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Diagrammatic theory for Periodic Anderson Model has been developed, supposing the Coulomb
repulsion of f Å localized electrons as a main parameter of the theory. The f electrons are strongly
correlated and c Å conduction electrons are uncorrelated. Correlation function for f and mass operator
for c electrons are determined. The Dyson equation for c and Dyson-type equation for f electrons
are formulated for their propagators. The skeleton diagrams are deˇned for correlation function and
thermodynamic functional. The stationary property of renormalized thermodynamic potential about
the variation of the mass operator is established. The result is appropriate both for normal and for
superconducting state of the system.

PACS: 71.27.+a; 71.10.Fd

The study of the systems with strongly correlated electrons has become in
the last time one of the central problems of condensed matter physics. One of
the most important models of strongly correlated electrons is Periodic Anderson
Model (PAM) [1].

We will not enlarge upon the most essential stages in the development of this
model because there exists a number of consistent reviews [2Ä7] and books [8, 9]
on this ˇeld, and we shall use the references to previous our papers.

We consider the simplest form of PAM with a spin degeneration of the level
of localized f electrons, a simple energy band of conducting c electrons, Coulomb
one-site repulsion U of correlated f electrons with opposite spins and one-site
hybridization between both groups of electrons of this system. The Hamiltonian
of the system reads:

H = H0
c + H0

f + Hint, H0
c =

∑
kσ

ε(k)C+
kσCkσ,

(1)
H0

f = εf

∑
iσ

niσ + U
∑

i

ni↑ni↓, Hint =
∑
iσ

(
C+

iσfiσ + f+
iσCiσ

)
,
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where

ε(k) = ε(k) − μ, εf = εf − μ, niσ = f+
iσfiσ,

(2)

Ciσ =
1√
N

∑
k

exp (−ikRi)Ckσ.

Here V is the hybridization amplitude assumed constant. We have indicated with
C+

iσ(f+
iσ) the creation operator for an uncorrelated (correlated) electron with spin

σ and i lattice site, niσ is the number operator for f electrons, ε(k) is the band
energy with momentum k of conductivity electrons spread on the entire width
W of the band, εf is the energy of localized electrons. Both these energies are
evaluated with respect to the chemical potential μ.

In the present paper we develop the thermodynamic perturbation theory for
the system in the superconducting state with Hamiltonian (1) under the assumption
that the term responsible for hybridization of c and f electrons is a perturbation.

The Hamiltonian H0
c of the uncorrelated c electrons is diagonal in band

representation, whereas the Hamiltonian H0
f is diagonalized by using Hubbard

transfer operators [20].
We use the series expansion for evolution operator:

U(β) = T exp

⎛
⎝−

β∫
0

Hint(τ) dτ

⎞
⎠ (3)

in the interaction representation for electron operators (a = c, f ):

a(x) = eτH0
a(x) e−τH0

, a(x) = eτH0
a+(x) e−τH0

. (4)

Here x means (x, σ, τ ).
We shall denote by 〈TAB . . .〉0 the thermodynamic average with zeroth-order

statistical operator of the chronological product of electron operators (AB . . .).
Such averages are calculated independently for c and f operators with using for
c electrons the Wick Theorem of weak quantum ˇeld theory and by using for f
electrons the Generalized Wick Theorem (GWT) proposed by us in papers [10Ä19]
for strongly correlated electron systems.

In the superconducting state, unlike the normal one, nontrivial statistical aver-
ages of operator products with even total number but inequal number of creation
and annihilation electron operators are possible. They realize the Bogoliubov
quasi-averages [21] or Gor'kov [22] anomalous Green's functions. To unify the
calculation of statistical averages for normal and superconducting phases it is use-
ful to assign an additional quantum number α, called by us charge number [15],
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with the values ±1, which can be added to electron operators according to the
rule (a = c, f ):

aα(x) =
{

a(x), α = 1;
a+(x), α = −1.

(5)

In this representation the interaction operator Hint becomes:

Hint = V
∑
iσα

αf−α
iσ Cα

iσ . (6)

Obviously, introducing of a new quantum charge number leads to additional
summation over its values in all diagram lines and to an additional factor α in
the vertices of diagrams.

Now, after such introducing, it is irrelevant whether one deals with creation
or annihilation operators. First of all, we shall enumerate the main results of
diagrammatic theory obtained in the previous paper [15] necessary to our proving
of stationary theorem. Such theorem for uncorrelated many-electron systems in a
normal state has been proved by Luttinger and Word [23].

We use the deˇnition of the one-particle Matsubara Green's functions for c
and f electrons

Gc
αα′(x|x′) = −

〈
Tcα(x)c−α′(x′)U(β)

〉c

0
,

Gf
αα′(x|x′) = −

〈
Tfα(x)f−α′(x′)U(β)

〉c

0
,

(7)

where index c for 〈. . .〉c0 means the connection of the diagrams which are taken
into account in the right-hand part of deˇnition (7).

The following condition is fulˇlled

Ga
αα′ (x|x′) = −Ga

−α′,−α(x′|x), a = (c, f). (8)

In the presence of strong correlations of f electrons, the (GWT) contains
additional terms, namely the irreducible one-site many-particle Green's functions
or Kubo cumulants of the form (x = x, σ, τ ):

G(0)ir
n [α1, x1; . . . ; α2n, x2n] =

〈
Tfα1

x1
· · · fα2n

x2n

〉ir

0
=

= δx1x2 · · · δx1x2n

〈
Tfα1

σ1
(τ1) · · · fα2n

σ2n
(τ2n

〉ir

0
. (9)

As a result of applying this theorem we obtain for the renormalized conduc-
tion electron propagator the contributions depicted on Fig. 1.

The contributions of perturbation theory for f -electron propagator are de-
picted on Fig. 2.
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Fig. 1. The ˇrst six orders of perturbation theory for conduction electron propagator.
The solid and dashed thin lines depict zero order propagators for c and f electrons,
correspondingly. The rectangles depict the irreducible Green's functions. The points of
diagram are the vertices with α and V contributions

Fig. 2. The contributions of the ˇrst four orders of perturbation theory for the f -electron
propagator

The sum of all strong connected diagrams for f electron belong to the
correlation function which is denoted by us as Λαα′(x|x′) function. The quantity
Λαα′(x|x′) is deˇned by the equation

Λαα′(x|x′) = G
f(0)
αα′ (x|x′) + Zαα′(x|x′), (10)

where the function Zαα′(x|x′) contains the contribution of strongly connected
diagram based on the irreducible many-particle Green's functions.
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The strong connected part of the c-electron propagator without the external
lines is determined by us as a mass operator for uncorrelated electrons. This
quantity is denoted as Σαα′(x|x′).

A simple relation exists between these two functions:

Σαα′(x|x′) = V 2αα′Λαα′(x|x′). (11)

The analysis of the propagator diagrams permits us to formulate the following
Dyson equation for uncorrelated electron propagator:

Gc
αα′(x|x′) = G

c(0)
αα′ (x|x′) +

∑
α1α2

∑
12

Gc(0)
αα1

(x|1)Σα1α2(1|2)Gc
α2α′(2|x′). (12)

At the same time we can formulate the Dyson-type equation for correlated electron
propagator Gf :

Gf
αα′(x|x′) = Λαα′(x|x′)+

+ V 2
∑
α1α2

∑
12

α1α2Λαα1(x|1)Gc(0)
α1α2

(1|2)Gf
α2α′(2|x′). (13)

On Fig. 3 the skeleton diagrams for the correlation function Λαα′(x|x′) are
depicted.

Fig. 3. The skeleton diagrams for correlation function Λαα′(x|x′). The thin dashed
line is zero-order f -electron Green's function. The rectangles depict the many-particle
irreducible Green's function. The double solid lines depict the renormalized conduction
electron Green's function Gc

αα′(x|x′)

The transition of the diagram contribution from superconducting version to
the normal one is realized by the condition of equality to zero of the sums of all
α indices of every dynamical quantity.
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After discussion of the propagators properties, we shall proceed to the main
part of our paper and investigate the properties of evolution operator average.

By using the perturbation theory, we have obtained for the connected part of
evolution operator average, the contributions depicted in Fig. 4.

Fig. 4. Vacuum diagrams of ˇrst eight orders of perturbation theory in superconducting
state

Vacuum diagrams in superconducting and normal states contain the factor
1/n, where n is the order of perturbation theory in which given diagram appears.
This factor makes difˇcult the investigation of this contributions. In order to
remove this coefˇcient, it is necessary to use the trick of integration by constant
of interaction V .

On the base of series expansions for renormalized propagators of the conduc-
tion c electrons (see Fig. 1), localized f electrons (see Fig. 2), and deˇnition of
the correlation function Λαα′(x|x′), we can prove that the contribution in every
order of perturbation theory can be presented as the product of some contribution
from Gc and some one from Λ. If the contribution of Gc is of n1 order of
perturbation theory and the contribution of Λ is of n2 order, then the order of
〈U(β)〉c0 is equal to n with the condition n1 +n2 +2 = n which must be satisˇed.
There are different possibilities to satisfy this condition and all of them must be
taken into account.



DIAGRAMMATIC THEORY FOR PERIODIC ANDERSON MODEL 1955

The integrand of the evolution operator average can be presented as a product
of λ2GcΛ of the form

〈U(β)〉c0 = −
V∫

0

dλ

λ

∑
αα′

∑
xx′

αα′λ2Gc
αα′ (x|x′|λ)Λα′α(x′|x|λ) =

=−
V∫

0

dλ

λ

∑
αα′

∑
xx′

Gc
αα′(x|x′|λ)Σα′α(x′|x|λ) = −

V∫
0

dλ

λ
Tr (Ĝc(λ)Σ̂c(λ)), (14)

where the operators Ĝc(λ) and Σ̂c(λ) have the matrix elements Gc
αα′(x|x′|λ) and

Σαα′(x|x′|λ), correspondingly. Index λ underlines that these quantities depend
of the auxiliary constant of integration λ.

Therefore the thermodynamic potential of our system F is equal to

F = F0 +
1
β

V∫
0

dλ

λ
Tr [Ĝc(λ)Σ̂c(λ)]. (15)

This expression for renormalized thermodynamic potential of the strongly corre-
lated system contains additional integration over the integration strength λ and
because of this is awkward. Equation (15) generalizes the result of Luttinger and
Ward [23] proved for noncorrelated many-electron system in normal state.

Our generalization has been obtained for the case of strong correlations of
special kind which contains one uncorrelated subsystem and one strongly corre-
lated, and we admit also the existence of superconductivity in both of them.

Luttinger and Ward have proved the possibility of transforming this expres-
sion into much more convenient formula without such integration. For that they
used a special functional constricted from skeleton diagrams, the lines of which
are the renormalized electron Green's functions. We shall use the skeleton dia-
grams of strongly correlated system, which differ essentially from Luttinger and
Ward [23] case, and transform equation (15) to more convenient form.

In our strong correlated case we introduce the following functional:

Y = − 1
2β

Tr {ln (Ĝc(0)Σ̂ − 1) + ĜcΣ̂} + Y ′, (16)

which is the generalization of the LuttingerÄWard [23] equation just for the
strongly correlated systems.

As a result of our investigation, we obtain the stationarity property of the
functional Y :

δY

δΣ(y, y′)
= 0. (17)
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Fig. 5. Skeleton diagrams for functional Y ′

Now we shall discuss the derivative over interaction constant V of func-
tional Y . We shall take into account the stationarity Y about Σ̂ and Ĝc and
equation (12). We obtain:

V
dY

dV
= V

∂Y

∂V

∣∣∣∣
Σ

+V
δY

δΣ
∂Σ
∂V

= V
∂Y ′

∂V

∣∣∣∣
Σ

=
Tr (Σ̂Ĝc)

β
. (18)

From equation (15) we have:

V
dF

dV
=

Tr (ĜcΣ̂)
β

, (19)

and as a consequence we establish

V
dF

dV
= V

dY

dV
, (20)

with the solution
F = Y + const.

This constant is F0. Therefore

F = F0 + Y,

with the stationary property
δF

δΣ(x, x′)
= 0, (21)

both in superconducting and in normal states.
It is a pleasure to acknowledge the discussions with Prof. N.M. Plakida.
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