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Some Coulomb effects in heavy-ion collisions are considered. Among them are the process of
muon- and lepton-pair creation, Coulomb and unitary corrections, statistics of multiple pair production.
Effects of multiple photon exchange in process of lepton pair production by linearly polarized photon
on nuclei are considered. This process is used for measuring the polarization of initial photon.
Relativistic muon energy loss due to the light lepton pair production in the Coulomb ˇeld are
calculated. Also we consider the effects of multiple photon exchange in elastic lepton scattering on
unscreened atomic ˇeld and discuss the possible experimental testing.
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1. INTRODUCTION

In this review, several processes involving heavy-ion collisions are consid-
ered. In the beginning the semiclassical approach to the dynamics of pair creation
is investigated. Then we put some expressions for pair production by polarized
photon on ions with a charge Z, sufˇciently large, so that higher orders of ex-
pansion on the parameter Zα become important. The case of screened nuclei is
considered as well.

Also in Sec. 2 we consider the process of multiple lepton pair creation in the
collisions of two heavy ions. All leading terms with respect to the parameter Zα
are taken into account, including the exchange between ions and the screening
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effects, as well. We conˇrm the result obtained in quasi-classical approximation
concerning the Poisson distribution in the coordinate space, for an inclusive
experiment.

The problem of energy loss by the fast muon colliding with heavy nuclei
is elaborated at the end of Sec. 2. It is shown that the main mechanism is the
electronÄpositron pair production. At the end of this paper the interesting problem
of measuring the deviation from the Rutherford formulae due to multiple photon
exchanges is also discussed.

Throughout our paper we use the next designations: CC Å Coulomb cor-
rections; EPA Å equivalent photon approximation; FD Å Feynman diagram;
LBL Å light by light; LLA Å leading logarithmic approximation; QED Å
quantum electrodynamics; RC Å radiative corrections.

2. PROCESSES WITH HEAVY-ION COLLISIONS

2.1. Exclusive and Inclusive Muon Pair Production in Collisions of Rela-
tivistic Nuclei. Lepton pair production in ultrarelativistic nuclear collisions [10]
were discussed in numerous papers (see [11] for a review and references therein).
For the RHIC and LHC colliders the charge numbers of nuclei Z1 = Z2 ≡ Z and
their Lorentz factors γ1 = γ2 ≡ γ are given in Table 1.

Table 1. Colliders and cross sections for the lepton pair production

Collider Z γ σe+e−
B , kb σμ+μ−

B , b

RHIC, AuÄAu 79 108 36.0 0.23
LHC, PbÄPb 82 3000 227 2.6
LHC, ArÄAr 18 3400 0.554 0.0082

Below we will consider only 2γ mechanism of pair creation (Fig. 1). Brems-
strahlung mechanism, as well as the interference of corresponding amplitudes
with 2γ contribution in fragmentation region of nuclei, is not considered here.

The cross section of one e+e−-pair production in Born approximation, de-
scribed by the Feynman diagram of Fig. 1, was obtained many years ago [5, 6].
Since the Born cross section σe+e−

B

σe+e−

B = σ0(L3 − 2.2L2 + 3.8L − 1.63), σ0 =
28
27π

(z1z2α
2)2

m2
l

,

(2.1)
L = ln γ1γ2, γi =

Ei

Mi
, l = e, μ

is huge (see Table 1), the e+e−-pair production can be a serious background
for many experiments. It is also an important issue for the beam lifetime and
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luminosity of these colliders [12]. It means that various corrections to the Born
cross section, as well as the cross section for n-pair production, are of great
importance. At present, there are a lot of controversial and incorrect statements

Fig. 1. The Feynman diagram for the
2γ lepton pair production mechanism
in the Born approximation

in papers devoted to this subject. The corre-
sponding references and critical remarks can
be found in [11,13,37].

Since the parameter Zα may be not
small (Zα ≈ 0.6 for AuÄAu and PbÄPb col-
lisions), the whole series in Zα has to be
summed in order to obtain the cross section
with sufˇcient accuracy. The exact cross
section for one-pair production σ1 can be
split in the form

σ1 = σB + σCoul + σunit, (2.2)

where two different types of corrections
need to be distinguished. The Coulomb cor-
rection σCoul corresponds to multiphoton ex-
change of the produced e± with the nuclei (Fig. 2); it was calculated in [13]. The
unitary correction σunit corresponds to the exchange of light-by-light blocks be-
tween nuclei (Fig. 3); it was calculated in [37]. It was found in [13, 37] that
the Coulomb corrections are large, while the unitary corrections are small (see
Table 2). These results were conˇrmed recently in [14] by a direct summation of
the Feynman diagrams.

Fig. 2. The Feynman diargam for the
Coulomb correction

Fig. 3. The Feynman diagram for the
unitary correction

Table 2. Coulomb and unitary corrections to the e+e−-pair production

Collider σCoul/σB , % σunit/σB , %

RHIC, AuÄAu Ä10 Ä5.1
LHC, PbÄPb Ä9.4 Ä4.1
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2.1.1. Born Cross Section for One μ+μ−-Pair Production in EPA. The pro-
duction of one μ+μ− pair

Z1 + Z2 → Z1 + Z2 + μ+μ− (2.3)

in the Born approximation is described by the Feynman diagram of Fig. 1.
When two nuclei with charges Z1e and Z2e and 4-momenta P1 and P2 collide

with each other, they emit equivalent (virtual) photons with the 4-momenta q1,
q2, energies ω1, ω2 and their virtualities Q2

1 = −q2
1, Q2

2 = −q2
2 . Upon fusion,

these photons produce a μ+μ− pair with the total four-momentum q1 + q2 and
the invariant mass squared W 2 = (q1 + q2)2. Besides this, we denote

(P1 + P2)2 = 4E2 = 4M2 γ2, α ≈ 1/137.

The Born cross section of the process (2.3) can be calculated to a good ac-
curacy using the EPA in the improved variant (presented, for example, in [7]).
Let the numbers of equivalent photons be dn1 and dn2. The most important
contribution to the production cross section stems from photons with very small
virtualities Q2

i � μ2, where μ is the muon mass. Therefore, to a good approx-
imation, the photons move in opposite directions, and W 2 ≈ 4 ω1 ω2. In this
very region the Born differential cross section dσB for the process considered is
related to the cross section σγγ for the process with real photons, γγ → μ+μ−,
by the equation

dσB = dn1 dn2 dσγγ(W 2). (2.4)

The number of equivalent photons are (see Eq. (D.4) in [7])

dni(ωi, Q
2
i ) =

Z2
i α

π

(
1 − ωi

Ei

)
dωi

ωi

(
1 − Q2

i min

Q2
i

)
F 2(Q2

i )
dQ2

i

Q2
i

, (2.5)

where

Q2
i � Q2

i min =
ω2

i

γ2
(2.6)

and F (Q2) is the electromagnetic form factor of the nucleus. It is important that
the integral over Q2 converges rapidly for Q2 > 1/R2, where

R = 1.2 A1/3 fm (2.7)

is the radius of the nucleus with A ≈ M/mp the number of nucleons (R ≈ 7 fm,
1/R ≈ 28 MeV for Au and Pb). Since Q2

min
<∼ 1/R2, the main contribution to

the cross section is given by virtual photons with energies

ωi
<∼ γ/R. (2.8)
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Therefore, we can use the spectrum of equivalent photons (neglecting terms
proportional to ωi/Ei) given by

dni(ωi, Q
2
i ) =

Z2
i α

π

dωi

ωi

(
1 − ω2

i

γ2Q2
i

)
F 2(Q2

i )
dQ2

i

Q2
i

. (2.9)

After the transformation

dω1

ω1

dω2

ω2
=

dω1

ω1

dW 2

W 2
, (2.10)

we cast the cross section in the form

dσB =
Z2

1 Z2
2α2

π2

dω1

ω1

(
1 − ω2

1

γ2Q2
1

)
F 2(Q2

1)
dQ2

1

Q2
1

×

×
(

1 − ω2
2

γ2Q2
2

)
F 2(Q2

2)
dQ2

2

Q2
2

dW 2

W 2
σγγ(W 2),

where ω2 ≈ W 2/(4ω1).
2.1.2. Leading Logarithmic Approximation. Before using the above calcula-

tion scheme, it is instructive to present a rougher but simpler approximation Å
the so-called LLA. In the LLA, the equivalent photon spectrum as a function of
photon energy dni(ωi) is obtained after integrating dni(ωi, Q

2
i ) over Q2

i in the
region between

Q2
i min � Q2

i
<∼ 1/R2, (2.11)

which leads to

dni(ωi) ≈
Z2

i α

π
ln

γ2

(Rωi)2
dωi

ωi
. (2.12)

The restriction Q2
i min

<∼ 1/R2 corresponds to the integration interval

a =
W 2R

4γ
<∼ ω1

<∼ b =
γ

R
, (2.13)

which gives

σLLA
B =

Z2
1Z2

2α2

π2

∞∫
4μ2

dW 2

W 2
σγγ(W 2)

b∫
a

dω1

ω1
ln

b2

ω2
1

ln
ω2

1

a2
. (2.14)

Since σγγ(W 2) ≈ (4πα2/W 2) ln (W 2/μ2) for large values of W � μ, the main
contribution to the Born cross section comes from the region of small values of
W near the threshold. Therefore, within logarithmic accuracy we replace W by
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some ˇxed value W0 ∼ 2μ in the lower bound a. After that the integral over W 2

gives

I =

∞∫
4μ2

dW 2

W 2
σγγ(W 2) =

14πα2

9μ2
(2.15)

and further integration over ω1 leads to

b∫
a

dω1

ω1
ln

b2

ω2
1

ln
ω2

1

a2
=

2
3

L3, (2.16)

where

L = ln
γ2

(W0R/2)2
. (2.17)

As a result, we obtain

σLLA
B =

28
27π

(Z1αZ2α)2

μ2
L3 (2.18)

in accordance with the result of Landau & Lifshitz [5,6]. The accuracy of the LLA
depends on the choice of the value for W0. If we use for numerical estimations
W0 = 3μ, then the accuracy of the LLA for the colliders discussed is about 15%.

The same result can be obtained in the framework of the impact-parameter-
dependent representation, which will also be useful later. For this aim, we
introduce the probability for muon pair production PB(ρ) in the collision of two
nuclei at a ˇxed impact parameter ρ. For γ � 1, it is possible to consider the
nuclei as sources of external ˇelds and to calculate PB(ρ) analytically using the
same approach as in [37]. The Born cross section σB can then be obtained by
the integration of PB(ρ) over the impact parameter:

σB =
∫

PB(ρ) d2ρ. (2.19)

We calculate this probability in the LLA, using Eq. (2.4) with

dni =
Z2

i α

π2

dωi

ωi

d2ρi

ρ2
i

, ωi �
γ

R
, R � ρi �

γ

ωi
, (2.20)

where ρi is the impact parameter of ith equivalent photon with respect to the ith
nucleus. This allows us to write the above probability in the form

PB(ρ) =
∫

dn1 dn2 δ(ρ1 − ρ2 − ρ)σγγ(W 2) =
28
9π2

(Z1αZ2α)2

(μρ)2
Φ(ρ). (2.21)
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Depending on the value of ρ, two different forms for Φ(ρ) need to be used:

Φ(ρ) =
(

4 ln
γ

μρ
+ ln

ρ

R

)
ln

ρ

R
for R � ρ � γ

μ
, (2.22)

Φ(ρ) =
(

ln
γ2

μ2ρR

)2

for
γ

μ
� ρ � γ2

μ2R
. (2.23)

Note that the function Φ(ρ) is continuous at ρ = γ/μ together with its ˇrst
derivative. As expected, the integration of PB(ρ) over ρ in the region R < ρ <
γ2/(μ2R) gives back the result in (2.18)

∫
(d2ρ/ρ2)Φ(ρ) = (π/3)L3.

To prove (2.21)Ä(2.23), we make the transformation given in (2.10) together
with the integration over W 2 according to (2.15). This gives

PB(ρ) =
14
9π3

(Z1αZ2α)2

μ2

γ/R∫
μ2R/γ

dω1

ω1
×

×
∫

d2ρ1

ρ2
1(ρ − ρ1)2

ϑ

(
γ

ω1
− ρ1

)
ϑ

(
γω1

μ2
− |ρ − ρ1|

)
,

where ϑ(x) is the step function. The main contribution to this integral is given
by two regions: R � ρ1 � ρ and R � |ρ − ρ1| = ρ2 � ρ. Moreover, the two
regions in the ω1 integration with μ < ω1 < γ/R and μ2R/γ < ω1 < μ give the
same contributions. As a result, we get

Φ(ρ) = 2 (J1 + J2) ,

J1 =

γ/R∫
μ

dω1

ω1

ρ∫
R

dρ1

ρ1
ϑ

(
γ

ω1
− ρ1

)
ϑ

(
γω1

μ2
− ρ

)
, (2.24)

J2 =

γ/R∫
μ

dω1

ω1

ρ∫
R

dρ2

ρ2
ϑ

(
γ

ω1
− ρ

)
ϑ

(
γω1

μ2
− ρ2

)
.

Next we consider the two regions of ρ.
In the region of relatively small impact parameters, R � ρ � γ/μ, the

second step function does not impose any limitations; therefore,

J1 =

γ/ρ∫
μ

dω1

ω1

ρ∫
R

dρ1

ρ1
+

γ/R∫
γ/ρ

dω1

ω1

γ/ω1∫
R

dρ1

ρ1
= ln

γ

μρ
ln

ρ

R
+

1
2

(
ln

ρ

R

)2

,

J2 =

γ/ρ∫
μ

dω1

ω1

ρ∫
R

dρ1

ρ1
= ln

γ

μρ
ln

ρ

R
.
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Summing up, we obtain (2.22). In the region of relatively large impact parameters,
γ/μ � ρ � γ2/(μ2R), we have

J1 =

γ/R∫
μ2ρ/γ

dω1

ω1

γ/ω1∫
R

dρ1

ρ1
=

1
2

(
ln

γ2

μ2Rρ

)2

, J2 = 0;

therefore, the sum gives (2.23).
We compare Eqs. (2.21)Ä(2.23) for Φ(ρ) with the numerical calculations

based on the exact matrix element calculated with the approach as outlined in [15].
We ˇnd good agreement for PbÄPb collisions: the discrepancy is less than 10%
at μρ > 10 and less than 15% at μρ > 2μR = 7.55.

2.1.3. More Reˇned Calculation. In the calculation below, for the form
factor of the nucleus we use the simple approximation of a monopole form factor,
which corresponds to an exponentially decreasing charge distribution, whose mean
squared radius

√
〈r2〉 is adjusted to the experimental value:

F (Q2) =
1

1 + Q2/Λ2
, Λ2 =

6
〈r2〉 . (2.25)

For lead and gold, the parameter is Λ ≈ 80 MeV. This approximation of the
form factor enables us to perform some calculations analytically, which otherwise
could only be done numerically.

The equivalent photon spectrum dni(ωi) is obtained after integrating
dni(ωi, Q

2
i ) over Q2

i (the upper limit of this integration can be set to be equal to
inˇnity in a good approximation, due to the fast convergence of the integral at
Q2 > Λ2):

dni(ωi) =
Z2

i α

π
f

(
ωi

Λγ

)
dωi

ωi
. (2.26)

Here the function

f(x) = (1 + 2 x2) ln
(

1
x2

+ 1
)

− 2 (2.27)

is large for small values of x,

f(x) ≈ ln
1
x2

− 2 = ln
1

(ex)2
at x � 1, e = 2.71 . . . , (2.28)

but drops very quickly for large x in accordance with Eq. (2.8):

f(x) <
1

6 x4
for x > 1. (2.29)
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Finally, we obtain

σB =
Z2

1Z2
2α2

π2

∞∫
4μ2

dW 2

W 2
G(W 2)σγγ(W 2) =

(Z1αZ2α)2

πμ2
J(γΛ/μ), (2.30)

where

G(W 2) =

ωmax∫
ωmin

dω

ω
f

(
ω

Λγ

)
f

(
W 2

4Λγω

)
. (2.31)

Since ωi < E and ω1ω2 ∼ μ2, we have ωmin ∼ μ2/E and ωmax = E. However,
due to the fast decrease of f(x) for x > 1, one can extend these limits up to
ωmin = 0 and ωmax = ∞ without any lack of accuracy; therefore,

G(W 2) = 2

∞∫
0

f(x1) f(x2) dy, x1,2 =
W

2Λγ
e±y. (2.32)

Fig. 4. The function J(γΛ/μ) from Eq. (2.30)

A numerical evaluation of the in-
tegrals in Eqs. (2.30) and (2.31)
yields the function J(γΛ/μ) presented
in Fig. 4.

Corrections to the photon spec-
trum are represented by terms in
Eqs. (2.4) and (2.9) of the order of
Q2

i /W 2 (see Eqs. (E.1) in [7]), which
are dropped before the integration
over Q2

i is done. After the integration
with weight 1/Q2

i , the relative value
of these corrections becomes of the
order of

η1 =
Λ2

W 2L
. (2.33)

Thus, for the collisions considered here one can estimate the accuracy of the
calculations on the level η1 ∼ 5%. Another test of accuracy of the approach used
is given in Subsubsec. 2.1.7.

Note that in the LLA the function G(W 2) is just

GLLA(W 2) =
2
3

[
ln

γ2

(eW/2Λ)2

]3

≈ 2
3

[
ln

γ2

(WR/2)2

]3

(2.34)

in accordance with Eq. (2.16) (taking into account that Λ/e ≈ 1/R, e = 2, 718 . . .).
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2.1.4. Coulomb and Unitary Corrections. For electronÄpositron pair pro-
duction the relative value of Coulomb corrections and the unitarity ones are
summarized in Table 2. The Coulomb corrections can be estimated as [13]

σCoul

σ0
= 6f(zα)(L2 − 5.5), f(x) = x2

∞∑
1

1
n(n2 + x2)

. (2.35)

The formulae for unitarity corrections are discussed below (see also [37]).
Consider now production of the μ+μ− pairs. Due to the restriction of the

transverse momenta of additionally exchanged photons to the range below 1/R,
the effective parameter of the perturbation series is not (Zα)2 but (Zα)2/(Rμ)2.
In addition, the contribution of the additional photons is suppressed by a loga-
rithmic factor. Indeed, the cross section for two-photon production mechanism
is proportional to L3, while the cross section for the multiple-photon production
mechanism is proportional only to L2. Therefore, the real parameter describing
the suppression of the Coulomb correction is of the order of

η2 =
(Zα)2

(Rμ)2L
, (2.36)

which corresponds to Coulomb corrections. This quantity is of order 0.01.
The unitary correction σunit to the one-muon-pair production corresponds

to the exchange of light-by-light blocks between the two nuclei (Fig. 3). We
start with a more general process Å the production of one μ+μ− pair and n
electronÄpositron pairs (n � 0) in a collision of two ultrarelativistic nuclei

Z1 + Z2 → Z1 + Z2 + μ+μ− + n (e+e−) (2.37)

with the unitary corrections, which correspond to the exchange of the blocks of
light-by-light scattering via the virtual lepton loops. The corresponding cross
section dσ1+n can be calculated by a simple generalization of the results obtained
in [14] for the n-pair process without muon pair production: Z1 + Z2 → Z1 +
Z2 + n (e+e−). This multiple-pair-production process was studied in a number
of papers, see [11] for a review. It was found that the probability is to a good
approximation given by a Poisson distribution with the deviations found to be
small. Indeed, it is not difˇcult to show that the basic equations for the latter
process should be modiˇed and the additional factor

B̃μ(ρ, rn+1) exp
{
−L

[
Aμ(ρ)

2
+ iϕμ(ρ)

]}
(2.38)

appears under the integral, where L = ln (γ1γ2) and the functions B̃μ, Aμ and ϕμ

are the same as the functions given in Subsubsec. 2.4.3 but with the replacement
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of electrons by muons. As a result, Eq. (31) of [14] is replaced by

dσ1+n

d2ρ
= LAμ

1 (ρ)
[LA1(ρ)]n

n!
e−LAμ

1 (ρ)−LA1(ρ), (2.39)

where LAμ
1 (ρ) ≈ PB(ρ) is the probability of one-muon-pair production in the

Born approximation. In the region of interest, ρ > 2R, the function Aμ
1 (ρ) is

small,
LAμ

1 (ρ) � 1, Aμ
1 (ρ) � A1(ρ); (2.40)

therefore, we can rewrite (2.39) in the simpler form

dσ1+n

d2ρ
= P1+n(ρ), P1+n(ρ) = PB(ρ)

[n̄e(ρ)]n

n!
e−n̄e(ρ), (2.41)

where n̄e(ρ) = LA1(ρ) is the average number of e+e− pairs produced in col-
lisions of the two nuclei at a given impact parameter ρ. The result that the
probabilities for the different processes factorize is due to the independence of
the individual processes. For a general discussion of the validity of this factor-
ization together with possible violations, we refer to [15].

In particular, we get the cross section for the exclusive one μ+μ−-pair pro-
duction, including the unitary correction as

σ1+0 =
∫

PB(ρ) e−n̄e(ρ) d2ρ. (2.42)

This expression can be rewritten in the form

σ1+0 = σB + σunit, (2.43)

where σB is the Born cross section deˇned in (2.19) and

σunit = −
∫ [

1 − e−n̄e(ρ)
]

PB(ρ) d2ρ (2.44)

corresponds to the unitary correction for the one-muon-pair production.
A rough estimation of σunit can be done as follows. The main contribution

to σunit comes from the region

R � ρ � 1
me

, (2.45)

in which the function n̄e(ρ) ≈ n̄e(2R) and the integral (2.44) can be calculated
in LLA. It gives

σunit ∼ − 28
27π

(Z1αZ2α)2

μ2

[
1 − e−n̄e(2R)

]
Junit, (2.46)
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where

Junit = 6

1/me∫
2R

Φ(ρ)
dρ

ρ
. (2.47)

As a result, we ˇnd σunit ∼ −1.2 b for the PbÄPb collisions at the LHC, which
corresponds approximately to Ä5% of the Born cross section (see Table 2).

It is seen that unitary corrections are large; in other words, the exclusive
production of one muon pair differs considerably from its Born value.

2.1.5. Inclusive Production of One μ+μ− Pair. The experimental study of
the exclusive muon-pair production seems to be a very difˇcult task. Indeed, this
process requires that the muon pair should be registered without any electronÄ
positron pair production, including e± emitted at very small angles. Otherwise,
the corresponding cross section will be close to the Born cross section.

To prove this, let us consider the process (2.37), whose probability is given
by Eq. (2.41). The corresponding cross section is

σ1+n =
∫

P1+n(ρ) d2ρ. (2.48)

It is clearly seen from this equation that, after summing up over all possible
electron pairs, we obtain the Born cross section

∞∑
n=0

σ1+n = σB. (2.49)

Therefore, there is a very deˇnite prediction: the inclusive muon-pair-production
cross section coincides with the Born one. This direct consequence of calculations,
which take into account strong ˇeld effects, may be easier to test experimentally
than the prediction for cross sections of several e+e−-pair production.

Let us discuss the relation of the cross sections obtained for the muon-pair
production with the differential cross section of the e+e−-pair production in the
region of large transverse momenta for the e±, for example, at p±⊥ >∼ 100 MeV.
It is clear that for the e+e−-pair production in this region, the situation is similar
to the case considered for μ+μ−-pair production.

2.1.6. Two-Muon-Pair Production. The cross section of the process

Z1Z2 → Z1Z2 + μ+μ−μ+μ− (2.50)

can be calculated in lowest order in α according to

σ2 =
1
2

∫
[PB(ρ)]2 d2ρ, (2.51)

with the integration region ρ � 2R. But in this region the probability PB(ρ) is
given to a good accuracy by Eqs. (2.23), (2.1.2). From this we get σ2 = 1.24 mb
for PbÄPb collisions at the LHC.
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2.1.7. Testing of EPA Spectrum Accuracy. To test the approach used in
Subsubsec. 2.1.3, we consider the simpler case of the muon-pair production by a
real photon with the energy ω off a nucleus

γZ → Zμ+μ−. (2.52)

This cross section was calculated by Ivanov and Melnikov in [16] using the
same expression (2.25) for the form factor of the nucleus and assuming
Λ2/(2μ)2 � 1. The corresponding formula for the Born contribution and the
ˇrst Coulomb correction is

σγZ =
28
9

Z2α3

μ2
(l − C1 − C2), (2.53)

where

l = ln
2ωΛ
μ2

− 57
14

, C1 =
12
35

(
Λ
2μ

)2

, C2 = 0.92(Zα)2 C1. (2.54)

Therefore, the relative magnitude of the Coulomb correction is given by

η2 =
C2

l
, (2.55)

which conˇrms the estimate in (2.36).
In the equivalent photon approximation, the cross section is given by

dσEPA
γZ = dn2 σγγ(W 2), (2.56)

which has the form

σEPA
γZ =

Z2α

π

∞∫
4μ2

dW 2

W 2
f

(
W 2

2ωΛ

)
σγγ(W 2). (2.57)

The main contribution to this integral is given by the region near the lower limit,
where the argument of the function f is small and, therefore, f can be replaced
by its approximate expression (2.28):

f

(
W 2

2ωΛ

)
= 2 ln

ωΛ
2μ2

− 2 − 2 ln
W 2

4μ2
. (2.58)

After that the cross section can be calculated without difˇculties as

σEPA
γZ = 2

Z2α

π

[(
ln

ωΛ
2μ2

− 1
)

I − I1

]
=

28
9

Z2α3

μ2
l, (2.59)
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where I is given by (2.15) and

I1 =

∞∫
4μ2

dW 2

W 2
σγγ(W 2) ln

W 2

4μ2
=

(43 − 28 ln2)πα2

9μ2
. (2.60)

Comparing this expression with the one of (2.53), we ˇnd that those terms which
are omitted in the EPA have a relative magnitude of the order of

η1 =
C1

l
; (2.61)

this expression conˇrms the estimation (2.33).
2.2. ElectronÄPositron Pair Production by Linearly Polarized Photon in

the Nuclear Field. Studies of a pair-creation process started in the celebrated pa-
pers of 1953Ä1969 and continue to attract the attention up to now [17Ä19,40,41].
Main interest nowadays is the use of this process as a polarimeter [31]. Really, it
has rather a large cross section and the polarization effects can reach 14% [3,42].
Two different mechanisms of pair creation must be taken into account: the BetheÄ
Heitler one, when the pair is produced in collision of two photons Å one real and
the other virtual, and the bremsstrahlung mechanism, when a pair is created by a
single virtual photon. It was shown in the fundamental papers by E.Haug [20]
that at photon energies exceeding 50 MeV in the target laboratory frame the
contribution of the bremsstrahlung mechanism, as well as the interference of
the corresponding amplitude with two-photon ones, does not exceed 5% and
decreases with further photon energy growth. Taking into account the lowest
order RC does not change the situation. In the case of target such as proton or
light nuclei, the main contribution to RC is connected with ˇnal-state interaction
between pair components. The two-virtual-photon exchange between a particle
and nuclei amplitude does not interfere with the Born amplitude as they have
different signatures. Pure two-photon-exchange amplitude contribution does not
contain any enhancement factors, such as ®large logarithms¯ of ratio of photon
energy ω to lepton mass m, and has order α2. It can be neglected compared
with contribution of order α/π coming from interference of Born amplitude with
1-loop ones connected with lepton-pair interaction.

The situation changes when one considers the pair creation on heavy nuclei
with the charge parameter ν = Zα being not too small. The main contribution
arises from a many-photon exchange mechanism between a pair component with
nuclei.

The total cross section of pair-creation process by photon on nuclei of
charge Z

γ(k) + Y (P, Z) → e−(p1) + e+(p2) + Y (P ′, Z), q = P − P ′,
(2.62)

s = 2Pk = 2Mω, P 2 = (P ′)2 = M2, p2
± = m2, |q2| � s,



PROCESSES WITH HEAVY-ION COLLISIONS 115

for unpolarized photon is [1, 41]

σ =
28
9

Z2α3

m2

[
ln

2ω

m
− 109

42
− f(zα)

]
, (2.63)

and f(x) is given in Eq. (2.35). This result has recently been reproduced in
an informative paper by Ivanov and Melnikov [16], where the differential cross
section was considered as well.

Direction of e+ and e− emittance correlates with the degree and direction
of photon linear polarization, and so this process can serve as a polarimetric
reaction for the measuring linear polarization of high-energy photons at the present
beams in the region of photons. At the present time, experimental tasks request
measurements of linear polarization of photon beams in the region of photon
energy up to 1Ä2 GeV with accuracy near 1% or better.

The considered process was discussed in detail in the works mentioned above.
Calculations in these works were carried out on the basis of wave functions of the
ˇnal electron and positron in the external screened Coulomb ˇeld in the FurryÄ
SommerfeldÄMaue approximation. This approximation is valid for high energy of
produced particles, m/ε1,2 � 1, and for small emitting angles θ1,2 ∼ m/ε1,2 ≈
10−3; ε1,2 is the energy of electron and positron, and m is the electron mass.

It is well known that the main contribution to the cross section of the con-
sidered process gives just the region of small emitting angles. In this subsection
we use formalism of [9] to consider the case of linearly polarized photon.

First, we brie	y sketch the relevant results of [16]. Sudakov's parametrization
of 4-momenta is used below:

q = αqk + βqP̃ + q, qi = αik + βiP̃ + qi,
(2.64)

p1 = x1k + y1P̃ + p1, p2 = x2k + y2P̃ + p2,

where a is Euclidean two-dimensional vector a = (0, 0, ax, ay) orthogonal to
photon 4-momentum k = ω(1, 1, 0, 0); P̃ = (M/2)(1,−1, 0, 0) = P − k(M2/s)
is the light-like 4-vector. The conservation law and on-mass-shell conditions
lead to

x1 + x2 = 1, y1 =
c1

x1s
, y2 =

c2

x2s
,

(2.65)
cl = p2

l + m2, l = 1, 2; q = p1 + p2.

The matrix element corresponding to N -photon exchange is

MN = −iNs
8π2(eZ)N

N !

∫ N∏
i=1

d2qi

(2π)2
F (q2

i )
q2

i

δ(2)
(∑

qi − q
)

J
(N)

γ→ll̄
, (2.66)
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where J
(N)

γll̄
is the impact factor which is rewritten in the simple form [2, 8, 16]

with

J
(N)

γ→ll̄
(p1,p2) = ū(p1)

[
mS(N)ε̂ − 2x1T(N)ε − T̂ (N)ε̂

] ˆ̃P
s

v(p2). (2.67)

The quantities S, T obey the recurrent relations

S(N)(p1,p2,qN ) =

= S(N−1)(p1,p2 − qN ) − S(N−1)(p1 − qN ,p2), N = 2, 3, . . . , (2.68)

and a similar expression for T(N). The initial values, corresponding to the
one-photon exchange, are

S(1) = S(1)(p1,p2) =
1
c1

− 1
c2

, T(1) = T(1)(p1,p2) =
p1

c1
+

p2

c2
. (2.69)

Introducing the values

J
(N)
S,T =

∫ N∏
1

d2qiF (q2
i )

q2
i

[S(N),T(N)] δ2
(∑

qi − q
)

, (2.70)

and their Fourier transform

I
(N)
S,T(r1, r2) =

∫
d2p1 d2p2

(2π)2
eip1r1+ip2r2J

(N)
S,T , (2.71)

the recurrent relations can be written in the form

I
(N)
S,T(r1, r2) = πI

(N−1)
S,T (r1, r2)Φ(r1, r2),

(2.72)

Φ(r1, r2) =
1
π

∫
(eiqr2 − eiqr1)

d2qF (q2)
q2

.

In the Moliere approximation of atomic form factor in the TomasÄFermi model
(we use it below) the expression for the form factor is [22]

F (q2)
q2

=
1 − FA

q2
=

3∑
1

αi

μ2
i + q2

, (2.73)

with α1 = 0.1; α2 = 0.55; α3 = 0.35 and μi = (mZ1/3)bi with b1 = 6.0;
b2 = 1.2; b3 = 0.3. In this case the analytic expressions can be obtained:

Φ(r1, r2) = 2
3∑
1

αi[K0(μi|r2|) − K0(μi|r1|)], (2.74)



PROCESSES WITH HEAVY-ION COLLISIONS 117

with K0,1(z) modiˇed Bessel functions. For the pure Coulomb potential
F (q2) = 1, we have Φc(r1, r2) = ln (r2

1/r
2
2).

The boundary of recurrent relations is

I
(1)
S (r1, r2) =

1
2
K0(m|r1 − r2|)Φ(r1, r2),

I(1)
T (r1, r2) =

im(r1 − r2)
2|r1 − r2|

K1(m|r1 − r2|)Φ(r1, r2).
(2.75)

The summation over the number of exchanged photons can be performed:

JS(p1,p2) =

=
i

2ν

∫
d2r1 d2r2

(2π)2
e−ip1r1−ip2r2K0(m|r1 − r2|)ν[e−iνΦ(r1,r2) − 1],

(2.76)
JT (p1,p2) =

=
−1
2ν

∫
d2r1d

2r2

(2π)2
e−ip1r1−ip2r2

m(r1 − r2)
2|r1 − r2|

K1(m|r1 − r2|)[e−iνΦ(r1,r2) − 1].

The differential cross section has the form

dσ =
2αν2

π2
[|JT |2 + m2|JS |2 − 4x(1 − x)JT εJT ε∗] dx d2p1d

2p2 =

=
2αν2

π2
[Wunp + ξ3Wpol cos (2ϕ)] dx d2p1 d2p2, (2.77)

εiε
∗
j → 1

2
[I + ξ1σ1 + ξ3σ3]ij , i, j = x, y,

with the polarization degree of photon, described by means of ξ1,3 being Stokes
parameters, ϕ is the angle between the vector JT and the direction of maximal
polarization of photon (if we choose the x axis along the direction of maximal
polarization of photon, we put ξ1 = 0; P = ξ3), and

Wunp = [x2 + (1 − x)2]|JT |2 + m2|JS |2, Wpol = −2x(1 − x)|JT |2. (2.78)

For the screened potential (ignoring the experimental conditions of pair component
deˇnition), we use the expression for the phase given above. Performing the
integration on pair momenta, we obtain

2π
dσ

dx1dϕ1
=

2α

m2

2π∫
0

dϕ

2π

∞∫
0

dy1

∞∫
0

dy2(1 − cos (νϕc
12))×

× [K2
0 (z) + [x2

1 + (1 − x1)2]K2
1 (z) − 2x1(1 − x1)ξ3K

2
1 (z) cos (2ϕ)], (2.79)

z =
√

y1 + y2 − 2
√

y1y2 cosϕ0,
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with ϕc
12 = Φc(r1, r2) = (1/2) ln (y1/y2). The azimuthal angle ϕ0 is the angle

between the direction of maximal photon polarization and the plane containing
the direction of initial photon and electron (positron) from the pair.

For the case of pure Coulomb potential, integration in (2.79) diverges and
must be regularized. We leave here this academic problem. For the case of
screened potential we obtain

2π
dσ

dx dϕ1
=

=
2α

m2
[a(ν) + (x2 + (1 − x)2)b(ν) − 2x(1 − x)ξ3 cos (2ϕ1)b(ν)]. (2.80)

The ν dependence of coefˇcients a(ν), b(ν) is shown in Fig. 5.

Fig. 5. The ν-dependence of coefˇcients a, b (see (2.79), (2.80))

Further we will consider the realistic case of nonzero momentum, transferred
to nuclei |q|2 � m2. For the pure Coulomb potential we have

dσ

dx dΩ1 dΩ2
=

2αν2ω4

π2m2

x2(1 − x)2

(q2)2
|Γ(1 − iν)|4[W c

u + ξ3W
c
p ], (2.81)

with

W c
u = m2[x2 + (1 − x)2]

∣∣∣∣(2F1 − F2)
p2

c2
+ F2

p1

c1

∣∣∣∣
2

+

+
∣∣∣∣F2 − F1 + (2F1 − F2)

m2

c2
− F2

m2

c1

∣∣∣∣
2

,

(2.82)

W c
p = −2x(1 − x)m2

[
|2F1 − F2|2

p2
2

c2
2

cos (2ϕ2)+

+ |F2|2
p2

1

c2
1

cos (2ϕ1) + 2 Re (F ∗
2 (2F1 − F2))

|p2|
c2

|p1|
c1

cos (ϕ1 + ϕ2)
]
,
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and F1 = F (iν,−iν; 1; z); F2 = (1 − iν)F (iν, 1 − iν; 2; z) are the Gauss hyper-

geometric functions, z = 1 − m2q2

c1c2
, the value of transverse component of the

pair is
|p1| = ωxθ1; |p2| = ω(1 − x)θ2,

x, 1−x are the energy fractions of electron, positron. Here ϕ1,2 are the azimuthal
angles between the direction of maximal polarization of photon and the transverse
component of electron and positron, θ1,2 are polar angles between photon direction
and lepton pair component emission, dΩ1 dΩ2 = θ1θ2 dθ1 dϕ1 dθ2 dϕ2 are phase
volumes of the leptons.

In the case of small momentum transferred to nuclei m2 � q2 � p2
1 ≈ p2

2,
we can put in (2.82) z = 1 and, using F1 = F2 = |Γ(1 − iν)|−2, we reproduce
the cross section in the Born approximation

dσc
B

dx dΩ1 dΩ2
=

2α3Z2ω4x2(1 − x)2

π2(q2)2

[
m2(S1)2 + (x2 + (1 − x)2)(T1)2−

− 2x(1 − x)ξ3

(
p2

2

c2
2

cos (2ϕ2) +
p2

1

c2
1

cos (2ϕ1) +
|p2|
c2

|p1|
c1

cos (ϕ1 + ϕ2)
)]

,

q̄2 > m2. (2.83)

We note that the quantity in square brackets in the rhs of (2.83) is proportional
to q2 at small q2. The experimental restrictions connected with pair component
detection can be imposed as a domain of variation of energy fractions and angles
of electron and positron.

For the large transverse momentum of the pair component p1 = p2 = p � m,
we have

dσB

dΩ1 dΩ2 dx
=

α3ω4(x(1 − x))2

2π2p6

1 − 2x(1 − x)(1 + ξ3 cos (ϕ1 + ϕ2))

cos2
(

ϕ1 − ϕ2

2

) ,

(2.84)

q2 = 4p2 cos2
(

ϕ1 − ϕ2

2

)
� m2.

2.2.1. The Case of Screened Potential. In a more realistic case of the elec-
tromagnetic ˇeld of atom described above, we do not succeed in obtaining the
result in a closed form. So we calculate the values JS ,JT by expansion in series
up to the terms of the ˇrst order of ν.

After this expansion we have for the scalar structure

JS(p1,p2) = J
(1)
S (p1,p2) + νJ

(2)
S (p1,p2),

J
(1)
S (p1,p2) =

(
1
c1

− 1
c2

) 3∑
i=1

αi

q2 + μ2
1

, (2.85)
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J
(2)
S = i

3∑
i,j=1

αiαj

[(
1
c1

+
1
c2

)
B − T2 − T1

]
.

An analogous expression for the vector structure is

JT (p1,p2) = J(1)
T (p1,p2) + νJ(2)

T (p1,p2),

J(1)
T =

(
p1

c1
+

p2

c2

) 3∑
i.j=1

αi

q2 + μ2
1

, (2.86)

J(2)
T = i

3∑
i,j=1

αiαj

[(
p1

a1
+

p2

a2

)
B − p1T1 + p2T2 + T1 − T2

]
.

The quantities B, Tl, and Tl are given in Subsubsec. 2.2.3.
The relevant contribution to the total cross section has the form

dσ

dx dΩ1 dΩ2
=

dσ(1)

dx dΩ1 dΩ2
+

dσ(2)

dx dΩ1 dΩ2
, (2.87)

the ˇrst term is given above (see (2.83)) with replacement S(1) → J
(1)
s , T(1) →

J(1)
T . Writing J(2)

T in the form J(2)
T = A1p1 + A2p2, the second term in (2.87)

will be
dσ(2)

dx dΩ1 dΩ2
=

αν4

4π2
(x(1 − x))2ω4I2, (2.88)

with

I2 = m2(J (2)
S )2 + (x2 + (1 − x)2)(J(2)

T )2 − 2ξ3x(1 − x)×
×

(
A2

1p
2
1 cos (2ϕ1) + A2

2p
2
2 cos (2ϕ2) + 2A1A2|p1||p2| cos (ϕ1 + ϕ2)

)
.

High-order contributions by (Zα)n, n � 3 can be expressed with iteration
procedure. However, the analytic expression terms become more complicated.
Nevertheless, the formulae given here provide the accuracy of order 1% for the
case of pair photoproduction on light nuclei Zα < 0.3.

2.2.2. Numerical Estimation. In famous papers by Bethe, Maximon and
Olsen [17Ä19], the general theory of pair production and bremsstrahlung was
built based on electron wave function in the Coulomb ˇeld. Part of these re-
sults was reproduced in a perturbation theory approach in [16]. Unfortunately,
the expression for the differential cross sections which can be used in current
experiments with speciˇc cuts was rather poorly presented.

These results provide high accuracy, since they are valid in all orders of PT.
Using them, the experimental restrictions can be put explicitly. In particular,
the formula obtained above can describe the exclusive experiment with pairs
photoproduction on a nuclei when both the electron and the positron are tagged.
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Fig. 6. Azimuthal asymmetry (see (2.80)); solid line Å ν = 0.3, dashed line Å ν = 0.6

In Fig. 6 the dependence of asymmetry deˇned as (see (2.80))

A(x, ξ3) =
dσ(ϕ1 = 0) − dσ(ϕ1 = π/2)
dσ(ϕ1 = 0) + dσ(ϕ1 = π/2)

(2.89)

is presented for ξ3 = 1 as a function of electron energy fraction x.
Asymmetry calculated using formula (2.80) turns out to be rather large com-

pared with the one obtained in [18] and reaches 40%. We should like to note
that in [18] an emission restriction θ± > 10−3 was put on. The main contri-
bution, however, arises from small values of p1,2 � m, which is implied in
our formula (2.80). Our result can be used in an experimental set-up with the
magnetic ˇeld.

Asymmetry

A(x, p1, p2, ϕ2, ξ3) =
dσ(ϕ1 = 0, x, p1, p2, ϕ2) − dσ(ϕ1 = π/2, x, p1, p2, ϕ2)
dσ(ϕ1 = 0, x, p1, p2, ϕ2) + dσ(ϕ1 = π/2, x, p1, p2, ϕ2)

,

(2.90)
p1,2 = |p1,2|.

calculated by formulae with (2.83) at ˇxed values p1, p2 is drawn in Fig. 7. The
lowest order correction to it for ν = 0.3 is a quantity of order 10% of Born
amplitude.

The differential distribution (2.83) is valid in the case of rather large values
of transverse momenta of electronÄpositron pair and provides the possibility to
apply the experimental detection details.

The cross section in the case of unpolarized particles is of the order

σ ≈ 170 mb, Z = 79.

Accuracy of calculation is determined by the omitted terms

1 + O
(

p2

s
,
α

π
ln

p2

m2

)
. (2.91)
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Fig. 7. Asymmetry in Born approach (see (2.84)); at ˇxed parameters: p1 = p2 = 10 MeV,
ξ3 = 1, ϕ2 = π/2 (see (2.83))

The quantity of error is of the order of several percent. The last term corresponds
to pair component of ˇnal-state interaction, which was not considered here.

This quantity does not depend on energy of the initial photon starting from
rather high values of it (ω > 50 MeV) in accordance with the results of [13].

We show besides (see Subsubsec. 2.2.3) that the effects of higher orders
of expansion on the parameter ν = Zα disappear in the case when transverse
components of electron and positron momentum considerably exceed the electron
mass. The screening effects in asymmetry disappear in this limit as well.

2.2.3. Explicit Calculation of Integrals. In the case of the screened potential
the matrix element corresponding to two-photon exchange has the form

M (2) =
s(4πα)5/2Z2

4π
NP

3∑
i,j=1

αiαj ū(p2)R̂
P̂

s
v(p1), (2.92)

with

NP =
1
s
ū(P ′)k̂u(P ),

∑
|NP |2 = 2, (2.93)

and

R̂ =
∫

d2k1

π

1
k2

1 + μ2
i

1
(q − k1)2 + μ2

j

[
mêS2 + 2xT2e + T̂2ê

]
,

(2.94)

S2 =
1
c1

− 1
c1k

+
1
c2

− 1
c2k

, T2 =
p1

c1
+

k1 − p1

c1k
− p2

c2
− k1 − p2

c2k
,

where cl was deˇned above, clk = (k1 − pl)2 + m2.
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We need to calculate the integrals

B =
∫

d2k1

π(k2
1 + μ2

i )((q − k1)2 + μ2
j)

,

(2.95)

(Tl,Tl) =
∫

d2k1(1,k1)
π(k2

1 + μ2
i )((q − k1)2 + μ2

j)((pl − k1)2 + m2)
.

Applying the Feynman joining procedure and performing the standard Feynman
parameter integration, we obtain

Tl =

1∫
0

dx

{
−2A1 + B1

RΔ
+

2B1

R3/2
L

}
, Δ = A1 + B1 + C + 1,

Tl =

1∫
0

dxpxl

{
−2C1 + B1

RΔ
+

2C1

R3/2
L

}
, (2.96)

L = ln
(B1 + 2C1 +

√
R)2

4C1Δ
, R = B2

1 − 4A1C1 > 0,

with

A1 = −p2
xl, pxl = xq + (1 − x)pl,

Δ = (1 − x)m2 + xμ2
j + x(1 − x)(q − pl)2, C1 = μ2

i , (2.97)

B1 = (1 − x)(p2
l + m2) + x(q2 + μ2

j ) − μ2
i .

In the kinematic region m2 ∼ μ2
i � q2 � p2

i = p2
2 = p2, we obtain

B =
2
q2

ln
q2

μiμj
, T1 = T2 =

2
p2q2

ln
q2

μiμj
, T1 = T2 =

q
p2q2

ln
p2

μ2
j

. (2.98)

In this limit we have S(2) = T(2) = 0. It can be shown that S(n) = T(n) =
0, n > 2 is fulˇlled in this limit as well.

2.3. Production of e+e− Pairs to All Orders in Zα for Collisions of High-
Energy Muons with Heavy Nuclei. The production of e+e− pairs in collisions
of high-energy muons with nuclei and atoms is important for a number of prob-
lems [30,32]. In particular, this process is dominant for energy losses of muons
passing through matter. A precise knowledge of these losses is necessary for the
construction of detectors and μ+μ− colliders and an estimation of shielding at
high-energy colliders.

In Born approximation, various cross sections for the process under discussion
(A denotes an atom or a nucleus with charge number Z)

μA → μA e+e− (2.99)
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have been calculated in [5, 6, 24, 25]. A recent short review on the muon energy
loss at high energy can be found in Sec. 23.9 of [9]. Some useful approximate
formulae and ˇgures are given in [26].

In all the mentioned papers, effects of high-order corrections in the parameter

ν = Zα ≈ Z

137
(2.100)

have not been taken into account. However, this parameter is of the order of 1
for heavy nuclei (ν = 0.6 for Pb) and, therefore, the whole series in ν has to be
summed to achieve an exact result for the process (2.99).

Let Mn be the amplitude of the discussed process with n exchanged photons
(Fig. 8). We present the cross section in the form

dσ = dσB + dσCoul,

dσB ∝ |MB|2 = |M1|2, (2.101)

dσCoul ∝
∣∣∣∣∣
∞∑

n=1

Mn

∣∣∣∣∣
2

− |M1|2,

where MB = M1 denotes the Born amplitude. We call the CC the difference
dσCoul between the exact result and the Born approximation.

Such a kind of CC is well known in the photoproduction of e+e− pairs on
atoms (see [17,27], § 32.2 of [1] and § 98 of [2]). In case of the total cross sect-

Fig. 8. Amplitude Mn with n exchanged
photons for the reaction μA → μAe+e−

ion, the corrections are negative and de-
crease the Born contribution by about
10% for Pb.

In this subsection we calculate CC for
the reaction (2.99), neglecting only terms
of the order of

m2
μ

E2
μ

,
me

ε±
. (2.102)

Therefore, our results are valid for ultra-
relativistic leptons. In (2.102) me and mμ

are the lepton masses, ε± and Eμ denote
the lepton energies.

The discussed process for ε± � Eμ

has a close relation to A′A → A′Ae+e−,
where A′ is a fast nucleus with relatively small charge Z ′α � 1 and A is a
heavy atom or nucleus with Zα ∼ 1. The latter process was considered in [28]
and [23], assuming that the lepton energies are much smaller than the energy of
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the projectile nucleus A′. In these papers the same complicated method has been
used as in [17], which basically uses approximated relativistic wave functions of
e+ and e− in the Coulomb ˇeld of the nucleus A.

Our approach is more simple and transparent. It is based on cross sections
for the virtual process γ∗A → e+e−A (where γ∗ denotes the virtual photon with
4-momentum squared q2 < 0) which has recently been obtained in [16] by a
direct summation of the corresponding Feynman diagrams. For ε± � Eμ our
Eqs. (2.115) and (2.125) coincide with Eqs. (38) and (39) of [28], respectively,
while our Eq. (2.109) coincides with the corresponding equation of [23] only in
the main logarithmic approximation. (It should be noted, however, that the results
of [23] for the discussed process are also presented with logarithmic accuracy.)

2.3.1. Energy Distribution of e+ and e−. It is well known [9] that the cross
section for the process (2.99), as well as for electroproduction, can be exactly
written in terms of two structure functions or two cross sections σT (ω, Q2) and
σS(ω, Q2) for the virtual processes γ∗

T A → e+e− A and γ∗
SA → e+e− A (where

γ∗
T and γ∗

S denote the transverse and scalar/longitudinal photons with helicity
λT = ±1 and λS = 0, respectively):

dσ = σT (ω, Q2) dnT (ω, Q2) + σS(ω, Q2) dnS(ω, Q2). (2.103)

Here the coefˇcients dnT and dnS are called the number of transverse and
scalar virtual photons (generated by the muon) with energy ω and virtuality Q2,
respectively. The cross sections σT and σS have been calculated recently in [16]∗:

dσT = dσT
1 + dσT

2 =
4
3

Z2α3

m2
e

[L − f(ν)]×

×
[

m4
e

(m2
e + Q2x+x−)2

+
2(x2

+ + x2
−)m2

e

m2
e + Q2x+x−

]
dx+, (2.104)

dσS = dσS
1 + dσS

2 =
4
3

Z2α3

m2
e

[L − f(ν)]
4m2

eQ
2x2

+x2
−

(m2
e + Q2x+x−)2

dx+

with

L = ln
2ωx+x−

me
− 1

2
ln

m2
e + Q2x+x−

m2
e

− 1
2
, (2.105)

and the function f(ν) is deˇned in (2.35). The cross sections dσT,S
1 ∝ L

correspond to the Born contributions and dσT,S
2 ∝ −f(ν) to CC. The accuracy

of the cross sections (2.104) is determined omitting only terms of the order of

me

ω
,

Q

ω
. (2.106)

∗In Eqs. (46), (49) and (59) of [16] a factor x+x− is missing in the integrands of quantities
σS
1 and σS

2 .
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The number of photons can be found in Sec. 6 and App. D of review [7] (with
accuracy O(m2

μ/E2
μ), O(Q2/ω2)). They are

dnT =
α

π
(1 − y)

[(
1 − Q2

min

Q2

)
D + λC

]
dω

ω

dQ2

Q2
,

(2.107)

dnS =
α

π
(1 − y)

[(
1 +

λ

2

)
D − λ

2
C

]
dω

ω

dQ2

Q2
,

where

λ =
1
2

y2

1 − y
, Q2

min =
y2

1 − y
m2

μ, y =
ω

Eμ
. (2.108)

For the considered case of muon projectile C = D = 1, other particles are
discussed below. Equations (2.103)Ä(2.108) are the basis for our following cal-
culations.

Integrating Eq. (2.103) over Q2 from Q2
min to inˇnity (the upper limit can be

set to inˇnity due to the fast convergence of the integral), we obtain the known
Born contribution and the new expression for CC:

dσCoul = −σ0f(ν)F (x, y)
dω

ω
dx+ (2.109)

with

F (x, y) = (1 − y)
{

[(1 + λ + ξ)a − 1 − λ] ln
(

1 +
1
ξ

)
− a +

4 − a − λ

1 + ξ

}
,

(2.110)

a = 2(1 + x2
+ + x2

−), ξ =
m2

μ

m2
e

y2

1 − y
x+x−.

The integration variables can be transformed as follows:

dω

ω
dx+ =

dε+dε−
ω2

. (2.111)

Equation (2.109) describes the energy distribution of e+ and e− in CC. In the
limit ξ � 1 (or y � me/mμ), the function F (x, y) is approximated by

F (x, y) = (1 + 2x2
+ + 2x2

−) ln
1
ξ
− 4(x2

+ + x2
−). (2.112)

At ξ � 1 we obtain

F (x, y) =
1
ξ
[1 − y + y2 + 2(1 − y − y2)x+x−]. (2.113)
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It is easy to see that the main contribution to σCoul arises from the region

m2
e � ε+ε− �

(
me

Eμ

mμ

)2

. (2.114)

Strictly speaking, the cross sections (2.104) are valid for pair-production
processes on nuclei. In the collisions of virtual photons with atoms, an atomic
screening effect has to be taken into account. For high-energy photons the
screening effect changes considerably the differential and total cross section as
well as the energy loss for the Born contribution. The reason is that the region of
small transverse momenta k1⊥

<∼ 1/a ∼ meαZ1/3 (a denotes the atomic radius)
signiˇcantly contributes to the cross sections. As a consequence, the function
in the Born contribution equivalent to our F (x, y) becomes very complicated
and not universal for different atoms (see [25]). On the contrary, the region
mainly contributing to CC is determined by the condition k1⊥, . . . , kn⊥ ∼ me �
1/a. Therefore, the atomic screening effect is negligible in CC and the function
F (x, y), as well as some other distributions, is universal and does not depend on
atomic properties.

However, if one is interested in very-high-energy pairs effects of the nucleus
form factor have to be taken into account both in the Born contributions and in
the Coulomb corrections. This happens in the case that the characteristic squared
momentum transferred to the nucleus ∼ m2

e + Q2
minx+x− becomes comparable

with (1/RA)2, where RA is the radius of the nucleus. From this condition it
follows that the just mentioned universal behavior is spoilt for y > 0.5, where
this pair production is strongly suppressed.

2.3.2. Muon Energy Loss. The Coulomb correction to the spectrum of the
muon energy loss can be obtained from Eq. (2.109) after integrating over x+:

dσCoul = −σ0f(ν)F (y)
dy

y
,

(2.115)

F (y) = (1 − y)F1(z) + y2F2(z), z =
m2

μ

m2
e

y2

1 − y
,

where

F1(z) =
44
15z

− 16
15

−
(

7
3

+
8z

15

)
ln z +

+
(
− 44

15z
+

4
4 + z

+
38
15

+
16z

15

) √
1 +

4
z

ln
(√

1 +
z

4
+

√
z

4

)
,

(2.116)
F2(z) = − 4

3z
− 7

6
ln z +

+
(
− 2

3z
+

8
z(4 + z)

+
7
3

) √
1 +

4
z

ln
(√

1 +
z

4
+

√
z

4

)
.
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Fig. 9. The function F (y) deˇned in Eq. (2.115) vs. the fractional energy loss of the muon

The function F (y) is presented in Fig. 9. At small z � 1 (where y � me/mμ),
the spectrum has a logarithmic enhancement:

F (y) =
(

7
3

+
8z

15

)
ln

1
z

+
20
9

+
511z

450
+ . . . , (2.117)

whereas at large z � 1 it is power-like suppressed:

F (y) =
1
z

{
(1 − y)

[(
2 − 22

3z

)
ln z + 6 +

5
9z

]
+

+ y2

[(
2 +

1
z

)
ln z + 1 +

1
2z

]}
+ O

(
1
z2

)
. (2.118)

The approximate expressions (2.117), (2.118) agree with the exact spect-
rum (2.115) within 1% accuracy everywhere except in the region y = 0.004−0.02.

From the experimental point of view, of special interest is the relative mean
rate of muon energy loss due to pair production (or stopping power) on unit
length in matter. This quantity can be calculated as

− 1
E

dE

dx
= n

1∫
2me/Eμ

y
dσ

dy
dy = nσ0(SB + SCoul), (2.119)

where n is the number of atoms per unit volume. Formulae and tables for the Born
contribution SB are given in [24]. In particular, for the case without screening

SB = S0

[
(1 − δ1) ln

Eμ

4mμ
− 1.771

]
, (2.120)
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and for complete screening

SB = S0

[
(1 − δ1) ln

189
Z1/3

+ 0.604
]

, (2.121)

where

S0 =
19π2

12
me

mμ
, δ1 =

48
19π2

me

mμ

(
ln

mμ

me

)2

= 0.0352. (2.122)

From Eqs. (2.115) and (2.119) we derive the Coulomb correction

SCoul = −f(ν)

1∫
0

F (y) dy = − (1 − δ1) f(ν)S0. (2.123)

When performing the integration, we have used as lower limit zero, since the
contribution from region near the threshold ymin = 2me/Eμ can be safely ne-
glected.

2.3.3. Numerical Estimation. To demonstrate the relative importance of CC,
we discuss two simple examples: Firstly, we present in Fig. 10 the ratio of the
spectral distribution dσCoul/dy to the corresponding Born cross section

dσCoul/dy

dσB/dy
= − f(ν)F (y)

12Fa(y, Eμ)
, (2.124)

where the universal function F (y) is given in Eq. (2.115) and values for Fa(y, Eμ)
are taken from Table I of [24] for collisions of muons with energy Eμ = 86.4 GeV

Fig. 10. Ratio of Coulomb to Born energy distribution vs. energy fraction y for muon
collisions on Pb target at Eμ = 86.4 GeV
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on lead target, f(ν) = 0.331. The presented ratio varies from about −65% to
roughly −10% in the considered interval of pair energies.

Secondly, we compare the stopping power SCoul with the Born term in the
two limiting cases of Eqs. (2.120) and (2.121). For muon scattering on a Pb target
SCoul/SB = −15% at Eμ = 25 GeV without screening and Ä7.7% for the case
of complete screening.

It might be useful to present a simple expression for the contribution to σCoul

above some cut ω > ωcut where this cut is restricted to the region 2me � ωcut �
meEμ/mμ. From Eq. (2.115) we obtain

σCoul(ωcut) = −7
3
σ0 f(ν)

(
l2 +

20
21

l +
101
63

)
, l = ln

meEμ

mμωcut
. (2.125)

The expression (2.115) does not remain valid close to the threshold ωmin = 2me.
Therefore, from Eq. (2.125) the Coulomb correction to the total pair-production
cross section can be obtained only in leading logarithmic approximation by choos-
ing ωcut = 2me:

σCoul = − 28
9π

Z2α4

m2
e

f(ν)
(

ln
Eμ

2mμ

)2

. (2.126)

Finally, let us discuss the case that the muon projectile is replaced by other
charged projectiles such as electron, pion or proton. For an electron projectile the
distributions (2.109) and (2.115) remain valid, changing mμ → me. However,
in these distributions, as well as in the Born contributions, one has to take into
account the effect of the identity of the ˇnal-state electrons and the bremsstrahlung
mechanism of the e+e−-pair production (according to [29], this changes the result
only slightly).

For pion and proton projectiles, in the basic formulae the number of photons
should be changed (besides the trivial mass replacements). The numbers of
photons are given by Eqs. (2.107) with C = 0, D = F 2

π (Q2) for pion and
C = G2

M (Q2), D = [4m2
pG

2
E(Q2) + Q2G2

M (Q2)]/(4m2
p + Q2) for proton. Here

Fπ , GE and GM are the pion, proton electric and proton magnetic form factors,
respectively, mp is the proton mass. For the pion case, these changes are essential
only for y close to 1 where we should take into account the nucleus form factor,
too. For the proton case, the nucleus form factor becomes important for somewhat
smaller y where the in	uence of the proton form factors is still small.

2.4. Multiple Lepton-Pair Production in Relativistic Ion Collisions. The
multiplicity and the distribution of lepton pairs produced in the Coulomb
ˇelds [14] of two colliding relativistic heavy ions are closely connected to the
problem of unitarity. When heavy ions collide at relativistic velocities, their Lo-
rentz contracted electromagnetic ˇelds are sufˇciently intense to produce a large
number of such pairs. Usually, the process of lepton pair production is consid-
ered as pair creation in the classic Coulomb potential of a charge moving along
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a straight line. Such an approach allows one [35] to investigate the impact-
parameter-dependent total probability of the pair creation P (b), which by deˇn-
ition is connected with the total cross section σ =

∫
P (b)d2b. As was noticed

in [23], the probability of single-pair production calculated to lowest order in
the ˇne structure constant at small impact parameters exceeds one, thus violating
unitarity. This excess begins at impact parameters smaller than the Compton
wavelength of the electron λc = 1/m = 386 fm and at energies of practical
interest (RHIC & LHC).

Allowance for the ˇnite size of colliding nuclei does not remedy the situation,
because that would affect only the impact parameters comparable to the nuclei
radii, which are much smaller than the Compton wavelength of the electron
R � λc.

As was shown in [36], this problem can be solved by taking into account the
possibility of multiple pair production, whose relative contribution grows with
energy and dominates at small impact parameters. Since this early publication,
much work has been done in this area (see, e.g., [37] and references therein)
with the statement common for all papers: the probability to produce n lepton
pairs in the Coulomb ˇeld of heavy ions colliding at ˇxed impact parameter
b can be approximately represented as a Poisson distribution, i.e., P (b, n) =
(Wn(b)/n!) e−W (b), where W (b) is the average multiplicity of pairs at a ˇxed
impact parameter.

Because of the somewhat controversial situation in the subject and its impor-
tance for the operation of relativistic heavy-ion colliders (RHIC & LHC), in the
present subsection we revisit the multiple pair production based on the powerful
Sudakov technique, which is very useful in calculations for high-energy processes.
Recently, it has been applied [38] to the calculation of Coulomb corrections to
single-lepton-pair production in relativistic heavy-ion collisions. Here we extend
this approach to get the probability of multiple pair (n � 2) production in rela-
tivistic heavy-ion collisions. For heavy ions with the charge numbers satisfying
the conditions Z1α ∼ Z2α � 1, Z1Z2α � 1, one needs full allowance of mul-
tiple Coulomb interaction of colliding nuclei, whereas the secondary interaction
of produced pairs (real or virtual) with the Coulomb ˇelds of colliding ions can
be neglected.

2.4.1. The Amplitude of n-Pair Production Process. The typical FD describing
the n-lepton-pair production in the collision of relativistic nuclei with atomic
numbers A1, A2, with ne exchanged photons between colliding nuclei as well
as screening effects, e.g., the insertions of ns LBL scattering blocks, is drawn
in Fig. 11.

Upper and lower blocks in Fig. 11 describe amplitudes of interaction of virtual
photons with nuclei. They contain the complete set of (ne + n + 2ns)! Feynman
diagrams. To avoid the multiple counting in what follows, we will multiply the
relevant amplitude by the factor 1/(ne!ns!(2!)2ns).
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Fig. 11. The peripheral process of creation of n lepton pairs with ne photon exchanges
between nuclei A1, A2 and ns light-by-light scattering blocks

As was mentioned above, we restrict ourselves to ions with charge numbers
such that

Z1α ∼ Z2α � 1, Z1Z2α � 1, (2.127)

which permits us to omit the multiphoton exchanges between the produced pairs
and colliding ions. The dominant mechanism is a production of a single lepton
pair per collision of equivalent photons, i.e., one lepton pair per two-photon
ladder. The alternative mechanism of multiple pair production per collision of
two equivalent photons is suppressed by inverse powers of Z1Z2.

For the description of a peripheral process of n-lepton-pair creation, i.e., the
process

A1(Z1, p1) + A2(Z2, p2) → A1(Z1, p
′
1) + A2(Z2, p

′
2)+

+ e+e−(r1) + . . . + e+e−(rn), ri = qi
+ + qi

−, (2.128)

it is convenient to use the Sudakov parameterization for the four-momentum of
all exchanged photons (for details, see [38])

ki = αip̃2 + βip̃1 + ki⊥, d4ki =
s

2
dαidβid

2ki⊥,

s = (p1 + p2)2, s � p2
i = M2

i � m2,
(2.129)

p̃1 = p1 − p2
p2
1

s
, p̃2 = p2 − p1

p2
2

s
,

p̃2
1 = p̃2

2 = O
(

M6

s2

)
, p̃1ki⊥ = p̃2ki⊥ = 0, s = 2p1p2 = 2p̃1p̃2.
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Here p̃i are light-like four-vectors built from pi, Mi are the masses of colliding
nuclei, m and s are the electron mass and the total center-of-mass energy.

The denominators of intermediate states of the nucleon Green functions for
upper and lower blocks are the same and have the following form:

−s
∑

i

αi −
( ∑

i

ki

)2

+ i0, s
∑

i

βi −
( ∑

i

ki

)2

+ i0. (2.130)

Peripheral process is characterized by small values of longitudinal Sudakov
parameters αi, βi and the transverse momenta of the order of electron mass

|αi| ∼ |βi| � 1, −k2
i⊥ ∼ m2. (2.131)

Further simpliˇcation follows from the form of the nominators of the exchanged
photon Green functions (we work in the Feynman gauge). Using the Gribov
representation for the metric tensor

gμν = g⊥μν +
2
s

(
p̃1

μp̃2
ν + p̃1

ν p̃2
μ
)
, (2.132)

it is easy to show that for the typical conversion of the nuclei currents Jμ(p1) and
Jμ(p2) only one term, which contains the scalar products of a nucleus current with
a four-momentum of another nucleus, becomes relevant (with power accuracy):

Jμ(p1)Jμ(p2) ≈
2
s
Jλ(p1)pλ

2Jσ(p2)pσ
1

(
1 + O

(M2

s

))
. (2.133)

It can be seen that the quantity Jμ(p1)p
μ
2/s remains ˇnite with the large values

of s. This fact provides great simpliˇcation of the spinor structure of the amplitude

ū(p′1)p̃2(p1 + χ1 + M1)p̃2 · · · (p1 + χN + M1)p̃2u(p1) ≈ sN+1N1,

ū(p′2)p̃1(p2 + η1 + M2)p̃1 · · · (p2 + ηN + M2)p̃1u(p2) ≈ sN+1N2, (2.134)

N1 =
1
s
ū(p′1)p̂2u(p1), N2 =

1
s
ū(p′2)p̂1u(p2).

Besides, we have
∑

|N1|2 =
∑

|N2|2 = 2 for the nuclei with the spin 1/2 and
|N1|2 = |N2|2 = 1 for the scalar one. Using the identity

∑
perm

1
αi1

1
αi1 + αi2

· · · 1
N∑

j=1

αij

=
N∏

i=1

1
αi

, (2.135)
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one can be convinced that the amplitude describing the upper and lower blocks
in Fig. 11 can be put in the form

I1 = N1

N∏
i=1

(
s

−sαi + i0
+

s

sαi + i0

)
,

I2 = N2

N∏
i=1

(
s

−sβi + i0
+

s

sβi + i0

) (2.136)

with N = ne + 2ns + n − 1.
These expressions contain all dependences on Sudakov parameters αi, βi (the

4-momenta of exchanged photons in the peripheral kinematics in denominators of
their Green functions can be considered as Euclidean two-vectors k2

i = sαiβi +
k2

i⊥ ≈ k2
i⊥ = −k2

i ).
At this stage the integration over Sudakov parameters can be done, because

the dependence of the amplitude on αi, βi provides the convergence of the
relevant integrals

∫
I1

N∏
i=1

dαi = (2πi)NN1,

∫
I2

N∏
i=1

dβi = (2πi)NN2. (2.137)

Let us now consider the single-pair production. The amplitude of the
process (2.128) in its lowest order (Born approximation) reads [38]

M
(1)
(0) = is(8πα)2Z1Z2N1N2

Bαβpα
1 pβ

2

sq1q2
, Bαβ = v̄(q+)Oαβu(q−), (2.138)

Bαβ is the Compton tensor [38] for pair creation by two virtual photons with
polarization vectors e1(q1), e2(q2); q1(2) are the 4-momenta of exchanged photons
and r = q+ + q−. Strictly speaking, the squares of these 4-vectors q2

i do not
vanish in the limit qi → 0. This fact becomes essential when one calculates the
total cross section of a single-pair production process. For the case of two or
more pair production (which is our case), the replacement q2

i = −q2
i can safely

be done.
Using the gauge invariance

qα
1 Bαβ = qβ

2 Bαβ = 0, (2.139)

one can perform the replacement

Bαβpα
1 pβ

2

s
=

Bαβeα
1 eβ

2

s̃1
|q1||q2|, eα

i =
qα
i⊥
|qi|

, s̃1 = sα2β1. (2.140)
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The quantity s̃1 is related to the square of the invariant mass of a pair:

s1 = (q1 + q2)2 = s̃1 − (q1 + q2)2 = (q+ + q−)2. (2.141)

Two-dimensional vectors ei can be interpreted as polarization vectors of ex-
changed virtual photons.

Using (2.139)Ä(2.141), one can rewrite the Born amplitude (2.138) in a form

M
(1)
(0) = isN1N2B(q1, q2), (2.142a)

B(q1, q2) = (8πα)2Z1Z2
Bαβeα

1 eβ
2

s̃1|q1||q2|
. (2.142b)

Now we are able to construct the amplitude for the process of n-pair produc-
tion. Bearing in mind the expressions (2.137), the matrix element of two-pair
production can be represented as the convolution of two Born terms from the
expression (2.142b):

M
(2)
(0) = i2sN1N2

∫
B(k, k − r1)B(q − k, q − r2 − k)

d2k
8π2

. (2.143)

A straightforward generalization to the matrix element in the case of n-pair
production reads

M
(n)
(0) = insN1N2

∫ n−1∏
i=1

(
B(ki, ki − ri)

d2ki

8π2

)
B(h, h − rn), (2.144)

h = q −
n−1∑
i=1

ki. (2.145)

Thus, one can see that the amplitude for multiple pair production is solely
determined by the convolution of the amplitudes corresponding to single-pair
production.

In the language of the AGK unitarity rules, this result can be interpreted as
unitarity cut through all exchanged Pomerons [38].

2.4.2. The Coulomb Exchanges between Ions. Let us now consider the effect
of m photon exchanges between nuclei A1, A2. The arguments given above
lead to the following matrix element for the process of n-pair production with m
photon exchanges among the colliding ions:

M
(n)
(m) =

insN1N2

m!

∫ m∏
j=1

(
−iαZ1Z2

χ2
j + λ2

d2χj

π

)
×

×
∫ n−1∏

i=1

(
B(ki, ki − ri)

d2ki

8π2

)
B(kn, kn − rn), kn = q −

n−1∑
i=1

ki −
m∑

i=1

χi.

(2.146)
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Another effect which we take into account is the possibility of the ionÄion
interaction through the LBL blocks (screening effect in Fig. 12), which in the
AGK language [39] is equivalent to the exchange by additional uncut Pomerons.
It is associated with the iteration of a typical kernel

L

∫
Y (l) d2l, (2.147a)

Y (l) =
(α2Z1Z2)2

32π4

∫
P

|l1||l2||l1 − l||l2 + l|d
2l1d2l2

ds̃1

s̃1
2 , (2.147b)

P = Παβγδeα
1 (l1)e

β
2 (l1 − l)eγ

3(l2)eδ
4(l2 + l), (2.147c)

Fig. 12. Typical kernel of the
ionÄion interaction through
the LBL blocks

where we rearrange the ®extra¯ phase volume of lon-
gitudinal Sudakov parameters α2, β1 in terms of in-
variant mass square of LBL block and extract ex-
plicitly the boost degree of freedom of LBL block:

∫
dα2dβ1

s(α2β1)2
=

∫
dβ1

β1

∫
ds̃1

s̃2
1

= L

∫
ds̃1

s̃2
1

,

(2.148)

L = ln(γ1γ2), s̃1 = (l1 + l2)2 > 4m2.

The structure (2.147a) entered the matrix ele-
ment (2.146) in the compact form

1
ns!

ns∏
i=1

(
LY (li)d2li

)
. (2.149)

The real part of (2.147c) (equal to one half of its s-channel discontinuity) is
related with (2.142b) as

Re Παβγδeα
1 (l1)e

β
2 (l1−l)eγ

3(l2)eδ
4(l2+l) =

1
2

∫
Bαβ(l1, r−l1)eα

1 (l1)e
β
2 (r−l1)×

× Bγδ(l1 − l, r + l − l1)e
γ
1 (l1 − l)eδ

2(r + l − l1) dΦr, (2.150)

where dΦr is the phase volume of the intermediate pair:

dΦr =
δ4(r − q+ − q−)d3q+ d3q−

(2π)22ε+2ε−
. (2.151)

We will show later that the imaginary part of Π is irrelevant either for the total
cross section or for the probability of n-pair production distribution.
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2.4.3. The Impact-Parameter Representation for the Amplitude. The last step
in building the matrix element for the process of n-real-pair creation consists in
transformation of the above-obtained expressions in the impact-parameter repre-
sentation and summation over all eikonal photons and LBL blocks. For this aim,
we introduce the unity factor through the identity:

∫
δ2

(
kn − q +

n−1∑
i=1

ki +
ns∑
i=1

χi +
n∑

i=1

lm

)
d2kn =

1
4

∫
e−iqρ×

× exp

[
iρ

(
kn +

n−1∑
i=1

ki +
ns∑
i=1

χi +
n∑

i=1

lm

)]
d2kn

π

d2ρ

π
= 1. (2.152)

Using this expression, the summation in ne and ns can be easily done with the
result

M (n) =
inπs

2
N1N2

∫
e−iqρ eiΨ(ρλ) e−L[A(ρ)/2+iϕ(ρ)]×

×
n∏

i=1

B̃(ρ, ri)
d2ρ

π
, n � 2, (2.153)

with

A(ρ)
2

+ iϕ(ρ) =
∫

Y (l) eilρ d2l
π

,

(2.154)

B̃(ρ, ri) =
∫

B(k,k − ri) eikρ d2k
8π2

,

Ψ(ρλ) = −αZ1Z2

∫
eiχρ

χ2 + λ2

d2χ

π
= −2αZ1Z2K0(λρ), (2.155)

where K0(λρ) is modiˇed Bessel function (Macdonald function).
The phase volume of ˇnal state which consists of the scattered nuclei and n

pairs can be written in the following form:

dΓn+2 =
n∏

i=1

(
d3q+ d3q−

(2π)62ε+2ε−

)
1

(2π)2
d3p′1 d3p′2
2ε′12ε′2

δ4

(
p1+p2−p′1−p′2−

n∑
i=1

ri

)
=

=
n∏

i=1

(
L

(2π)4
d2ri

2
dsi dΦi

)
d2q

2s(2π)2
, (2.156)

with q = p′1⊥.
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The cross section of n-pair production has the form

dσn =
1
8s

|Mn|2
n!

dΓn+2. (2.157)

Statistical factor 1/n! is included to take into account the identity of pairs. Using
the expressions (2.152)Ä(2.156), we get

dσn

d2ρ
= Pn(ρ), Pn(ρ) =

(LA1(ρ))n

n!
e−LA1(ρ), n � 2 (2.158)

with

A1(ρ) =
1

25π4

∫
|B̃(ρ, r)|2ds1 d2r dΦr. (2.159)

It can be easily recognized that for A(ρ) from (2.154)

A(ρ) = A1(ρ), (2.160)

thus conˇrming the Poisson character of probability distribution in impact-parame-
ter representation.

Let us mention that the effect of eikonal photons, as well as the imaginary
part of the amplitude corresponding to LBL blocks, does not modify the total
cross section as well as differential cross section integrated over phase volume
of ˇnal nuclei. Really, integrating the square of the amplitude (2.153) over the
phase volume, one immediately obtains

∫
eiq(ρ1−ρ2) ei{[ψ(ρ1)−ψ(ρ2)]−L[ϕ(ρ1)−ϕ(ρ2)]}f(ρ1)f(ρ2)

d2q
π

d2ρ1

π

d2ρ2

π
=

=
∫

f2(ρ)
d2ρ

π
.

Nevertheless, the exclusive cross section is sensitive to both these factors.
The expression (2.159) can be simpliˇed if one neglects the dependence of

Compton tensor on external photons virtualities

Bαβ(k, r) eα eβ → Bαβ(0, r) eα eβ (2.161)

and use the well-known relation [4]:

∞∫
4m2

∑ ∣∣∣Bαβ(0, r) eα eβ
∣∣∣2 ds1 dΦr

s2
1

=

=
1

8π2α2

∞∫
4m2

ds1

s1
σγγ→e+e−(s) =

7
36πm2

. (2.162)
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As a result, the expression (2.159) can be cast in the form

A(ρ) =
7

18π2m2
(α2Z1Z2)2I(ρ),

I(ρ) =

m∫
eiρ(k1−k2)

|k1||k1 − r||k2||k2 − r|
d2r
π

d2k1

π

d2k2

π
= (2.163)

=

m∫
eiχρ

|k||k − χ||k′||k′ + χ|
d2χ

π

d2k
π

d2k′

π
= (2.164)

=
∫

eiχρ ln2

(
m2

χ2

)
d2χ

π
≈ 16

ρ2
(ln (ρm) + O(1)) , (2.165)

where we introduce the cut-off parameter |k| < m as a result of the fast decreasing
of matrix element of pair production by two photons. For the case of heavy-
lepton production (μ or τ ), the upper limit must be replaced by quantity Q,
which can be associated with maximal momentum transferred to nucleus without
its disintegration. For the case ρ m � 1, one has

A(ρ) ≈ 56
9

(α2Z1Z2)2

π2(ρm)2
(ln (ρm) + O(1)) , (2.166)

which is in agreement with the result obtained in [37].
Our formula (2.158) can be applied to the case n = 0 (the probability of

elastic nuclei scattering). The case n = 1 needs a bit more accurate consideration.
The expression for σ1 can be cast in the following form:

σ1 = σB + L

∫
A(ρ)

(
e−LA(ρ) − 1

)
d2ρ. (2.167)

The ˇrst term σB corresponds to the leading order of the Racah formula (see, for
instance, [23]) for the cross section in Born approximation. Inferring (2.167), one
has to take into account the longitudinal components of momenta of exchanged
photons which create the pair. The second term is responsible for the unitarity
corrections to the total cross section.

2.5. Measuring the Deviation from Rutherford Formulae. Modern exper-
iments with heavy ionÄlepton collisions provide the possibility to measure the
deviation of cross section of small-angle electron (positron)Äion elastic scattering
from the Rutherford formula due to taking into account the multiple virtual-photon
exchange.

First correct results for calculation of the lowest-order correction for the
cross section of elastic scattering of electron on the external Coulomb ˇeld of
the target nuclei with the charge Z were obtained about 60 years ago [5, 32].
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It was found that the correction to the Rutherford cross section dσR/dO =
(Zα)2/(4E2 sin4(θ/2)) has a form

dσ(2)

dO
=

π(Zα)3E
4p3 sin3(θ/2)

(1 − sin (θ/2)), (2.168)

and, besides even for the case of unpolarized initial electron the scattered one
obtains the polarization

ξ =
2Zαpm

E2

sin3 (θ/2) ln sin (θ/2)
(1 − v2 sin2 (θ/2)) cos (θ/2)

ν, (2.169)

where cos θ = nn′, ν = [n,n′] and n, n′ are the unit vectors along the directions
of the initial and the scattered electrons motion (we imply the rest frame of the
heavy ion); θ is the scattering angle; E, p are the energy and the value of the
3-momentum of the electrons. This correction changes the sign for the case of
positron scattering by the same nuclei. It is the reason of the nonzero charge
asymmetry, which in the lowest order of PT has a form (in relativistic case)

A(1) =
dσe−Z − dσe+Z

2dσR
= π(Zα) sin (θ/2)(1 − sin (θ/2)). (2.170)

In papers of the seventies [33, 34] the formula which takes into account
all orders of expansion on the x = Zα/v (v is the velocity of electron in the
rest frame of the nuclei) parameter was obtained for the asymmetry, using the
so-called eikonal approximation. The answer is

A∞ = A = πx cos (ϕ(x)) sin (θ/2) + O(θ2), (2.171)

with

cos (ϕ(x)) = Re Ω(x), Ω(x) =
Γ(1/2 + ix)Γ(1 − ix)
Γ(1/2 − ix)Γ(1 + ix)

. (2.172)

The expansion of ϕ(x) has a form

ϕ(x) = −4
[
(ln 2)x − ξ3x

3 + . . . + (−1)n x2n+1

2n + 1
(22n − 1)ξ2n+1 + . . .

]
,

(2.173)
n > 1,

with the Riemann ξn =
∞∑
1

(1/kn) function. At values comparable with unity

or exceeding it, we have cos (ϕ(x)) ∼ 1/(4x). In the paper [34] this result
was obtained by direct summing of the contribution of Feynman amplitudes with



PROCESSES WITH HEAVY-ION COLLISIONS 141

the multiphoton exchange between lepton and the nuclei. It was noted that the
real parameter of expansion is Zα/v, where v = p/E is the velocity of the
lepton. So, for instance, in the limit x � 1 the asymmetry does not depend on x:
A = (π/4) sin (θ/2).

Following the paper [33] (see also [1]), we obtain for the high-energy elastic
scattering amplitude of electron with energy E on Coulomb ˇeld in eikonal
approximation

f(q) = −iE

∞∫
0

ρ dρ J0(ρq) eiκ(ρ), (2.174)

where ρ is the impact parameter; q = 2E sin (θ/2) is the momentum transferred
to the nuclei; θ is the electron scattering angle (Laboratory r.f. implied); J0(z) is
the Bessel function.

We use the eikonal phase in the ˇrst and second approximation on the
Coulomb ˇeld [1] κ(ρ) = κ0(ρ) + κ1(ρ) with

κ0(ρ) = −
a∫

−a

V (ρ, z)dz, κ1(ρ) = −ρ2

E

∞∫
−∞

∂

∂ρ2
V 2(ρ, z) dz,

with the potential of Coulomb ˇeld

V (ρ, z) =
ν sign (e)√

ρ2 + z2
, ν = Zα, (2.175)

and a is the Coulomb regularizing parameter a � ρ. A simple calculation gives
(sign (e) = 1)

κ0(ρ) = 2ν ln
( ρ

2a

)
, κ1(ρ) =

πν2

2Eρ
. (2.176)

Keeping in mind |κ0| � |κ1|, we obtain for the amplitude

f(q) = −iE

∞∫
0

ρ dρ J0(ρq)
( ρ

2a

)2iν
(

1 + i
πν2

2ρE

)
. (2.177)

Providing the ρ integration, we use [21]

∞∫
0

xμJ0(qx) dx = 2μ(q)−μ−1 Γ((1 + μ)/2)
Γ((1 − μ)/2)

. (2.178)
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As a result, we obtain

f(q) = − νE

2q2
(aq)−2iν Γ(1 + iν)

Γ(1 − iν)

[
1 − πνq

4E
Ω(ν)

]
, (2.179)

with Ω(x) given above. For the cross section we obtain

dσ = dσR

[
1 − πx sin

(
θ

2

)
Re Ω(x)

]
. (2.180)

Expression for the asymmetry (2.171) follows immediately.
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