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BOGOLYUBOV'S THEORY OF SUPERFLUIDITY
D.P. Sankovich

Steklov Mathematical Institute, Moscow

The Bogolyubov model of liquid helium is considered. We derive sufˇcient conditions which
ensure an appearance of the Bose condensate in the model. For some temperatures and some positive
values of the chemical potential there is the gapless Bogolyubov spectrum of elementary excitations,
leading to the proper microscopic interpretation of the super�uidity.

PACS: 11.10.-z

Let us consider a system of N spinless identical nonrelativistic bosons of
mass m enclosed in a centered cubic box Λ ⊂ R3 of volume V = |Λ| = L3

with periodic boundary conditions for the wave functions. The Hamiltonian of
the system can be written in the second quantized form as

ĤΛ(μ) ≡ ĤΛ−μN̂Λ =
∑

k∈Λ∗

(εk−μ)â†
kâk+

1
2V

∑
p,q,k∈Λ∗

ν(k)â†
pâ

†
qâp+kâq−k. (1)

Here â#
p = {â†

p or âp} are the usual boson creation (annihilation) operators for

the one-particle state ψp(x) = V −1/2 exp (ipx), p ∈ Λ∗, x ∈ Λ, acting on the

Fock space FΛ = ⊕∞
n=0H

(n)
B , where H(n)

B ≡ [L2(Λn)]sym is the symmetrized

n-particle Hilbert space appropriate for bosons, and H(0)
B = C. The sums in (1)

run over the dual set

Λ∗ =
{

p ∈ R
3 : pα =

2π

L
nα, nα = 0,±1,±2, . . . , α = 1, 2, 3

}
,

εp = |p|2/(2m) is the one-particle energy spectrum of free bosons in the modes

p ∈ Λ∗ (we propose � = 1), N̂Λ =
∑

k∈Λ∗
â†

kâk is the total particle-number operator,

μ is the chemical potential, ν(k) is the Fourier transform of the interaction pair
potential Φ(x). We suppose that Φ(x) = Φ(|x|) ∈ L1(R3) and ν(k) is a real
function with a compact support such that 0 � ν(k) = ν(−k) � ν(0) for all
k ∈ R3.

So long as the rigorous analysis of the Hamiltonian (1) is very knotty problem,
Bogolyubov introduced the model Hamiltonian of the super�uidity theory [1, 2].
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He proposed to disregard the terms of the third and fourth orders in operators
â#

p , p �= 0 in the Hamiltonian (1),

ĤB
Λ (μ) =

∑
k∈Λ∗

(εk − μ)â†
kâk +

1
2V

∑
k �=0

ν(k)(â†
kâ†

−kâ0â0 + â†
0â

†
0â−kâk)+

+
1
V

â†
0â0

∑
k �=0

ν(k)â†
k âk +

ν(0)
V

â†
0â0

∑
k �=0

â†
kâk +

ν(0)
2V

â†
0â

†
0â0â0. (2)

Then, Bogolyubov takes advantage of the macroscopic occupation of the zero mo-
mentum one-particle state to replace the corresponding creation and annihilation
operators â#

0 by c-numbers,

â†
0√
V

→ c̄,
â0√
V

→ c, (3)

where c ∈ C and the bar means complex conjugation. This idea has its roots
in the work [3]. In § 63 of this monograph Dirac analyses a many-body system
within the framework of second quantization. Bogolyubov developed the Dirac's
idea systematically to study Bose condensation and super�uidity in the model (2).

Let ĤB
Λ (μ, c) be the Hamiltonian (2) after the Bogolyubov approximation (3).

This Hamiltonian is a bilinear form in boson operators â#
k (k �= 0). So, one can

diagonalize it by the Bogolyubov canonical transformation. To determine the
complex parameter c it is necessary to use some self-consistent procedure.

Bogolyubov considered the Hamiltonian (2) in the case of zero tempera-
ture [1, 2]. In the main perturbation order he found that μ(θ = 0) = |c|2ν(0),
where |c|2 = ρ0 is the density of Bose condensate. In this case the structure
of the collective excitation spectrum of the Hamiltonian ĤB

Λ (μ, c) explains the
super�uid properties of the system (2).

It should be noted that the main condition which gives the possibility to
replace the Hamiltonian (1) by the model Hamiltonian (2) is

N − N0

N
	 1, (4)

where N0 is the number of condensate particles. Condition (4) means that the
interaction is sufˇciently weak and the case of very small temperatures must
be considered. Thus, in 1947 Bogolyubov analyzed the model (2) within the
framework of (4). The validity of the Bogolyubov approximation (3) has not
been rigorously proved.

The rigorous justiˇcation for the c-number substitution in the case of the total,
correct superstable pair Hamiltonian (1) was done in a classic paper of Ginibre [4].
Recently, this problem was revisited in paper [5]. The authors of [4, 5] did not
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consider the truncated Bogolyubov's Hamiltonian (2). Nevertheless, Lieb et al. [5]
mentioned that their device (based on the BerezinÄLieb inequality) can be used
also for the Hamiltonian (2).

Let us ˇrst rewrite the Hamiltonian (2) in the following way:

ĤB
Λ (μ) = ĤB

Λ0(μ, c) + ĤB
Λ1(c), (5)

where

ĤB
Λ0(μ, c) ≡

∑
k∈Λ∗

(εk − μ)â†
kâk − Φ(0)

2
â†
0â0 +

ν(0)
2V

â†
0â

†
0â0â0+

+ ν(0)|c|2
∑
k �=0

â†
kâk, (6)

ĤB
Λ1(c) ≡

ν(0)
2V

(â†
0â0 − V |c|2)

∑
k �=0

â†
kâk+

+
1

2V

∑
k �=0

ν(k)(â†
0âk + â0â

†
−k)†(â†

0âk + â0â
†
−k). (7)

The complex parameter c in formulae (5)Ä(7) will be deˇned below. It is easy to
see that the Hamiltonian (6) is stable for μ � ν(0)|c|2 and any c ∈ C.

Denoting

δâ0 ≡ â0 − c
√

V , δâ†
0 ≡ â†

0 − c̄
√

V , Âk ≡ â†
0âk + â0â

†
−k, k �= 0,

we can write (7) in the form

ĤB
Λ1(c) =

ν(0)
2V

∑
k �=0

â†
kâk(δâ†

0δâ0 + c
√

V δâ†
0 + c̄

√
V δâ0) +

1
2V

∑
k �=0

ν(k)Â†
kÂk.

(8)
Let us prove that

lim
V →∞

1
V
〈ĤB

Λ1(c)〉ĤB
Λ (μ) � 0, (9)

where c is a solution of the equation

|c|2 =
1
V
〈â†

0â0〉ĤB
Λ (μ).

From the Bogolyubov inequality for pressures

p[ĤB
Λ (μ)] � p[ĤB

Λ0(μ, c)] − 1
V
〈ĤB

Λ1(c)〉ĤB
Λ (μ)

we then obtain that the Hamiltonian (2) is stable for

μ � ν(0)|c|2. (10)
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Let us introduce the Hamiltonian

ĤB
Λ (μ, ν) ≡ ĤB

Λ (μ) −
√

V (ν̄â0 + νâ†
0)

with sources ν ∈ C breaking the symmetry of ĤB
Λ (μ). Using the Cauchy inequal-

ity, we get the estimate

|〈δâ†
0N̂

′〉ĤB
Λ (μ,ν)| �

[
〈δâ†

0δâ0〉ĤB
Λ (μ,ν)〈N̂

′2〉ĤB
Λ (μ,ν)

]1/2

� ρV 〈δâ†
0δâ0〉ĤB

Λ (μ,ν),

where N̂ ′ ≡
∑
k �=0

â†
kâk.

To obtain an upper bound for the average in the last inequality we can
apply the usual procedure of the Bogolyubov quasi-average method [6] and
Bogolyubov, Jr. technique [7]. Deˇne c by the condition c = 〈â0〉ĤB

Λ (μ,ν)/
√

V ,

|c| � M < ∞. By the Harris inequality [8] one gets

1
2
〈[δâ†

0, δâ0]+〉ĤB
Λ (μ,ν) � (δâ†

0, δâ0)ĤB
Λ (μ,ν) +

β

12
〈[δâ0, [ĤB

Λ (μ, ν), δâ†
0]]〉ĤB

Λ (μ,ν),

where [·, ·]+ is the anticommutator and (·, ·)Γ̂ denotes the Bogolyubov inner
product (or the Duhamel two-point function) with respect to the Hamiltonian
Γ̂ [9]. Literally reiterating the standard for this method calculations, we see that

1
V
〈δâ†

0δâ0〉ĤB
Λ (μ,ν) � η√

V
,

where η is some positive constant, independent of V . Therefore, it follows from
the last inequality that

|〈δâ#
0 N̂ ′〉ĤB

Λ (μ,ν)| � ρ
√

ηV 5/4.

Thus, using the representation of the Hamiltonian ĤB
Λ1(c) in the form (8), one

can see that the condition (9) is actually justiˇed. The parameter c should be
chosen by the stereotyped for the BogolyubovÄGinibre technique manner. This
parameter is connected with the Bose condensate density as |c|2 = ρ0.

The above analysis conˇrms an assertion, that if the system is stable after
the c-number substitution (3), then so is the original one [5]. It is necessary to
notice that authors of works [10Ä12] at studying of model (2) have come to the
incorrect conclusion about instability of Bogolyubov's Hamiltonian at positive
chemical potentials.

In a similar manner as in the work of Ginibre [4], one can prove that the
model Hamiltonian ĤB

Λ (μ) is thermodynamically equivalent to the approximating
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Hamiltonian

ĤB
Λ (μ, c) =

∑
k �=0

[εk − μ + |c|2(ν(0) + ν(k))]â†
k âk+

+
1
2

∑
k �=0

ν(k)(c2â†
kâ†

−k + c̄2âkâ−k) +
1
2
ν(0)|c|4V − μ|c|2V.

The self-consistency parameter c in the method is determined by the condition that
the approximate pressure p[ĤB

Λ (μ, c)] be maximal. At the same time, the stability
condition (10) must be fulˇlled (in contrast to the paper [11], where μ � 0).

A necessary condition for p[ĤB
Λ (μ, c)] to be maximum (self-consistency equa-

tion) in the case of the Bogolyubov model is

μ−xν(0) =
1

2V

∑
k �=0

[
(ν(0) + ν(k))

(
fk

Ek
coth

βEk

2
− 1

)
− ν(k)

hk

Ek
coth

βEk

2

]
,

where

uk =

√
1
2

(
fk

Ek
+ 1

)
, vk = −

√
1
2

(
fk

Ek
− 1

)
,

fk = εk − μ + x(ν(0) + ν(k)), hk = xν(k), Ek =
√

f2
k − h2

k,

and we denote x ≡ |c|2.
It is possible to show that if the potential ν(k) in the Bogolyubov model of

super�uidity (2) satisˇes the condition

ν(0) � 1
2(2π)3

∫
R3

d3k

εk
ν2(k),

then there exists the domain of stability on the phase diagram {0 < μ � μ∗,
0 � θ � θ0(μ)}, where the nontrivial solution of the self-consistency equation
takes place. In this domain there is the nonzero Bose condensate. At the boundary
θ = θ0(μ) of this domain the Bose condensate density equals ρ0 = μ/ν(0). In
this case the quasi-particle spectrum of the Bogolyubov's Hamiltonian (2)

Ek =
√

εk(εk + 2ρ0ν(k))

has a gapless type and the famous criterion of super�uidity mink(Ek/|k|) > 0
holds.

As we have noted earlier, the Bogolyubov's theory is a theory of a dilute
weakly interacting Bose gas at temperatures far below the λ-point. In contrast with
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the pair Hamiltonian (1), the Bogolyubov's Hamiltonian (2) is not corresponding
to some pair interaction and it is not superstable. Nevertheless, Bogolyubov's
approach forms the basis of the systematic application of quantum theory to an
interacting system of bosons.

The author would like to thank N.N. Bogolyubov, Jr., M. Corgini, R. Rebolle-
do and A.V. Soldatov for the valuable discussions.
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