dσB

dO
=

α2

4s

(
3 + c2

1 − c

)2

, c = cos θ (1.173)

becomes insufˇcient. For small scattering angle θ (scattering angle of electron),
taking into account the electroweak corrections, we have

dσB

θ dθ
=

8πα2

E2θ4

[
1 − 1

2
θ2 +

9
40

θ4 + δweak

]
. (1.174)

For the pure QED case the lowest order RC was calculated a long time ago [40,
41]. Taking into account a contribution from soft-photon emission with photon
energy not exceeding (CMS implied) some small quantity ω/E < Δ � 1, we
have dσ(1)/dc = dσB/dc(1 + δV + δS), with [40,41,43]:

δV + δS =
2α

π

[
2
(

1 − ln
s

m2
+ 2 ln

(
cot

θ

2

))
ln

1
Δ

+

+ Li2

(
1 + c

2

)
− Li2

(
1 − c

2

)
− 23

9
+

11
6

ln
s

m2

]
+

+
α

π

1
(3 + c2)2

[
π2

3
(2c4−3c3−15c)+2(2c4−3c3 +9c2 +3c+21) ln2

(
sin

θ

2

)
−

− 4(c4 + c2 − 2c) ln2

(
cos

θ

2

)
− 4(c3 + 4c2 + 5c + 6) ln2(tan

θ

2
)+

+
2
3
(11c3 + 33c2 + 21c + 111) ln(sin

θ

2
)+

+ 2(c3 − 3c2 + 7c − 5) ln
(

cos
θ

2

)
+ 2(c3 + 3c2 + 3c + 9)δt−

− 2(c3 + 3c)(1 − c)δs

]
, (1.175)

where δt(δs) is deˇned by contributions to vacuum polarization Π(t), Π(s)

Π(t) =
α

π
[δt +

1
3
Lt −

5
9
] +

α2

4π2
Lt, Lt = ln

−t

m2
, Q2 = −t = 2E2(1 − c),

(1.176)

ReΠ(s) =
α

π
[δs +

1
3
Ls −

5
9
] +

α2

4π2
Ls, Ls = ln

4E2

m2
.
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In the Standard Model δt contains contributions of muons, tau-leptons, W bosons,
and hadrons:

δt = δμ
t + δτ

t + δW
t + δH

t , δs = Re δt(Q2 → −s), (1.177)

and the ˇrst three contributions are theoretically calculable:

δμ
t =

1
3

ln
Q2

m2
μ

− 5
9
, δτ

t =
1
2
v(1 − 1

3
v2) ln

v + 1
v − 1

+
1
3
v2 − 8

9
,

(1.178)

v=

√
1 +

4m2
τ

Q2
, δw

t =
1
4
w(w2 − 4) ln

w + 1
w − 1

− 1
2
w2 +

11
6

, w=

√
1 +

4m2
w

Q2
.

The contribution of the hadrons δH
t can be expressed in terms of the experi-

mentally measurable cross section of the e+e− annihilation

δH
t =

Q2

4πα2

∞∫
4m2

π

σe+e−→h(x)

x + Q2
dx. (1.179)

In the small scattering angle limit we obtain from (1.176):

dσ(1)

dc
=

dσB

dc

1
(1 − Π(t))2

(1 + δ),

δ = 2
α

π

[
2(1 − Lt) ln

1
Δ

+
3
2
Lt − 2

]
+

+
α

π
θ2

[
ln Δ +

3
16

l2 +
7
12

l − 19
18

+
1
4
(δt − δs)

]
. (1.180)

l = ln
θ2

4
.

This representation gives a possibility of verifying explicitly that the terms
of relative order θ2 in RC are really small. Large contribution proportional to
ln Δ will disappear when adding the cross section of hard-photon emission.

Further simpliˇcation follows from the generalized eikonal representation of
small-angle scattering amplitude

A(s, t) = A0(s, t)F1(t)2
1

1 − Π(t)
eiϕ(t)

[
1 + O

(
α

π

Q2

s

)]
, s � Q2, (1.181)

where F1(t) = 1+
α

π
F

(1)
1 (t)+

(α

π

)2

F
(2)
1 (t)+ . . . is the Dirac form factor of the

electron, ϕ(t) = −α ln(−t/λ2) is the Coulomb phase. These arguments permit
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one to omit the contributions from annihilation channel as well as multiple-photon
exchange ones in the scattering channel.

In the lowest order of RC we also have to consider additional hard-photon
emission. Single hard-photon emission contribution strongly depends on the
experimental setup. The differential cross section has the form [43]

dσe+e−→e+e−γ
B

dx1 d2q1 dx2 d2q2
=

2α3

π2

[
R(x1;q1,q2)δ(1 − x2)
(q2

2)2(1 − Π(−q2
2))2

+

+
R(x2;q2,q1)δ(1 − x1)
(q2

1)2(1 − Π(−q2
1))2

]
(1 + O(θ2)), (1.182)

with

R(x,q1,q2) =
1 + x2

1 − x

[
q2

2(1 − x)2

d1d2
− 2m2(1 − x)2x

1 + x2

(d1 − d2)2

(d1d2)2

]
, (1.183)

and
d1 = m2(1 − x)2 + (q1 − q2)2 d2 = m2(1 − x)2 + (q1 − xq2)2, (1.184)

here x1,2, q1,2 are the energy fractions and the transverse components of the
momenta of electron and positron.

The two-loop level RC consists of virtual two-loop vertex function contribu-
tion, RC to a single bremsstrahlung amplitude (which we put in the form of sum
soft and hard real photon emission parts) and two real photons contribution which
as well we will separate as soft and hard parts. The ˇrst one can be expressed in
the form

dσV V

dc
=

dσB

dc

(α

π

)2 1
(1 − Π(t))2

[6F
(1)
1 (t)2 + 4F

(2)
1 ], (1.185)

with

F
(1)
1 (t) = (Lt − 1) ln

λ

m
+

3
4
Lt −

1
4
L2

t − 1 +
π2

12
. (1.186)

It is convenient to separate the photons and virtual pair intermediate state contri-

butions as F
(2)
1 = F γγ + F e+e−

,

F γγ =
1
32

L4
t −

3
16

L3
t + (

17
32

− 1
8
ξ2)L2

t + (−21
32

− 3
8
ξ2 +

3
2
ξ3)Lt+

+
1
2
(Lt − 1)2 ln2 m

λ
+ (Lt − 1)[−1

4
L2

t +
3
4
Lt − 1 +

1
2
ξ2] ln

m

λ
+ O(1),

(1.187)
F e+e−

= − 1
36

L3
t +

19
72

L2
t − (

265
216

+
1
6
ξ2)Lt + O(1);

ξ2 =
π2

6
, ξ3 =

∞∑
1

1
n3

≈ 1.202.



PERIPHERAL PROCESSES IN QED AT HIGH ENERGIES 1163

Cross section of emission of two soft photons, the energy of which does not
exceed ΔE, is:

dσSS =dσB
8

(1−Π(t))2
(α

π

)2
[
(Lt−1)

(
ln

m

λ
+ln Δ

)
+

1
4
L2

t −
1
2
ξ2

]2
. (1.188)

The contribution of virtual correction to the single soft-photon emission is

dσSV =dσB
16

(1−Π(t))2
(α

π

)2

F
(1)
1 (t)

[
(Lt−1)

(
ln

m

λ
+ln Δ

)
+

1
4
L2

t −
1
2
ξ2

]
.

(1.189)
The contribution from F e+e−

1 contains cubic on large logarithm term L3
t which

is cancelled when we take into account the soft-pair production contribution [42]

dσe+e−

S = dσB
1

(1 − Π(t))2
(α

π

)2

Re+e−

S ,

Re+e−

S =
1
18

L3
t +
(

1
3

ln Δ− 5
18

)
L2

t +
(

2
3

ln2 Δ− 10
9

ln Δ+
28
27

− 1
3
ξ2

)
Lt+O(1),

here Δ = (ε+ + ε−)/E � 1, ε± are c.m.s. energies of pair components. As a

result, we obtain Re+e−

S+V = Re+e−

S + 2F e+e−

1 :

Re+e−

S+V =L2
t

(
1
3

ln Δ+
1
4

)
+Lt

(
2
3

ln2 Δ− 10
9

ln Δ− 2
3
ξ2−

17
12

)
+O(1). (1.190)

When evaluating the corrections arising from virtual and real soft photon
accompanied by emission of hard ones, we consider two cases. The ˇrst one
corresponds to emission of the photons by the same fermion, the second one
occurs when the hard photon is emitted by another fermion:

dσ|H(S+V ) = dσH(S+V ) + dσH(S+V ) + dσH
(S+V ) + dσ

(S+V )
H . (1.191)

In the case when both photons are emitting we have

dσH
(S+V ) + dσ

(S+V )
H = dσe+e−→e+e−γ

B

2α

π

[
(Lt − 1) ln Δ +

3
4
Lt − 1

]
, (1.192)

with dσe+e−→e+e−γ
B given above. A more complicated expression arises when

the same fermion emits virtual, soft, and hard photons. In this case the cross
section can be expressed in terms of Compton tensor with heavy photon [18],
which describe the subprocess γ∗(q) + e(p1) → γ(k) + e(q1). In the limit of
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small-angle photon emission kinematics we have:

dσH(S+V ) =
α4dx d2q1 d2q2

4x(1 − x)π3(q2
2)2

[(B11(s1, t1) + 2xB12 + x2B11(t1, s1))ρ + T ],

T = T11(s1, t1) + x2T11(t1, s1) + x(T12(s1, t1) + T12(t1, s1)), (1.193)

ρ = 2
(

Lt − ln
q2

2

−u1
− 1
)

(2 lnΔ − ln x) + 3Lt − ln2 x − 9
2
,

where B11(s1, t1) is the Born tensor component

B11(s1, t1) = −4
q2

2

s1t1
− 8m2

s2
1

, B12 = −8m2

s1t1
,

(1.194)
s1 = 2q1k, t1 = −2p1k, u1 = (p1−q1)2, s1+t1+u1 = −q2

2.

Quantities T11, T12 are ˇnite in zero electron mass limit. Their explicit form can
be found in [18].

The double hard-photon bremsstrahlung in opposite directions gives the con-
tribution (see (1.182)):

dσe+e−→(e+γ)(e−γ)

dx1 d2q1 dx2 d2q2
=

α4

π3

∫
d2k

π(k2)2
R(x1,q1,k)R(x2,q2,−k)

(1 − Π(−k2))2
. (1.195)

Now we consider small-angle Bhabha scattering in the frames of the DrellÄ
Yan picture.

Let us introduce the dimensionless quantity Σ = σexp/σ0, σ0 = 4πα2/Q2
1,

Q2
1 = E2θ2

1 with θ1 Å the scattering angle of electron and σexp representing the
experimentally observable cross section:

Σ =
1
σ0

∫
dx1

∫
dx2θ(x1x2 − xc)×

×
∫

d2q1θ
c
1

∫
d2q2θ

c
2

dσe+e−→e+(q2,x2)e
−(q1,x1)+X

dx1 d2q1 dx2 d2q2
, (1.196)

where x1,2, q1,2 are deˇned after Eq. (1.184); sxc is the experimental cut-off on
their invariant mass squared and angular cuts are

θc
1 = θ

(
θ3 −

|q1|
x1E

)
θ

(
|q1|
x1E

− θ1

)
, θc

2 = θ

(
θ4 −

|q2|
x2E

)
θ

(
|q2|
x2E

− θ2

)
,

(1.197)
θ(x) = 1, x > 0, θ(x) = 0, x < 0 is the step function. In the case of symmetrical
angular acceptance (our case below)

θ2 = θ1, θ3 = θ4, ρ =
θ3

θ1
> 1. (1.198)
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We will present Σ as the sum of various contributions:

Σ = Σ0 + Σγ + Σ2γ + Σe+e−
+ Σ3γ + Σe+e−γ , (1.199)

where Σ0 = θ2
1

θ2
3∫

θ2
1

dθ2

θ4
(1 − Π(t))−2 + ΣW + Σθ stands for the modiˇed Born

contribution,

ΣW = θ2
1

θ2
2∫

θ2
1

dz

z2

(
−1

2
+

9zθ2
1

40

)
(1 − Π(−zQ2

1))
−2,

(1.200)

ΣW = θ2
1

θ2
2∫

θ2
1

dz

z2
δweak.

In the Born level the contribution from Z boson exchange does not exceed 0.3;
Σγ is one-photon contribution (real and virtual) and so on. Explicit calculations
(see details in [44]) give:

Σγ =
α

π

ρ2∫
1

dz

z2

1∫
xc

dx(1 − Π(−zQ2
1))

−2×

×
[
(L − 1)P (x)[1 + θ((xρ)2 − z)] +

1 + x2

1 − x
k(x, z) − δ(x − 1)

]
, (1.201)

k(x, z) =
(1 − x)2

1 + x2
[1 + θ((xρ)2 − z)] + L1 + θ((xρ)2 − z)L2 + θ(z − (xρ)2)L3,

with

L1 = ln
∣∣∣∣x2(z − 1)(ρ2 − z)
(x − z)(xρ2 − z)

∣∣∣∣ ,
L2 = ln

∣∣∣∣ (z − x2)(x2ρ2 − z)
x2(x − z)(xρ2 − z)

∣∣∣∣ , (1.202)

L3 = ln
∣∣∣∣ (z − x2)(xρ2 − z)
(x − z)(x2ρ2 − z)

∣∣∣∣ ,
and P (x) is the kernel of evolution equation for nonsinglet structure function:

P (x) =
(

1 + x2

1 − x

)
+

=

= lim
Δ→0

[
1 + x2

1 − x
θ(1 − x − Δ) +

(
3
2

+ 2 lnΔ
)

δ(1 − x)
]

. (1.203)
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The quantity Σ2γ collects both virtual and real two-photon emission contributions.
It can be put in the form:

Σ2γ = Σγγ + Σγ
γ +
(α

π

)2

ϕγγ ln
Q2

1

m2
, (1.204)

where

Σγγ =
1
2

(α

π

)2
ρ2∫
1

dz

z2(1 − Π(−zQ2
1))2

L2
t

1∫
xc

dx×

×

⎡⎣1
2
P (2)(x)[θ((xρ)2 − z) + 1] +

1∫
x

dt

t
P (t)P

(x

t

)
θ((tρ)2 − z)

⎤⎦ , (1.205)

with

P (2)(x) =

1∫
x

dt

t
P (t)P (

x

t
) = lim

Δ→0

[ [(
2 ln Δ +

3
2

)2

− 4ξ2

]
δ(1 − x)+

+2
[
1+x2

1−x

(
2 ln(1−x)−lnx+

3
2

)
+

1
2
(1+x) lnx−1+x

]
×θ(1 − x − Δ)

]
;

(1.206)

and

Σγ
γ =

1
4

(α

π

)2
∞∫
0

dz

z2
L2

t (1 − Π(−zQ2
1))

−2

1∫
xc

dx1

1∫
xc/x1

dx2× (1.207)

× P (x1)P (x2)[θ(z − 1)θ(ρ2 − z) + θ(z − x2
1)θ(x

2
1ρ

2 − z)]×
× [θ(z − 1)θ(ρ2 − z) + θ(z − x2

2)θ(x
2
2ρ

2 − z)]. (1.208)

We see that the leading contributions to Σ2γ can be expressed in terms of kernels
of evolution equation for structure functions.

The function ϕγγ collects the next-to-leading contributions which cannot be
obtained by the structure functions method (see [58]). Its form can be deduced
from comparison of the calculation with logarithmical accuracy performed above
with the structure functions approach.

Contribution from pairs production (we restrict ourselves by consideration of
only e+e− pairs as well muon or pion pairs contribute too small) consists of the
mentioned above virtual, soft pairs, and the hard pair creation. Restricting only
by leading terms we have [45]:

Σe+e−
=

1
2

(α

π

)2
ρ2∫
1

dz

z2
L2

t

[
1 +

4
3

ln(1− xc)−
2
3

1∫
xc

dx

1 − x
[1− θ((xρ)2 − z)]+

+

1∫
xc

dx

[
1 − x

6x
(4 + 7x + 4x2) + (1 + x)

(
−1

3
+ lnx

)]
+ O

(
ln

Q2
1

m2

)]
.



PERIPHERAL PROCESSES IN QED AT HIGH ENERGIES 1167

Let us consider the contributions of the order (αL)3. The relevant iteration
of master equations leads to

Σ3γ =
1
4

(
α

π
ln

Q2
1

m2

)3
ρ2∫
1

dz

z2

1∫
xc

dx1

1∫
xc

dx2θ(x1x2 − xc)

[
1
6
δ(1 − x2)×

×P (3)(x1)θ(x2
1ρ

2−z)+
1

2x2
1

P (2)(x1)P (x2)θ
(
z− x2

2

x2
1

)
θ

(
x2

2

x2
1

ρ2−z

)]
(1+O(x3

c)),

with P (3)(x) =
1∫
x

dt

t
P (2)(t)P

(x

t

)
. In the similar way we obtain:

Σe+e−γ =
1
4

(
α

π
ln

Q2
1

m2

)3
ρ2∫
1

dz

z2

1∫
xc

dx1

1∫
xc

dx2 × θ(x1x2 − xc)×

×
[

1
3

[(
RP (x1) +

1
3
P (2)(x1) +

2
3
R(x)

)
δ(1 − x2)θ((x1ρ)2 − z)+

+
1

2x2
1

P (x2)R(x1)θ
(

z − x2
2

x2
1

)
θ

(
x2

2

x2
1

ρ2 − z

)]
, (1.209)

with

R(x) =
2
3
P (x) + Rs(x),

Rs(x) =
1 − x

3x
(4 + 7x + 4x2) + 2(1 + x) ln x,

RP (x) =
(

3
2

+ 2 ln(1 − x)
)

Rs(x) +
2
3
P (2)(x)+

+ (1 + x)(− ln2 x + 4Li2(1 − x)) +
1
3
(−9 − 3x + 8x2)+

+
2
3

(
− 3

x
− 8 + 8x + 3x2

)
. (1.210)

1.5. QED Sum Rules. Due to analyticity of the amplitudes some relations
between the high-energy asymptotics of the cross sections of inelastic processes in
e+e− collisions and higher order perturbative contributions to the electron Dirac
and Pauli form factors, can be derived. In particular, the total cross sections
turn out to be related to the slope of the Dirac form factor at zero momentum
transfer [20]. Applying the similar reasons to electronÄproton scattering the
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photoproduction cross sections on nucleons and deuteron can be expressed in
terms of radii and their anomalous magnetic momentum [12,46].

Let us consider forward Compton scattering of virtual photon on some
charged particle. For deˇniteness we believe it will be an electron on the mass
shell:

γ∗(q, μ) + e(p1) → γ∗(q, ν) + e(p1), q0 > 0, q2 < 0, p2
1 = m2. (1.211)

Among Feynman diagrams let us choose only those (nonsinglet ones) where the
world line of charged particle contains both vertices of absorption and emission of
virtual photon, besides, the absorption vertex is situated before the emission one
when moving along charged particle world line. It contains in general arbitrary
number of vertices of emission of virtual photons and fermion closed loops which
corresponds to higher orders of QED PT contributions.

The relevant part of Compton tensor Rμν is not in general gauge invariant
Rμνqμ 
= 0; Rμνqν 
= 0, but it indeed does not depend on the choice of virtual
photon Green functions as well as the complete set of all possible Feynman
diagrams in the given order of PT is implied to be considered.

We introduce further light-cone vector P, P0 > 0, P 2 = 0, and build another
light-cone vector p = p1 − P (m2/s), p2 = 0, s = 2Pp1. Consider now the
light-cone projection of tensor R in the limit of large values of scalar product of
these light-cone vectors:

J(s1,q) = lim
s→∞

1
s2

RμνPμPν . (1.212)

Consider now the contour integral [20]

I(q) =
∫
C

ds1J(s1,q), (1.213)

where the integration contour in s1 is situated below the real axes at negative
values of s1, intersects the real axes in the region s1 = 0 and then lies along
real axes having small imaginary part. The singularities of light-cone projection
J(s1,q) are situated on the real axes of physical sheet: the part of Riemann
surface restricted by left and right cuts in s1 plane.

Let us discuss the kinds of singularities of J(s1,q). Set of Feynman (con-
nected) diagrams with one-particle intermediate state in s1 channel (p1+q)2 = m2

produces a pole situated at s1 = −q2. Cuts corresponding to inelastic intermedi-
ate states such as electron and photon, electron and an additional pair particle and
antiparticle produce the cuts situated at positive s1, corresponding to threshold
of inelastic processes (p1 + q)2 = (m + λ)2; (m + 2M)2 with λ, M Å ˇctitious
photon mass and mass of a particle from a pair.
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The general arguments used in proving the dispersion relation is that all
singularities are situated on the real axes. They have a physical interpretation as
a poles and thresholds of concrete reactions. In particular for Compton scattering
on hadrons such singularities as baryon and meson resonances correspond to the
poles situated on the second physical sheets beyond the real axes, so they do not
contribute to sum rules considered here.

Left cut singularities of J(s1,q) as well can be associated with physical
processes, but with rather nontrivial interpretation, which will be touched later.

Sum rule appears when we calculate the value I(q) for the case, when the
contour is closed to left cut singularities and to the right one including pole
contribution, and imply the zero contribution of large circle and convergence of
s1 integral.

First, we note that cuts contributions can be expressed in terms of cross
sections of physical processes. So the relevant contribution to the Compton
tensor is gauge invariant

Rcut
μν qμ = Rcut

μν qν = 0. (1.214)

Using Sudakov parameterization q = αqP + βqp + q⊥, q⊥P = q⊥p = 0 and the
fact that main components of tensor Rcut are ones along 4-vector p, we obtain
from gauge condition

qμRcut
μν = (αqP + q⊥)μRcut

μν = 0.

For light-cone projection J(q) we have

1
s2

RμνPμPν =
1
s2
1

q2eiejRij .

Here we use expression of invariant mass square s1 in terms of Sudakov para-
meters s1 = 2qp1 = sαq , q2 ≈ q2

⊥ = −q2 < 0 and introduce two-dimensional
polarization vectors of virtual photon e = q/|q|. Discontinuity of amplitude on
the right cut, i.e., the difference of its values on opposite sides of right cut equals
to the double imaginary part of amplitude, which can be expressed in terms of
total cross section with the help of the optical theorem.

1.5.1. Electron Target. Consider now the zero angle elastic scattering of
some charged particle on electron with large total energy

√
s in the center-of-

mass frame:

e±(p2) + e(p1) → e±(p2) + e(p1), s = (p2 + p1)2 � m2
i , (1.215)

where mi is the typical mass of particles in the process. The nontrivial con-
sequences can be extracted from amplitude corresponding to two virtual photon
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exchange between projectile and target particle. Amplitude turns out to be almost
completely imaginary and proportional to s. It can be expressed in terms of
conversion of projectile tensor P , which we will suppose to be written in the
Born approximation with the target ones T which is supposed to be a series in
QED coupling constant α.

Main contribution to amplitude Aelast(s) ∼
∫

d4q/(q2)2Pμν(p2)Tμ1ν1(p1)×
×gμμ1gνν1 arises from the so-called ®nonsense¯ components of metrics tensors

gμμ1gνν1 ∼ 2
s
p2ν1p1ν

2
s
p2μ1p1μ. (1.216)

Expressing loop momentum phase volume as d4q = (s/2)dαqdβqd
2q⊥ =

= ds1ds2d
2q/(2s) and performing the integration on projectile e± invariant mass

squared s2 = sβq and applying optical theorem, we can express the imaginary
part of zero angles scattering amplitude in terms of differential cross section of
inelastic scattering projectile on target:

dσ

d2q
=

α

π2(q2)2

∫
ds1

1
s2

p2μp2νTμν . (1.217)

In the third order of PT considering projectile and target to be positron and
electron, respectively, and taking into account the lowest order radiative correc-
tions to electron part of amplitude, we can work with 	at Feynman diagrams. It
is known that the corresponding amplitudes do not have left-cut singularities. In
this case sum rule has the form:

dσB − dσel

dq2
=

dσγ

dq2
, (1.218)

where dσB is the electronÄpositron elastic scattering differential cross section
calculated with structureless leptons; dσel Å cross section with electron form
factors taken into account, and dσγ is the electronÄpositron scattering cross section
with additional photon emission. The relevant vertex function has the form:

Γμ = F1(q2)γμ +
1

4m
F2(q2)[γμ, q̂],

(1.219)
F1 = 1 +

α

π
F

(2)
1 + . . . , F2 =

α

π
F

(2)
2 + . . .

The left-hand side of the sum rule can be expressed in terms of Dirac form factor:

dσB − dσel

d2q
= −8α3F

(2)
1 (t)

1
t2

, t = −q2. (1.220)
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Contribution of Pauli form factor is absent in this order of PT. The lowest order
contribution to the Dirac form factor is [7, 8]:

F
(2)
1 (t) =

(
1 +

1 + θ2

1 − θ2
ln θ

)
ln

m

λ
− 3 + 2θ + 3θ2

4(1 − θ2)
ln θ+

+
1 + θ2

1 − θ2

(
1
12

π2 − 1
4

ln θ2 + ln θ ln(1 − θ) + Li2(−θ)
)

, (1.221)

θ = −1 −
√

1 − 4m2/t

1 +
√

1 − 4m2/t
.

Right-hand part of Eq. (1.218) can be described in terms of real photon emission
by electron cross section. It is convenient to distinguish that the emission of soft
photon with energy fraction does not exceed some small quantity ω/E < η � 1
and hard-photon η � ω/E < 1 emission: dσγ = dσγ

soft + dσγ
hard.

For soft-photon contribution one has:

dσγ
soft

dq2
= −4α3

t2
I(y), sinh y =

√
−t

4m2
,

I(y) = 2(1 − 2y coth y) ln
mη

λ
+ coth (2y)

[
− y ln(4 cosh2 y)+

+ Li2

(
1 + tanh y

2

)
− Li2

(
1 − tanh y

2

)]
. (1.222)

Hard-photon emission contribution has the form [32]:

dσγ
hard

dq2
=

8α3

t2

1∫
η

dxf(x, z), z =

√
q2

4m2
,

f(x, z)=
(

1
x
−1
)[

−1+
1 + 2z2

2
√

1+z
ln(z+

√
1 + z)

]
+x

z√
1+z

ln(z+
√

1+z).

(1.223)

Performing algebraic transformations one can be convinced in validity of the
lowest order sum rule given above.

The similar reasons (absence of the left-hand cut) can be applied to the sum
rule connecting the cross sections of eē → eμμ̄ē. Muon-pair production with the
relevant contribution (which takes into account the vacuum polarization due to
muonÄphoton self-energy insertion) is connected to the slope of Dirac form factor
of electron. Really in the WeizsackerÄWilliams approximation we have [37]:

dσeē→eμμ̄ē =
2α2r2

0

π
ln
(

s

m2
e

)(
77
18

ξ2 −
1099
162

)
, ξ2 =

π2

6
. (1.224)



1172 ARBUZOV A.B. ET AL.

This result must be compared with the one obtained in [47,48]:

m2
eF

p′

1 (0) = lim
s→∞

σ(s)
16r2

0π ln(s/m2
e)

=
α2

8π2

(
77
18

ξ2 −
1099
162

)
. (1.225)

Several similar QED sum rules connecting the inelastic cross sections in
electronÄpositron scattering with the higher contributions to electron form factors
were considered in [4]. Considering the processes in the fourth order of PT such
as production of leptonÄantilepton pairs at electronÄpositron periphery collisions
and double bremsstrahlung processes, the left-cut contributions to the sum rule
become important. For the case of pair productions it can be interpreted as
contribution to the cross section arising from taking into account identity of
produced lepton with the initial one.

Contribution to the sum rules from large circle in s1 integration as a rule is
zero due to convergence of integral

∫
(ds1/s1)σ(s1), which is valid for decreas-

ing cross sections σ(s1). In the case of nondecreasing cross sections, a linear
combination of different sum rules in which the corresponding divergent terms
are cancelled can be constructed.

1.5.2. Nuclon Target. Starting from very high energy inelastic electronÄ
nucleon scattering with a production of a hadronic state X moving closely to
the direction of the initial nucleon, then utilizing analytic properties of parts of
forward virtual Compton scattering amplitudes on proton and neutron, one obtains
the relation between nucleon form factors and a difference of proton and neutron
differential electroproduction cross sections. In particular, for the case of small
transferred momenta, one ˇnally derives sum rule, relating Dirac proton mean
square radius and anomalous magnetic moments of proton and neutron to the
integral over a difference of the total proton and neutron photoproduction cross
sections [53Ä55].

At the end of sixties of the last century, Kurt Gottfried, by consideration
of the very high-energy electronÄproton scattering and the nonrelativistic quark
model of hadrons, has found [49] a sum rule relating to the proton mean square
charge radius 〈r2

Ep〉 and the proton magnetic moment μp = 1 + κp to the integral
over the total proton photoproduction cross section σγp

tot(ν) in the form

∞∫
0

dν

ν
σγp

tot(ν) =
π2α

m2
p

[
4
3
m2

p〈r2
Ep〉 + 1 − μ2

p

]
, (1.226)

where ν is the photon energy in the laboratory frame; α is the ˇne structure
constant, and mp is the proton mass.

Nowadays it is well known, that the Gottfried sum rule cannot be satisˇed
since the corresponding integral diverges due to the known rise of the total proton
photoproduction cross section at high energies.
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In this Subsection by means of a distinct way from the Gottfried approach and
considering the nucleon isodoublet (proton and neutron) simultaneously, a new
sum rule is derived, which relates Dirac proton mean square radius and anomalous
magnetic moments of proton and neutron to the integral over a difference of
the total proton and neutron photoproduction cross sections. Thus the rise of
both photoproduction cross sections at high energies mutually cancels and the
corresponding integral converges.

In derivation of the new sum rule we start also with consideration of the very
high-energy electronÄnucleon scattering

e−(p1) + N(p) → e−(p′1) + X, (1.227)

with production of a hadronic state X moving closely to the direction of initial
nucleon. The corresponding one-photon exchange approximation matrix element
takes the form

M = i

√
4πα

q2
ū(p′1)γμu(p1)〈X | JQED

ν | N (r)〉gμν , (1.228)

where (r) means a spin state of the nucleon.
The Gribov representation of the metric tensor in the photon propagator

of (1.228) is

gμν = g⊥μν +
2
s

(
p̃μp̃1ν + p̃ν p̃1μ

)
≈ 2

s
p̃μp̃1ν , s = (p1 + p)2,

where

p̃1 = p1 −
m2

ep

2p1p
, p̃ = p − m2

Np1

2p1p

are almost light-like vectors. According to the Sudakov expansion of the virtual
photon transferred four-momentum q = p1 − p′1

q = βqp̃1 + αq p̃ + q⊥, q⊥ = (0, 0,q), p̃q⊥ = p̃1q⊥ = 0, q2
⊥ = −q2,

(1.229)
for the corresponding cross section one obtains:

dσ =
4πα

s(q2)2
pμ
1pν

1

∑
X �=N

1/2∑
r=−1/2

〈N (r) | J+QED
μ | X〉〈X | JQED

ν | N (r)〉dΓ,

(1.230)
where summations through the created hadronic states X and the spin states of the
initial nucleon are carried out and dΓ denotes the ˇnal state phase space volume.
Further, approximating square momentum of virtual photon

q2 ≈ −
[
q2 +

(mes1

s

)2
]
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with
s1 = 2(qp) = sβq,

i.e., it is related to the invariant square mass of the ˇnal hadronic state by the
relation

m2
X = s1 + q2 + m2

N , (1.231)

and transforming the phase space volume of the ˇnal electron into the form

1
(2π)3

d3p′1
2ε′1

=
1

(2π)3
d4qδ[(p1 − q)2] =

1
(2π)3

ds1

2s
d2q⊥,

one gets the ˇnal state phase-space volume in the form

dΓ =
ds1

2s(2π)3
d2q⊥dΓX , dΓX = (2π)4δ4

⎛⎝q + p −
∑

j

pj

⎞⎠∏
j

d3pj

2εj(2π)3
.

(1.232)
Besides, using the current conservation condition

qμ〈X | JQED
μ | N (r)〉 ≈ (βqp1 + q⊥)μ〈X | JQED

μ | N (r)〉 = 0 (1.233)

(αq p̃ gives a negligible contribution) one can write

∫
pμ
1pν

1

∑
X �=N

1/2∑
r=−1/2

〈N (r) | J+QED
μ | X〉〈X | JQED

ν |N (r)〉dΓX = pμ
1pν

1ΔÃ(N)
μν =

=
s2

s2
1

q2eiejΔÃ
(N)
ij = 2i

s2

s2
1

q2Im Ã(N)(s1,q), ei =
qi

|q| , (1.234)

where just Cutkosky rule for s-channel discontinuity ΔÃ(N) = 2iIm Ã(N) of the
corresponding Feynman amplitude was applied.

Here we would like to note that the amplitude Ã(s1,q) by a construction is
only a part of the total forward virtual Compton scattering amplitude A(s1,q),
which doesn't contain (unlike the amplitude A(s1,q)) any crossing Feynman
diagram contributions. As a result there is no u-channel pole in Ã(s1,q), which
is a crucial point in a derivation of the new sum rule by using the analytic
properties of the latter amplitude.

Since the imaginary part of the crossing Feynman diagrams is starting to be
different from zero only above

s
(3N)
1 = 8m2

N + q2,

one can write down an equality relation

Im Ã(s1,q) = Im A(s1,q) = 4s1σ
γ∗p→X
tot (s1,q) (1.235)
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for 2mNmπ + m2
π + q2 � s1 � 8m2

N + q2. Fortunately, above the threshold,
total proton and neutron photoproduction cross sections are almost equal and at
the new sum rule one can integrate over them up to inˇnity.

Using expression (1.230) and integrating over the phase-space volume of the
ˇnal hadronic state X , as well as over the invariant mass squared m2

X , i.e., over
the variable s1 (see (1.231)), for a difference of corresponding differential proton
and neutron electroproduction cross sections one ˇnds(

dσe−p→e−X(s,q)
d2q

− dσe−n→e−X(s,q)
d2q

)
=

αq2

4π2
×

×
∞∫

2mN mπ+m2
π+q2

ds1

s2
1[q2 + (mes1/s)2]2

×
(
Im Ã(p)(s1,q) − Im Ã(n)(s1,q)

)
.

(1.236)

If one neglects the second term in square brackets of the denominator of the
integral (1.236) (due to the small value of me and high s in comparison with s1)
and takes into account (1.235) for q2 → 0 together with the relation d2q = πdq2,
one comes to the expression

q2

(
dσe−p→e−X

dq2
− dσe−n→e−X

dq2

)∣∣∣
q2→0

=

=
α

π

∞∫
2mN mπ+m2

π

ds1

s1

(
σγp→X

tot (s1) − σγn→X
tot (s1)

)
(1.237)

similar to the difference of the total cross sections of the electroproduction
processes on proton and neutron in the WeizsackerÄWilliams approximation

σe−p→e−X
tot (s) − σe−n→e−X

tot (s) = 2
α

π
ln
(

s

memπ

)
×

×
∞∫

2mN mπ+m2
π

ds1

s1

(
σγp→X

tot (s1) − σγn→X
tot (s1)

)
. (1.238)

The analytic properties of the amplitude Ã(s1,q) in s1 plane are consisting
of the one-nucleon intermediate state pole at s1 = q2, the right-hand cut starting
at the pionÄnucleon threshold s1 = 2mNmπ + m2

π + q2 and the left-hand cut
starting from s1 = −q2 − 8m2

N .
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If one deˇnes the path integral I in s1 plane as presented in Fig. 4, a

I =
∫
C

ds1
pμ
1pν

1

s2

(
Ã(p)

μν (s1,q) − Ã(n)
μν (s1,q)

)
, (1.239)

then once the contour C is closed to upper half-plane and the other one to lower
half-plane (Fig. 4, b), the following sum rule

π
(
Res(n) − Res(p)

)
= q2

∞∫
r.h

ds1

s2
1

(
Im Ã(p)(s1,q) − Im Ã(n)(s1,q)

)
(1.240)

appears with (an averaging through the initial nucleon and photon spins is per-
formed)

Res(N) = 2πα

(
F 2

1N +
q2

4m2
N

F 2
2N

)
(1.241)

to be the one-nucleon intermediate state pole contribution and the left-hand

(l.h.) cut contributions from the difference
(
Im Ã(p) − Im Ã(n)

)
are mutually

annulated.
Substituting (1.241) into (1.240) and taking into account (1.236) one comes

to the relation

F 2
1n(−q2) +

q2

4m2
n

F 2
2n(−q2)F 2

1p(−q2) − q2

4m2
p

F 2
2p(−q2) =

= 2
(q2)2

πα2

(
dσe−p→e−X

dq2
− dσe−n→e−X

dq2

)
. (1.242)

For q2 = 0 the right-hand side is equal to zero, but the left-hand side is −1.
This is caused by the following reasons. On the right-hand side we take into

Fig. 4. Sum rule interpretation in s1 plane. On plot a is drawn the contour C, on the plot
b is the contour C closed to the upper and lower half-plane
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account only strong interaction effects and on the left-hand side the −1 is given
by nonzero proton charge, i.e., pure electromagnetic effect. In order to separate
the pure strong interactions from electromagnetic ones on the left-hand side of
the sum rule, one has to regularize the latter by adding +1 in order to achieve
the zero also there. As a result the sum rule takes the ˇnal form:

1 + F 2
1n(−q2) +

q2

4m2
n

F 2
2n(−q2) − F 2

1p(−q2) − q2

4m2
p

F 2
2p(−q2) =

= 2
(q2)2

πα2

(
dσe−p→e−X

dq2
− dσe−n→e−X

dq2

)
, (1.243)

giving into a relation nucleon electromagnetic form factors with a difference of
the differential cross sections of deep inelastic electronÄproton scattering. There
is a challenge to specialized experimental groups to verify the sum rule (1.243).

Now, taking a derivative of both sides in (1.243) according to q2 for q2 → 0
and employing relation (1.237), one comes to the new sum rule relating Dirac
proton mean square radius and anomalous magnetic moments of proton and
neutron

〈r2
1p〉 = 6

d

dq2
F1p(q2)

∣∣∣
q2=0

, κN = F2N (q2)
∣∣∣
q2=0

(1.244)

to the integral over a difference of the total proton and neutron photoproduction
cross sections (we used for laboratory frame s1 = 2MNω)

1
3
〈r2

1p〉 −
κ2

p

4m2
p

+
κ2

n

4m2
n

=
2

π2α

∞∫
ωN

dω

ω

[
σγp→X

tot (ω) − σγn→X
tot (ω)

]
(1.245)

with ωN = mπ + m2
π/2MN , in which just a mutual cancellation of the rise

of these total proton and neutron photoproduction cross sections for ω → ∞,
created by the Pomeron exchanges, is achieved. It is straightforward to see that
this ˇnal sum rule is not in	uenced at all by a renormalization of the left-hand
side in (1.243) by +1.

Using the Dirac proton mean square radius from [50] and proton and neutron
anomalous magnetic moments from [51], the evaluation of the left-hand side
in (1.245) gives (1.93 ± 0.18) mb [54].

On the other hand, the data on photoproduction cross section on the neutron
are not so known as for the proton case up to now. Nevertheless, taking compi-
lation of both of them from [52], and assuming that both total cross sections are
starting at the pion mass and are equal above the last neutron experimental point
at ω = 17.84 GeV, one gets on the right-hand side the value (1.92 ± 0.32) mb.
So, the sum rule (1.245) can be considered to be satisˇed.

Radiative corrections to virtual photon impact factor in the frames of QCD
were considered in paper [59].
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1.5.3. Photon Target. Sum rules connecting the high-energy asymptotic cross
sections of peripheral processes of QED type with the fermion form factors (in
particular, with the slope of Dirac form factor) have been found in 1973 [20].
Applications to more complicated two-loop level QED processes have been inves-
tigated (see Appendix of the review paper [4]). In a set of the papers [12,46,53,54]
some applications to baryon, deuteron, and meson form factors were considered,
where connection of these electromagnetic form factors with Q2-dependent differ-
ential cross section of deep inelastic electronÄhadron scattering in the peripheral
kinematics was investigated.

In this Subsubsection we consider the scattering of electron on photon target
with creation of 2 jets in the fragmentation region of the photon [55]. Such kind
of problems can be searched at photonÄelectron colliders constructed on the base
of linear electronÄpositron colliders.

Let us consider the two-photon exchange electronÄphoton zero-angle scatter-
ing amplitude in the process

e(p, λ) + γ(k, ε) → e(p, λ) + γ(k, ε), (1.246)

in two-loop (α3) approximation as presented in Fig. 5, with p2 = m2
e, k2 = 0 and

assuming that s = 2p, k � m2
e. Averaging over the initial electron and photon

spin states (initial and ˇnal spin states are supposed to coincide), one can write
down the amplitude of the process (1.246) in the following form:

Āeγ→eγ(s, t = 0) = s
α

4π2

∫
d2q
(q2)2

ds1

∑
ε

Aγγ→γγ
μναβ

pμpνεαε∗β

s2
, (1.247)

where the light-cone projection of the LBL scattering tensor takes the form

Aγγ→γγ
μναβ

pμpνεαε∗β

s2
= −8α2

π2

∫
d4q−

[ S1

D1
+

S2

D2
+

S3

D3

]
(1.248)

Fig. 5. Feynman diagram of eγ → eγ scattering with LBL mechanism to be realized by
quark-loops
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with (see Fig. 5)

S1

D1
=

1
4

Sp
[
p̂(q̂− + mq)p̂(q̂− − q̂ + mq)ε̂∗(q̂− − q̂ + k̂ + mq)ε̂(q̂− − q̂ + mq)

]
(q2

− − m2
q)((q− − q)2 − m2

q)2((q− − q + k)2 − m2
q)

,

S2

D2
=

1
4

Sp
[
p̂(q̂− + mq)p̂(q̂− − q̂ + mq)ε̂(q̂− − q̂ − k̂ + mq)ε̂∗(q̂− − q̂ + mq)

]
(q2

− − m2
q)((q− − q)2 − m2

q)2((q− − q − k)2 − m2
q)

,

S3

D3
=

1
4

Sp
[
p̂(q̂− + mq)ε̂(q̂− − k̂ + mq)p̂(q̂− + q̂ − k̂ + mq)ε̂∗(q̂− + q̂ + mq)

]
(q2

− − m2
q)((q− + q)2 − m2

q)((q− + q + k)2 − m2
q)((q− − k)2 − m2

q)
,

where q− means the quark four-momentum in the quark loop of the process
γγ → γγ.

Regularization of LBL tensor is implied to provide the gauge invariance,
which consists in removing some constant symmetrical tensor and the latter has
no in	uence on the ˇnal results.

Now, taking a derivative of relation (1.247) according to d2q, one gets rid
of the corresponding integral. The analytic properties of the obtained expression
in s1 = sα2 plane are presented in Fig. 6, where also the path C of the integral
expression

I =
∫
C

ds1
dAeγ→eγ(s1,q)

d2q
(1.249)

is drawn. When the integration contour is closed to the right (on s-channel cut),
and to the left (on the u-channel cut), one comes to the relation

Δu
dĀeγ→eγ(s1,q)

d2q
|left = Δs

dĀeγ→eγ(s1,q)
d2q

|right, (1.250)

where the right s-cannel discontinuity is related, due to optical theorem in a
differential form

Δs
dĀeγ→eγ(s1,q)

d2q
= 2s

dσeγ→eqq̄

d2q
, (1.251)

Fig. 6. The path C of an integration in (1.249)
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with the σeγ→eqq̄ differential cross section of qq̄ pair creation by electron on
photon to be well known in the framework of QED [56] for l+l− pair creation:

dσeγ→eqq̄

dq2
=

4α3

3(q2)2
f(

q2

m2
q

), f(
q2

m2
q

) = (q2 − m2
q)J + 1,

J =
4√

q2(q2 + 4m2
q)

ln

[√
q2

4m2
q

+

√
1 +

q2

4m2
q

]
.

But the right-hand cut concerns real two-quark production for s1 > 4m2
q, which

is associated wit 2 jets production.
The left-hand cut contribution has the same form as in QED case with

constituent quark masses.
As a result, one obtains

4α3

3(q2)2
Nc

∑
q

Q4
qf

(
q2

m2
q

)
=

dσeγ→e2jets

dq2
, (1.252)

where Nc is the number of colors in QCD, and Qq is the charge of the quark
q in electron charge units. Finally, for the case of small q2 and applying the
WeizsackerÄWilliams relation, one comes to the sum rule for photon target as
follows:

14
3

∑
q

Q4
q

m2
q

=
1

πα2

∞∫
4m2

q

ds1

s1
σγγ→2jet

tot (s1). (1.253)

The quantity σγγ→2jets
tot (s1) is assumed to decrease for large values of s1.

It corresponds to the events in γγ collisions with creation of two jets, which
are not separated by rapidity gaps and for which till the present days there is
no experimental information. The latter complicates a veriˇcation of the sum
rule (1.253).

An evaluation of the left-hand side with the constituent quark masses mu =
md = 280 MeV and ms = 405 MeV (the contribution of heavy quarks c, b, t is
negligible and can be disregarded) gives 5 mb.

The saturation of the right-hand side of the photon sum rule (1.253) with the
help of the data on σγγ→X

tot (s1) [51] on the level of 5 mb is achieved with the
upper bound of the corresponding integral to be 2Ä3 GeV2.

Unfortunately, the used data are charged by rather large uncertainties and in
order to achieve more reliable veriˇcation of the sum rule (1.253) the data on
σγγ→2 jets

tot (s1) are highly desirable.
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2. TABLE OF INTEGRALS. ONE-LOOP FEYNMAN INTEGRALS

2.1. Loop-Momentum Integrals for Subprocess γ∗γ → e+e−. Here we
put the asymptotic expressions for a part of scalar, vector, and tensor integrals,
corresponding to the absorption of virtual photon by electron from the pair created
in subprocess

γ(p1) + γ∗(q) → e−(q−) + e+(q+), q2
± = m2, p2

1 = 0,
(2.1)

s1 = 2q+q−, χ± = 2p1q± s1 ∼ χ± � m2.

We give ˇrst the scalar integrals with two, three, and four (different) denom-
inators, deˇned as

(0) = k2 − λ2,

(2) = (q− − k)2 − m2 + i0 = k2 − 2q−k + i0,

(2̄) = (−q+ − k)2 − m2 + i0,

(q) = (p1 − q+ − k)2 − m2 + i0. (2.2)

The loop-momentum integrals with the denominator (q̄) = (q−−p1−k)2−m2

instead of (q) = (p1 − q+ − k)2 − m2, including scalar, vector, and tensor ones,
can be obtained from the ones listed below by means of the replacement:

q− → −q+, q+ → −q−, p1 → −p1, χ± → χ∓, (2) → (2̄), (q) → (q̄).
(2.3)

So we can restrict ourselves by consideration of only the integrals with denomi-
nators (0), (2), (2̄), (q).

We note the relation:

s1 + q 2 = χ+ + χ−. (2.4)

Two denominator scalar integrals are deˇned as

Iij =
∫

d4k

iπ2

1
(i)(j)

·

The explicit expressions for them are

I02 = L + 1, I2q = L − lq + 1, I0q = L − l+ + 1,

I02̄ = L + 1, I22̄ = L − Ls + 1, I2̄q = L − 1.

Here and below we use the notation

L = ln
Λ2

m2
, l± = ln

χ±
m2

, lq = ln
q 2

m2
,

Ls = ln
s1

m2
− iπ = ls − iπ, ll = ln

m2

λ2
.
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Remind once more that we imply all the kinematic invariants to be greater
than electron mass squared s1 ∼ q2 ∼ χ± � m2 and present below the asymp-
totic expressions systematically omitting the terms of the order of m2/s1 and
similar ones.

The tree-denominator scalar integrals Iijk =
∫ d4k

iπ2(i)(j)(k)
are

I02̄q = − 1
2χ+

[
l2+ +

2π2

3

]
,

I022̄ =
1

2s1

[
l2s + 2lsll −

4π2

3
− iπ(2ls + 2ll)

]
,

(2.5)

I22̄q = − 1
2(s1 + q 2)

[
l2q − l2s + π2 + 2iπls

]
,

I02q =
1

χ+ − q 2

[
lq(lq − l+) +

1
2
(lq − l+)2 + 2Li2

(
1 − χ+

q 2

)]
.

The four-denominator integral I022̄q =
∫ d4k

iπ2(0)(2)(2̄)(q)
has the form

I022̄q =
1

s1χ+

[
l2q − 2l+ls − lsll + 2Li2

(
1 +

q 2

s1

)
+

π2

6
+

+ iπ

(
2l+ + ll − 2 ln

(
1 +

q 2

s1

))]
. (2.6)

Now we describe the vector integrals

Iμ
r =
∫

d4kkμ

r
= a+

r qμ
+ + a−

r qμ
− + a1

rp
μ
1 , (2.7)

with r = (ij), (ijk), (ijkl), where i, j, k, l = (0), (2), (2̄), (q).
For the vector integrals with two denominators we have (we put only nonzero

coefˇcients)

a−
2q = a1

2q = −a+
2q =

1
2

(
L − lq +

1
2

)
, a1

0q = −a+
0q =

1
2

(
L − l+ +

1
2

)
,

a−
22̄

= −a+
22̄

=
1
2

(
L − Ls +

1
2

)
, a1

2̄q = −1
2
a+
2̄q

=
1
2

(
L − 3

2

)
, (2.8)

a−
02 =

1
2
L − 1

4
, a+

02̄
= −1

2
L +

1
4
,
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and the coefˇcients for the vector integrals with three denominators are

a−
02q =

1
a

(
χ+I02q +

2χ+

a
l+ − q 2 + χ+

a
lq

)
,

a+
02q = −a1

02q =
1
a

(
l+ − lq

)
,

a1
02̄q =

1
χ+

(
− l+ + 2

)
, a = χ+ − q 2,

a+
02̄q

= −I02̄q −
1

χ+
l+,

(2.9)

a−
022̄

= −a+
022̄

=
1
s1

Ls,

a−
22̄q

=
1
c

(
Ls − lq

)
,

a+
22̄q

= −I22̄q +
1
c

(
Ls − lq

)
,

a1
22̄q =

s1

c
I22̄q +

1
c

(
− lq + 2

)
− 2s1

c2

(
Ls − lq

)
, c = s1 + q 2 = χ+ + χ−.

Finally, the coefˇcient of the vector integral with 4 denominators has the form

a1 =
s1

d

(
χ+A + χ−B − s1C

)
,

a+ =
χ−
d

(
χ+A − χ−B + s1C

)
,

a− =
χ+

d

(
− χ+A + χ−B + s1C

)
, d = 2s1χ+χ−,

(2.10)
A = I22̄q − I02̄q,

B = I02q − I22̄q,

C = I02q − I022̄ − χ+I022̄q.

We parameterized the second rank tensor integrals in the form

Iμν
r =

∫
d4k

iπ2

kμkν

r
=
[
ag

rg + a11
r p1p1 + a++

r q+q+ + a−−
r q−q−+

+ a1+
r (p1q+ + q+p1) + a1−

r (p1q− + q−p1) + a+−
r (q+q− + q−q+)

]
μν

. (2.11)
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The coefˇcients for tensor integral with four denominators are (we suppressed
the index 022̄q)

a1+ =
1

χ+

(
A6 + A7 − A10

)
, a+− =

1
s1

(
A2 + A6 − A10

)
,

a1− =
1

χ−

(
A2 + A7 − A10

)
, a11 =

1
χ−

(
A1 − s1a

1+
)
,

(2.12)

a−− =
1
s1

(
A5 − χ+a1−

)
, a++ =

1
s1

(
A3 − χ−a1+

)
,

ag =
1
2

(
A10 − A2 − χ+a1+

)
,

with

A1 = a1
22̄q − a1

02̄q, A6 = a+
02q − a+

22̄q
,

A2 = a−
22̄q

, A7 = a1
02q − χ+a1,

A3 = a+
22̄q

− a+
02̄q

, A8 = a−
02q − a−

022̄
− χ+a−, (2.13)

A4 = a1
02q − a1

22̄q, A9 = a+
02q − a+

022̄
− χ+a+,

A5 = a−
02q − a−

22̄q
, A10 = I22̄q.

One can verify that the checking relations

A4 = χ+a11 + s1a
1−, A8 = χ−a−− + χ+a+−, A9 = χ+a++ + χ−a+−

(2.14)
for the above coefˇcients (2.13) are fulˇlled.

The coefˇcients entering into the tensor integral Iμν
02q are

ag
02q =

1
4
L +

3
8

+
q2

4a
lq −

χ+

a
l+,

a+−
02q = −a1−

02q =
1
2a

[χ+

a
(l+ − lq) − 1

]
,

a++
02q = a11

02q = −a1+
02q =

1
2a

(lq − l+),

a−−
02q =

1
a2

[
χ2

+I02q +
3χ2

+

a
l+ +

(q)2 − 4q2χ+ − 3χ2
+

2a
lq +

q2 − 3χ+

2

]
. (2.15)

The coefˇcients entering into the tensor integral Iμν
022̄

are

ag
022̄

=
1
4
(L − Ls) +

3
8
, a++

022̄
= a−−

022̄
=

1
2s1

(Ls − 1), a+−
022̄

= − 1
2s1

, (2.16)
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and the coefˇcients for the tensor integral Iμν
02̄q

are

ag
02̄q

=
1
4
(L − l+) +

3
8
, a1+

02̄q
=

1
χ+

(
l+ − 5

2

)
,

(2.17)

a11
02̄q =

1
2χ+

(−l+ + 2), a++
02̄q

= I02̄q +
1

2χ+
(3l+ − 1).

In the case of the tensor integral Iμν
22̄q

they have the form

ag
22̄q

=
1
2

[1
2
L +

3
4
− s1

2c
Ls −

q2

2c
lq

]
, a−−

22̄q
= − 1

2c
(lq − Ls), (2.18)

a++
22̄q

= I22̄q +
3
2c

(lq − Ls), a+−
22̄q

=
1
2c

(lq − Ls),

a1−
22̄q

=
1
c

[
− 1

2
+

s1

2c
Ls −

s1

2c
lq

]
, (2.19)

a1+
22̄q

=
1
c

[
− 5

2
− s1I22̄q +

5s1

2c
Ls +

2q2 − 3s1

2c
lq

]
,

a11
22̄q =

1
c2

[
4s1 + q2 + s2

1I22̄q −
3s2

1

c
Ls +

3s2
1 − (q2)2 − 4s1q2

2c
lq

]
. (2.20)

The checking equations for the coefˇcients (2.18) could be obtained after multi-
plying Iμν

22̄q
by 2(q+ + q−)ν or 2pν

1 , using the relations 2k(q+ + q−) = (2̄)− (2),
2p1k = (2̄)− (q)− χ+ and using the vector integrals (2.7). They have the form:

2ag
22̄q

+ s1a
−−
22̄q

+ ca1−
22̄q

+ s1a
+−
22̄q

= a−
2q − a−

2̄q
,

2ag
22̄q

+ s1a
++
22̄q

+ ca1+
22̄q

+ s1a
+− = a+

2q − a+
2̄q

, (2.21)

ca11
22̄q + s1a

1+
22̄q

+ s1a
1−
22̄q

= a1
2q − a1

2̄q.

Integrals for calculation of the electron impact factor with the denominators

(0)e = k2 − λ2,

(1)e = (p1 − k)2 − m2 + i0,
(2.22)

(2)e = (p′1 − k)2 − m2 + i0,

(q)e = (p1 − k1 − k)2 − m2 + i0

can be obtained from the cited above by the substitution∫
d4k

iπ2

1, k, kk

(0)e(1)e(2)e(q)e
= P(q− → p′1, q+ → −p1, p1 → −k1, q → q)×

×
∫

d4k

iπ2

1, k, kk

(0)(2)(2̄)(q)
. (2.23)
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An additional set of relevant integrals for the electron impact factor can be
obtained by the relevant substitution.
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