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It is shown that the generating function for the matrix elements of irreps of Lorentz group is the
common eigenfunction of the interior derivatives of the noncommutative differential calculus over the
commutative algebra generated by the coordinate functions. These derivatives commute and can be
interpreted as the quantum mechanical operators of the relativistic momentum corresponding to the
half of the non-Euclidean distance from the origin in the Lobachevsky momentum space.
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We show that the realization of the Poincare group Lie algebra in the frame-
work of the Quantum Mechanics in the relativistic conˇguration space (RQM)
naturally requires to consider the noncommutative differential calculus over the
associative commutative algebra of the coordinate functions. In particular the
generators of translations, which are the momentum operators in accordance with
the basic principles of Quantum Mechanics, are expressed in terms of the non-
commutative derivatives.

Referring the reader to the original paper [1] and more recent articles [2Ä5]
we stress here only that the concept of RQM is based on the expansion in matrix
elements of the unitary representations of the Lorentz group [6]. In this paper we
consider the case of two-dimensional space with the signature (1, 2) so that the
transitivity surface of the Lorentz group SO(2, 1) is the mass shall of the particle

pμpμ = p02 − p̃2 = m2c2, p0 > 0, μ = 0, 1, 2. (1)

This group can also be considered as a factor group of SU(1, 1) by its center.
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The role of the relativistic plane wave in the RQM formalism plays the kernel
of GelfandÄGraev transformation:

〈ρ̃|p̃〉 =
(

p0 − p̃ · ñ
mc

)− 1
2−iρ

, ñ2 = 1, (2)

〈ρ̃|p̃〉 is the wave function of the free particle, i.e., of the state with deˇnite value
of energy and momentum. The parameter ρ is relativistic-invariant whose limits
are the same as for the nonrelativistic radius-vector: 0 � ρ < ∞. The vectors
ρ̃ = ρñ, ñ = (cos ψ, sin ψ) span the 2-dimensional relativistic conˇguration

space. In the nonrelativistic limit 〈ρ̃|p̃〉 −→ ei ρ̃p̃
� . In what follows we put

c = m = � = 1. We also use the hyperspherical coordinates in the momentum
space:

p0 = cos hχ, p̃ = sin hχñp, ñp = (cos φ, sin φ). (3)

The relativistic plane wave (2) is the generating function for the matrix
elements of the unitary representations of the s.c. principal series which are equal
up to the normalization factor to the associate Legendre functions [6]:

〈ρ̃|p̃〉 =
∞∑

m=−∞
(−1)m Γ (−iρ + 1/2)

Γ (−iρ + 1/2 + m)
Pm
− 1

2−iρ(coshχ) eim(ψ−φ). (4)

The commuting momentum operators are

p̂0 = cosh i∂ρ +
i

2ρ
sin hi∂ρ − 1

2ρ(ρ + i/2)
(∂ψ)2e∂ρ ,

p̂± =
e±iψ

2

{
p̂0 − e∂ρ ± 1

(ρ + i/2)
e∂ρ∂ψ

}
,

p̂± =
p̂1 ± ip̂2

2
, ∂ρ =

∂

∂ρ
, ∂ψ =

∂

∂ψ
.

(5)

In the nonrelativistic limit these operators transfer to the standard quantum
mechanical energy and momentum operators. Relativistic momentum operators
commute

[p̂μ, p̂ν ] = 0, μ, ν = 0, 1, 2. (6)

Despite the commutativity (6) of the momentum operators in the relativistic
conˇguration ρ representation (5) they cannot be considered as the generators
of the Poincare group. Because the operator p̂0 enters into the expressions
for p̂1, p̂2, the last operators cannot be the exterior derivatives in any linear
(generalized) differential calculus. But identiˇcation of the momentum operator
with the generator of the translation in linear representation of the Poincare group
is the fundamental physical requirement of the Quantum Theory. The solution to
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this problem can be found if we transfer from ®old¯ momentum operators p̂μ to
the new momenta q̂μ, corresponding to the ®half distance¯ in the Lobachevsky
momentum space (1) as follows. In the momentum space q̂-operators are given
by (cf. (3))

q0 = cosh
χ

2
, q̃ = sin h

χ

2
ñp. (7)

We recall that χ is the non-Euclidean distance from the origin. The ®half dis-
tance¯ or kinetic momenta possess the remarkable properties. For example, the
relativistic energy E in the nonrelativistic limit ‖p̃‖ � mc can be presented ap-
proximately as E = p0c =

√
m2c4 + p̃2c2 � mc2 + p̃2/2m. In terms of the new

momentum, the relativistic formula has exactly the nonrelativistic form without
any approximation:

E − mc2 = mc2 sinh2 χ

2
=

k̃2

2m
, (8)

where k̃ = 2q̃. We show here that the corresponding operators of kinetic momen-
tum do exist in the relativistic ρ representation and belong to the noncommutative
differential calculus [5, 7]. To derive the corresponding momentum operators in
the relativistic ρ representation we must consider instead of the plane wave (2)
the generating function for the Jacobi functions of more general form:

〈ρ̃, 0|p̃〉 =
(
cosh

χ

2
− sinh

χ

2
ei(ψ−φ)

)−iρ− 1
2+n

×

×
(
cosh

χ

2
− sinh

χ

2
e−i(ψ−φ)

)−iρ− 1
2−n

,

〈ρ̃, 0|p̃〉 = 〈ρ̃|p̃〉 〈ρ̃, n|p̃〉 =
∞∑

m=−∞
P

− 1
2−iρ

mn (coshχ)ei(n−m)(ψ−φ), (9)

m, n are simultaneously integer or semi-integer numbers. The desired operators
ˆ̃q = (q̃1, q̃2) in conˇguration ρ, ψ, n representation are obtained using formulae
(7)Ä(9) of Subsec. 6.7.3 of the book [6]:

q̂± = e±iψ

{−iρ− 1
2
± n

iρ
sin h

i

2
∂ρ ± 1

2ρ
∂ψe

i
2∂ρ

}
e∓

1
2 ∂n , (10)

[
q̂1, q̂2

]
=

i

2
[
q̂+, q̂−

]
= 0, q̂± =

q̂1 ± iq̂2

2
. (11)

The generalized plane waves (9) are the common eigenfunctions for q̂±:

q̂± 〈ρ̃, n|p̃〉 = q± 〈ρ̃, n|p̃〉 = sin h
χ

2
e±iφ 〈ρ̃, n|p̃〉 . (12)
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Also the operators exist corresponding to the eigenvalue coshχ/2:

c̃± = − 1
2iρ

e∓
1
2∂n{(−iρ∓ n) e

i
2∂ρ + (−iρ ± n) e−

i
2∂ρ ± i∂ψ e

i
2∂ρ}

=
(
e−iψ q̂± + e

i
2 ∂ρe∓

1
2∂n

)
, ĉ± 〈ρ̃, n|p̃〉 = cosh

χ

2
〈ρ̃, n|p̃〉 .

(13)

Now we consider the noncommutative differential calculus over the associative
algebra A over C. Finite linear combinations of elements of A and their ˇnite
products are again elements of A. A differential calculus over A is a Z-graded
associative algebra over C:

Ω(A) =
∑

r

= 0⊗Ωr(A). (14)

The elements of Ωr(A) are called r forms. There exists an exterior derivative d̂
which satisˇes the following conditions:

d̂2 = 0, d̂(ωω′) = (d̂ω)ω′ + (−1)rωd̂ω′, (15)

where ω and ω′ are r and r' forms, respectively. All products in this for-
mula are the wedge products, but we omit the symbol ∧ in formulas. In our
case A is the commutative algebra generated by the coordinate-xi functions
f(x1, . . . , xn), i = 1, . . . , n. We can develop an explicit construction deˇn-
ing d̂ as an operator valued 1-form. Differentiation is given by

d̂ω = [d̂, ω]∧ = d̂ω − (−1)rωd̂. (16)

Important is the difference between the standard differential calculus and the rela-
tivistic one. In the ˇrst one, the differential and the coordinate function commute
[dxk, xi] = 0, because in the standard case xi and dxk are the independent nu-
merical parameters. But the relativistic differential calculus is noncommutative:
[dxk, xi] �= 0.

To establish the relativistic differential calculus we must determine d̂. First
we recall the simple connection existing between the nonrelativistic d̂ and mo-
mentum operators: d̂ = dx1∂x1 +dx2∂x2 = i(dx+k̂−+dx−k̂+) = dρ∂ρ +dψ∂ψ,
where dx± = dx1 ± dx2 = e±iψ(dρ ± iρdψ). In the relativistic case the differ-
entials dx± are modiˇed and gain the operator valued form:

d̂x± = e±iψ
(
dρ ± e−

i
2∂ρ(iρ ∓ n)dψ

)
e−

1
2∂n . (17)

The identity is satisˇed

i
(
d̂x+q̂− + d̂x−q̂+

)
= dρ(−2i sin h

i

2
∂ρ) + dψ∂ψ −→ dρ∂ρ + dψ∂ψ. (18)
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It is easily seen that this expression is incomplete. It must be extended to involve
the ®coshχ/2¯ terms or operators ĉ± in order to satisfy the generalized Leibnitz
rule of the noncommutative derivation:

d̂ = i
(
d̂x+q̂− + d̂x−q̂++

+dρ+

(
e

1
2∂n ĉ+ + e−

1
2∂n ĉ− − 2

)
+ dρ−

(
e

1
2∂n ĉ+ − e−

1
2 ∂n ĉ−

))
. (19)

The following identity can be easily proved e
1
2∂n ĉ+−e−

1
2∂n ĉ− = e

1
2∂ne−iψ q̂+−

e−
1
2∂neiψ q̂−. We see that expressions multiplied by dρ+ and dρ− are bound.

This lets us to put dρ− = 0 without limiting the generality. And d̂ takes the form

d̂ = dρ(−2i sinh
i

2
∂ρ) + dρ+(2i cosh

i

2
∂ρ − 2) + dψ∂ψ

= dρ→
−→
∂ + dρ←

←−
∂ + dψ∂ψ, dρ→ =

dρ+ − dρ−
2

, dρ← =
dρ+ + dρ

2
, (20)

where the identity has been taken into account ∂nĉ+ = e−
1
2∂n ĉ− = 2 cosh i/2∂ρ.

Operators
−→
∂ =

e
i

2
∂ρ − 1
i

2

and
←−
∂ =

e
−i

i

2
∂ρ − 1

− i

2

are the left and right inte-

rior derivatives of the noncommutative differential calculus above. It is sufˇcient

to keep only one of the
−→←−
∂ derivatives and we put dρ← = 0 (and omit the subscript

→: dρ→ = dρ)

d̂ = dρ
−→
∂ + dψ ∂ψ . (21)

In the relativistic differential calculus the differential dρ does not commute with
the coordinate ρ. We recall that in the standard calculus ρ and dρ, of course,
commute [dρ, ρ] = 0. In the relativistic calculus

d̂ρ = [d̂, ρ] = [d̂ρ∂ρ, ρ] = dρ
e

i
2 ∂ρ − 1
i/2

ρ − ρdρ
e

i
2∂ρ − 1
i/2

= dρe
i
2∂ρ , (22)

and we obtain

[d̂ρ, ρ] =
i

2
d̂ρ. (23)

It follows directly from (23)

[d̂ρ, f(ρ)] =
i

2
(
−→
∂ f(ρ))d̂ρ =

i

2
d̂ρ(

←−
∂ f(ρ)). (24)

Free Hamiltonian has a form (8) Ĥ0−mc2 =
2q̂+q̂−

m
. Potential V (ρ) is introduced

(see [1]Ä[5]) as an addition to the free Hamiltonian and we come to the relativistic
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Schréodinger equation which does not differ by form from the nonrelativistic one

(
Ĥ0 + V (ρ)

)
ψ(ρ̃) = Eψ(ρ̃). (25)

At last, we write down the momentum operators corresponding to the half of the
distance in the Lobachevsky p space in terms of the relativistic noncommutative
differential calculus

q̂± = e±iψ

(
−iρ − 1/2 ± n

4ρ
(−→∗ + ←−∗ ) d̂ρ − 1

2ρ

(
1 +

i

2
−→∗ d̂ρ

)
∗ d̂ψ

)
, (26)

where −→∗ and ←−∗ are left and right noncommutative Hodge symbols introduced
in [5]; ∗ is the standard Hodge symbol corresponding to the commutative dif-
ferentiation in ψ.
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