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1. INTRODUCTION: RANDOM POINT PROCESSES

We start by recall of some notations and deˇnitions that we need to formulate
our results. For details the reader may consult, for example, the book [1].

(a) Let E be a locally compact metric space serving as a state space of
points, B the Borel σ-algebra, B0 ⊆ B (relatively) compact Borel sets. Let ν be
a (diffusive) locally ˇnite reference measure on (E, B). The standard example:
ν is the Lebesgue measure and E = R

d.
(b) The space of the locally ˇnite conˇgurations of points in E is

Q(E) := {ξ ⊂ E : card(ξ ∩ Λ) < ∞ for all Λ ∈ B0}.

Then Q(Λ) := {ξ ∈ Q : ξ ⊂ Λ} and the function: NΛ : ξ �→ card(ξ ∩ Λ).
(c) Each ξ ∈ Q can be identiˇed with integer-valued nonnegative Radon

measure: λξ :=
∑
x∈ξ

δx on B, i.e., λξ(D) := ND is the number of points that fall

into the set D for the locally ˇnite point conˇguration ξ ∈ Q(D).
(c) Deˇnition: A random point process (RPP) in a locally compact space E

is a random probability Radon measure μ on the conˇguration space Q(E), with
expectation that for any measurable function is deˇned by

Eμ(F ) :=
∫

Q(E)

μ(dξ)F (ξ).
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• For a simple random point process the measure μ assigns a.-s.: μ(x) � 1,
for any single point x ∈ Q(E).

• By K(x, y) we denote a kernel of nonnegative, self-adjoint, locally Tr-class
operator K � 0 on L2(Λ).

(d) Example: (The Poisson RPP πη with intensity η � 0)
(1) For any set D ⊂ E with ˇnite Lebesgue measure ν(D), one puts

P{ND = n} =
∫

Q(E)

πη(dξ)δn,ND(ξ) =
(η ν(D))n

n!
e−ην(D).

(2) For mutually disjoint subsets {Dn ⊂ Λ}n�1 the Poisson RPP πη is
supposed to be uncorrelated:

Eπη (δn1,ND1(ξ) . . . δnk,NDk
(ξ)) = Eπη(δn1,ND1(ξ)) . . . Eπη (δnk,NDk

(ξ)) =

=
(η ν(D1))n1

n1!
e−ην(D1) . . .

(η ν(Dk))nk

nk!
e−ην(Dk).

(e) Deˇnition: For any family of mutually disjoint subsets {Dn ⊂ Λ}n�1 the
correlation functions (joint intensities) of the RPP μ are deˇned by the densities
{ρn : Λn �→ R

1
+}n�1 with respect to the measure ν:

Eμ

⎛⎝ ∏
1�j�n

I|ξ∩Dj |=1

⎞⎠ =
∫

D1×...×Dn

ν(dx1) · · · ν(dxn)ρn(x1, . . . , xn).

(f) Deˇnition: An RPP is called determinantal/permanental with (a locally
Tr-class) kernel K , if it is simple and its correlation functions are

ρn(x1, . . . , xn) = det‖K(xi, xj)‖1�i,j�n,

ρn(x1, . . . , xn) = per‖K(xi, xj)‖1�i,j�n.

For any n � 1 and x1, . . . , xn ∈ Λ, detα A :=
∑

σ∈Sn

αn−c(σ)
∏

1�i�n

aiσ(i)

α = ±1 ⇔ per/ det and c(σ) is the number of cycles in the permutation σ.

2. FERMION/BOSON RANDOM POINT PROCESSES

2.1. Quantum Statistical Mechanics: Fermions. Let HL := L2(ΛL), where
ΛL = [−L/2, L/2]d and ΔL,p be Laplacian with periodic boundary conditions
on ∂ΛL, i.e.,

spec (−ΔL,p) = {ε(k) = (2π/L)2‖k‖2 : k ∈ Z
d}.
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Then the Gibbs semigroup kernel for the inverse temperature β has the form

(Gβ,L)(x, y) := (eβΔL)(x, y) =

=
∑
k∈Zd

e−βε(k)φk,L(x)φk,L(y) =
∑
k∈Zd

(Gβ)(x, y + kL),

where the ®heat¯ semigroup kernel is

(Gβ)(x, y) := lim
L→∞

(Gβ,L)(x, y) = (4πβ)−d/2 exp −
(
‖x − y‖2

4β

)
.

Remark: It is known that any n-particle free-fermion wave function is the
Slater determinant:

Ψk1,...,kn(x1, . . . , xn) =
1√
n!

det ‖φki,L(xj)‖1�i,j�n.

The corresponding n-point free-fermion joint probability distribution density:
pn,L(x1, . . . , xn) := |Ψk1,...,kn(x1, . . . , xn)|2, or

pn,L(x1, . . . , xn) =
1
n!

det ‖φki,L(xj)‖1�i,j�ndet ‖φki,L(xj)‖1�i,j�n.

Since det A det B = det A B, one gets

pn,L(x1, . . . , xn) =
1
n!

det ‖Kn,L(xi, xj)‖1�i,j�n,

where Kn,L(x, y) =
∑

1�i�n

φki,L(x)φki,L(y) is the kernel of orthogonal projection

on the Env{φk1,L, . . . , φkn,L}.
Since the k-point marginal correlation functions are

p
(k)
n,L(x1, . . . , xn) :=

n!
(n − k)!

∫
pn,L(x1, . . . , xn)dxk+1, . . . , dxn =

= det ‖Kn,L(xi, xj)‖1�i,j�k,

the determinantal RPP μF
n,L generated by the joint probability distribution density

pn,L is correctly deˇned for n free fermions in the cube ΛL.
Canonical Ensemble: Probability density distribution of n free-fermion po-

sitions in the cube ΛL

pn,L(x1, . . . , xn; β) := Z−1
Λ,F (β, n)×

×
∑

(k1,...,kn)∈(Zn)

Ψk1,...,kn(x1, . . . , xn)

(
n⊗

Gβ,LΨk1,...,kn

)
(x1, . . . , xn).
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Proposition [2]: Let (x1, . . . , xn) �→ ξ :=
∑

1�j�n

δxj ∈ Q(ΛL). Then

pn,L(x1, . . . , xn; β) induces a determinantal RPP μF
β,n,L with matrix

Kβ,n,L(xi, xj) := (Gβ,L)(xi, xj),

i.e., a probability measure dμF
β,n,L(ξ) on the conˇguration space Q(ΛL).

Laplace Transformation: Let 〈ξ, f〉 :=
∑

1�j�n

f(xj), where nonnegative

f ∈ C0(ΛL). Then for G̃β,L :=
√

Gβ,L e−f
√

Gβ,L,

Eβ,n,L(e−〈ξ,f〉) :=
∫

Q(ΛL)

dμF
β,n,L(ξ) e−〈ξ,f〉 =

=
∫
Λn

L

dx1 . . . dxn pn,L(x1, . . . , xn; β) exp
{
−

∑
1�j�n

f(xj)
}

=

=
∫
Λn

L

dx1 . . . dxn det ‖(G̃β,L)(xi, xj)‖/
∫
Λn

L

dx1 . . . dxn det ‖(Gβ,L)(xi, xj)‖.

Example: For the Poisson RPP, one obtains∫
Q(Λ)

dπη(ξ) e−〈ξ,f〉 =
∫

Q(Λ)

dπη(ξ) exp
[
−

∑
x∈ξ

f(x)
]

=

=
∞∑

n=0

Eπη

( ∏
1�j�n

I|ξ∩dxj|=1

)
exp

[
−

∑
xj

f(xj)
]

=

=
∞∑

n=0

1
n!

∫
Λn

ν(dx1) . . . ν(dxn)ηn exp
[
−

∑
1�j�n

f(xj)
]

=

= exp
[
−

∫
Λ

dx η(1 − e−f(x))
]
.

Thermodynamic Limit [2]: For n/Ld → ρ a weak limit of the RPP: w −
lim

L→∞
μF

β,n,L = μF
β,ρ, exists and∫

Q(Rd)

dμF
β,ρ(ξ) e−〈ξ,f〉 = Det

[
I −

√
1 − e−fz∗Gβ(I + z∗Gβ)−1

√
1 − e−f

]
,

ρ =
∫
Rd

ddq

(2π)d

z∗ e−β‖q‖2

1 + z∗ e−β‖q‖2 = (z∗Gβ(I + z∗Gβ)−1)(x, x).
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For a Tr-class integral operator J on L2(Λ, ν), the Fredholm determinant/per-
manent is deˇned by the Vere-Jones formula [1]:

Det([I − αJ ]−1/α) =
∞∑

s=0

∫
Λs

ν⊗s(dx1 . . . dxn) detα‖J(xi, xj)‖1�i,j�n,

where detα=±1 = per/ det.
2.2. Quantum Statistical Mechanics: Bosons
Grand-Canonical Ensemble: Probability density distribution of n free-boson

positions in the cube ΛL is deˇned by

pn,L(x1, . . . , xn; β) := Z−1
Λ,B(β, n)×

×
∑

(k1,...,kn)∈(Zn)

Ψk1,...,kn(x1, . . . , xn)

(
n⊗

Gβ,LΨk1,...,kn

)
(x1, . . . , xn),

Ψk1,...,kn(x1, . . . , xn) =
1√

n!
∏

l n(kl)!
per‖φki,L(xj)‖1�i,j�n.

The boson RPP dμB
β,n,L(ξ) on the conˇguration space Q(ΛL) is implied by pn,L.

In the (grand-)canonical thermodynamic limit for particle densities ρ < ρc(β) (or
solutions z∗(β, ρ) < 1), where

ρ =
∫
Rd

ddq

(2π)d

z∗ e−β‖q‖2

1 − z∗ e−β‖q‖2 = (z∗Gβ(I − z∗Gβ)−1)(x, x) < ρc(β),

one obtains [3]∫
Q(Rd)

dμB
β,ρ(ξ) e−〈ξ,f〉 = Det

[
I+

√
1 − e−fz∗Gβ(I−z∗Gβ)−1

√
1 − e−f

]−1

.

Proposition [4]: For densities ρ > ρc(β) we have z∗ = 1 and

∫
Q(Rd)

dμB
β,ρ(ξ) e−〈ξ,f〉 =

exp [−(ρ − ρc(β))(
√

1 − e−f , [I+Kf ]−1
√

1 − e−f )]
Det [I+Kf ]

,

where Kf :=
√

1 − e−fGβ(I−Gβ)−1
√

1 − e−f is from the Tr-class. Therefore,
the free boson RPP for ρ > ρc(β) is a convolution of the boson RPP at z∗ = 1 and
a boson process (see numerator) proportional to the condensate density: ρ−ρc(β).
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2.3. Grand-Canonical (β, μ) Free Bose Gas. (a) Consider independent
random variables k �→ Nk ∈ N ∪ {0}, k ∈ Λ∗

L, in the probability space Ω :=
×k∈Λ∗

LΩk.
(b) For bosons the one-mode random occupation numbers are Nk � 0, but

for fermions they are Nk = 0, 1.
(c) Probabilities (N. B. for bosons: μ < 0, since εk = ‖k‖2 � 0) are

Prβ,μ(Nk) :=
e−β(εk−μ)Nk

Ξk(β, μ)
, k ∈ Λ∗

L.

(d) Expectations are: Eβ,μ(Nk) = {eβ(εk−μ) − 1}−1, for k ∈ Λ∗
L and

z∗ := e−β μ.
(e) Expectation value of the total density of bosons in R

d is

lim
L→∞

ρΛL(β, μ) := lim
L→∞

1
|ΛL|

∑
k∈Λ∗

Eβ,μ(Nk) =

∞∫
0

dÑd(E)
eβ(E−μ) − 1

.

3. BOSONS IN A WEAK HARMONIC TRAP

3.1. Weak Harmonic Trap [5]. One-particle Hamiltonian of the harmonic
oscillator

hκ =
1
2

d∑
j=1

(
− ∂2

∂x2
j

+
x2

j

κ2
− 1

κ

)

is a self-adjoint operator in the Hilbert space H := L2(Rd), with

Spec (hκ) = {εκ(s) := |s|1/κ | s = (s1, · · · , sd) ∈ N
d }, |s|1 :=

d∑
j=1

sj.

In this setup the ®thermodynamic limit¯ is an ®opening¯ of the trap, i.e., κ → ∞,
called the Weak Harmonic Trap (WHT) limit.

Perfect Bose-gas expectation value of the total number of particles is

Nκ(β, μ) =
1
β

∂ ln Ξ0,κ(β, μ)
∂μ

=
∑
s∈Nd

1
eβ(εκ(s)−μ) − 1

.

Since Nκ(β, μ) diverges for κ → ∞ as κd, the scaled particle density is deˇned by

ρκ(β, μ) :=
1
κd

∑
s∈Nd

1
eβ(εκ(s)−μ) − 1

,
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ρ(β, μ) = lim
κ→∞

ρκ(β, μ) =
∫

[0,∞)d

dp

eβ(|p|1−μ) − 1
=

∞∑
s=1

eβμs

(βs)d
.

Notice that the Integrated Density of States (Nd(E)) and the critical density
ρc(β) are related by the limit of the measure:

Nd,κ(E) =
1
κd

∑
s∈Nd

θ(E − |s|1/κ).

Then we obtain in the κ → ∞ limit

dNd(E) =
Ed−1

Γ(d)
dE �= E(d−2)/2

(2π)d/2Γ(d/2)
dE = dÑd(E),

ρc(β) := ζ(d)/βd �= ζ(d/2)/(2πβ)d/2 =: ρ̃c(β).

3.2. Mean-Field Interaction and Main Results. A model of the mean-ˇeld
interacting bosons trapped by the harmonic potential is deˇned by the grand-
canonical partition function

Ξλ,κ(β, μ) :=
∞∑

n=0

eβ(μn−λn2/2κd)TrHn
symm

[⊗nGκ(β)],

where Gκ(β) = e−βhκ is the Gibbs semigroup for the oscillator process. Here
β > 0, λ > 0 and μ ∈ R

1.
Theorem [5]: Normal phase. Let μ < μλ,c(β) := λρc(β). Then the boson

RPP μκ,β,μ converges weakly in the WHT limit κ → ∞ to the RPP μβ,r∗ with
the Laplace transformation:

Eβ,r∗

[
e−〈f,ξ〉] = Det

[
1 +

√
1 − e−fr∗Gβ(1 − r∗Gβ)−1

√
1 − e−f

]−1

,

where r∗ = r∗(β, μ, λ) ∈ (0, 1) is a unique solution of the equation

βμ = ln r + λβ

∞∫
0

dNd(E)
r−1eβ E − 1

, r := eβ(μ−λρ) < 1.

Theorem [5]: Condensed phase. For μ > μλ,c(β)(:= λρc(β)) the Laplace
transformation of the boson RPP measure has the following limit:

lim
κ→∞

1
κd/2

ln Eβ,μ

[
e−〈f,ξ〉] = −μ − μλ,c(β)

πd/2λ
(
√

1 − e−f , (1 + Kf)−1
√

1 − e−f ),
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where the operator

Kf :=
(
G

1/2
β (1 − Gβ)−1/2

√
1 − e−f

)∗ (
G

1/2
β (1 − Gβ)−1/2

√
1 − e−f

)
is a positive trace-class operator on H = L2(Rd) for d > 2.

Remark: Condensed phase. Similar to the homogeneous free Bose gas the
resulting RPP is a convolution of two Bose RPP [5].

Local Particle Density.
Corollary: Normal phase. Let f ∈ C0(Rd) and f � 0. For μ < μλ,c(β)

Eβ,r∗

[
〈f, ξ〉

]
= Tr [f r∗G(β)(1 − r∗G(β))−1] = ρr∗

∫
Rd

dxf(x),

where the local density ρr∗ in the neighbourhood of the bottom of the WHT
potential is given by

ρr∗ = r∗G(β)(1 − r∗G(β))−1(x, x) =
∞∑

n=1

rn
∗

(2πβn)d/2
.

Corollary: Condensed phase. For μ > μλ,c(β) one obtains

lim inf
κ→∞

Eκ,β,μ,λ

[
〈f, ξ〉

]
κd/2

� μ − μλ,c(β)
πd/2λ

∫
Rd

dxf(x).

3.4. Global Particle Density. The results of the Theorem and Corollary in
the noncondensed regime has the following interpretation: in the WHT limit the
position distribution of the MF interacting bosons in the neighbourhood of the
origin of coordinates (i.e., at the bottom of the WHT potential) is close to that for
the free BG corresponding to a substitution of the unconventional parameter r∗
by the conventional z∗. The information about the particle position distribution in
domains distant from the bottom of the WHT is missing in the limit μβ,r∗ since
the test function f has a ˇnite support.

In order to take this ®tail¯-particles into account, we have to use for our
model the standard deˇnition of the grand-canonical global number of particles:

ρ
(tot)
κ,λ (β, μ) :=

1
κd β

∂ ln Ξκ(β, μ)
∂μ

=

1
κd Ξκ,λ(β, μ)

=
∞∑

n=0

n eβ(μn−λn2/2κd)TrHn
symm

[⊗nGκ(β)].
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Since κd is interpreted as the effective volume of the model, the function

ρ
(tot)
κ,λ (β, μ) represents an effective total space-averaged density of the nonho-

mogeneous boson gas.
Theorem [5]: Global density = experiment. In the WHT limit

ρ
(tot)
λ (β, μ) = lim

κ→∞
ρ
(tot)
κ,λ (β, μ) = lim

κ→∞
κ−dTr [r∗Gκ(1 − r∗Gκ)−1]

exists and satisˇes the following properties:
(i) for μ � μλ,c(β) one has

ρ
(tot)
λ (β, μ) =

∞∫
0

dNd(E)
r−1
∗ eβE − 1

and βμ = log r∗ + λβρ
(tot)
λ (β, μ);

(ii) for μ > μλ,c(β): (ρ(tot)
c (β) := limμ→μc(β) ρ

(tot)
λ (β, μ) = ζ(d)/βd)

ρ
(tot)
λ (β, μ) =

μ

λ
=

μ − μλ,c(β)
λ

+ ρ(tot)
c (β).

3.5. Conclusion: Bosons in a Weak Harmonic Trap. Different behaviour
of the space distributions of bosons described in the Theorems above has the
following explanation:

In the normal case the bosons are distributed almost uniformly in the region
of radius κ according to the shape of the oscillator process kernel.

On the other hand, in the condensed phase case the condensed part of particles

κd(ρ(tot)
λ (β, μ) − ρ

(tot)
λ,c (β)) = κd(μ − μλ,c(β))/λ is localized in the region of

radius O(κ1/2) according to proˇle of the square of the ground-state wave function

Ωκ(x) =
1

(πκ)d/4
e−‖x‖2/2κ ≡ φs=0, κ(x).

Whereas the particles outside of the condensate are spread out essentially over
the region of radius κ.

4. LDP FOR NONINTERACTING BRPP

In this section we consider the limiting theorems: Law of Large Numbers
(LLN), Central Limit Theorem (CLT) and Large Deviation Principle (LDP), for
the free Bose gas [6].
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4.1. Noninteracting BRPP with BEC. Proposition [4]: For continuous
f � 0 with a compact support we deˇne two BRPP by generating functionals:∫

Q(Rd)

dμ
(det)
K,z (ξ) e−〈f,ξ〉 = det[1 + Kf(z)]−1, z = eβμ � 1,

∫
Q(Rd)

dμK,ρ(ξ)e−〈f,ξ〉 = exp
[
− ρ

(√
1 − e−f ,

1
1 + Kf(1)

√
1 − e−f

)]
,

where Kf(z) :=
√

1 − e−fzGβ(1+ zGβ)−1
√

1 − e−f and Gβ := eβΔ. Then the

BRPP for the ideal gas is μB
K,ρ�ρc

= μ
(det)
K,z�1, but in the regime of BEC (ρ > ρc)

it is convolution of the two Random Point Processes:

μB
K,ρ>ρc

:= μ
(det)
K,z=1∗μK,ρ=ρ−ρc = (non-condensate)∗(condensate).

Theorem (LLN) [6]: For continuous function f � 0 with a compact support,
the limit

lim
κ→∞

1
κd

〈f(·/κ), ξ〉 = ρ

∫
Rd

dx f(x)

holds in L2(Q(Rd), μB
K,ρ).

Theorem (CLT) [6]: Let ρ > ρc. Then for κ → ∞ the family of random
variables

Xκ :=
〈f( ·/κ), ξ〉 − ρκd

∫
Rd

f(x) dx√
2(ρ − ρc)‖(−βΔ)−1/2f‖HSκ(d+2)/2

converges in distribution to the standard Gaussian random variable:

lim
κ→∞

∫
Q(Rd)

dμB
K,ρ>ρc

(ξ)eitXκ = e−t2/2.

Large Deviation Principle in the BEC Regime.
Theorem (LDP) [6]: For ρ > ρc there exists a convex rate function I(s) :=

sups∈R

(
st − P (t)

)
, such that

lim sup
κ→∞

1
κd−2

log μB
K,ρ

( 1
κd

〈
f
(
· /κ

)
, ξ

〉
∈ F

)
� − inf

s∈F
I(s), for closed F ⊂ R,

and

lim inf
κ→∞

1
κd−2

log μB
K,ρ

( 1
κd

〈
f
(
· /κ

)
, ξ

〉
∈ G

)
� − inf

s∈G
I(s), for open G ⊂ R.
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P (t) := lim
κ→∞

1
κd−2

log
∫

Q(Rd)

dμB
K,ρ(ξ)e

t〈f( ·/κ),ξ〉/κ2
= P

(det)
K,z=1(t)+PK,ρ−ρc (t) =

=

⎧⎨⎩tρc

∫
Rd

f(x) dx + (ρ − ρc)t2(f, (−βΔ − tf)−1f), t < ‖
√

f(−βΔ)−1
√

f‖−1,

+∞, t � ‖
√

f(−βΔ)−1
√

f‖−1.

4.3. Conclusion: BEC versus the Normal Phase. Let Dκ := 〈f(·/κ), ξ〉/κd

be a random empirical density of particles localized in the region of the length
scale κ.

For the BEC case ρ > ρc:
(i) The random variable Dκ converges for κ → ∞ to its expectation value

m := ρ
∫

Rd

f(x) dx in mean.

(ii) The law of the random variable κ(d−2)/2(Dκ − m) converges to the
normal distribution as κ → ∞.

(iii) The law of the random variable Dκ manifests a Large Deviation Property
with the parameter κd−2.

For the normal phase ρ � ρc:
(i) also holds;
(ii) holds but for κd/2(Dκ − m), instead of κ(d−2)/2(Dκ − m);
(iii) holds with the order κd, instead of κd−2.
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