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Starting with the quantum BBGKY hierarchy for the statistical operators, we have obtained the
quantum kinetic equation including the dynamical screening of the interaction potential, which exactly
takes into account the exchange scattering in the plasma.
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INTRODUCTION

The famous Bogoliubov paper on ®Problems of Dynamic Theory in Statistical
Physics¯ [1] is a basis for kinetic theory conceptions of gases, �uids and plasma.
In the work of Bogoliubov and Gurov [2] the kinetic equation for the charged
particles statistical operator was obtained from a chain of equations for the density
matrix. In works [3Ä6], a quantum kinetic equation was obtained that differs from
BogoliubovÄGurov equation in taking into account the medium polarization more
properly. The corresponding classical equations were derived earlier by Balescu
and Lenard [7,8]. In the quantum kinetic equation for weakly coupled polarizable
plasmas derived by Balescu and Guernsey [5, 6], the exchange interaction of
particles was retained only in the distribution functions. But it is also necessary
to take into account the exchange interaction in the scattering amplitude and in
the dielectric function. Starting from the quantum BBGKY hierarchy for the
distribution function we have solved, in the so-called plasma approximation, the
equation for the quantum pair correlation function. The solution to this equation
can be expressed in terms of the resolvent of the linearized HartreeÄFock equation.
As a result, we obtain a quantum kinetic equation, which takes into account the
dynamical screening of the interaction potential and the exchange interaction in a
nontrivial way. In particular, this equation contains the dielectric function, which
exactly describes the exchange scattering in plasma.
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1. BOGOLIUBOV QUANTUM KINETIC EQUATIONS

The quantum hierarchy for a multicomponent plasma in the operator tech-
niques takes the form

∂

∂t
fa(1) = [Ha(1), fa(1)] +

∑
b

Sp(2)[Uab(12), fab(12)], (1)

∂

∂t
fab(12) = [Hab(12), fab(12)] +

∑
c

Sp(3)[Uac(13) + Ubc(23), fabc(123)], (2)

where fa(1) and fab(12) are one- and two-particle density matrices; [A, B] is

the commutator of operators; Ha(1) =
p2(1)
2ma

is the kinetic energy, Hab(12) =

p2(1)
2ma

+
p2(2)
2mb

+ Uab(12) is the two-particle Hamiltonian, and Uab(12) is the

two-particle interaction potential. Let us introduce the new operators [9]:

fab(12) = γab(12)f ′
ab(12), fabc(123) = γabc(123)f ′

abc(123), (3)

where the symmetrization operators are

γab(12) = 1+δabηaP (12), γabc(123) = γab(12){1+δacηaP (13)+δbcηbP (23)},
(4)

ηa = 1(Bose),−1(Fermi); P (12) is the permutation operator. Therefore,

∂

∂t
fa(1) = [Ha(1), fa(1)] +

∑
b

Sp(2)[Uab(12), γab(12)f ′
ab(12)], (5)

∂

∂t
f ′

ab(12) = [Hab(12), f ′
ab(12)]+

+
∑

c

Sp(3)[Uac(13) + Ubc(23), (1 + δacηaP (13) + δbcηbP (23))f ′
abc(123)]. (6)

The symmetrization operators (4) are convenient in that they give the possibil-
ity to partially transmit the permutation operator P (12) from the density matrix
to the interaction potentials. The density matrices fab(12), etc., possess the
quantum symmetry properties: P (12)fab(12) = fab(12)P (12), etc., whereas the
density matrices f ′

ab(12), etc., possess only the classical symmetry properties:
P (12)f ′

ab(12)P (12) = f ′
ab(12), etc. For the classically symmetric density matri-

ces the usual conditions for disentanglement of equations hold, which are the same
as those in the classical statistics. Speciˇcally, in the plasma approximation [10],
when the triple correlation function is neglected:

f ′
ab(12) = fa(1)fb(2) + g′ab(12), (7)
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f ′
abc(123) = fa(1)fb(2)fc(3)+ g′ab(12)fc(3)+ g′ac(13)fb(2)+ g′bc(23)fa(1), (8)

where g′ab(12) is the pair correlation function. By substituting Eqs. (3), (7) and (8)
into Eqs. (1) and (2) one obtains a closed set of equations for the one-particle and
two-particle statistical operators

∂

∂t
fa(1) = [H ′

a(1), fa(1)] +
∑

b

Sp(2)[U
′
ab(12), γab(12)g′ab(12)], (9)

∂

∂t
g′ab(12) = [H ′

a(1) + H ′
b(1), g′ab(12)] + A′

ab(12)+

+
∑

c

Sp(3){[U ′
bc(23), fb(2)g′ac(13)] + [U ′

ac(13), fa(1)g′bc(23)]}, (10)

where

H ′
a(1) =

p2(1)
2ma

+ UH
a (1) + UF

a (1), (11)

i�A′
ab(12) = [1 + ηafa(1)][1 + ηbfb(2)]Uab(12)fa(1)fb(2)−

− fa(1)fb(2)Uab(12)[1 + ηafa(1)][1 + ηbfb(2)], (12)

UH
a (1) =

∑
b

Sp(2)[Uab(12), fb(2)] is the Hartree ˇeld, i.e., mean self-consistent

ˇeld and UF
a (1) =

∑
b

Sp(2)δabηaP (12)[Uab(12), fb(2)] is the Fock ˇeld, mean

ˇeld, taking into account only exchange interaction (Pauli's principle). In the
plasma approximation [10] in Eq. (9) the term [U ′

ab(12), g′ab(12)] which describes
the direct interaction of two particles (1), (2) is not taken into account. Let
us consider the homogeneous case. In the Wigner representation the kinetic
equation (9) takes the form:

∂

∂t
fa(p) =

= Ja(p) = 2�
2
∑

b

∫
dp′ dk[Uab(k) + δabηaUab(p′ − p)]g′ab(p,p′,k). (13)

Here the spin variables are omitted for simplicity. The solution of the equation
for the pair correlation function g′ab(p,p′,k) in the Wigner form can be expressed
in the spatially homogeneous case in terms of the resolvent of equation (10) and
its source (12).

g′ab(p, p′,k,t) =

=
∑
a′b′

∫
dq dq′Rab,a′b′(p,p′,q,q′,k, z, μt)A′

a′b′(q,q′,k, μt)
∣∣
ω=0

, (14)
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i�A′
ab(p,p′,k, μt) =

= Uab(k)
{

fa(p)fb(p′)
[
1 + ηafa

(
p +

�k
2

)] [
1 + ηbfb

(
p′ − �k

2

)]
−

− fa

(
p +

�k
2

)
fb

(
p′ − �k

2

)
[1 + ηafa(p)][1 + ηbfb(p′)]

}
(15)

with the resolvent Rab,a′b′(p,p′,q,q′,k, z, μt) in Eq. (14) being a product of two
resolvents

Rab,a′b′(p,p′,q,q′,k, t − t′, μt′) =
= Raa′(p,q,k, t − t′, μt′)Rbb′(p′,q′,k, t − t′, μt′), (16)

which satisfy the linearized HartreeÄFock equation

[�z + ΔkEa(p)]Raa′ (p,q,k, z, t) = δaa′δ(p − q) + Δkfa(p)×

×
∑

c

∫
dp′

[
Uac(k) + δacηaUac

(
p−p′

�

)]
Rca′(p′,q,k, z, t), (17)

where

ΔkEa(p) = Ea

(
p +

�k
2

)
− Ea

(
p− �k

2

)
;

(18)

Δkfa(p) = fa

(
p +

�k
2

)
− fa

(
p−�k

2

)
,

Ea(p) =
p2

2ma
+ ηa

∫
dp′Uaa

(
p− p′

�

)
fa(p′). (19)

The solution of Eq. (17) takes the form

Raa′(p,p′,k, z, t) =
Γa(p,p′)δaa′

�z − ΔkEa′(p′)
+

Uaa′(k)
εHF(ω,k)

Ψ(1)
a (p)Ψ(2)

a′ (p′), (20)

where we introduced the notations

Ψ(1)
a (p) =

∫
dp′′ Γa(p,p′′)Δkfa(p′′)

�z − ΔkEa(p′′)
,

Ψ(2)
a′ (p′) =

∫
dp′′ Γa′(p′′,p′)

�z − ΔkEa′(p′)
,

(21)

and

εHF(ω,k) = 1 − Φ(k)
∑

a

e2
a

∫
dp dp′ Γa(p,p′)Δkfa(p′)

�z − ΔkEa(p′)
(22)
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is the dielectric function with exchange interaction. The exchange scattering am-
plitude Γa(p,p′) for Eqs. (20)Ä(22)) satisˇes an integral equation, which contains
only the exchange interaction potential:

Γa(p,p′) =

= δ(p− p′) + ηa
Δkfa(p)

�z − ΔkEa(p)

∫
dp′′Uaa

(
p− p′′

�

)
Γa(p′′,p′). (23)

Γa(p,p′) depends on k and z as on parameters and is similar to the vertex
function, well known in many-particle perturbation theory. The solution of this
equation in case of Coulomb interaction of the particles is difˇcult and requires
an appropriate approximation. The simplest approximation is the replacement of
the expression under the integral of (23) by the averaged over the impulse value

Uaa(k)G(z,k) =
∫

dp′′Uaa

(
p− p′′

�

)
Γa(p′′,p′). (24)

Then, the dielectric function, taking into account exchange interaction particles,
takes the form:

εHF(z,k) = 1 − P (z,k)[1 + P (z,k)G(z,k)]−1, (25)

where

P (z,k) =
∑

a

Uaa(k)
∫

dp
Δkfa(p)

�z − ΔkEa(p)
(26)

is the polarization. In the special case of the Hubbard approximation [11], one

has G(z,k) =
1
2

k2

k2 + k2
f

. One form of G(z,k) was found for equilibrium state

using a variation procedure [12]. Using the expression for the pair correlation
function, we ˇnd the collision integral

Ja(p) = 4π2e4

∫
Φ2(k)(1 − G(z,k)) dk dq

δ(ΔkE(q) − ΔkE(p))∣∣∣ε̃(ΔkE(q)/�,k)
∣∣∣2 ×

×
{

f

(
p+

�k
2

)
f

(
q−�k

2

) [
1 − f

(
p−�k

2

)] [
1 − f

(
q+

�k
2

)]
−

− f

(
p−�k

2

)
f

(
q+

�k
2

) [
1 − f

(
p+

�k
2

)] [
1 − f

(
q−�k

2

)]}
, (27)

where
ε̃(z,k) = 1 − (1 − G(z,k))P (z,k). (28)
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From the collision integral (27) follows that
∣∣∣ε̃(z,k)

∣∣∣2 plays the role of the

screening of the interaction potential Φ(k). It is interesting to note that Eq. (27)
is differed from the corresponding Balescu's expressions by taking into account
the exchange interaction in this screening. Moreover, the collision integral (27)
contains the additional renormalization of the interaction (1−G(z,k)). However,

ε̃(z,k) does not serve as linear responce function, in contrast to the HartreeÄFock
dielectric function εHF(z,k) in Eq. (25).

CONCLUSION

Using the operator technique within BBGKY hierarchy we obtained a closed
set of equations for the one- and two-particle density matrices, referring to the
plasma approximation which considers also the exchange interaction. The equa-
tion for the pair correlation function is solved with the help of the resolvent
of the HartreeÄFock equation. The expression obtained for the pair correlation
function takes into account the exchange interaction. The latter is described
by the scattering amplitude which is subject to the integral equation formulated
above. The expression for the time-dependent nonlocal collision integral and the
internal energy are obtained with the exchange interaction and polarization taken
into account.
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