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ON LOWER BOUND ESTIMATES FOR THE ENERGY
SPECTRUM OF THE FR éOHLICH POLARON MODEL

A. V. Soldatov∗

V. A. Steklov Mathematical Institute, Dept. of Mechanics, Moscow

Method of intermediate problems was applied to investigation of the energy spectrum of the
Fréohlich polaron model. It was shown that various inˇnite sequences of nondecreasing improvable
lower bound estimates for the low-lying branch of the slow-moving polaron excitation energy spectral
curve adjacent to the ground state energy can be derived for arbitrary values of the electronÄphonon
interaction constant. These bound estimates allow for explicit numerical evaluation at all orders.
In conjunction with numerous well-known upper bound estimates for the energy spectral curve of
the Fréohlich polaron as a function of the interaction constant and the polaron total momentum, the
aforesaid improvable lower bound estimates might provide one with virtually precise magnitude for
the energy of the slow-moving polaron. Possible generalization to the case of the Fréohlich polaron in
external magnetic ˇeld is outlined.

PACS: 71.38.-k; 74.20.Mn

The model to be considered is the standard quantized Fréohlich polaron [1]

H =
p̂2

2m
+ �ω

∑
k

a+
k ak +

∑
k

(
V ∗(k)a+

k e−ikr̂ + h.c.
)
, (1)

where V (k) = −i
�ω

k

(
4πα

V

√
�

2mω

)1/2

, and the phonon wave vector runs

over a quasidiscrete set of values k = 2π/(La) {n1, n2, n3}, ni = 0,±1, . . . ,
±(L/2 − 1), +L/2, i = 1, 2, 3, where a3 is the volume of the unit crystal cell
and L3 is the number of these cells within the volume V of the crystal, L
assumed to be even. The limit V → ∞ assumes the rule of the transition to

the continuous phonon spectrum lim
V →∞

(1/V )
∑
k

. . . = (2π)−3
∫

dΩk

kD∫
0

dk k2 . . . ,

where kD = (6π2)1/3/a is the Debye wave vector, a being the lattice constant.
For any realistic, or ®physical¯ polaron, the value of kD is ˇnite, whilst the limit
kD → ∞ corresponds to the so-called ®ˇeld-theoretical¯ polaron model. For the
matter of convenience it is assumed further on that � = ω = m = 1.
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It is known that the polaron total momentum P̂ = p̂ +
∑
k

ka+
k ak com-

mutes with the Hamiltonian (1). Therefore, the unitary transformation ˜̃H =
(SU)−1HSU, SU = exp (−i

∑
k

kr̂a+
k ak) exp {−i

∑
k

(V (k)a+
k − h.c.)} provides

us with the Hamiltonian

˜̃H =
1
2

(
P −

∑
k

k(a+
k − V (k))(ak − V ∗(k))

)2

+
∑
k

a+
k ak −

∑
k

|V (k)|2 (2)

in the p̂-representation, where P̂ becomes a quantum ®c¯-number P, which is just
the sole Hamiltonian to be treated further on. The ultimate goal is to ˇnd its low-
est eigenvalue E(P ), i.e., the low-lying polaron energy spectral curve, for a given
total polaron momentum P and expand it as E(P ) = Eg +(P2/2meff)+O(P 4),
with the coefˇcients Eg and meff being the polaron ground state energy and effec-
tive mass, respectively. Extensive work has already been done to evaluate E(P )
directly through conventional perturbational calculations or to ˇnd upper bounds
to E(P ) by means of multitudinous variational methods. These approaches are
beyond the scope of this work. It is only worth noting that, as a rule, perturba-
tional schemes do not provide one with reliable error estimates, whilst the upper
bounds can be relied upon only if they are supplemented with corresponding
lower bounds to the magnitude in question. To our knowledge, lower bounds
to the polaron energy spectrum have been receiving much less attention than the
upper bounds throughout very long history of polaron studies. Among the most
remarkable contributions, several works by E. H.Lieb should be mentioned ˇrst
of all [2, 3] as well as the succeeding work by D.M. Larsen [4], who improved
the result of [2], though neither of these lower bounds to the polaron ground state
energy comes close to the best lowest upper bounds available so far and it is
unknown how to improve them in a regular way.

The purpose of this study is to show that inˇnitely improvable lower bounds
to the polaron spectral curve E(P ) could be derived by the method of intermediate
problems in the theory of semi-bounded self-adjoint linear Hermitian operators on
rigged Hilbert space, originated by H.Weyl [5] and A.Weinstein [6] and further
elaborated since then by numerous contributors (see [7,8] and refs. therein). The
starting point of the method is time-independent Schréodinger equation Hψ = Eψ,
where H is some Hermitian operator with respect to the inner product (φ, ψ) =∫

φ∗ψ dτ in Hilbert space. It is assumed that all continuous spectrum energy
levels of H are higher than the lowest discrete spectrum energy levels of one's
interest. Let us assume, too, that these discrete eigenvalues of H can be ordered
in a nondecreasing sequence,

E1 � E2 � . . . , (3)
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in which each degenerate eigenvalue appears the number of times of its multiplic-
ity. The corresponding eigenstates ψi satisfy the equation Hψi = Eiψi, and are
assumed to be orthonormalized, so that (ψi, ψj) = δij , where δij is Kronecker's
delta. It is further assumed that the Hamiltonian H can be decomposed as

H = H0 + H ′, (4)

where H0 has known eigenvalues and eigenstates and H ′ is an arbitrary Her-
mitian operator which is to be positive-deˇnite in the sense that (ψ, H ′ψ) =∫

ψ∗H ′ψ dτ > 0, (ψ �= 0) for every ψ in the domain of H . Hereafter, it is as-
sumed that the lowest part of the discrete spectrum of H0 is below its continuous
spectrum and that the corresponding discrete eigenvalues can be ordered in the
same manner (3) as the ones belonging to the total Hamiltonian H

E0
1 � E0

2 � . . . , (5)

with the degenerate eigenvalues appearing the number of times of their multi-
plicity. The corresponding orthonormalized eigenstates ψ0

i satisfy the equation
H0ψ0

i = E0
i ψ0

i , (ψ0
i , ψ0

j ) = δij . Because H0 � H in the sense of inequality
(ψ, H0ψ) � (ψ, Hψ) for every ψ in the domain of H , it follows from the Weyl
comparison theorem [5] that E0

i � Ei (i = 1, 2, . . .). Therefore, the eigenval-
ues of H0 already provide rough lower bound to the eigenvalues of H . The
Hamiltonian H0 is called the base Hamiltonian as usual. It is worth noting that
the decomposition (4) is not unique and can be tailored to meet the requirements
of a particular problem in question. The basic idea of the method of intermediate
problems is to approximate the original Hamiltonian H from below by a non-
decreasing sequence of the so-called truncated intermediate Hamiltonians H l,k,
which are to be constructed to satisfy the inequalities

H l,k � H l+1,k � Hk � H, H l,k � H l,k+1 � H (l, k = 1, 2, . . .). (6)

So, the Hamiltonians H l,k increase whatever index k or l is increased and thus
must give improvable lower bounds for the lowest eigenvalues of the original
Hamiltonian H . It was shown [9] that H l,k can be represented in a general form
H l,k = H l,0 + H ′P k (l, k = 1, 2, . . .). Here the Hamiltonian H l,0 is a truncation
of the base Hamiltonian H0 of the order l deˇned as

H l,0 =
l∑

i=1

E0
i |E0

i 〉〈E0
i | + E0

l+1

[
Î −

l∑
i=1

|E0
i 〉〈E0

i |
]

(l = 1, 2, . . .)

in Dirac's bra and ket notation and Î stands for the identity operator. Truncations
of H0 satisfy the inequalities H l,0 � H l+1,0 � H0 (l = 1, 2, . . .) proved
in general case in [10]. The operator P k deˇnes a projection of an arbitrary



ON LOWER BOUND ESTIMATES FOR THE ENERGY SPECTRUM 2013

vector φ in the domain of H onto the subspace formed by a sequence of linearly

independent vectors p1, p2, . . . , pk: P kφ =
k∑

i=1

αipi, where constants αi must

satisfy the equations [pj , P
kφ] = [pj , φ] =

k∑
i=1

αi[pj, pi] (j = 1, 2, . . . , k). Here

an auxiliary inner product with respect to the metric operator H ′ was introduced
as [ψ, φ] = (ψ, H ′φ) =

∫
ψ∗H ′φdτ for every pair of vectors ψ, φ for which

H ′ψ and H ′φ are deˇned. These vectors pi are to be normalizable in the
sense of the original inner product, i.e., (pi, pi) = Ni, Ni < +∞ (i =
1, 2, . . . , k), but neither their explicit normalization nor orthonormalization are
required. Projections P k become larger with the increase of the number k of
the elements pi involved. As a consequence, the following inequality holds
0 � [φ, P kφ] � [φ, P k+1φ] � [φ, φ] (k = 1, 2, . . .). Thus, H ′P k � H ′P k+1 �
H ′ (k = 1, 2, . . .), and the intermediate truncated Hamiltonians Hk deˇned as
Hk = H0 + H ′P k (k = 1, 2, . . .) satisfy inequalities Hk � Hk+1 � H by
construction. Hence, H l,k � H l,k+1 � H l,0 + H ′ � H (l, k = 1, 2, . . .), and,
therefore, the lowest ordered eigenvalues El,k

i of H l,k must satisfy the parallel

inequalities El,k
i � El+1,k

i � Ek
i � Ei (i, l, k = 1, 2, . . .), and El,k

i � El,k+1
i �

Ei (i, l, k = 1, 2, . . .), thus providing improvable lower bounds for the original
eigenvalues Ei of the Hamiltonian H .

As was proved in [10], the so constructed Hamiltonian H l,k can have no
continuous spectrum and must have E0

l+1 as an eigenvalue of inˇnite multiplicity.
Therefore, only those eigenvalues of H l,k that are smaller or equal to E0

l+1

can be considered as lower bound estimates for the eigenvalues of the initial
Hamiltonian H .

The outlined above truncation procedure can be improved signiˇcantly from
the point of view of practical calculations if the original Hamiltonian H is formally
decomposed as H = H l,0+(H0−H l,0)+H ′ = H l,0+H ′+H ′′ = H l,0+H̃ ′ (l =
1, 2, . . .), where the operator H̃ ′ = H − H l,0 is obviously positive and can play
the role played before by the metric operator H ′. In this case, the positive
contributions from the operator H ′′ = H0 −H l,0 (l = 1, 2, . . .) to lower bound
estimates are not simply neglected at will but rather taken into consideration
carefully on common grounds with the contributions stemming from H ′, thus
making these bounds higher than they might have been otherwise under the
original truncation procedure.

The eigenvalues and eigenstates of the intermediate Hamiltonians H l,k of
any order (i.e., for arbitrary indices l, k) can be expressed analytically and/or
calculated numerically in terms of the known eigenvalues and eigenstates of H0

and an arbitrarily chosen set of linearly independent vectors pi (i = 1, . . . , k). It
was proved in [9] that those eigenvalues of the Hamiltonian H l,k different from
E0

l+1 (and also from E0
1 , . . . , E0

l , should there be any eigenvalues of this kind in
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some special cases) are the roots of the equation

det

{
(pj , H

′pi)+

+
l∑

ν=1

(ψ0
ν , H ′pi)(H ′pj , ψ

0
ν)

E0
ν − E

+

(H ′pj, H
′pi) −

l∑
ν=1

(ψ0
ν , H ′pi)(H ′pj , ψ

0
ν)

E0
l+1 − E

}
= 0.

(7)

Each solution of (7) provides n linear independent eigenfunctions of H l,k, where
n is the nullity of the coefˇcient matrix in (7). If the number of such eigenfunc-
tions is less than k + l, then it is necessary to check if some of the eigenvalues
E0

1 , E0
2 , . . . , E0

l of H l,0 are also the eigenvalues of H l,k. A veriˇcation algorithm
to test this assumption was outlined in [9].

So, it is clear that H l,k may possess at most l + k eigenvalues different from
E0

l+1, which is an eigenvalue of H l,k of inˇnite multiplicity by construction and
every of its corresponding eigenfunctions is orthogonal to all other eigenfunctions
of the Hamiltonian H l,k. To obtain the lower bounds to the eigenvalues Ei of the
original Hamiltonian H , the so obtained eigenvalues of H l,k lying below E0

l+1 are

to be ordered in a nondecreasing sequence El,k
1 � El,k

2 � . . . � El,k
t , t � l+k, in

which each eigenvalue is repeated according to its multiplicity. Then, the requisite
lower bounds read as El,k

i � Ei (i = 1, 2, . . . , t)E0
l+1 � Ei (i = t+1, t+2, . . .).

For the transformed polaron Hamiltonian (2) the Hamiltonians H0 and H ′

in (4) can be identiˇed immediately as

H0 =
∑
k

a+
k ak −

∑
k

|V (k)|2 − ε (8)

and

H ′ =
1
2

(
P−

∑
k

k(a+
k − V (k))(ak − V ∗(k))

)2

+ ε, (9)

respectively. Here an arbitrary positive parameter ε was introduced formally and
identically to ensure strict positivity of the Hamiltonian H ′ as required by the
method. However, such a straightforward partitioning is only appropriate for
ˇnite kD , i.e., for ®physical¯ polaron model. In general case, an alternative
partitioning is to be employed with

H0 = ε2

∑
|k|<K

a+
k ak + ε2

∑
|k|�K

a+
k ak +

∑
|k|<K

(V ∗(k)a+
k + h.c.) − 3

2
(1 − ε2) − ε
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explicitly soluble and

H ′ =
1
2
(P −

∑
k

ka+
k ak)2 + (1 − ε2)

∑
|k|<K

a+
k ak+

+ (1 − ε2)
∑

|k|�K

a+
k ak +

∑
|k|�K

(V ∗(k)a+
k + h.c.) +

3
2
(1 − ε2) + ε,

which can be proved positive-deˇnite for Kmin < K < kD following the approach
outlined in [3]. Here Kmin is deˇned in such a way

Kmin =

8
√

2α

3π(1 − ε2)

1 +
8
√

2α
3π(1 − ε2)

1
kD

that Kmin < kD for any ˇnite α > 0 and 0 < ε2 < 1.
For the case of the ®physical¯ as well as ®ˇeld-theoretical¯ Fréohlich polaron

model in a magnetic ˇeld the following partitioning H = H0 +H ′ of the original
Hamiltonian (1) in the representation of the P̂z component of the polaron total
momentum will work properly:

H0 =

(
1 − 8

√
2α

3π(1 − ε2)

(
1
K

− 1
kD

)) [
1
2

(
p̂x − ωc

2
ŷ
)2

+
1
2

(
p̂y +

ωc

2
x̂
)2

]
+

+ ε1

∑
|k|<K

a+
k ak + ε2

∑
|k|�K

a+
k ak −

∑
|k|<K

|V (k)|2
1 − ε1

− 3
2
(1 − ε2) − ε, (10)

H ′ =
8
√

2α

3π(1 − ε2)

(
1
K

− 1
kD

) [
1
2

(
p̂x − ωc

2
ŷ
)2

+
1
2

(
p̂y +

ωc

2
x̂
)2

]
+

+(1−ε1)
∑

|k|<K

a+
k ak+(1−ε2)

∑
|k|�K

a+
k ak+

∑
k

(
V ∗(k)a+

k e−i(kxx̂+ky ŷ)+ h.c.
)

+

+
1
2

(
Pz −

∑
k

kza
+
k ak

)2

+
∑

|k|<K

|V (k)|2
1 − ε1

+
3
2
(1 − ε2) + ε. (11)

Here, again in line with [3], H ′ can be proved positive-deˇnite for Kmin <
K < kD and 0 < ε1,2 < 1. Further details regarding various aspects of explicit
calculation by this method of various lower bounds for the Fréohlich polaron model
can be found in [11].
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