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THREE-LOOP RUNNING OF THE STRONG
COUPLING CONSTANT AND THE MASS

OF THE b QUARK IN THE SUPERSYMMETRIC QCD
A. V. Bednyakov

Joint Institute for Nuclear Research, Dubna

Supersymmetric extension of the QCD (SQCD) is considered, and the scale dependence of
some important parameters, i.e., strong coupling αs and b-quark running mass mb, is studied with
the help of three-loop renormalization group equations. Five-�avour QCD is considered as a low-
energy effective theory of SQCD, and two-loop decoupling (threshold) effects are taken into account.
Variations in running αs and mb at the GUT scale μGUT = 1016 GeV due to uncertainties in the
initial experimental data and the ambiguities in the decoupling scale are analyzed for a particular point
of the parameter space. Comparison with known results is given.

PACS: 11.10.-z; 11.15.-q; 12.39-x; 12.38.-t

INTRODUCTION

Minimal supersymmetric extension of the Standard Model (so-called MSSM)
predicts a lot of superparticles that have the same quantum numbers (except
spin) as ordinary particles known from experiment. Among these particles one
can distinguish color scalars (squarks) and fermions (gluino). Neglecting all the
electroweak interactions, the dynamics of these new particles, together with that
of quarks and gluons, can be described by supersymmetric QCD.

As in the MSSM, the predictive power of SQCD is spoiled by unknown
supersymmetry-breaking parameters that deˇne mass splitting between ordinary
particles and corresponding superpartners. In order to deal with the problem, one
usually looks for constraints, both experimental and theoretical, that allow one to
reduce the number of independent model parameters.

By means of so-called decoupling procedure, one can express running
αs(MZ) = 0.1184 ± 0.0007 [1] and mb(mb) = (4.164 ± 0.025) GeV [2] de-
ˇned in MS-scheme in ˇve-�avour QCD in terms of SQCD parameters deˇned
in DR-scheme [3] and use corresponding known values as constraints on the
whole set of SQCD parameters.

Among theoretical restrictions on possible models, one can consider those
that are related to coupling constant uniˇcation at high energies, e.g., to gauge or
Yukawa uniˇcation. For imposing such constraints, one needs to know the scale
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dependence of corresponding couplings that is given by renormalization group
equations (RGEs) and boundary conditions for these equations at low energies. It
is the role of decoupling constants to deˇne such a boundary condition at some
renormalization (=decoupling) scale (see Eq. (3) below).

In formal perturbation theory it can be proven that L-loop running requires
implementation of (L − 1)-loop matching (see, e.g., [4]). Since in this talk I
consider three-loop running based on RGEs given in [5,6], two-loop decoupling
relations obtained in [7,8] are used. Some details on running procedure are given
in the next section.

1. RUNNING STRATEGY

In order to obtain the values of αs(μGUT) and mb(μGUT) with three-loop
precision, I made use of the following strategy.

First of all, by three-loop RGE deˇned in the effective ˇve-�avour QCD
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and a given experimental value of αs(MZ), one obtains αs(μb) at the scale μb at
which b-quark mass is deˇned μb = mb(μb) = (4.164 ± 0.025) GeV [2]. Then
with the calculated value of αs(μb) and known mb(μb), three-loop RGEs
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and (1) are solved numerically to ˇnd the values of running MS-parameters
αs(μdec) and mb(μdec) at chosen decoupling scale μdec ∼ 1 TeV. After that one
applies the decoupling relations

αDR
s (μdec) = αMS

s (μdec) × ζ̃(2)
αs

(
αMS

s , Mt, MSUSY, μdec

)
,

mDR
b (μdec) = mMS

b (μdec) × ζ̃(2)
mb

(
αMS

s , Mt, MSUSY, μdec

) (3)

to convert MS QCD running parameters at μdec to that of SQCD deˇned in DR-
scheme∗. Here Mt corresponds to t-quark pole mass and MSUSY collectively
denotes (unknown) values of superparticle pole masses. The latter are ˇxed
if one considers a particular MSSM scenario. The full expressions for two-loop

∗Change in renormalization scheme DR → MS can also be treated as decoupling of so-called
ε-scalars [7].
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decoupling constants ζ̃(2) are huge and can be used only in numerical calculations.
However, in the limit when all the particles heavier than the b quark have the
same mass M , they are given by the following expressions with μ ≡ μdec and ab,t

being off-diagonal mixing matrix elements for bottom and top squarks expressed
in terms of soft trilinear couplings Ab,t, the ratio of Higgs vacuum expectation
value tan β, and Higgs superˇeld mixing parameter μ̄:
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ab,t = Abt − μ̄{tan β, cotβ}. (5)

Finally, within SQCD
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are solved to obtain αs(μGUT) and mb(μGUT) at GUT scale.

2. RESULTS

Here I present some results obtained with the help of a C++ program∗ that
implements the mentioned strategy to evaluate running αs and mb at any scale
within the supersymmetric QCD. It is worth mentioning that the program can

∗It is available from the author.
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use either full two-loop decoupling corrections that depend on the pole masses of
superparticles and squark off-diagonal terms (5) or simple threshold effects with
common scale M in a form of Eq. (4).

For deˇniteness I use so-called SPS1a point in mSUGRA parameter space [9]
that can be characterized by the following set of parameters: Mt̃1 = 366.5 GeV,
Mt̃2 = 575.5 GeV, Mb̃1

= 506.3 GeV, Mb̃2
= 545.7 GeV, Mg̃ = 607.1 GeV.

Since all the squarks of ˇrst two generations have the same mass within considered
approximation, it is chosen to be equal to MSUSY = 462 GeV. There is a
peculiarity in the chosen renormalization prescription for aq (q = t, b) (for SPS1,
at = −961 GeV, ab = −425 GeV have been chosen). They do not depend on
renormalization scale and are related to bare quantities by the following formula:
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(αs

4π

) CF

8
Mg̃

[
2
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]

. (7)

Here CF = 4/3, ε is a regularization parameter that is related to space-time
dimension d = 4−2ε, and B0(p, m1, m2) is a PassarinoÄVeltman master integral
for two-point function that implicitly depends on the renormalization scale.

This set of parameters allows me to make a comparison with known results
of [10]. A good agreement (see the table) was found in spite of the fact that
different treatment of squark mixing had been employed. From the table it is clear
that theoretical ambiguities due to variation of the decoupling scale in the range
from 100 GeV to 1 TeV are comparable with the uncertainties due to current
error in low-energy input parameters.

In Figures 1 and 2 the dependence on the decoupling scale μdec is presented
for αs(μGUT) and mb(μGUT) at GUT scale μGUT = 1016 GeV. One can see
that the three-loop result that is based on the three-loop RGEs and two-loop
decoupling relations has reduced μdec dependence in comparison with one- and
two-loop results.

A comparison of the obtained values of αs and mb at GUT scale μGUT = 1016 GeV
for SPS1a point. Decoupling scale is μdec = 600 GeV. Variations in the result due to
uncertainties in the initial data δαs = ±0.0007 and δmb = ±0.025 GeV are shown

together with ambiguity due to decoupling scale μdec variation from 100 GeV to 1 TeV

Bauer, Mihaila, Salomon [10]

αs(μGUT) 0.0405 ±0.0001|δ αs(MZ) ±0.0001|th
mb(μGUT) 1.016 ±0.011|δ αs(MZ) ±0.007|δ mb(mb) ±0.005|th

Bednyakov

αs(μGUT) 0.0405 ±0.0001|δ αs(MZ) ±0.0002|th
mb(μGUT) 1.016 ±0.008|δ αs(MZ) ±0.013|δ mb(mb) ±0.002|th
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Fig. 1. The dependence of running αs(μGUT) at the GUT scale μGUT = 1016 GeV on
decoupling scale μdec for SPS1a point [9]. Dotted, dashed, and solid lines indicate that
one-, two-, and three-loop RGEs, together with appropriate matching conditions, are used
during the calculation of αs(μGUT)

Fig. 2. The dependence of running mb(μGUT) at GUT scale μGUT = 1016 GeV on the
decoupling scale μdec for SPS1a point
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