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The review paper presents generalization of d'Alembert's variational principle: the dynamics
of a quantum system for an external observer is deˇned by the exact equilibrium of all acting in
the system forces, including the random quantum force �j, ∀�. Special attention is payed to the
systems with (hidden) symmetries. It is shown how the symmetry reduces the number of quantum
degrees of freedom down to the independent ones. The sine-Gordon model is considered as an ex-
ample of such a ˇeld theory with symmetry. It is shown why the particles S matrix is trivial in this
model.
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Preface

Present paper is the review of the work which was performed after my ˇrst
paper [1]. I returned from time to time to the idea [1] that it seems interesting to
embed the total probability conservation condition into the quantum ˇeld theory
formalism and discuss it with Alexei Sissakian during our team-work. It seems
unnecessary to note the suggestion that the S matrix is the unitary operator and it
is not evident why this attempt can give something new. But it turns out that there
exists the correspondence between the quantum theory and the classic one which is
independent of the value of quantum corrections. Besides this, new quantum ˇeld

∗E-mail: joseph@jinr.ru
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theory is free from divergences and the value of quantum corrections ingenuously
depends on the topology of classical ˇeld. All that is new from the point of view
of ordinary theory and at last Alexei Sissakian proposed to write on paper all
results in detail. Present introductory paper is devoted to the simplest examples,
and more interesting ˇeld theory models will be published later.

1. INTRODUCTION

The basis of the method of calculations is the following [1]. The S-matrix
unitarity condition, S†S = 1, in terms of amplitudes, S = 1 + iA, looks as
follows:

iA†A = (A − A†). (1.1)

The nonlinearity of this equality points on existence of the cancellations mech-
anism (of the real part of amplitude) which reduces quadratic form down the
linear one. Our purpose is to show how this reduction removes the ®unwanted¯
contributions∗.

One may consider the simplest vacuum-into-vacuum transition probability,
|Z|2, as the main quantity, where Z is the functional integral over ˇelds,

Z =
∫

Dϕ eiS(ϕ), Dϕ =
∏
x

dϕ(x). (1.2)

One may include into the action, S, also the linear over ˇeld ϕ term,∫
dxJ(x)ϕ(x) (1.3)

to describe production of particles. We will assume on the early stages that
J = 0. Then the vacuum-into-vacuum transition probability is

|Z|2 =
∫

Dϕ+Dϕ∗
− eiS(ϕ+)−iS∗(ϕ−), (1.4)

where ϕ+ and ϕ− are completely independent ˇelds.

∗This means that the theory must be formulated directly in terms of probability. But notice
that it is the frequently used method of particle physics. For example, one must integrate over
unobserved ˇnal state in the inclusive approach to the multiple production phenomena. Another
example: describing the very high multiplicity (VHM) processes, the number of produced particles
n must be considered as the dynamical parameter. In the frame of S-matrix thermodynamics, where
the ®rough¯ description of ˇnal state is used, one must also integrate over ˇnal particles momenta.
In all cases one must consider quantities ∼ |A|2 directly, where A is the corresponding amplitude.



1016 MANJAVIDZE J.

It can be shown that Eq. (1.1) means that a reduced form must also exist [1]:

|Z|2 = lim
j=e=0

eiK̂(j,e)

∫
DMeiU(ϕ,e), (1.5)

where K̂ = K̂(j, e) is a deˇnite differential operator over j(x) and e(x), see
the examples (2.42), (6.7). The expansion of exp {iK̂} generates perturbation
series. The functional U(ϕ, e) introduces interaction among quantum degrees of
freedom, and the integral measure is δ-functional:

DM =
∏
x

dϕ(x)δ
(

δS(ϕ)
δϕ(x)

+ �j(x)
)

. (1.6)

Sometimes the δ-like measure [2] is called in mathematical literature as the ®Dirac
measure¯. It follows from (1.6) that

Å the quantum system for an external observer looks like classical which is
excited by the external random force �j, ∀�.

The established generalized correspondence principle∗ is the main conse-
quence of Eq. (1.1). Therefore the complete set of acceptable ˇeld states for
external observer∗∗ is known having (1.6).

It is important that the restricted problem is considered. We will calculate the
imaginary part of amplitude believing that it will be sufˇcient for us. In this case,
the unmeasurable phase of amplitude stays undeˇned∗∗∗. A main mathematical
problem in the searching for representation (1.5) is to ˇnd the way how to ˇnd
the imaginary part from the modulo square of amplitude. To be more precise, we
will ˇnd the imaginary part as a result of cancellation of ®unwanted¯ contribution
in the modulo square of amplitude.

The δ-function (1.6) solves the problem of deˇnition of contributions into the
path integral but cannot solve the problem completely since the action of operator
K̂ remains unknown. It must be noted that exp {iK̂} generates the asymptotic
series ordinary in quantum theories [3], and it seems that δ-like measure gives
nothing new∗∗∗∗. But this is not entirely so. I would like to draw attention to the
appearance of source of quantum excitations �j in the r.h.s. of classical Lagrange
equation, i.e., the changes of l.h.s. in equation of motion lead to the change of j.
It is crucially important that (1.6) is rightful independently of the value of �.

∗This formulation of the principle was offered by A. Sissakian.
∗∗Since the ®probability¯ is considered
∗∗∗Therewith why must the calculations of unnecessary, i.e., unmeasurable, phase be performed?

Just in this sense the unitarity condition (1.1) is a necessary one. It says that the real part is the
®unwanted¯ part of the amplitude.

∗∗∗∗Looking at the approach from the point of view of the stationary phase methods. In other
words, one can think that the present approach gives nothing new to Bohr's correspondence principle.
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The theory deˇned on the Dirac measure (1.6) for this reason has quite
unexpected properties, e.g., allows one to perform transformation of the path
integral variables. So, it will be shown that in theories with symmetry the
reduced form of representation (1.5) exists:

|Z|2 = lim
j=e=0

eiK̂(j,e)

∫
DM(j) eiU(ϕc,e), (1.7)

where K̂ is again the perturbations generating operator, and U introduces inter-
actions. Note that K̂ and U in (1.7) depend on the sets {jξk

, jηk
}, {eξk

, eξk
} of

new variables. One must take this auxiliary variables equal to zero at the very
end of calculations. At the same time, the transformed measure DM is again
δ-like:

DM =
∏
k

∏
t

dξk(t)dηk(t)×

× δ

(
ξ̇k(t) − δh

δηk(t)
− jξk

(t)
)

δ

(
η̇k(t) +

δh

δξk(t)
+ jηk

(t)
)

, (1.8)

where t is the time variable, and h = h(η) is the transformed Hamiltonian:

h(η) = H(ϕc), (1.9)

where ϕc = ϕc(x; ξ, η) is the given solution of Lagrange equation at j = 0.
Formula (1.8) is the main result. Therefore, as follows from this formula, the

problem of the quantum ˇeld theory with symmetry is reduced down to quantum
mechanical one, with potential deˇned by ϕc.

(A) The Dirac measure (1.6) prescribes that |Z|2 is deˇned by the sum of
strict solutions of equation of motion:

δS(ϕ)
δϕ(x)

= �j(x), (1.10)

in vicinity of j = 0, i.e., by deˇnition Eq. (1.10) must be solved expanding
the solution over j∗. Following the ordinary rule, we obviously leave the con-
tribution which ensures the minimal vacuum energy. On the other hand, having
theory on Dirac measure, which calls for the complete set of contributions, we
have offered another selection rule in our dynamic theory of S matrix. Namely,
we simply propose∗∗ that

∗It should be noted that it may be that the limit j = 0 is absent. For example, it may happen if
the system is unstable against symmetry breaking. This important possibility will not be considered
in the present paper.

∗∗This selection rule is used widely in classical mechanics, see, e.g., formulation of
KolmogorovÄArnoldÄMozer (KAM) theorem [4].
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Å the largest terms in the sum over solutions of (1.10) are signiˇcant from the
physics point of view.

To be more precise, this selection rule means that if G is the symmetry
of action and TG∗ is the symmetry of the extremum of the action, then in the
situation of a general position only the trajectories with the highest dimension
factor group, (G/TG∗), are sufˇcient.

It will be seen that this kind of deˇnition of the ®ground state¯ extracts the
maximally ®feeling¯ symmetry contributions since other ones will be realized
on a zero measure, or, more precisely, only maximal symmetry breaking ˇeld
conˇgurations, ϕc, are most probable. We will call such a solution of the problem
the ˇeld theory with symmetry. It is the main formal distinction of the present
approach.

It is important here that the zero width of δ-function excludes the interference
among contributions from various trajectories. Therefore, the formalism naturally
takes into account the orthogonality of Hilbert spaces built on various trajectories.
This is achieved through the special boundary conditions in the frame of which
the total action of the product

Z · Z∗ = 〈in|out〉 〈out|in〉

always describes a closed path, i.e., the necessary for d'Alembert variational
principle time reversible motion. It points to the necessity to be careful with
boundary conditions in a considered formalism∗.

(B) The Dowker theorem [5] insists that the semiclassical approximation to
be exact for path integrals on the simple Lie group manifolds. For this reason one
can expect that the quantum-mechanical problems, as well as the ˇeld-theoretical
ones, may be at least transparent to the symmetry manifolds.

However, we know how to construct correctly the path integral formalism
only in the restricted case of canonical variables [6]. At the ˇrst sight, the
path integrals in terms of generalized coordinates can be deˇned through the
corresponding transformation. But there is an opinion that it is impossible to
perform the transformation of path-integral variables: the naive transformation
of coordinates gives wrong results because of their stochastic nature in quantum
theories∗∗. That is why such a general principle as the conservation of total
probability (1.1) should play an important role. Indeed, it is evident that δ-like

∗The necessity to count all possible boundary conditions of a given problem was mentioned to
the author by L. Lipatov.

∗∗One can ˇnd corresponding examples in [6,7]. The most popular method of transformation of
the path-integral variables is a ®time-sliced¯ method [8], which induces corrections to the interaction
Lagrangian proportional at least to �2 [9], i.e., the problem of transformation is of a quantum nature.
For this reason the usage of the ®time-sliced¯ method in general case is cumbersome, see also [10].
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Dirac measure (1.6) allows one to perform arbitrary transformation [1] just as in
the classical mechanics.

Therefore, the theory on Dirac measure straight away leads to the new for
quantum ˇeld theory selection rule and latter one gives the theory with symmetry.
All this is attained by transition to the appropriate variables, (ξ, η) ∈ W in our
notations. The last circumstance means that we go away from ordinary spectral
analysis of quantum 	uctuations to the description of the classical trajectories
topology conserving deformations, since ϕc = ϕc(x; ξ, η) is given, of symmetry
manifold, W ∗. It must be underlined that our method of transformation is right-
ful for arbitrary case, i.e., not only for simple Lie group manifolds, where the
semiclassical approximation is exact.

Next, the dimensions of initial phase space of ˇeld and of the transformed
space of independent degrees of freedom, i.e., of the symmetry manifold, will not
coincide. That means that the mapping to the independent degrees of freedom,
(ξ, η), will be singular. For this reason the transformation

ϕc : ϕ → (ξ, η)

will be irreversible and the notion of particle should be considered as the wrong
idea of quantum ˇeld theory with symmetry∗∗.

(C) It will be shown that the result of action of the operator exp {iK̂}
for transformed theories may be expressed as the sum of contributions on all
boundaries ∂W :

|Z|2 = |Z|2sc +
∑

k

∫
dξk(0)

∂

∂ξk(0)
Cξ +

∑
k

∫
dηk(0)

∂

∂ηk(0)
Cη, (1.11)

where the ˇrst term presents a semiclassical contribution and Cξ, Cη contain
quantum corrections. This result shows that the quantum corrections greatly
depend on the topology of classical trajectory.

This important observation solves a number of problems. For instance, it is
known that the Coulomb trajectory is closed because of BargmanÄFock symmetry,
independent of the initial conditions. For this reason the corrections on ∂W of
the Coulomb problem are canceled and the H-atom problem is pure semiclassical.
We will ˇnd the same for the sine-Gordon model [11] as the consequence of
mapping on the Arnold hypertorus [12].

∗It will be seen from our selection rule that the measure on which particles mechanics is realized
is equal to zero in the ˇeld theories with symmetry.

∗∗Considering gluon production in the frame of YangÄMills ˇeld theory with symmetry the
conclusion that gluons cannot be created should be conˇrmed by direct calculations, taking into
account also the quark ˇelds. That was mentioned to the author by P. Culish and will be shown in
later publications. It is noticeable that the mapping in quantum mechanics is not singular and for this
reason both representations before and after transformation have the equal status.
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It is extremely important to keep in mind that the symmetry constraints cannot
be taken into account perturbatively over the interaction constant, g. Indeed, we
will see below that the expansion in polynomial theories with symmetry is
performed in terms of the inverse interaction constant, 1/g. It points to the
absence of the weak-coupling limit in such theories.

In the end our present aim is
Å to ˇnd representation (1.5);
Å to investigate the main properties of theory deˇned on the Dirac mea-

sure (1.6);
Å to investigate the structure of perturbation theory generated by operator

K̂ on the measure (1.8);
Å to ˇnd particles production probabilities for theories with symmetry.
I understand that the perturbations scheme in terms of new variables, espe-

cially in theories with symmetry, is outside the habitual one (see [13Ä15]) and for
this reason the approach will be described in more detail, giving step-by-step the
properties of a new quantization scheme by appropriate examples. I think that
such a nonformal scheme of the description is much more transparent, although
the text may contain reiterations with the used method of description far from
completeness.

2. SIMPLEST EXAMPLES

2.1. Introduction. As has been mentioned above, a technical aspect of our
idea is the suggestion to calculate the probability without the intermediate step of
calculations of the amplitudes. In the present section we restrict ourselves to the
simplest problem Å to the motion of a particle in a potential V (x).

Let the amplitude A(x2, T ; x1, 0) describes the motion of the particle from
the point x1 to the point x2 during the time T . Using the spectral representation:

A(x2, T ; x1, 0) =
∑

n

ψn(x2)ψ∗
n(x1) eiEnT , (2.1)

we have for probability:

W (x2, T ; x1, 0) =
∑

n1,n2

ψn1(x2)ψ∗
n1

(x1)ψ∗
n2

(x2)ψn2(x1)ei(En1−En2)T . (2.2)

Taking into account the ortho-normalizability condition:∫
dxψn(x)ψ∗

m(x) = δn,m, (2.3)

the total probability:∫
dx2 dx1W (x2, T ; x1, 0) =

∑
n

δn,n = Ω (2.4)
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is the time-independent quantity which coincides with the number of existing
physics states. Therefore, the amplitude (2.1) is time-dependent, but the total
probability (2.4) is not. This means that the time is the unwanted parameter from
the point of view of experiment described by the probability (2.4). Notice also
the role of boundary condition (2.3).

The quantity (2.4) is of no interest to experiment. Much more interesting
is the probability ρ(E), where E is the energy experimentally measured. The
Fourier transform of A(x2, T ; x1, 0) with respect to T

a(x2, x1; E) =
∑

n

ψn(x2)ψ∗
n(x1)

E − (En + iε)
(2.5)

leads to the probability:

ω(x2, x1; E) = |a(x2, x1; E)|2 =
∑

n1,n2

ψn1(x2)ψ∗
n1

(x1)
E − (En1 + iε)

ψ∗
n2

(x2)ψn2(x1)
E − (En2 − iε)

(2.6)

and the total probability:

ρ(E) =
∫

dx1 dx2 ω(x2, x1; E) =
∑

n

∣∣∣∣ 1
E − En − iε

∣∣∣∣
2

=

=
1
ε

∑
n

Im
1

E − En − iε
=

π

ε

∑
n

δ(E − En). (2.7)

The total probability ρ(E) again coincides with the number of existing states but
for all that it is seen that the unphysical, i.e., needless, states from the point of
view of measurement with E �= En were canceled∗.

Let us use now the proper-time representation:

a(x1, x2; E) =
∑

n

Ψn(x1)Ψ∗
n(x2)i

∞∫
0

dT ei(E−En+iε)T (2.8)

to see the integral form of cancellation of unwanted contributions and insert it
into deˇnition of total probability (ε → +0):

ρ(E) =
∫

dx1 dx2|a(x1, x2; E)|2 =

=
∑

n

∞∫
0

dT+dT− e−(T++T−)ε ei(E−En)(T+−T−). (2.9)

∗Such contributions enter into the real part of a(x2, x1; E).
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We will introduce new time variables instead of T±:

T± = T ± τ, (2.10)

where, as it follows from Jacobian of transformation, |τ | � T, 0 � T � ∞. But
we can put |τ | � ∞ since T ∼ 1/ε → ∞ is essential in integral over T . As a
result,

ρ(E) = 4π
∑

n

∞∫
0

dT e−2εT

+∞∫
−∞

dτ

π
e2i(E−En)τ =

π

ε

∑
n

δ(E − En). (2.11)

In the last integral all contributions with E �= En have been canceled and only the
acceptable from physics point of view contributions with E = En have survived.
This peculiarity of considered interference phenomena which is the consequence
of unitarity condition, i.e., its ability to extract only physics states, would have
the signiˇcant applications.

Note also that the product of amplitudes a · a∗ was ®linearized¯ after intro-
duction of ®virtual¯ time τ = (T+ − T−)/2, i.e., after transformation (2.10) we
start calculation of the imaginary part. The meaning of such variables will be
discussed also in Subsec. 2.2.

2.2. The Generalized Stationary-Phase Method.
2.2.1. 0-Dimensional Model. Let us practise considering the ®0-dimensional¯

integral:

A =

+∞∫
−∞

dx

(2π)1/2
exp
[
i

(
1
2
ax2 +

1
3
bx3

)]
, (2.12)

with Im a → +0 and b > 0. This example is useful since it allows one to illustrate
practically all technical tricks of the approach.

We want to compute the ®probability¯

R = |A|2 =

+∞∫
−∞

dx+ dx−
2π

exp
[
i

(
1
2
ax2

+ +
1
3
bx3

+

)
− i

(
1
2
a∗x2

− +
1
3
bx3

−

)]
.

(2.13)
New variables:

x± = x ± e (2.14)

will be introduced to ˇnd out the cancellation phenomenon. As a result,

R =

+∞∫
−∞

dx de

π
exp
[
−2(x2 + e2) Im a

]
exp
[
2i(Rea x + 2bx2)e

]
exp
(

2i
b

3
e3

)
,

(2.15)
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where the prescription that Im a → +0 has been used. Note that integrations are
performed along the real axis.

We will compute the integral over e perturbatively. For this purpose the
transformation:

F (e) = lim
j=e′=0

exp
(

1
2i

ĵê′
)

e2ijeF (e′), (2.16)

which is valid for any differentiable function, will be used. In (2.16), two
auxiliary variables j and e′ have been introduced and the ®hat¯ symbol means
the differential over corresponding quantity:

ĵ =
∂

∂j
, ê′ =

∂

∂e′
. (2.17)

The auxiliary variables must be taken equal to zero at the very end of calculations.
Choosing

ln F (e) = −2e2Im a + 2i
b

3
e3 (2.18)

we will ˇnd:

R = lim
j=e=0

exp
(

1
2i

ĵê

) +∞∫
−∞

dx e−2(x2+e2)Im a exp
(

2i
b

3
e3

)
δ(Re a x + bx2 + j).

(2.19)
Therefore, the destructive interference among two exponents in the product a · a∗

unambiguously determines both integrals, over x and over e. The integral over
difference e = (x+ −x−)/2 gives δ-function, and then this δ-function deˇnes the
contributions in the last integral over x = (x+ + x−)/2. Following the deˇnition
of δ-function only a strict solution of equation

Re a x + bx2 + j = 0 (2.20)

gives the contribution into R.
But one can note that this is not the complete solution of the problem: the

expansion of operator exponent exp { 1
2i ĵê} generates the asymptotic series. Note

also that it is impossible to remove the source, j, dependence (only harmonic
case, b = 0, is free from j).

Equation (2.20) at j = 0 has the solutions, at x1 = 0 and at x2 = −a/b.
Performing trivial transformation e → ie, ê → −iê of auxiliary variable we ˇnd
at the limit Im a = 0 that the contribution from x1 extremum (minimum) has the
expression∗:

R =
1
a

exp
(
−1

2
ĵê

)
(1 − 4bj/a2)−1/2 exp

(
2
b

3
e3

)
, (2.21)

∗The contribution of x2 leads to divergent series.
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and the expansion of an operator exponent gives the asymptotic series:

R =
1
a

∞∑
n=0

(−1)n (6n − 1)!!
n!

(
2b4

3a6

)n

, (−1)!! = 0!! = 1. (2.22)

This series is convergent in Borel's sense. Therefore the described destruc-
tive interference has not an action upon the value of perturbation series conver-
gence radii.

Let us calculate now R using stationary phase method. The contribution
from the minimum x1 gives (Im a = 0):

A = e−iĵx̂ exp
(
− i

2a
j2

)
exp
(

i
b

3
x3

)
(i/a)1/2. (2.23)

The corresponding ®probability¯ is

R =
1
a

e−i(ĵ+x̂+−ĵ−x̂−) exp
[
− i

2a
(j2

+ − j2
−)
]

exp
[
i
b

3
(x3

+ − x3
−)
]
. (2.24)

Introducing new auxiliary variables:

j± = j ± j1, x± = x ± e (2.25)

and, correspondingly,

ĵ± = (ĵ ± ĵ1)/2, x̂± = (x̂ ± ê)/2, (2.26)

we ˇnd from (2.24):

R =
1
a

exp
(
−1

2
ĵê

)
exp
(

2
b

3
e3

)
exp
(

2b

a2
ej2

)
. (2.27)

This expression does not coincide with (2.21), but it leads to the same asymptotic
series (2.22). We may conclude that both considered methods of calculation of
R are equivalent since the Borel regularization scheme of asymptotic series gives
a unique result.

The difference between these two methods of calculation is in different or-
ganization of perturbations. So, if F (e), instead of (2.18), is chosen in the form:

ln F (e) = −2e2Im a + 2i
b

3
e3 + 2ibx2e, (2.28)

we may ˇnd (2.27) straightforwardly.
Therefore, our method has the freedom in choice of (quantum) source j∗.

Indeed, the transition from perturbation theory with Eq. (2.18) to the theory with

∗This freedom was mentioned ˇrst by A.Ushveridze.
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Eq. (2.28) formally looks like the following transformation of the argument of
δ-function:

δ(ax + bx2 + j) = lim
e′=j′=0

e−iĵ′ ê′
ei(bx2+j)e′

δ(ax + j′). (2.29)

Here the transformation (2.16) of the Fourier image of δ-function was used.
Inserting Eq. (2.29) into (2.19) we easily ˇnd (2.27).

During analytic calculations it will be useful to have a corresponding quan-
tum sources of the new dynamical variables. Formally this will be done using
transformation (2.29). Note that this transformation will not lead to changing of
the Borel regularization procedure.

2.2.2. 1-Dimensional Model. Let us calculate now the probability using the
path-integral deˇnition of amplitudes [1]. Calculating the quantity

|A|2 = 〈in|out〉〈in|out〉∗ = 〈in|out〉〈out|in〉, (2.30)

the converging and diverging waves in the product A ·A∗ interfere in such a way
that the continuum of contributions cancels each other. Indeed, the amplitude

A(x2, T ; x1, 0) =

x(T )=x2∫
x(0)=x1

Dx

CT
e−iST (x), Dx =

T∏
t=0

dx(t)
(2π)1/2

, (2.31)

where the action ST is given by the expression:

ST (x) =

T∫
0

dt

(
1
2

ẋ2 − v(x)
)

, (2.32)

and CT is the standard normalization coefˇcient:

CT =

x(T )=x2∫
x(0)=x1

Dx exp
(

i

2

T∫
0

dt ẋ2

)
. (2.33)

Let us calculate the quantity

R(x2, T ; x1, 0) =

x±(T )=x2∫
x±(0)=x1

Dx+

CT

Dx−
C∗

T

e−iST (x+)+iST (x−). (2.34)

We assume for simplicity that the integration in (2.31) is performed over real
trajectories. Later a general case of complex trajectories will be considered.
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The convergence of functional integral at that is not important. One may
restrict the range of integration for better conˇdence, or introduce into the La-
grangian iε term, and later remove the restriction in expression (2.40). It is
interesting that the interference phenomena naturally regularize divergent inte-
grals of (2.31) type, accumulating divergence into δ-function.

In order to take into account explicitly the interference between contributions
of the trajectories x+(t) and x−(t) we shall go over from the integration over
two independent trajectories x+ and x− to the pair (x, e):

x±(t) = x(t) ± e(t). (2.35)

It must be stressed that the transformation (2.35) is linear and for this reason may
be done in the path integral. After substituting (2.35) into (2.34), the argument
of the exponent takes the form

ST (x + e) − ST (x − e) = 2

T∫
0

dt e(ẍ + v′(x)) − UT (x, e), (2.36)

where UT (x, e) is the remainder of the expansion in powers of e(t) (UT = O(e3)).
Note that in (2.36) we have discarded the ®surface¯ term

T∫
0

dt ∂t(eẋ) = e(T ) ẋ(T ) − e(0) ẋ(0) = 0, (2.37)

since the boundary points of the trajectories x+(0) = x−(0) = x1 and x+(T ) =
x−(T ) = x2 are not varied, i.e.,

e(0) = e(T ) = 0. (2.38)

Next,

Dx+ Dx− = JDxDe = 2πJ

T∏
t=0

dx(t)
∏

t�=0,T

de(t)
2π

, (2.39)

where J is an unimportant Jacobian of the transformation.
As a result of the replacement (2.35), we have

R(x2, T ; x1, 0) =

= 2πJ

x(T )=x2∫
x(0)=x1

Dx

|CT |2

e(T )=0∫
e(0)=0

De exp
[
2i

T∫
0

dt e(ẍ + v′(x)) + UT (x, e)
]
. (2.40)
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One can make use of the formula

eiUT (x,e) = eK̂(e′,j) eiUT (x,e′) exp
[
−2i

T∫
0

e(t)j(t)dt

]
, (2.41)

where we have introduced the operator

K̂(e, j) = lim
e=j=0

exp

⎧⎨
⎩− 1

2i

T∫
0

δ

δj(t)
δ

δe(t)

⎫⎬
⎭ , (2.42)

after which from (2.40) we have found that

R(x2, T ; x1, 0) = 2πJ eK̂(e′,j)

x(T )=x2∫
x(0)=x1

Dx

|CT |2
eiUT (x,e′)×

×
e(T )=0∫

e(0)=0

De exp

⎧⎨
⎩2i

T∫
0

dt(ẍ + v′(x) − j)e

⎫⎬
⎭ =

= 2πJ eK̂(e,j)

x(T )=x2∫
x(0)=x1

Dx

|CT |2
eiUT (x,e)

∏
t�=0,T

δ(ẍ + v′(x) − j), (2.43)

where the functional δ-function

∏
t�=0,T

δ(ẍ + v′(x) − j) =

e(T )=0∫
e(0)=0

De exp

⎧⎨
⎩2i

T∫
0

dt(ẍ + v′(x) − j)e

⎫⎬
⎭ (2.44)

has arisen as a result of total reduction of unnecessary contributions from the
point of view of equation of motion

ẍ(t) + V ′(x) = j(t). (2.45)

The operator (2.42) is Gaussian so that the system is perturbed by the random
force j(t).

If x(t) is the ®true¯ trajectory and the virtual deviation is e(t), then the
quantity e(ẍ + v′(x) − j) coincides with the virtual work. It must be equal to
zero in classical mechanics since only the time reversible motion is considered.
As a result, we came to equation of motion since e is arbitrary in classics.
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The difference ST (x+) − ST (x−) in (2.34) with boundary conditions (2.38)
coincides with the action of reversible motion. Upon the substitution (2.35), we
have identiˇed the mean trajectory, x(t), and the deviation from it, e(t). One
must integrate over e(t) in quantum case, in contrast to classical one. As a result,
the measure of the remaining path integral over mean trajectory x(t) takes the
Dirac δ-function form which unambiguously chooses the ®true¯ trajectory.

In other words, the proposed deˇnition of the measure of the path integral is
generalization of classical d'Alambert's principle on the quantum case. The theory
in the frame of this principle can take into account any external perturbations, j(t)
in our case, if the time reversibility of motion is conserved. In quantum case, the
reversibility is established through the boundary conditions (2.38). Next, one may
generalize the approach adding also the probe force which can lead to dynamical
symmetry breaking [16]∗.

In the semiclassical approximation K̂(e, j) = 1 and taking the limit e = j = 0
we ˇnd that

R(x2, T ; x1, 0) = 2πJ

x(T )=x2∫
x(0)=x1

Dx

|CT |2
∏

t�=0,T

δ(ẍ + v′(x)). (2.46)

Let the solution of the homogeneous equation

ẍ + v′(x) = 0 (2.47)

be xc(t), with xc(0) = x1 and xc(T ) = x2. Then

R(x2, T ; x1, 0) = 2πJ

x(T )=x2∫
x(0)=x1

Dx

|CT |2
∏

t�=0,T

δ(ẍ + v′′(xc)x). (2.48)

The remaining integral is calculated by the standard methods∗∗. As a result, we
ˇnd

R(x2, T ; x1, 0) =
1
2π

∣∣∣∣ ∂2ST (xc)
∂xc(0) ∂xc(T )

∣∣∣∣
xc(0)=x1,xc(T )=x2

. (2.49)

Next, let us recall that the full derivative of the classical action is

dS = p2dx2 − p1dx1, (2.50)

∗It is important that if the expectation value of the probe force is not equal to zero, then the
symmetry is broken. This important possibility will not be considered in the present work.

∗∗Here it is more convenient to represent (2.48) as a production of two Gaussian integrals; later
on more effective method of calculation of the functional determinant will be offered.
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where p2 and p1 are, respectively, the ˇnal and initial momenta. Noting this
deˇnition, ∣∣∣∣ ∂2ST

∂x1 ∂x2

∣∣∣∣ dx2 = dp1, (2.51)

we ˇnd that ∫
dx1 dx2R(x2, T ; x1, 0) =

∫
dx1 dp1

2π
= Ω2, (2.52)

which coincides with (2.4), i.e., it agrees with conservation of total probability
since (2.52) again coincides with the total number of physical states.

Deriving (2.52), we somewhat simplify the problem considering a unique
solution of Eq. (2.47). A more complicate and important examples will be con-
sidered in the next sections.

2.3. Complex Trajectories. Let us consider the one-dimensional motion with
ˇxed energy E on the complex trajectory∗. The corresponding amplitude has the
form:

A(x1, x2; E) = i

∞∫
0

dT eiET

x2=x(T )∫
x1=x(0)

DC+x eiSC+ (x), (2.53)

where the action

SC+(x) =
∫

C+

dt

(
1
2
ẋ2 − v(x)

)
(2.54)

and the measure

DC+x =
∏

t∈C+

dx(t)
(2π)1/2

(2.55)

are deˇned on the shifted in the upper half-time plane Mills' contour C+ =
C+(T ) [17]:

t → t + iε, ε → +0, 0 � t � T. (2.56)

Therefore, we will consider integration over real functions of complex variables:

x∗(t) = x(t∗). (2.57)

It must be underlined also that the boundary conditions in (2.53) have the classical
meaning, i.e., they do not vary, and x1, x2 are the real quantities.

∗The necessity to extend the formalism on the case of complex trajectories was mentioned to
the author by A. Slavnov.
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The probability looks as follows:

R(E) =

∞∫
0

eiE(T+−T−)

x±(T±)=x2∫
x±(0)=x1

DC+x+DC−x−×

× eiSC+(T+)(x+)−iSC−(T−)(x−), (2.58)

where C−(T ) = C∗
+(T ) is the time contour in the lower half of the complex time

plane.
New time variables

T± = T ± τ (2.59)

will be used. Considering Im E → +0 we can consider T and τ as the indepen-
dent variables:

0 � T � ∞, −∞ � τ � ∞. (2.60)

We will apply the boundary conditions, see (2.58):

x1 = x+(0) = x−(0), x2 = x+(T+) = x−(T−). (2.61)

Inserting (2.59) one can ˇnd in zero order over τ from (2.61) that

x+(0) = x−(0), x+(T ) = x−(T ). (2.62)

Now we will introduce also the mean trajectory x(t) = (x+(t) + x−(t))/2 and
the deviation e(t) from x(t):

x±(t) = x(t) ± e(t). (2.63)

We have considered e(t) and τ as the virtual quantities. The integrals over e
and τ will be calculated perturbatively. In zero order over e and τ , i.e., in the
semiclassical approximation, x is the classical path, and T is the total time of
classical motion. Note that one can do surely the linear transformations (2.63) in
the path integrals.

The higher terms over τ put unphysical constraints on the trajectory x(t):

d(2n+1)x(T )
dT (2n+1)

= 0, n = 0, 1, 2, . . . ,

since e(t) must be arbitrary. Therefore, to avoid this constraints and since the
boundaries have classical unvaried meaning, we will use the minimal boundary
conditions:

e(0) = e(T ) = 0, (2.64)
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which ensures the time reversibility. Note that it is sufˇcient to have (2.64) if the
integrals over e(t) are calculated perturbatively. At the same time,

x(0) = x1, x(T ) = x2. (2.65)

Let us extract now the linear over e and τ terms from the closed-path action:

SC+(T+)(x+) − SC−(T−)(x−) =

= −2τHT (x) −
∫

C(+)(T )

dt e(ẍ + v′(x)) − H̃T (x; τ) − UT (x, e), (2.66)

where
C(+)(T ) = C+(T ) + C−(T ) (2.67)

is the total-time path, HT is the Hamiltonian:

2HT (x) = − ∂

∂T
(SC+(T )(x) + SC−(T )(x)), (2.68)

and
−H̃T (x; τ) = SC+(T+τ)(x) − SC−(T−τ)(x) + 2τHT (x), (2.69)

−UT (x, e) = SC+(T )(x + e) − SC−(T )(x − e) +
∫

C(+)

dt e(ẍ + v′(x)) (2.70)

are the remainder terms, where v′(x) = ∂v(x)/∂x. Deriving the decomposi-
tion (2.66), the deˇnition

C−(T ) = C∗
+(T ) (2.71)

and the boundary conditions (2.64) were used.
One can ˇnd the compact form of expansion of

e−iH̃T (x;τ)−iUT (x,e)

over τ and e using formulae (2.16):

exp {−iH̃T (x; τ) − iUT (x, e)} = exp

⎧⎪⎨
⎪⎩

1
2i

ω̂τ̂ ′ − i

∫
C(+)(T )

dt ĵ(t)ê′(t)

⎫⎪⎬
⎪⎭×

× exp

⎧⎪⎨
⎪⎩2iωτ + i

∫
C(+)(T )

dt j(t)e(t)

⎫⎪⎬
⎪⎭ exp {−iH̃T (x; τ ′) − iUT (x, e′)}. (2.72)
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At the end of calculations the auxiliary variables (ω, τ ′, j, e′) should be taken
equal to zero.

Using (2.66) and (2.72) we ˇnd from (2.58) that

R(E) = 2π

∞∫
0

dT exp

{
1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt ĵ(t)ê(t)

}
×

×
∫

Dx exp {−iH̃T (x; τ) − iUT (x, e)}δ(E + ω − HT (x))×

×
∏
C(+)

δ(ẍ + v′(x) − j). (2.73)

The expansion over the differential operators:

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt ĵ(t)ê(t) =
1
2i

⎛
⎝ ∂

∂ω

∂

∂τ
+ Re

∫
C+

dt
δ

δj(t)
δ

δe(t)

⎞
⎠ (2.74)

will generate the perturbation series. We propose that it is summable in Borel
sense.

The ˇrst δ-function in (5.33) ˇxes the conservation of energy:

E + ω = HT (x), (2.75)

where E is the observed energy; HT (x) is the energy at the mean trajectory at
the time moment T , and ω is the energy of quantum 	uctuations. The second
δ-function∗∏
t∈C(+)

δ(ẍ + v′(x) − j) = (2π)2
∫ ∏

t∈C(+)

de(t)
π

δ(e(0))δ(e(T ))×

× exp
[
−2iRe

∫
C+

dt e(ẍ + v′(x) − j)
]

=

=
∏

t∈C+(T )

δ(Re (ẍ + v′(x) − j))δ(Im (ẍ + v′(x) − j)) (2.76)

∗Following shorthand entry of δ-function of the complex argument:∏

C(+)

δ(f(t)) =
∏

C+

δ(f(t))
∏

C−

δ(f(t)) =

=
∏

C+

δ(Re f(t) + iIm f(t))δ(Re f(t) − iIm f(t)) =
∏

C+

δ(Re f(t)) δ(Im f(t))

will be useful during calculations. The condition (2.57) is important here. The inessential constant
can be canceled by normalization. So, as a result of analytical continuation of C± on the real
axis the product of two δ-functions reduces to single one since δ2(Re f(x)) = δ(0)δ(Re f(x)) =
δ(0)δ(f(x)), and δ(0) must be canceled by normalization. Offered abbreviated notation will allow
one to consider δ-function on the complex time contour as the ordinary one.
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ˇxes the function x(t) of complex argument on C(+) completely by the equation

ẍ + v′(x) = j. (2.77)

The physics meaning of δ-function (2.76) was discussed in Subsec. 2.3 noting that
the unitarity condition of quantum theories plays the same role as d'Alambert's
variational principle in classical mechanics.

In (2.77), j(t) describes the external quantum force. The solution xj(t) of
this equation will be found expanding it over j(t):

xj(t) = xc(t) +
∫

dt1 G(t, t1)j(t1) + . . . (2.78)

This is sufˇcient since j(t) is the auxiliary variable∗. In this decomposition xc(t)
is the strict solution of unperturbed equation:

ẍ + v′(x) = 0. (2.79)

Note that the functional δ-function in (2.76) does not contain the end-point values
of x(t), at t = 0 and t = T . This means that if we integrate over x1 and x2,
then the initial conditions to Eq. (2.79) are not ˇxed and the integration over them
must be performed.

Inserting (2.78) into (2.77) we ˇnd the equation for the Green function:

(∂2 + v′′(xc))tG(t, t′; xc) = δ(t − t′). (2.80)

It is too hard to ˇnd the exact solution of this equation if xc(t) is the nontrivial
function of t. We will see that the canonical transformation to the (actionÄangle)-
type variables can help to avoid this problem, see the following section.

2.4. Conclusions.
1. The path integral must be deˇned on the Mills time contour. This condition

will be important in the ˇeld theories with high space-time symmetries (such as
the YangÄMills type theory) since it seems that for such theories with symmetry
one cannot perform surely the analytic continuation over time variable∗∗.

2. The quantization can be performed without transition to the canonical
formalism, using only the Lagrange one which is more natural for relativistic
ˇeld theories.

3. Only the exact solutions of the equation of motion must be taken into
account deˇning the contributions into the functional integral.

∗See also footnote on page 1024.
∗∗The fact that a theory must satisfy certain conditions upon analytic continuation over time

variable is clear from [18].



1034 MANJAVIDZE J.

3. PATH INTEGRALS ON DIRAC MEASURE

3.1. Introduction. In the present section we will offer two methods which
may simplify calculation of path integrals on Dirac measure. They are based on
the possibility to perform transformation of the path-integral variables.

We will consider two examples. In the ˇrst example the transformation to
the (actionÄangle)-type variables will be considered. This example shows how
much the calculations of path integrals may be simpliˇed.

In the second part of the present section the coordinate transformation will
be described. For the sake of deˇniteness the transformation to cylindrical coor-
dinates will be considered.

3.2. Canonical Transformation. Let us introduce the ˇrst-order formalism.
We will insert in (2.73)

1 =
∫

Dp
∏

t

δ(p − ẋ). (3.1)

As a result,

R(E) = 2π

∞∫
0

dT exp
[

1
2i

(ω̂τ̂ + Re
∫

C+(T )

dt ĵ(t)ê(t))
]
×

×
∫

DxDp e−iH̃T (x;τ)−iUT (x,e)×

× δ(E + ω − HT (x))
∏

t

δ

(
ẋ − ∂Hj

∂p

)
δ

(
ṗ +

∂Hj

∂x

)
, (3.2)

where

Hj =
1
2
p2 + v(x) − jx (3.3)

may be considered as the total Hamiltonian which is time-dependent through j(t).
Notice that in the present simplest case x and p are independent parameters and
therefore (3.3) deˇnes the Hamiltonian.

Instead of pair (x(t), p(t)) we introduce new pair (θ(t), h(t)) inserting in (3.2)

1 =
∫ ∏

t

dθ dh δ

(
h − 1

2
p2 − v(x)

)
δ

⎛
⎝θ −

x∫
dx (2(h − v(x)))−1/2

⎞
⎠ . (3.4)

Note that the integral measures in (3.2) and (3.4) are both δ-like, i.e., have the
equal power. It allows one to change the order of integration and ˇrst integrate
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over (x, p). We ˇnd that

R(E) = 2π

∞∫
0

dT exp
[

1
2i

(ω̂τ̂ + Re
∫

C+(T )

dt ĵ(t)ê(t))
]
×

×
∫

DθDh e−iH̃T (xc;τ)−iUT (xc,e)×

× δ(E + ω − h(T ))
∏

t

δ

(
θ̇ − ∂Hc

∂h

)
δ

(
ḣ +

∂Hc

∂θ

)
, (3.5)

where
Hc = h − jxc(h, θ) (3.6)

is the transformed Hamiltonian and xc(θ, h) is the given solution of algebraic
equation:

θ =

x∫
dx(2(h − v(x)))−1/2, (3.7)

i.e., xc is the classical trajectory parameterized in terms of h(t) and θ(t).
As follows from (3.5), new variables, h(t) and θ(t), are subjected to the

action of quantum force j(t) and the topology of classical trajectory xc remains
unchanged.

So, instead of Eq. (2.77) we must solve the equations:

ḣ = j
∂xc

∂θ
, θ̇ = 1 − j

∂xc

∂h
, (3.8)

which have a simpler structure. Expanding the solutions over j, we will ˇnd
the inˇnite set of recursive equations. This is the important peculiarity of used
quantization scheme.

Note now that j∂xc/∂θ and j∂xc/∂h in the r.h.s. can be considered as
the new sources. We will use this property of Eqs. (3.8) and introduce in the
perturbation theory new ®renormalized¯ sources:

jh = j
∂xc

∂θ
, jθ = j

∂xc

∂h
, (3.9)

i.e., jξ and jη are the forces on the cotangent bundle. We will use transforma-
tions (2.29):

∏
t

δ(ḣ − j
∂xc

∂θ
) =

= exp
[

1
2i

Re
∫

C+

dt ĵh(t)êh(t)
]

exp
(

2iRe
∫

C+

ehj
∂xc

∂θ

)∏
t

δ(ḣ − jh) (3.10)
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and

∏
t

δ

(
θ̇ − 1 + j

∂xc

∂h

)
=

= exp
[

1
2i

Re
∫

C+

dt ĵθ(t)êθ(t)
]

exp
(

2iRe
∫

C+

eθj
∂xc

∂h

)∏
t

δ(θ̇ − 1 − jθ) (3.11)

to introduce them. The rescaling of source j leads to the rescaling of auxiliary
ˇeld e. In the new perturbation theory we will have two sources jh, jθ and two
auxiliary ˇelds eh, eθ. Notice that the momentum p never arose.

Inserting (3.10), (3.11) into (3.5) we ˇnd:

R(E) = 2π

∞∫
0

dT exp
[

1
2i

(ω̂τ̂ − i

∫
C(+)

dt (ĵh(t) êh(t) + ĵθ(t) êθ(t)))
]
×

×
∫

DhDθ e−iH̃T (xc;τ)−iUT (xc,ec)×

× δ(E + ω − h(T ))
∏

t

δ(θ̇ − 1 − jθ)δ(ḣ − jh), (3.12)

where

ec = eh
∂xc

∂θ
− eθ

∂xc

∂h
(3.13)

carry the simplectic structure of Hamilton equations of motion, and the ®hat¯
symbol means differential operator over corresponding quantity. At the very end
one should take all auxiliary variables, (eh, jh, eθ, jθ), equal to zero.

Hiding the xc(t) dependence into ec we solve the problem of the functional
determinants, see (3.12), and simplify the Hamilton equations of motion as much
as possible:

ḣ(t) = jh(t), θ̇(t) = 1 + jθ(t). (3.14)

We will use the boundary conditions

h(0) = h0, θ(0) = θ0 (3.15)

as the extension of boundary conditions in (2.58). This leads to the following
Green function of transformed perturbation theory:

g(t − t′) = Θ(t − t′), (3.16)

with the properties of projection operator:∫
dt dt′g2(t − t′) =

∫
dt dt′g(t − t′),

(3.17)∫
dt dt′g(t − t′)g(t′ − t) = 0,
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and, at the same time, we will assume that

g(0) = 1. (3.18)

It is important to note that Im g(t) is regular on the real time axis. This is the
very simpliˇcation of the perturbation theory since it eliminates the doubling of
degrees of freedom. One may use here the analytical continuation to the real
time axis.

As a result, shifting C+ and C− contours on the real time axis we ˇnd:

R(E) =

= 2π

∞∫
0

dT exp
[

1
2i

(ω̂τ̂ +

∞∫
0

dt1 dt2Θ(t1 − t2)(êh(t1) ĥ(t2) + êθ(t1) θ̂(t2)))
]
×

×
∫

dh0 dθ0 e−iH̃T (xc;τ)−iUT (xc,ec) δ(E + ω − h0 + h(T )), (3.19)

where the solutions of Eqs. (3.14) were used. In this expression xc(t) = xc(h0 −
h(t), t + θ0 − θ(t)) and (h(t), eh(t), θ(t), eθ(t)) are the auxiliary ˇelds. At the
very end one must take them equal to zero.

3.3. Selection Rule. Let us consider the theory with Lagrangian

L(x) =
1
2
ẋ2 − 1

2
ω2x2 − g

4
x4. (3.20)

The Dirac measure gives the equation (of motion):

ẍ + ω2x + gx3 = j. (3.21)

It has two solutions:

x1(t) = xc(t) + O(j), x2(t) = O(j). (3.22)

For this reason,
R(E) = R1(E; x1) + R2(E; x2) (3.23)

and which one deˇnes R(E) is a question. Following to our selection rule it is
just R1. This will be shown.

Let us return now to the example with Lagrangian (3.20). In the semiclassical
approximation

R1(E; x1) =

∞∫
0

dT

∞∫
0

dh0

+∞∫
−∞

dθ0 e−iUT (xc,0)δ(E − h0). (3.24)
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Therefore,

R1(E; x1) ∼
+∞∫

−∞

dθ0 ≡ Ω, (3.25)

i.e., it is proportional to the volume of group of time translations.
At the same time

R2(E; x2) = O(1) (3.26)

in the semiclassical approximation. Therefore,

R = R1(1 + O(1/Ω)). (3.27)

This result explains the source of chosen selection rule.
3.4. Coordinate Transformation. In this section the coordinate transforma-

tion of two-dimensional quantum mechanical model with potential

v = v((x2
1 + x2

2)
1/2) (3.28)

will be considered. Repeating calculations of the previous sections,

R(E) = 2π

∞∫
0

dT exp
[

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt ĵ(t)ê(t)
]
×

×
∫

D(2)M(x) e−iH̃T (x;τ)−iUT (x,e), (3.29)

where the δ-like Dirac measure is

D(2)M(x) = δ(E + ω − HT (x))
∏

t

d2x(t)δ(2)(ẍ + v′(x) − j). (3.30)

In the classical mechanics the problem with potential (3.28) is solved in the
cylindrical coordinates:

x1 = r cos φ, x2 = r sinφ. (3.31)

We insert into (3.29)

1 =
∫

DrDφ
∏

t

δ(r − (x2
1 + x2

2)
1/2)δ

(
φ − arctan

x2

x1

)
(3.32)

to perform the transformation. Note that the transformation (3.31) is not canonical.
As a result we will ˇnd a new measure:

D(2)M(r, φ) = δ(E + ω − HT (x))
∏

t

dr dφJ(r, φ), (3.33)
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where the Jacobian of transformation

J(r, φ) =
∫ ∏

d2xδ(2)(ẍ + v′(x) − j)δ
(

φ − arctan
x2

x1

)
δ(r − (x2

1 + x2
2)

1/2)

(3.34)
is the product of two δ-functions:

J(r, φ) =
∏

t

r2(t)δ(r̈ − φ̇2r + v′(r) − jr) δ(∂t(φ̇r2) − rjφ), (3.35)

where v′(r) = ∂v(r)/∂r, and

jr = j1 cos φ + j2 sin φ, jφ = −j1 sin φ + j2 cos φ (3.36)

are the components of j in the cylindrical coordinates.
It is useful to organize the perturbation theory in terms of jr and jφ. For this

purpose the following transformation of arguments of δ-functions will be used:∏
t

δ(r̈ − φ̇2r + v′(r) − jr) =

= exp
(
−i

∫
C(+)

dt ĵ′r êr

)
exp
(

i

∫
C(+)

dt jrer

)∏
t

δ(r̈ − φ̇2r + v′(r) − j′r) (3.37)

and∏
t

δ(∂t(φ̇r2) − rjφ) =

= exp
(
−i

∫
C(+)

dt ĵ′φêφ

)
exp
(

i

∫
C(+)

dt jφreφ

)∏
t

r(t) δ(∂t(φ̇r2) − j′φ). (3.38)

Here jr and jφ were deˇned in (3.36). Therefore, we get to the path integral
formalism written in terms of cylindrical coordinates. This is a very simpliˇcation
which will help to solve a lot of mechanical problems. One can note that as a
result of mapping our problem reduced to the description of quantum 	uctuations
of the surface of cylinder:

R(E) = 2π

∞∫
0

dT exp
[

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt (ĵr(t) êr(t) + ĵφ(t) êφ(t))
]
×

×
∫

D(2)M(r, φ) e−iH̃T (x;τ)−iUT (x,eC), (3.39)

where

D(2)M(r, φ) = δ(E + ω − HT (r, φ))
∏

t

r2(t) dr(t) dφ(t)×

× δ(r̈ − φ̇2r + v′(r) − jr)δ(∂t(φ̇r2) − jφ) (3.40)
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and

eC,1 = er cos φ − reφ sinφ, eC,2 = er sinφ + reφ cos φ. (3.41)

This is the ˇnal result. The transformation looks quite classically but (3.39)
cannot be deduced from naive coordinate transformation of initial path integral
for amplitude.

Inserting

1 =
∫

DpDl
∏

t

δ(p − ṙ)δ(l − φ̇r2) (3.42)

into (3.39) we can introduce the motion in the phase space with Hamiltonian

Hj =
1
2
p2 +

l2

2r2
+ v(r) − jrr − jφφ. (3.43)

The Dirac measure becomes four-dimensional:

D(4)M(r, φ, p, l) = δ(E + ω − HT (r, φ, p, l))
∏

t

dr(t) dφ(t) dp(t) dl(t)×

× δ

(
ṙ − ∂Hj

∂p

)
δ

(
φ̇ − ∂Hj

∂l

)
δ

(
ṗ +

∂Hj

∂r

)
δ

(
l̇ +

∂Hj

∂φ

)
. (3.44)

Note absence of the coefˇcient r2 in this expression. This is the result of special
choice of transformation (3.38).

Since the Hamilton group manifolds are more rich than Lagrange ones, the
measure (3.44) can be considered as the starting point of farther transformations.
One must note that the (actionÄangle) variables are most useful [12]. Note also
that to avoid the technical problems with equations of motion and with functional
determinants it is useful to linearize the argument of δ-functions in (3.44) hiding
nonlinear terms into the corresponding auxiliary variables ec.

3.5. Conclusions
1. Our perturbation theory describes the quantum 	uctuations of the para-

meters (h, θ) of classical trajectory xc. It is more complicated than canonical
one, over an interaction constant [19], since demands investigation of analytic
properties of 4N -dimensional integrals, where 2N is the phaseÄspace dimension.
Indeed, in the considered case with N = 1 the perturbations-generating operator,
K̂, see (3.12), contains derivatives over four auxiliary parameters, (jh, eh, jθ, eθ).

Our transformed theory describes the ®direct¯ deformations of classical tra-
jectory xc = xc(h, θ), i.e., just h and θ are the objects of quantization in the
considered example. In other words, the quantum deformation of the invariant
hypersurface, (h, θ), is described in the new quantum theory. This possibility is
the consequence of δ-likeness of measure, i.e., it is based on the conservation of
total probability.
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The Dirac measure allows one to perform classical transformations of the
measure and to use high resources of classical mechanics. For example, the
interesting possibility may arise in connection with KolmogorovÄArnoldÄMozer
(KAM) theorem [4]: the system which is not strictly integrable can show the
stable motion peculiar to integrable systems. This is the argument in favor of the
idea that there may be another, non-topological, mechanism of suppression of the
quantum excitations.

2. One can note that the transformed perturbation theory describes only
the retarded quantum 	uctuations, see deˇnition of Green function (3.16). This
feature of the theory can lead to the imaginary time irreversibility of quantum
processes and it must be explained.

The starting expression (2.58) describes the reversible in time motion since
total action SC+(T+)(x+)−SC−(T−)(x−) is time reversible. But the unitarity con-
dition forced us to consider the interference picture between expanding and con-
verging waves. This is ˇxed by the boundary conditions e(0) = e(T ) = 0. The
quantum theory remains time reversible up to canonical transformation to the
invariant hypersurface of the constant energy. The causal Green function G(t, t′),
see (2.80), is able to describe both advanced and retarded perturbations and the
theory contains the doubling of degrees of freedom. It means that the theory
®keeps in mind¯ the time reversibility. But after the canonical transformation,
using the above-mentioned boundary conditions, and continuing the theory to
the real time, the quantum perturbations were transferred on the inner degrees
of freedom of classical trajectory. As a result, the memory of doubling of the
degrees of freedom disappears and the theory becomes ®time irreversible¯.

The key step in this calculations was an extraction of the classical trajectory
xc which cannot be deˇned without deˇnition of boundary conditions. Just xc

introduces the direction of motion and the order of quantum perturbations of
trajectories inner degrees of freedom playes no role, i.e., the mechanical motion
is time reversible while the corrections to energy of trajectory, h, and to the
phase, θ, cannot be time reversible. Therefore, the considered irreversibility of
the quantum mechanics in terms of (h, θ) seems to be imaginary.

4. REDUCTION OF QUANTUM DEGREES OF FREEDOM

4.1. Introduction. It will be shown in this section that the quantum 	uctua-
tions of angular variables may be removed if the classical motion is periodic. This
cancellation mechanism can be used for path-integral explanation of integrability
of the quantum-mechanical problems, for example, of H-atom problem where the
classical trajectories are closed independently of the initial conditions∗. The main

∗The approach may be extended to the case of rigid rotator problem [20]. Last one is isomorphic
to the PéoschlÄTeller problem [21].
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result of the present section is based on the statement that the topology properties
of classical trajectory take special signiˇcance∗.

Our technical problem consists in necessity to extract the quantum angular
degrees of freedom. For this purpose we will deˇne path integral in the phase
space of actionÄangle variables. For simplicity we will demonstrate the effect of
cancellations on the one-dimensional λx4 model. In the following subsection the
brief description of unitary deˇnition of the path-integral measure will be given.
The perturbation theory in terms of actionÄangle variables will be contracted
in Subsec. 4.3 (the scheme of transformed perturbation theory was given ˇrstly
in [1]). In Subsec. 4.4 the cancellation mechanism will be demonstrated.

4.2. Unitary Deˇnition of the Path-Integral Measure. We will calculate the
probability

R(E) =
∫

dx1 dx2|A(x1, x2; E)|2 (4.1)

to introduce the unitary deˇnition of path-integral measure [1]. Here

A(x1, x2; E) = i

∞∫
0

dT eiET

x(T )=x2∫
x(0)=x1

Dx eiSC+(T )(x) (4.2)

is the amplitude of the particle with energy E moving from x1 to x2. The action

SC+(T )(x) =
∫

C+(T )

dt

(
1
2
ẋ2 − ω2

0

2
x2 − λ

4
x4

)
(4.3)

is deˇned on the Mills contour [17]:

C±(T ) : t → t ± iε, ε → +0, 0 � t � T. (4.4)

So, we will omit the calculation of the amplitude.
Inserting (4.2) into (4.1) we ˇnd, see the previous section, that

R(E) = 2π

∞∫
0

dT exp
[

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt ĵ(t) ê(t)
] ∫

Dx e−iH̃(x;τ)−iUT (x,e)×

× δ(E + ω − HT (x))
∏

t

δ(ẍ + ω2
0x + λx3 − j). (4.5)

∗Since the action of perturbations-generating operator of transformed theory, K̂, maps quantum
corrections on the boundaries of cotangent foliation, ∂W , see (4.41).
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The ®hat¯ symbol means differentiation over corresponding auxiliary quantity.
For instance,

ω̂ ≡ ∂

∂ω
, ĵ(t) =

δ

δj(t)
. (4.6)

It will be assumed that

ĵ(t ∈ C±)j(t′ ∈ C±) = δ(t − t′),

ĵ(t ∈ C±)j(t′ ∈ C∓) = 0.
(4.7)

The time integral over contour C(±)(T ) means that∫
C(±)(T )

=
∫

C+(T )

±
∫

C−(T )

. (4.8)

At the end of calculations the limit (ω, τ, j, e) = 0 must be calculated. The
explicit form of H̃(x; τ) UT (x, e) will be given later; HT (x) is the Hamiltonian
at the time moment t = T .

The functional δ-function unambiguously determines the contributions in the
path integral. For this purpose we must ˇnd the strict solution xj(t) of the
equation of motion:

ẍ + ω2
0x + λx3 − j = 0, (4.9)

expanding it over j. In zero order over j we have the classical trajectory xc

which is deˇned by the equation of motion:

ẍ + ω2
0x + λx3 = 0. (4.10)

This equation is equivalent to the following one:

t + θ0 =

x∫
dx{2(h0 − ω2

0x
2 − λx4)}−1/2. (4.11)

The solution of this equation is the periodic elliptic function.
Here (h0, θ0) are the constants of integration of Eq. (4.10), i.e., (h0, θ0) are

the coordinates of point on the surface deˇned by elliptic function. The integration
over (h0, θ0) is assumed since the integration over all trajectories in (4.2) must
be performed, i.e., (h0, θ0) takes on all values available by elliptic function. Let
W be the corresponding manyfold. One can say therefore that classical trajectory
belongs to W completely.

The mapping of our problem on the actionÄangle phase space will be per-
formed using representation (4.5) [22]. Using the obvious deˇnition of the action:

I =
1
2π

∮
{2(h− ω2

0x
2 − λx4)}1/2 (4.12)
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and of the angle variable [12]

φ =
∂h

∂I

xc∫
{2(h− ω2

0x
2 − λx4)}−1/2, (4.13)

we easily ˇnd from (4.5) that

R(E) = 2π

∞∫
0

dT exp
[

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt ĵ(t) ê(t)
]
×

×
∫

DIDφ e−iH̃(xc;τ)−iUT (xc,e)×

× δ(E + ω − hT (I))
∏

t

δ

(
İ − j

∂xc

∂φ

)
δ

(
φ̇ − Ω(I) + j

∂xc

∂I

)
, (4.14)

where xc = xc(I, φ) is the solution of Eq. (4.13) with h = h(I) as the solution
of Eq. (4.12) and the frequency

Ω(I) =
∂h

∂I
. (4.15)

Representation (4.14) is not the full solution of our problem: the action and
angle variables are still interdependent since they both are excited by the same
source j(t). This re	ects the Lagrange nature of the path-integral description of
phase-space motion. The true Hamilton's description must contain independent
quantum sources of action and angle variables.

4.3. Perturbation Theory on the Cotangent Manifold. The structure of
source terms, j∂xc/∂φ and j∂xc/∂I , shows that the source of quantum 	uctu-
ations is the classical trajectories perturbation and j is the auxiliary variable. It
allows one to regroup the perturbation series in the following manner. Let us
consider the action of the perturbation-generating operators on δ-functions:

exp
[
−i

∫
C(+)(T )

dt ĵ(t) ê(t)
]

e−iUT (x,e)
∏

t

δ

(
İ + j

∂xc

∂φ

)
δ

(
φ̇ − Ω(I) − j

∂xc

∂I

)
=

=
∫

DC(+)eIDC(+)eφ exp
[
i

∫
C(+)

dt(eI İ + eφ(φ̇ − Ω(I)))
]

e−iUT (x,ec), (4.16)

where

ec(eI , eφ) = eI
∂xc

∂φ
− eφ

∂xc

∂I
. (4.17)
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The integrals over (eI , eφ) will be calculated perturbatively:

e−iUT (x,ec) =
∞∑

nI ,nφ=0

1
nI !nφ!

∫ nI∏
k=1

(dtkeI(tk))
nφ∏

k=1

(dt′keφ(t′k))×

× PnI ,nφ
(xc, t1, . . . , tnI , t

′
1, . . . , tnφ

), (4.18)

where

PnI ,nφ
(xc, t1, . . . , tnI , t

′
1, . . . , tnφ

) =
nI∏

k=1

ê′I(tk)
nφ∏

k=1

ê′φ(t′k) e−iUT (x,e′
c), (4.19)

where e′c ≡ ec(e′I , e
′
φ) and the derivatives in (4.19) are calculated at e′I = 0,

e′φ = 0. At the same time,

nI∏
k=1

eI(tk)
nφ∏

k=1

eφ(t′k) =

=
nI∏

k=1

(iĵI(tk))
nφ∏

k=1

(iĵφ(t′k)) exp
[
−i

∫
C(+)

dt(jI(t)eI(t) + jφ(t)eφ(t))
]
. (4.20)

The limit (jI , jφ) = 0 is assumed. Inserting (4.19), (4.20) into (4.16) we will
ˇnd new representation for R(E):

R(E) = 2π

∞∫
0

dT exp
[

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt (ĵI(t) êI(t) + ĵφ(t) êφ(t))
]
×

×
∫

DIDφ e−iH̃(xc;τ)−iUT (xc,ec)×

× δ(E + ω − hT (I))
∏

t

δ(İ − jI)δ(φ̇ − Ω(I) − jφ), (4.21)

in which the action and the angle are the decoupled degrees of freedom.
Solving the canonical equations of motion

İ = jI , φ̇ = Ω(I) + jφ, (4.22)

the boundary conditions

Ij(0) = I0, φj(0) = φ0 (4.23)

will be used. This will lead to the following Green function:

g(t − t′) = Θ(t − t′), (4.24)
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with boundary condition: Θ(0) = 1. The solutions of Eqs. (4.22) have the form:

Ij(t) = I0 +
∫

dt′g(t − t′)jI(t′) ≡ I0 + I ′(t),

φj(t) = φ0 + Ω̃(Ij)t +
∫

dt′g(t − t′)jφ(t′) ≡ φ0 + Ω̃(I0 + I ′)t + φ′(t),
(4.25)

where

Ω̃(Ij) =
1
t

∫
dt′g(t − t′)Ω(I0 + I ′(t′)). (4.26)

Inserting (4.25) into (4.21) we ˇnd

R(E) = 2π

∞∫
0

dT exp
[

1
2i

ω̂τ̂ − i

∫
C(+)(T )

dt (ĵI(t) êI(t) + ĵφ(t) êφ(t))
]
×

×
∞∫
0

dI0

2π∫
0

dφ0 e−iH̃(xc;τ)−iUT (xc,ec)δ(E + ω − hT (Ij)), (4.27)

where

xc = xc(Ij , φj) = xc(I0 + I(t), φ0 + Ω̃(I0 + I)t + φ(t)), (4.28)

and ec was deˇned in (4.17). Note that the measure of the integrals over (I0, φ0)
was deˇned without the FaddeevÄPopov ansatz and there are not any ®hosts¯
since the Jacobian of transformation is equal to one.

We can extract the Green function into the perturbation-generating operator
using the equalities:

ĵI(t) =
∫

dt′g(t − t′)Î(t), ĵφ =
∫

dt′g(t − t′)φ̂(t), (4.29)

which evidently follow from (4.25). Hence,

R(E) = 2π

∞∫
0

dT exp
{

1
2i

ω̂τ̂−i

∫
C(+)(T )

dt dt′g(t′−t)(Î(t) êI(t′)+φ̂(t) êφ(t′))
}
×

×
∞∫
0

dI0

2π∫
0

dφ0 e−iH̃(xc;τ)−iUT (xc,ec)δ(E + ω − hT (I0 + I)), (4.30)

where xc was deˇned in (4.28).
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We can deˇne the formalism without doubling the degrees of freedom. One
can use the fact that the action of perturbation-generating operators and the an-
alytical continuation to the real times are commuting operations. This can be
easily seen using the deˇnition (4.7). As a result, the expression

R(E) = 2π

∞∫
0

dT exp
{

1
2i

ω̂τ̂ − i

T∫
0

dt dt′Θ(t′ − t)(Î(t) êI(t′) + φ̂(t) êφ(t′))
}
×

×
∞∫
0

dI0

2π∫
0

dφ0 e−iH̃(xc;τ)−iUT (xc,ec) δ(E + ω − hT (I0 + I(T )), (4.31)

where

H̃T (xc; τ) = 2
∞∑

n=1

τ2n+1

(2n + 1)!
d2n

dT 2n
h(I0 + I(T )), (4.32)

and

−UT (xc, ec) = S(xc + ec) − S(xc − ec) − 2

T∫
0

dt ec
δS(xc)

δxc
(4.33)

deˇnes quantum theory on the cotangent manifold W .
Now we can use the last δ-function:

R(E) = 2π

∞∫
0

dT exp
{

1
2i

(ω̂τ̂ +

T∫
0

dt dt′Θ(t′ − t)(Î(t) êI(t′) + φ̂(t) êφ(t′))
}
×

×
∞∫
0

dI0

2π∫
0

dφ0

Ω(E + ω)
e−iH̃(xc;τ)−iUT (xc,ec). (4.34)

Here
xc(t) = xc(I0(E + ω) + I(t) − I(T ), φ0 + Ω̃t + φ(t)). (4.35)

Equation (4.34) contains unnecessary contributions: the action of the operator

T∫
0

dt dt′Θ(t − t′) êI(t) Î(t′) (4.36)

on H̃T , deˇned in (4.32), leads to the time integrals with zero integration range:

T∫
0

dt Θ(T − t)Θ(t − T ) = 0.
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Using this fact,

R(E) = 2π

∞∫
0

dT exp
[

1
2i

T∫
0

dt dt′Θ(t′ − t)(Î(t) êI(t′) + φ̂(t) êφ(t′))
]
×

×
∞∫
0

dI0

2π∫
0

dφ0

Ω(E)
e−iUT (xc,ec), (4.37)

where
xc(t) = xc(I0(E) + I(t) − I(T ), φ0 + Ω̃t + φ(t)) (4.38)

is the periodic function:

xc(I0(E) + I(t) − I(T ), (φ0 + 2π) + Ω̃t + φ(t)) =

= xc(I0(E) + I(t) − I(T ), φ0 + Ω̃t + φ(t)). (4.39)

Now we can consider the cancellation of angular perturbations.

4.4. Cancellation of Angular Perturbations
4.4.1. Simplest Example. Introducing the perturbation-generating operator

into the integral over φ0:

R(E) = 2π

∞∫
0

dT exp
[

1
2i

T∫
0

dt dt′ Θ(t′ − t) Î(t) êI(t′)
]
×

×
∞∫
0

dI0

2π∫
0

dφ0

Ω(E)
exp
[

1
2i

T∫
0

dt dt′ Θ(t′ − t) φ̂(t) êφ(t′)
]

e−iUT (xc,ec), (4.40)

the mechanism of cancellations of the angular perturbations becomes evident.
One can formulate the statement:

(i) if

exp
[

1
2i

T∫
0

dt dt′Θ(t′ − t)φ̂(t) êφ(t′)
]

e−iUT (xc,ec) =

= e−iUT (xc,ec)|eφ=φ=0 +
dF (φ0)

dφ0
, (4.41)

and
(ii) if

F (φ0 + 2π) = F (φ0), (4.42)
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then:

R(E) = 2π

2π∫
0

dφ0

Ω(E)

∞∫
0

dT dI0 exp
[

1
2i

T∫
0

dt dt′ Θ(t′ − t) (Î(t) êI(t′)
]
×

× exp
[
S

(
xc + e

∂xc

∂φ0

)
− S

(
xc − e

∂xc

∂φ0

)]
, (4.43)

i.e., we ˇnd the expression in which the angular corrections were canceled. In
this case the problem becomes semiclassical over the angular degrees of freedom.

For the (λx4)1-model

S

(
xc + e

∂xc

∂φ0

)
− S

(
xc − e

∂xc

∂φ0

)
= S0(xc)− 2λ

T∫
0

dt xc(t)
{

e
∂xc

∂φ0

}3

, (4.44)

where [1]

S0(xc) =
∮
T

dt

(
1
2
ẋ2

c −
ω2

0

2
x2

c −
λ

4
x4

c

)
(4.45)

is the closed time-path action and

xc(t) = xc(I0(E) + I(t) − I(T ), φ0 + Ω̃t). (4.46)

Here I(t) and I(T ) are the auxiliary variables.
The condition (4.42) requires that the classical trajectory xc with all deriva-

tives over I0, φ0 is the periodic function. In the considered case of (λx4)1-model,
xc is periodic function with period 1/Ω, see (4.39). Therefore, we can concentrate
the attention on the condition (4.41) only.

Expanding F (φ0) over λ:

F (φ0) = λF1(φ0) + λ2F2(φ0) + . . . (4.47)

we ˇnd that

d

dφ0
F1(φ0) =

=

T∫
0

3∏
k=1

dt′kφ̂(t′k)

⎛
⎝(− 6

(2i)3

) T∫
0

dt
3∏

k=1

Θ(t − t′k)xc(t)
(

∂xc

∂I0

)3

eiS0(xc)
k

⎞
⎠ =

=

T∫
0

dt′φ̂(t′)B1(φ), (4.48)
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where

B1(φ) =

⎧⎨
⎩− 6

(2i)3

T∫
0

dt Θ(t − t′) ×

×
2∏

k=1

(Θ(t − t′k)φ̂(t′k))xc(t)
(

∂xc

∂I0

)3

eiS0(xc)

}
. (4.49)

This example shows that the sum over all powers of λ can be written in the form:

d

dφ0
F (φ0) =

T∫
0

dt′φ̂(t′)B(φ), (4.50)

where, using the deˇnition (4.35),

B(φ) =

T∫
0

dt B̃(φ0 + φ(t)). (4.51)

Therefore,

φ̂(t′)B(φ) =
d

dφ0

T∫
0

dt δ(t − t′)B̃(φ0 + φ(t)) (4.52)

coincides with the total derivative over initial phase φ0, and

F (φ0) = B̃(φ0 + φ(t))|φ=0. (4.53)

This result ends the proof of (4.41).
4.4.2. General Case. Now we will offer the following important statement:
Å each order of perturbation theory in the invariant subspace can be repre-

sented as the sum of total derivative over the subspace coordinate.
This statement directly follows from structure of perturbations-generating

operator K̂ and the assumption (3.18). It explains the statement, offered in
Preface.

Let us remind that integration with last δ-function gives the result of action
of operator K̂ written in the form:

R(E) = 2π

∞∫
0

dT

2π∫
0

dϕ0

Ω(E)
: e−iU(xc,ê/2i) :, (4.54)

where the colons mean normal product,

ê = ĵϕ
∂xc

∂I
− ĵI

∂xc

∂ϕ
, (4.55)
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and by deˇnition UT is the odd over êc functional:

UT (xc, ec) = 2

T∫
0

∑
n=1

(êc(t)/2i)2n+1un(xc), (4.56)

where un is the function of only xc at the time t. Inserting (4.55), one can write:

: e−iU(xc,ê/2i) :=
∞∏

n=1

2n+1∏
k=0

: e−iUk,n(j,xc) :, (4.57)

where

Uk,n(j, xc) =

T∫
0

dt(ĵϕ(t))2n−k+1(ĵI(t))k bk,n(xc(t)), (4.58)

and the explicit form of bk,n(xc) is not important.
Using the evident deˇnition:

ĵX =

T∫
0

dt′Θ(t − t′)X̂(t′), X = ϕ, I,

it is easy to ˇnd that

jX(t1)bk,n(xc(t2)) = Θ(t1 − t2)
∂bk,n(xc(t2))

∂X0
,

since xc = xc(X + X0), or shortly:

j1b2 = Θ12∂X0b2 = ∂X0(Θ12b2), (4.59)

since the indexes (k, n) are not important.
Let us start consideration from the ˇrst term with k = 0. In this case we

describe only the angular 	uctuations. Noting that ∂X0 and ĵ commute we can
consider the lowest order over ĵ. The typical term looks as follows (omitting the
index X0):

ĵ1ĵ2 · · · ĵmb1b2 · · · bm.

It is sufˇcient to show that this expression is the total derivative over X0.
Case m = 1. In this approximation we have, see (4.59):

ĵ1b1 = Θ11∂0b1 �= 0. (4.60)

Here (3.18) was used.
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Case m = 2. This order is less trivial:

ĵ1ĵ2b1b2 = Θ21b
2
1b2 + b1

1b
1
2 + Θ12b1b

2
2, (4.61)

where
bn
i ≡ ∂nbi. (4.62)

At ˇrst glance (4.61) is not the total derivative. But inserting

1 = Θ12 + Θ21

we can symmetrize it:

ĵ1ĵ2b1b2 = Θ21(b2
1b2 + b1

1b
1
2) + Θ12(b1b

2
2 + b1

1b
1
2) =

= ∂0(Θ21b
1
1b2 + Θ12b1b

1
2) ≡ ∂0(b1

1 → b2 + b1
2 → b1), (4.63)

since the explicit form of the function is not important. Therefore, the second-
order term can be also reduced to the total derivative. Notice that (4.63) shows
time reversibility.

Case m = 3. In this order one can ˇnd that

ĵ1ĵ2ĵ3b1b2b3 = ∂0

⎧⎨
⎩

3∑
i�=j �=k=1

(i2 → j → k + i1 → j1 → k)

⎫⎬
⎭ . (4.64)

The mth order contribution is also total derivative:

ĵ1ĵ2 · · · ĵmb1b2 · · · bm = ∂0

{ m∑
i1 �=i2 �=i3 �=... �=im=1

(im1 → i2 → i3 → . . . → im+

+ im−1
1 → i12 → i3 → . . . → im + im−2

1 → i12 → i13 → . . . → im + . . .

. . . + i11 → i12 → i13 → . . . → i1m−1 → im)
}

. (4.65)

Let us consider now the case with k �= 0. The typical term looks as follows:

ĵ1
1 ĵ1

2 · · · ĵ1
l ĵ2

l+1ĵ
2
l+2 · · · ĵ2

mb1b2 · · · bm, 0 < l < m, (4.66)

where, for instance,
ĵ1
k ≡ ĵI(tk), ĵ2

k ≡ ĵϕ(tk) (4.67)

and
ĵi
1b2 = Θ12∂

i
0b2. (4.68)
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Case m = 2, l = 1. In this case:

ĵ1
1 ĵ2

2b1b2 =

= Θ21(b2∂
1
0∂2

0b1 + (∂2
0b2)(∂1

0∂2
0b1)) + Θ12(b1∂

1
0∂2

0b2 + (∂2
0b2)(∂1

0∂2
0b1)) =

= ∂1
0(Θ21b2∂

2
0b1 + Θ12b1∂

2
0b2) + ∂2

0(Θ21b2∂
1
0b1 + Θ12b1∂

1
0b2). (4.69)

Therefore we have the total-derivative structure yet. This property is conserved
in arbitrary order over m and l since the time-ordered structure does not depend
on upper index of ĵ, see (4.68).

One can conclude that the contribution is deˇned by topology properties of
classical trajectory xc. We will see that this important property of perturbation
theory remains unchanged also for ˇeld theories with symmetry.

4.5. Conclusions
1. It was shown that the real-time quantum problem can be semiclassical over

the part of the degrees of freedom and quantum over other ones. Following the
result of this section, one may introduce the (probably naive) interpretation of the
quantum systems integrability (we suppose that the classical system is integrable
and can be mapped on the compact hypersurface in the phase space [12]): the
quantum system is strictly integrable due to cancellation of all quantum degrees
of freedom. The mechanism of cancellation of the quantum corrections is varied
from case to case.

For some problems (as the rigid rotator, or the PéoschlÄTeller), the cancellation
of angular degrees of freedom is enough since they carry only the angular ones.
In another case (as in the Coulomb problem, or in the one-dimensional models),
the problem may be partly integrable since the quantum 	uctuations of action
degrees of freedom just survive. Theirs absence in the Coulomb problem needs
special discussion (one must take into account the dynamical (hidden) symmetry
of the Coulomb problem [23]).

The transformation to the actionÄangle variables maps the N -dimensional
Lagrange problem on the 2N -dimensional phaseÄspace torus. If the winding
number on this hypertorus is a constant (i.e., the topological charge is conserved)
one can expect the same cancellations. This is important for the ˇeld-theoretical
problems (for instance, for sine-Gordon model [24]).

2. In the classical mechanics the following approximated method of calcula-
tions is used [12]. The canonical equations of motion:

İ = a(I, φ), φ̇ = b(I, φ) (4.70)

are changed on the averaged equations:

J̇ =
1
2π

2π∫
0

dφa(J, φ), φ̇ = b(J, φ). (4.71)
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It is possible if the oscillations can be extracted from the systematic evolution of
the degrees of freedom.

In our case,

a(I, φ) = j
∂xc

∂φ
, b(I, φ) = Ω(I) − j

∂xc

∂I
. (4.72)

Inserting this deˇnitions into (4.71) we ˇnd evidently wrong result since in this
approximation the problem looks like pure semiclassical for the case of periodic
motion:

J̇ = 0, φ̇ = Ω(J). (4.73)

The result of this section was used here. This shows that the procedure of
extraction of the oscillations from the systematic evolution is not trivial and this
method should be used carefully in the quantum theories. (This approximation of
dynamics is ®good¯ on the time intervals ∼ 1/|a| [12].)

5. EXAMPLE: H-ATOM

5.1. Introduction. The mapping

J : T → W, (5.1)

where T is the 2N -dimensional phase space and W is a linear space, solves the
mechanical problem iff

J = ⊗N
1 Ji, (5.2)

where Ji are the ˇrst integrals in involution, see, e.g., [12]∗. The aim of this
section is to adopt this procedure for H-atom.

The mapping (5.1) introduces integral manifold Jω = J−1(ω) in such a
way that the classical phase space 	ow belongs to Jω completely. We wish to
quantize the Jω manifold instead of 	ow in T noting that the quantum trajectory
also should belong to Jω completely. This important conclusion was demonstrated
in the previous section by transformation of the path-integral measure to the
canonical variables (ξ, η). New perturbation theory is extremely simple since W
is the linear space.

The ®direct¯ mapping (5.1) used in [26] assumes that J is known. But
it seems inconvenient having in mind the general problem of nonlinear waves
quantization, when the number of degrees of freedom N = ∞, or if the transfor-
mation is not canonical. We will consider by this reason the ®inverse¯ approach

∗The formalism of reduction (5.1) in classical mechanics is described also in [25].
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assuming that just the classical 	ow is known. Then, since the 	ow belongs to
Jω completely [26], we would be able to ˇnd the quantum motion in W . It is
the main technical result illustrated in this section.

The manifold Jω is invariant relatively to some subgroup Gω [27] in accor-
dance with topological class of classical 	ow. This introduces the Jω classiˇ-
cation, and summation over all (homotopic) classes should be performed. Note,
the classes are separated by the boundary bifurcation lines in W [27]. If the
quantum perturbations are switched on adiabatically, then the homotopic group
should stay unbroken. It is the ordinary statement for quantum mechanics, but,
generally speaking, this is not true for ˇeld theories.

We will calculate the bound state energies in the Coulomb potential∗. This
popular problem was considered by many authors, using various methods, see,
e.g., [23]. The path-integral solution of this problem was offered ˇrstly in [28].

The classical 	ow of this problem can be parameterized by the angular
momentum l, corresponding angle ϕ and by the normalized on total Hamiltonian
RungeÄLenz vector length n. So, we will consider the mapping (p is the conjugate
to r radial momentum in the cylindrical coordinates):

Jl,n : (p, l, r, ϕ) → (l, n, ϕ) (5.3)

to construct the perturbation theory in the W = (l, n, ϕ) space. That is, W is not
considered as the cotangent foliation on T .

The mapping (5.3) assumes additional reduction of the four-dimensional in-
cident phase space up to three-dimensional linear subspace∗∗. Just this reduction
phenomena leads to corresponding stability of n concerning quantum perturba-
tions and will allow one to solve our H-atom problem completely∗∗∗.

In Subsec. 5.2 we will show how the mapping (5.3) can be performed for
path-integral differential measure. In Subsec. 5.3 the consequence of reduction
will be derived and in Subsec. 5.4 the perturbation theory in the W space will be
analyzed. The calculations are based on the formalism offered in the previous
sections.

5.2. Mapping. We will calculate the integral [26]:

ρ(E) =

∞∫
0

dT e−iK̂(j,e)

∫
DM(p, l, r, ϕ) e−iU(r,e), (5.4)

∗We will restrict ourselves by the plane problem. Corresponding phase space T = (p, l, r, ϕ)
is 4-dimensional.

∗∗W would not have the simplectic structure. Actually in the considered case W = R + TW ,
where R is the zero-modes space and TW is the simplectic subspace.

∗∗∗In other words, we would demonstrate that the hidden BargmannÄFock [23] O(4) symmetry
stayes unbroken concerning quantum perturbations.
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where ρ(E) is the probability to ˇnd a particle with energy E, i.e., we should
ˇnd [22] that normalized on the zero-modes volume

ρ(E) = π
∑

n

δ(E − En), (5.5)

where En are the bound states energies. For H-atom problem En � 0. This
condition will deˇne considered homotopy class.

Expansion over operator

K̂(j, e) =
1
2

T∫
0

dt(ĵr êr + ĵϕêϕ), X̂(t) ≡ δ

δX(t)
(5.6)

generates the perturbation series. It will be seen that in our case we may omit
the question of perturbation theories convergence.

The differential measure

DM(p, l, r, ϕ) = δ(E − H0)
∏

t

dr(t) dp(t) dl(t) dϕ(t)×

× δ

(
ṙ − ∂Hj

∂p

)
δ

(
ṗ +

∂Hj

∂r

)
δ

(
ϕ̇ − ∂Hj

∂l

)
δ

(
l̇ +

∂Hj

∂ϕ

)
, (5.7)

with total Hamiltonian (H0 = Hj |j=0)

Hj =
1
2
p2 − l2

2r2
− 1

r
− jrr − jϕϕ (5.8)

allows one to perform arbitrary transformation of variables because of its
δ-likeness. Notice that Hj contains only the ®Lagrange forces¯ jr and jϕ.

The functional

U(r, e) = −s0(r)+

+

T∫
0

dt

[
1

((r + er)2 + r2e2
ϕ)1/2

− 1
((r − er)2 + r2e2

ϕ)1/2
+ 2

er

r

]
(5.9)

describes the interaction between various quantum modes, and s0(r) deˇnes the
nonintegrable phase factor [22]. The quantization of this factor determines the
bound state energy. Such a factor will appear if the phase of amplitude cannot
be ˇxed∗. Note that the Hamiltonian (5.8) contains the energy of radial jrr and
angular jϕϕ excitation, independently.

∗As, for instance, in the AharonovÄBohm case.
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Let us introduce the functional

Δ =
∫ ∏

t

d2ξd2η δ(r(t)−rc(ξ, η))×

× δ(p(t)−pc(ξ, η)) δ(l(t)−lc(ξ, η)) δ(ϕ(t)−ϕc(ξ, η)), (5.10)

which is deˇned by given functions (rc, pc, ϕc, lc)(ξ, η). If given functions (ξ, η)
zeroes argument of δ-functions in (5.10), then it is assumed that the functional
determinant

Δc =
∫ ∏

t

d2ξ̄d2η̄δ

(
∂rc

∂ξ
· ξ̄ +

∂rc

∂η
· η̄
)

δ

(
∂pc

∂ξ
· ξ̄ +

∂pc

∂η
· η̄
)
×

× δ

(
∂ϕc

∂ξ
· ξ̄ +

∂ϕc

∂η
· η̄
)

δ

(
∂lc
∂ξ

· ξ̄ +
∂lc
∂η

· η̄
)

�= 0. (5.11)

Note that this is the condition only for (rc, pc, ϕc, lc)(ξ, η).
To perform the mapping we will insert

1 = Δ/Δc (5.12)

into (5.4) and integrate over r(t), p(t), ϕ(t), and l(t). As a result, we ˇnd the
measure:

DM(ξ, η) =
1

Δc
δ(E − H0)

∏
t

d2ξd2ηδ

(
ṙc −

∂Hj

∂pc

)
×

× δ

(
ṗc +

∂Hj

∂rc

)
δ

(
ϕ̇c −

∂Hj

∂lc

)
δ

(
l̇c +

∂Hj

∂ϕc

)
. (5.13)

Note that the functions (rc, pc, ϕc, lc)(ξ, η) must obey only one condition (5.11).

A simple algebra gives:

DM(ξ, η) =
δ(E − H0)

Δc

∏
t

d2ξd2η

∫ ∏
t

d2ξ̄d2η̄×

× δ2

(
ξ̄ −
(

ξ̇ − ∂hj

∂η

))
δ2

(
η̄ −
(

η̇ +
∂hj

∂ξ

))
×

× δ

(
∂rc

∂ξ
· ξ̄ +

∂rc

∂η
· η̄ + {rc, hj} −

∂Hj

∂pc

)
×
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× δ

(
∂pc

∂ξ
· ξ̄ +

∂pc

∂η
· η̄ + {pc, hj} +

∂Hj

∂rc

)
×

× δ

(
∂ϕc

∂ξ
· ξ̄ +

∂ϕc

∂η
· η̄ + {ϕc, hj} −

∂Hj

∂lc

)
×

× δ

(
∂lc
∂ξ

· ξ̄ +
∂lc
∂η

· η̄ + {lc, hj} +
∂Hj

∂ϕc

)
. (5.14)

The Poisson notation

{X, hj} =
∂X

∂ξ

∂hj

∂η
− ∂X

∂η

∂hj

∂ξ

was introduced in (5.14).
Next, the ®auxiliary¯ quantity hj has been introduced by the following equal-

ities:

{rc, hj} −
∂Hj

∂pc
= 0, {pc, hj} +

∂Hj

∂rc
= 0,

(5.15)

{ϕc, hj} −
∂Hj

∂lc
= 0, {lc, hj} +

∂Hj

∂ϕc
= 0.

Then the functional determinant Δc is canceled and

DM(ξ, η) = δ(E − H0)
∏

t

d2ξd2ηδ2

(
ξ̇ − ∂hj

∂η

)
δ2

(
η̇ +

∂hj

∂ξ

)
. (5.16)

It is the desired result of transformation of the measure for given generating
functions (rc, pc, ϕc, lc)(ξ, η). In this case the ®Hamiltonian¯ hj(ξ, η) is deˇned
by four equations (5.15).

But there is another possibility. Let us assume that

hj(ξ, η) = Hj(rc, pc, ϕc, lc), (5.17)

and the functions (rc, pc, ϕc, lc)(ξ, η) are unknown. Then Eqs. (5.15) are the
equations for these functions. It is not hard to see that Eqs. (5.15) simultane-
ously with equations ˇxed by δ-functions in (5.16) are equivalent to the incident
equations if the equality (5.17) is hold. Indeed, for example,

ṙc =
∂rc

∂ξ
· ξ̇ +

∂rc

∂η
· η̇ = {rc, hj} =

∂Hj

∂pc
, (5.18)

where (5.16) and (5.15) were used successfully.
So, incident dynamical problem was divided into two parts. First, one deˇnes

the trajectory in the W space through Eqs. (5.15). Second, one deˇnes the
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dynamics, i.e., the time dependence, through the equations ˇxed by δ-functions
in the measure (5.16).

Therefore, we should consider rc, pc, ϕc, lc as the solutions in the ξ, η
parameterization. The desired parameterization of classical orbits has the form
(one can ˇnd it in arbitrary textbook of classical mechanics):

rc =
η2
1(η

2
1 + η2

2)
1/2

(η2
1 + η2

2)1/2 + η2 cos ξ1
, pc =

η2 sin ξ1

η1(η2
1 + η2

2)1/2
, ϕc = ξ1, lc = η1, (5.19)

i.e., rc and pc are ξ2-independent. At the same time,

hj =
1

2(η2
1 + η2

2)1/2
− jrrc − jϕξ1 ≡ h(η) − jrrc − jϕξ1. (5.20)

Noting that the derivatives of hj over ξ2 are equal to zero∗, we ˇnd that

DM(ξ, η) = δ(E − h(T ))
∏

t

d2ξd2ηδ

(
ξ̇1 − ω1 + jr

rc

∂η1

)
×

× δ

(
ξ̇2 − ω2 + jr

rc

∂η2

)
δ

(
η̇1 − jr

∂rc

∂ξ1
− jϕ

)
δ(η̇2), (5.21)

where

ωi =
∂h

∂ηi
(5.22)

are the conserved in classical limit jr = jϕ = 0 ®velocities¯ in the W space.
5.3. Reduction. We see from (5.21) that the length of RungeÄLenz vector is

not perturbated by the quantum forces jr and jϕ. To investigate the consequence
of this fact it is useful to project these forces on the axis of W space. This means
splitting of jr, jϕ on jξ, jη . The equality

∏
t

δ

(
ξ̇1 − ω1 + jr

rc

∂η1

)
=

= exp
(

1
2i

T∫
0

dtĵξ1 êξ1

)
exp
(

2i

T∫
0

dtjreξ1

∂rc

∂η1

)∏
t

δ(ξ̇1 − ω1 + jξ1)

becomes evident if the Fourier representation of δ-function is used (see also [26]).
The same transformation of arguments of other δ-functions in (5.21) can be

∗To have the condition (5.11) we should assume that ∂rc/∂ξ2 ∼ ε �= 0. We put ε = 0
completing the transformation.
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applied. Then, noting that the last δ-function in (5.21) is source-free, we ˇnd the
same representation as (5.4) with

K̂(j, e) =

T∫
0

dt(ĵξ1 êξ1 + ĵξ2 êξ2 + ĵη1 êη1), (5.23)

where the operators ĵ are deˇned by the equality:

ĵX(t) =

T∫
0

dt′Θ(t − t′)X̂(t′) (5.24)

and Θ(t − t′) is the Green function of our perturbation theory [26].
We should change also

er → ec = eη1

∂rc

∂ξ1
− eξ1

∂rc

∂η1
− eξ2

∂rc

∂η2
, eϕ → eξ1 (5.25)

in Eq. (5.9). The differential measure takes the simplest form:

DM(ξ, η) = δ(E − h(T ))
∏

t

d2ξd2η×

× δ(ξ̇1 − ω1 − jξ1) δ(ξ̇2 − ω2 − jξ2) δ(η̇1 − jη1)δ(η̇2). (5.26)

Note now that the ξ, η variables are contained in rc only:

rc = rc(ξ1, η1, η2).

This means that the action of the operator ĵξ2 gives identical to zero contributions
into perturbation theory series. And, since êξ2 and ĵξ2 are conjugate operators,
see (5.23), we can put

jξ2 = eξ2 = 0.

This conclusion ends the reduction:

K̂(j, e) =

T∫
0

dt(ĵξ1 êξ1 + ĵη1 êη1), (5.27)

ec = eη1

∂rc

∂ξ1
− eξ1

∂rc

∂η1
. (5.28)

The measure has the form:

DM(ξ, η) =

= δ(E − h(T )) dξ2(0) dη2(0)
∏

t

dξ1dη1δ(ξ̇1 − ω1 − jξ1)δ(η̇1 − jη1) (5.29)
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since V = V (rc, ec, ξ1) is ξ2-independent and∫ ∏
t

dX(t)δ(Ẋ) =
∫

dX(0).

5.4. Perturbations. One can see from (5.29) that the reduction cannot solve
the H-atom problem completely: there are nontrivial corrections to the orbital
degrees of freedom ξ1, η1. By this reason, we should consider the expansion
over K̂.

Using last δ-functions in (5.29) we ˇnd, see also [26] (normalizing ρ(E) on
the integral over ξ2(0)η2(0)):

ρ(E) =

∞∫
0

dT e−iK̂(j,e)

∫
dM e−iU(rc,e), (5.30)

where

dM =
dξ1dη1

ω2(E)
. (5.31)

The operator K̂(j, e) was deˇned in (5.27), and

U(rc, ec) = −s0(r)+

+

T∫
0

dt

[
1

((rc + ec)2 + r2
ce2

ξ1
)1/2

− 1
((rc − ec)2 + r2

ce2
ξ1

)1/2
+ 2

ec

rc

]
(5.32)

with ec, eξ1 was deˇned in (5.28), (5.25) and

rc(t) = rc(η1 +η(t), η̄2(E, T ), ξ1+ω1(t)+ξ(t)), E ≡ h(η1 +η(T ), η̄2), (5.33)

where η̄2(E, T ) is the solution of equation E = h.
The integration range over ξ1 and η1 is as follows:

0 � ξ1 � 2π, −∞ � η1 � +∞. (5.34)

The ˇrst inequality deˇnes the principal domain of the angular variable ϕ and
the second ones take into account the clockwise and anticlockwise motions of
particle on the Kepler orbits.

We can write:

ρ(E) =

∞∫
0

dT

∫
dM : e−iV (rc,ê) : (5.35)
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since the operator ln K̂ is linear over êξ1 , êη1 . The colons mean ®normal product¯
with differential operators staying to the left of functions, and U(rc, ê) is the
functional of operators:

2iêc = ĵη1

∂rc

∂ξ1
− ĵξ1

∂rc

∂η1
, 2iêξ1 = ĵξ1 . (5.36)

Expanding U(rc, ê) over êc and êη1 we ˇnd:

U(rc, ê) = −s0(rc) + 2
∑

n+m�1

Cn,m

T∫
0

dt ê2n+1
c êm

η1

1
r2n+2
c

, (5.37)

where Cn,m are the numerical constants. We see that the interaction part presents
the expansion over 1/rc and, therefore, the expansion over U generates the
expansion over 1/rc.

As a result, see Subsec. 4.5, we have

ρ(E) =

∞∫
0

dT

∫
dM{ eis0(rc) + Bξ1(ξ1, η1) + Bη1(ξ1, η1)}. (5.38)

The ˇrst term is the pure semiclassical contribution and the last ones are the
quantum corrections. The functionals B are the total derivatives:

Bξ1(ξ1, η1) =
∂

∂ξ1
bξ1(ξ1, η1), Bη1(ξ1, η1) =

∂

∂η1
bη1(ξ1, η1). (5.39)

This means that the mean value of quantum corrections in the ξ1 direction is
equal to zero:

2π∫
0

dξ1
∂

∂ξ1
bξ1(ξ1, η1) = 0 (5.40)

since rc is the closed trajectory independently of initial conditions, see (5.19).
In the η1 direction the motion is classical:

+∞∫
−∞

dη1
∂

∂η1
bη1(ξ1, η1) = 0 (5.41)

since (i) bη1 is the series over 1/r2
c and (ii) rc → ∞ when |η1| → ∞. Therefore,

ρ(E) =

∞∫
0

dT

∫
dM eis0(rc). (5.42)
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This is the desired result.
Noting that

s0(rc) = kS1(E), k = ±1,±2, . . . ,

where S1(E) is the action over one classical period T1:

∂S1(E)
∂E

= T1(E),

and using the identity [22]:

+∞∑
−∞

einS1(E) = 2π

+∞∑
−∞

δ(S1(E) − 2πn),

we ˇnd
ρ(E) = πΩ

∑
n

δ(E + 1/2n2), (5.43)

where Ω is the zero-modes volume.
5.5. Conclusions. The demonstrated above mechanism of reduction is univer-

sal: one can introduce from the very beginning the arbitrary number of coordinates
(ξ, η). But later on the formalism automatically, through dependence of classical
trajectory on coordinates of W , will extract the necessary set of variables (ξ, η).
At the same time dim (ξ, η) = dim W and the integrals over other ones will give
the volume

V0 =
∫ ∏

dξ(0) dη(0),

see (5.29), where dimV0 = 2.
Notice that appearance of the ®0-dimensional¯ integral measure

dξ2(0) dη2(0)

in (5.29) re	ects the hidden O(4) symmetry of H-atom problem [23]. Therefore,
following our selection rule, we must consider in the ˇrst place the classical
trajectory which leads to the maximal value of dimV0, i.e., we must consider the
contributions with maximal number of zero modes.

6. EXAMPLE: SINE-GORDON MODEL

6.1. Introduction. First of all, we will describe ®canonical¯ transformation in
the path-integral formalism. The method of canonical transformations in spite of
its expected effectiveness is unpopular in quantum theories since on this way there
exists the problem: it is necessary to ˇnd the transformation from Lagrangian to
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Hamiltonian descriptions. This transition, in general, is very difˇcult if ϕ(x) and
ϕ̇(x) = p(x) are not independent quantities [13]. But we may use the following
trick. We start from the simplest verse of the canonical formalism introducing the
®ˇrst-order¯ description∗ and after transformation come to independent canoni-
cally conjugate pairs, (ξ, η), i.e., come to Hamiltonian description. It is evident
that, in general, the transformation

ϕc : (ϕ, p) → (ξ, η)

will not be canonical. The formalism of the present section is the same as in the
H-atom problem but there is some distinction.

We will continue in this section description of in	uence of the phase-space
structure on the result of quantum-mechanical measurements started in the previ-
ous sections. Now we will calculate the expectation value of the ®order parame-
ter¯ (mass-shell particles production vertex) Γ(q; u) [29]:

ρ(q) = 〈|Γ(q; u)|2〉u,

where q is the mass-shell (q2 = m2) particles momentum and 〈〉u means averaging
over the ˇeld u(x, t). Just the procedure of averaging would be the object of
our interest considering the quantum Hamiltonian system with symmetry G. By
deˇnition, ρ is the probability to ˇnd one mass-shell particle. Certainly, ρ(q) = 0
on the sourceless vacuum but, generally speaking, ρ(q) �= 0 in a ˇeld with nonzero
energy density.

Calculations will be illustrated by the integrable (1+1)-dimensional model
with nonpolynomial Lagrangian

L =
1
2
(∂μu)2 +

m2
h

λ2
[cos (λu) − 1]. (6.1)

We will consider the following formulation of the problem. Formally nothing
prevents to linearize partly our problem considering the Lagrangian

L =
1
2
[(∂μu)2 − m2

hu2] +
m2

h

λ2

[
cos (λu) − 1 +

λ2

2
u2

]
≡ L0(u) − v(u) (6.2)

to describe creation (and absorption) of the mass mh particles. Then the last term
in (6.2),

v(u) = −m2
h

λ2

[
cos (λu) − 1 +

λ2

2
u2

]
, (6.3)

∗In other words, we will still stay in the frame of Lagrangian formalism.
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describes interactions. The corresponding to this theory order parameter is

Γ(q; u) =
∫

dx dt eiqx(∂2 + m2
h)u(x, t), q2 = m2

h. (6.4)

It will be shown by explicit calculations that

ρ(q) = 0 (6.5)

as the consequence of unbroken s̃l(2, C) KacÄMoody algebra on which the soli-
tons of theory (6.1) live∗, see, e.g., [31] and references cited therein∗∗. The solu-
tion (6.5) seems interesting since it can be interpreted as the explicit demonstration
of ˇeld u(x, t) conˇnement. The main purpose of this paper is to investigate how
the solution (6.5) appears.

We will be able to ˇnd exact equality (6.5) since the model (6.1) possesses
inˇnite number of integrals of motion. It is well known that each integral of
motion in involution allows one to shrink a number of phase space γ̄ variables on
two units, see, e.g., [12]. Resulting phase space γ is called as the reduced phase
space [25]. The summation over all reduced phaseÄspace topological classes [27]
is assumed.

By this way the ˇeld-theoretical problem will be reduced to the quantum-
mechanical one. We would consider η as the ®particles¯ generalized momen-
tum and would introduce ξ as the conjugate to η coordinate of soliton. The
2N -dimensional phase space (cotangent manifold) γN with local coordinates
(ξ, η) on it has natural simplectic structure, and DM(γN ) = DNM(ξ, η) in
practical calculations (see Subsec. 6.2). The summation over N is assumed.

The quantum corrections to semiclassical approximation of transformed the-
ory are simply calculable since η are conserved in the classical limit. This is the
particularity of solitons dynamics (solitons momenta are the conserved quanti-
ties). One can consider the developed in this paper formalism as the path-integral
version of nonlinear waves (solitons in our case) quantum theory (the canoni-
cal quantization of sine-Gordon model in the soliton sector was described also
in [14].)

In Subsec. 6.3 we will demonstrate Eq. (6.5). It will be shown that this solu-
tion is a consequence of the previously developed proposition (we would justify it

∗Trivialness of soliton S matrix was shown in [30].
∗∗It may be useful at this point to compare our approach with ordinary thermodynamics of

ferromagnetic. The external magnetic ˇeld is ∼ 〈μ〉, where the order parameter 〈μ〉 is the mean
value of the spin, and the phase transition means that 〈μ〉 �= 0, i.e., 〈μ〉 = 0 means that corresponding
symmetry stays unbroken. We will suppose that the mean value of |Γ(q, u)|2, which is the function of
external ˇelds parameter q, plays the same role for ˇeld theories with symmetry, i.e., 〈|Γ(q, u)|2〉u =
0 means that corresponding symmetry stays unbroken. Therefore in our approach only the ®external¯
display of symmetry can be described.
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in Subsec. 6.2) that the semiclassical approximation is exact for
sine-Gordon model [11]. The semiclassical approximation in the γN phase space
will be considered in Subsec. 6.2.

We would not use the complicated algebra to show the reduction procedure
explicitly noting that all solutions of model (6.1) are known [24]. Then, using the
δ-likeness of measure DM(γ̃), we will ˇnd in Subsec. 6.2 DM(γN ) considering
the mapping as an ordinary transformation to useful variables∗. Corresponding
perturbation theory, see Subsec. 6.3, in the momentum space J was described
in [26]. In Subsec. 6.2 the path-integral deˇnition of ρ(q) will be given.

We would conclude (this is the main result) that a theory in the ®nonlinear
waves¯ sector may be nontrivial (ρ �= 0) iff the manifold γ is not compact.

6.2. Reduction Procedure. 6.2.1. Introduction into formalism.
Our aim is to calculate the integral:

ρ(q) = e−iK̂(j,e)

∫
DM(u, p)|Γ(q; u)|2 eiSO(u)−iU(u,e), (6.6)

where Γ(q; u) was deˇned in (6.4). In this expression the expansion over operator

K̂(j, e) = Re
∫

C+

dxdt
δ

δj(x, t)
δ

δe(x, t)
≡ Re

∫
C+

dx dt ĵ(x, t)ê(x, t) (6.7)

generates the perturbation theory series. We will assume that this series exists.
The functionals U(u, e) and SO(u) are deˇned by the equalities:

V (u + e) − V (u − e) = U(u, e) +
∫

dx dt e(x, t) v′(u),

S0(u + e) − S0(u − e) = SO(u) +
∫

dx dt e(x, t)(∂2 + m2
h)u(x, t).

(6.8)

The action S0(u) corresponds to the free part of Lagrangian (6.1), and V (u)
describes interactions. The quantity SO(u) is not equal to zero since the soliton

∗We will apply inverse reduction procedure. Let G be a group of canonical transformations
acting on the simplectic manifold γ̃, and let Ḡ be the Lie algebra of G with G∗ dual of it. Then
the momentum [32] mapping J : γ̃ → G∗ introduces the integrals of motion which reduce the
γ̃ manifold. Noting that the set of levels J−1(η) (solution of equations J(π) = η, π ∈ γ̃) is a
manifold then γη = J−1(η)/Ḡη is the reduced phase space, where Ḡη is the co-adjoint isotropy
subgroup of G. Therefore, the differential measure dM = dM(η, γη) for reduced phase space.
For integrable mechanical systems (inˇnite dimensional as well, see, e.g., [24]) γη shrinks to the
point and in this case dM = dM(η) is the measure of momentum manifold. Just this simplest
case would be considered working with Lagrangian (6.1) and more general and interesting case with
measure DM = DM(η, γη), γη �= ∅, will be considered later. So, the reduction procedure of
our Hamiltonian system with symmetry G looks like canonical transformation [31]. This problem is
nontrivial since, generally speaking, dim γ̃ and dim γ are not the same for model (6.1).
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conˇgurations have nontrivial topological charge (see also [1]). All time integrals
in this expressions were deˇned on the Mills time contour [17]:

2Re
∫

C+

=
∫

C+

+
∫

C−

and
C± : t → t ± iε, ε → +0, −∞ � t � +∞

to avoid the possible light-cone singularities of the perturbation theory. The
variational derivatives in (6.7) are deˇned by the following way:

δu(x, t ∈ Ci)
δu(x′, t′ ∈ Cj)

= δijδ(x − x′)δ(t − t′), i, j = +,−.

The auxiliary variables (j, e) must be taken equal to zero at the very end of
calculations.

Considering the ˇrst-order formalism with new coordinates (u, p), the mea-
sure DM(u, p) has the form:

DM(u, p) =
∏
x,t

du(x, t) dp(x, t)δ
(

u̇ − δHj(u, p)
δp

)
δ

(
ṗ +

δHj(u, p)
δu

)
(6.9)

with the total ®Hamiltonian¯

Hj(u, p) =
∫

dx

{
1
2
p2 +

1
2
(∂xu)2 − m2

h

λ2
[cos (λu) − 1] − ju

}
. (6.10)

The problem will be considered assuming that u(x, t) belongs to Schwartz space:

u(x, t)||x|=∞ = 0
(

mod
2π

λ

)
. (6.11)

This means that u(x, t) tends to zero (mod 2π/λ) at |x| → ∞ faster than any
power of 1/|x|. Note that u̇ = p, i.e., u and p are not the independent quantities.

The measure (6.9) allows one to perform arbitrary transformations. But, as
was explained in Introduction, we will use the analog of canonical transformation
which conserves the form of equations of motion. Hence, it is sufˇcient on this
stage of calculations to know only the fact that this transformation exists [24].
One may propose that ˇnally we should ˇnd for N -soliton topology:

DNM(ξ, η) =
∏

t

dNξ(t) dNη(t) δ(N)

(
ξ̇ − ∂hj(ξ, η)

∂η(t)

)
δ(N)

(
η̇ +

∂hj(ξ, η)
∂ξ(t)

)
,

(6.12)
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where hj is the ®transformed Hamiltonian¯:

hj = hN (η) −
∫

dxj(x, t)uN (x; ξ, η) (6.13)

and uN(x; ξ, η) is the N -soliton conˇguration the time dependence of which is
parameterized by (ξ, η). Therefore, the local coordinates (ξ, η) are deˇned by the
equations:

ξ̇ =
∂hj

∂η
, η̇ = −∂hj

∂ξ
, (6.14)

where hj must obey the Poisson conditions∗:

{uc(x, t), hj} =
δHj

δpc(x, t)
, {pc(x, t), hj} = − δHj

δuc(x, t)
. (6.15)

One can see, choosing
hj(ξ, η) = Hj(uc, pc), (6.16)

that the initial equations have been restored:

u̇c =
∂uc

∂ξ
ξ̇ +

∂u

∂η
η̇ = {uc, hj} =

δHj

δpc
.

The same we will have for ṗc. Therefore (uc, pc) are solutions of equations of
motion (6.14), if the equality (6.16) is held.

The ˇeld theory case in (1 + 1)-dimensional conˇguration space needs addi-
tional explanations. First of all, the analog of (5.10) must be introduced:

Δ(u, p) =
∫ ∏

t

dNξ(t) dNη(t)
∏
x,t

δ(u(x, t)−uc(x; ξ, η)) δ(p(x, t)− pc(x; ξ, η))

(6.17)
if the N -soliton conˇguration is considered. Notice that the one-dimensional
δ-functions are introduced in (6.17), and uc, pc are the functions of sets (ξ, η),
dim(ξ, η) = 2N . Introducing (6.17) we make an attempt to ®hide¯ the time
dependence entirely into the set of independent variables (ξ, η).

Comparing (6.9) and (6.12) one can note that x dependence disappeared and
the transformed measure depends on the number N = 1, 2, . . . Therefore, there
occurs the reduction of the quantum degrees of freedom since the power of the
coordinate set is continuum and the number of solitons N is the countable set.
This means that the proposed transformation to coordinates of solitons will be
unavoidably singular.

∗See the previous section.
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Notice then that the x dependence of Δ(u, p) remains unimportant since last
one always appears under the integrals over all u(x, t) and p(x, t). At the same
time, it is important that introduced in the previous section Δc disappeared in the
ˇnal result, if the integral form of Poisson brackets (6.15) is held∗.

One can try to propose also the local form of canonical commutators (6.15),
if the deˇnition (6.16) is held. Indeed, one can ˇnd inserting (6.16) into (6.15)
that:

{uc(x, t), Hj(uc, pc)} =
δHj(uc, pc)
δpc(x, t)

, {pc(x, t), Hj(uc, pc)} = −δHj(uc, pc)
δuc(x, t)

.

(6.18)
This equalities must hold for arbitrary j. Using the deˇnition:

Hj(xc, pc) =
∫

dyH̃j(xc, pc),

where H̃j is the Hamiltonian density, one can write from (6.18):

∫
dy{uc(x; ξ, η), uc(y; ξ, η)} δH̃j

δuc(y, t)
+

+
∫

dy({uc(x; ξ, η), pc(y; ξ, η)} − δ(x − y))
δH̃j

δpc(y, t)
= 0

and

∫
dy{pc(x; ξ, η), pc(y; ξ, η)} δH̃j

δpc(y, t)
−

−
∫

dy({uc(x; ξ, η), pc(y; ξ, η)} − δ(x − y))
δH̃j

δuc(y, t)
= 0.

Then one can propose the solutions of these equations:

{uc(x; ξ, η), uc(y; ξ, η)} = {pc(x; ξ, η), pc(y; ξ, η)} = 0, (6.19)

{uc(x; ξ, η), pc(y; ξ, η)} = δ(x − y).

But it is interesting that the local commutators (6.19) are not satisˇed∗∗. One can
see this inserting the soliton solution into (6.19). On the other hand, the integral
form (6.18) is satisˇed. All this means that uc and pc are not the completely

∗See the transformation (5.12), described in the previous section. For more conˇdence one can
introduce the appropriate cells in the x space [24].

∗∗That circumstance was mentioned ˇrstly by V.Voronyuk.
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independent variables. It must be stressed that the local relations (6.19) are not
the necessary conditions in our formalism.

In our terms, the quantum force j(x, t) excites the (ξ, η) manifold only,
leaving the topology of classical trajectory (u, p)c unchanged. We can use them
immediately since the complete set of canonical coordinates (ξ, η) of sine-Gordon
model is known, see, e.g., [24].

6.2.2. Perturbation Theory on the Cotangent Bundle. The classical Hamil-
tonian hj is the sum:

hj(η) =
∫

dp σ(r)
√

r2 + m2
h +

N∑
i=1

h(ηi), (6.20)

where σ(r) is the continuous spectrum and h(η) is the soliton energy. Note the
absence of interaction energy among solitons.

New degrees of freedom (ξ, η)(t) must obey equations (6.14):

ξ̇i = Ω(ηi) −
∫

dxj(x, t)
∂uN (x; ξ, η)

∂ηi
, Ω(η) ≡ ∂h(η)

∂η
,

(6.21)

η̇i =
∫

dxj(x, t)
∂uN (ξ, η)

∂ξi
.

Hence the sources of quantum perturbations are proportional to the time-local
	uctuations of soliton conˇgurations

∂uN(x; ξ, η)
∂ηi

,
∂uN(x; ξ, η)

∂ξi
.

One can split the Lagrange source onto ®Hamiltonian¯ ones:

j(x, t) → (jξ, jη).

This gives weight functional U(uN ; eξ, eη) and operator K̂(eξ, eη; jξ, jη). As
a result,

ρ(q) =
∑
N

e−iK̂(eξ,eη ;jξ,jη)

∫
DNM(ξ, η) eiSO(uN ) e−iU(uN ;eξ,eη)×

× |Γ(q; uN )|2, (6.22)

where, using vector notations, we get

K̂(eξ, eη; jξ, jη) =
1
2

∫
dt {ĵξ(t) · êξ(t) + ĵη(t) · êη(t)}. (6.23)
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The measure takes the form:

DNM(ξ, η) =
N∏

i=1

∏
t

dξi(t) dηi(t) δ(ξ̇i − Ω(ηi) − jξ,i(t)) δ(η̇i − jη,i(t)). (6.24)

The effective interaction potential

U(uN ; eξ, eη) = −2m2

λ2

∫
dx dt sin λuN (sin λe − λe) (6.25)

with

e(x, t) = eξ(t)
∂uN(x; ξ, η)

∂η(t)
− eη(t)

∂uN (x; ξ, η)
∂ξ(t)

. (6.26)

Performing the shifts:

ξi(t) → ξi(t) +
∫

dt′g(t − t′)jξ,i(t′) ≡ ξi(t) + ξ′i(t),

ηi(t) → ηi(t) +
∫

dt′g(t − t′)jη,i(t′) ≡ ηi(t) + η′
i(t),

(6.27)

we can move the Green function g(t − t′) into the operator:

K̂(eξ, eη; ξ′, η′) =
1
2

∫
dt dt′g(t − t′){ξ̂′(t′) · êξ(t) + η̂′(t′) · êη(t)}. (6.28)

Notice that the Green function g(t − t′) of Eqs. (6.21) is again the step function:

g(t − t′) = Θ(t − t′). (6.29)

Its imaginary part is equal to zero for real times and this allows one to shift C±
to the real-time axis (see [26]).

Consequently,

DNM(ξ, η) =
N∏

i=1

∏
t

dξi(t) dηi(t) δ(ξ̇i − Ω(η + η′))δ(η̇i) (6.30)

with
uN = uN (x; ξ + ξ′, η + η′). (6.31)

The equations
ξ̇i = Ω(ηi + η′

i) (6.32)

are trivially integrable. In quantum case η′
i �= 0 this equation describes the

motion on nonhomogeneous and anisotropic manifold. So, the expansion over
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(ξ̂′, êξ, η̂′, êη) generates the local in time deformations of γN manifold, (ξ, η) ∈
γN completely. The weight of this deformations is deˇned by U(uN ; eξ, eη).

Using the deˇnition∫
Dxδ(ẋ) =

∫
dx(0) =

∫
dx0,

functional integrals are reduced to the ordinary integrals over initial data (ξ, η)0.
These integrals deˇne the zero modes volume.

6.3. Quantum Corrections. The proof of (6.5) we would divide into two
parts. First of all, we would consider the semiclassical approximation (Sub-
subsec. 6.3.1), and in Subsubsec. 6.3.2. we will show that this approximation is
exact.

6.3.1. Introduction and Deˇnitions. The N -soliton solution uN depends
on 2N parameters. Half of them, N , can be considered as the position of
solitons and other N as the solitons momentum. Generally at |t| → ∞ the uN

solution decomposed on the single solitons us and on the double-soliton bound
states ub [24]:

uN (x, t) =
n1∑

j=1

us,j(x, t) +
n2∑

k=1

ub,k(x, t) + O( e−|t|).

We will see later that main elements of our formalism are the one-soliton us and
two-soliton bound state ub conˇgurations. Its (ξ, η) parameterizations, conˇrmed
to Eqs. (6.15), have the form:

us(x; ξ, η) = − 4
λ

arctan{exp (mhx cosh βη − ξ)}, β =
λ2

8
(6.33)

and

ub(x; ξ, η) = − 4
λ

arctan
{

tan
βη2

2
mhx sinh βη1/2 cos βη2/2 − ξ2

mhx cosh βη1/2 sin βη2/2 − ξ1

}
. (6.34)

The (ξ, η) parameterization of solitons individual energies h(η) takes the form:

hs(η) =
mh

β
cosh βη, hb(η) =

2mh

β
cosh

βη1

2
sin

βη2

2
� 0.

The bound-states energy hb depends on η1 and η2. First one deˇnes inner
motion of two bounded solitons and second one Å the bound-states center-of-
mass motion. Correspondingly, we will call these parameters as the internal and
external ones. Note that the inner motion is periodic, see (6.24).

Performing last integration in (6.22) with measure (6.30) we ˇnd:

ρ(q) =
∑
N

∫ N∏
i=1

{dξ0 dη0}i e−iK̂ eiSO(uN ) e−iU(uN ;eξ,eη)|Γ(q; uN )|2, (6.35)
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where
uN = uN (η0 + η′, ξ0 + Ω(t) + ξ′) (6.36)

and

Ω(t) =
∫

dt′Θ(t − t′)Ω(η0 + η′(t′)). (6.37)

In the semiclassical approximation ξ′ = η′ = 0 we have

uN = uN (x; η0, ξ0 + Ω(η0)t). (6.38)

Note now that if the surface term∫
∂μ( eiqx∂μuN ) = 0, (6.39)

then∫
d2x eiqx(∂2 + m2

h)uN (x, t) = −(q2 − m2
h)
∫

d2x eiqxuN (x, t) = 0 (6.40)

since q2 belongs to mass shell by deˇnition. The condition (6.39) is satisˇed since
uN belongs to Schwartz space (the periodic boundary condition for u(x, t) does
not alter this conclusion). Therefore, in the semiclassical approximation Eq. (6.5)
is held.

Expending the operator exponent in (6.35) we will ˇnd the expansion over

ρn,m(q) =
(1/2i)n

n!
(1/2i)m

m!
lim

(ξ′,η′,eξ,eη)=0

∑
N

∫
dNξ0 dNη0×

×
∫ n∏

i=1

{dti dt′iθ(ti − t′i)ξ̂
′(t′i)}×

×
∫ m∏

i=1

{dti dt′iθ(ti − t′i) η̂′(t′i)} eiSO(uN )|Γ(q; uN )|2×

×
{ n∏

i=1

êξ(ti)
m∏

j=1

êη(tj) e−iU(uN ;eξ,eη)

}∣∣∣∣
e=0

, (6.41)

where U(uN ; eξ, eη) was deˇned in (6.25), (6.26). Notice that the action of

operators ξ̂′, η̂′ creates terms∫
d2x eiqxθ(t − t′)(∂2 + m2)uN (x, t) �= 0. (6.42)

6.3.2. Quantum Corrections. Now we will show that the semiclassical appro-
ximation is exact in the soliton sector of (6.1), (6.11) theory.
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The structure of the perturbation theory is readily seen in the ®normal-pro-
duct¯ form:

ρ(q) =
∑
N

∫ N∏
i=1

{dξ0 dη0}i : e−iU(uN ;ĵ/2i) eiSO(uN )|Γ(q; uN)|2 :, (6.43)

where

ĵ = ĵξ
∂uN

∂η
− ĵη

∂uN

∂ξ
= ωĵX

∂uN

∂X
(6.44)

and

ĵX =
∫

dt′Θ(t − t′) X̂(t′) (6.45)

with 2N -dimensional vector X = (ξ, η). In Eq. (6.44), ω is the ordinary simplec-
tic matrix.

The colons in (6.43) mean that the operator ĵ should stay to the left of all
functions. The structure (6.44) shows that each order over ĵXi is proportional at
least to the ˇrst-order derivative of uN over conjugate to Xi variable.

The expansion of (6.43) over ĵX can be written [26] in the form of total
derivatives (omitting the semiclassical approximation):

ρ(q) =
∑
N

∫ N∏
i=1

{dξ0 dη0}i

{
2n∑
i=1

∂

∂X0i
PXi(uN )

}
, (6.46)

where PXi (uN) is the inˇnite sum of ®time-ordered¯ polynomials (see [26]) over
uN and its derivatives. The explicit form of PXi (uN) is complicated since the
interaction potential is nonpolynomial. But it is enough to know, see (6.44), that

PXi(uN ) ∼ ωij
∂uN

∂X0j
. (6.47)

Therefore,
ρ(q) = 0 (6.48)

since (i) each term in (6.46) is the total derivative, (ii) we have (6.47) and
(iii) uN belongs to Schwartz space.

We can conclude that the equality (6.48) is hold since

∂uN

∂X0
= 0 at X0 ∈ ∂W, (6.49)

where ∂W is the boundary of W .
In our consideration we did not touch the continuous spectrum contributions.

In considered approach these contributions are absent since they are realized on
zero measure: theirs contributions are ∼ {volume of γN}−1.
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7. SUMMARY

Let as summarize the general results of the the present and of the previous
sections.

1. The m- into n-particles transition (non-normalized) probability Rnm

would have on the Dirac measure the following symmetrical form:

ρnm(p1, . . . , pn, q1, . . . , qm) =
〈 m∏

k=1

|Γ(qk; u)|2
n∏

k=1

|Γ(pk; u)|2
〉

u

=

= e−iK̂(j,e)

∫
DM(u) eiSO(u)−iU(u,e)

m∏
k=1

|Γ(qk; u)|2
n∏

k=1

|Γ(pk; u)|2 ≡

≡ Ô(u)
m∏

k=1

|Γ(qk; u)|2
n∏

k=1

|Γ(pk; u)|2. (7.1)

Here p(q) are the in(out)-going particle momenta. It should be underlined that
this representation is strict and is valid for arbitrary Lagrange theory of arbitrary
dimensions.

2. The operator Ô contains three elements. The Dirac measure DM , the
functionals SO, U(x, e), and the operator K̂(j, e).

The expansion over the operator

K̂(j, e) =
1
2
Re
∫

C+

dx dt
δ

δj(x, t)
δ

δe(x, t)
≡ 1

2
Re
∫

C+

dx dt ĵ(x, t)ê(x, t) (7.2)

generates the perturbation series. We will assume that this series exists (at least
in Borel sense).

3. The functionals U(u, e) and SO(u) are deˇned by the equalities:

SO(u) = (S0(u + e)−S0(u− e))+ 2Re
∫

C+

dx dt e(x, t)(∂2 + m2)u(x, t), (7.3)

U(u, e) = V (u + e) − V (u − e) − 2Re
∫

C+

dx dt e(x, t)v′(u), (7.4)

where S0(u) is the free part of the Lagrangian and V (u) describes interactions.
The quantity SO(u) is not equal to zero if u have nontrivial topological charge.

4. The measure DM(u, p) has the Dirac form:

DM(u, p) =
∏
x,t

du(x, t) dp(x, t)δ
(

u̇ − δHj(u, p)
δp

)
δ

(
ṗ +

δHj(u, p)
δu

)
(7.5)
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with the total Hamiltonian

Hj(u, p) =
∫

dx

{
1
2
p2 +

1
2
(∇u)2 + v(u) − ju

}
. (7.6)

This last one includes the energy ju of quantum 	uctuations.
5. Dirac measure contains following information:
a. Only strict solutions of equations

u̇ − δHj(u, p)
δp

= 0, ṗ +
δHj(u, p)

δu
= 0 (7.7)

with j = 0 should be taken into account. This ®rigidness¯ of the formalism
means the absence of pseudosolutions (similar to multiinstanton, or multikink)
contribution.

b. ρnm is described by the sum of all solutions of Eq. (7.7), independently
of their ®nearness¯ in the functional space.

c. ρnm did not contain the interference terms from various topologically
nonequivalent contributions. This displays the orthogonality of corresponding
Hilbert spaces.

d. The measure (7.5) includes j(x) as the external adiabatic source. Its
	uctuation disturbs the solutions of Eq. (7.7) and vice versa since the measure (7.5)
is strict.

e. In the frame of the adiabatical condition, the ˇeld disturbed by j(x)
belongs to the same manifold (topology class) as the classical ˇeld deˇned
by (7.7) [26].

f. The Dirac measure is derived for real-time processes only, i.e., (7.5) is
not valid for tunneling ones. For this reason, the above conclusions should be
taken carefully.

g. It can be shown that theory on the measure (7.5) restores ordinary (canon-
ical) perturbation theory.

6. The parameter Γ(q; u) plays the role of particle production vertex. It is
connected directly with external particle energy, momentum, spin, polarization,
charge, etc., and is sensitive to the symmetry properties of the interacting ˇelds
system. For the sake of simplicity, u(x) is the real scalar ˇeld. The generalization
would be evident.

As a consequence of (7.5), Γ(q; u) is the function of the external particle
momentum q and is a linear functional of u(x):

Γ(q; u) = −
∫

dx eiqx δS0(u)
δu(x)

=
∫

dx eiqx(∂2 + m2)u(x), q2 = m2 (7.8)

for the mass m ˇeld. This parameter presents the momentum distribution of
the interacting ˇeld u(x) on the remote hypersurface σ∞ if u(x) is the regular
function. Notice, the operator (∂2 + m2) cancels the mass-shell states of u(x).
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The construction (7.8) means, because of the KleinÄGordon operator and
since the external states being mass-shell by deˇnition [33], that the solution
ρnm = 0 is possible for a particular topology (compactness and analytic prop-
erties) of quantum ˇeld u(x). So, Γ(q; u) carries the following remarkable
properties:

Å it directly deˇnes the observables,
Å it is deˇned by the topology of u(x),
Å it is the linear functional of the actions symmetry group element u(x).
If (7.7) have nontrivial solution uc(x, t), then this ®extended objects¯ quan-

tization problem arises. We solve it introducing convenient dynamical vari-
ables [34]. Then the measure (7.5) admits the transformation:

uc : (u, p) → (ξ, η) ∈ W =
G

Gc
, (7.9)

and the transformed measure has the form:

DM(u, p) =
∏
x,tC

dξ(t) dη(t)δ
(

ξ̇ − δhj(ξ, η)
δη

)
δ

(
η̇ +

δhj(ξ, η)
δξ

)
, (7.10)

where hj(ξ, η) = Hj(uc, pc) is the transformed Hamiltonian.
It is evident that (ξ, η) are parameters of integration of Eqs. (7.7) and they

form the factor space W = G/Gc. As a result of mapping of the perturbation
generating operator K̂ on the manifold W , the equations of motion became
linearized:

DM =
∏

t

δ

(
ξ̇ − δh(η)

δη
− jξ

)
δ (η̇ − jη) . (7.11)

If Feynman's iε-prescription is adopted, then the Green function of Eq. (7.11):

g(t − t′) = Θ(t − t′) (7.12)

with boundary property:
Θ(0) = 1.

7. Expansion of exp {K̂(j, e)} gives the ®strong coupling¯ perturbation se-
ries. Its analysis shows that the action of the integro-differential operator Ô leads
to the following representation:

ρnm(p, q) =
∫
W

{
dξ(0)

∂

∂ξ(0)
ρξ

nm(p, q) + dη(0)
∂

∂η(0)
ρη

nm(p, q)
}

. (7.13)

This means that the contributions into Rnm(p, q) are accumulated strictly on
the boundary, ®bifurcation manifold¯, ∂W , i.e., depend directly on the topology
property of W .
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8. It was shown that the MP is absent in the frame of Lagrangian (6.1). For
this purpose one should modify the sine-Gordon Lagrangian adding, for instance,
the term

1
2
(∂Φ)2 − 1

2
M2Φ2 − c

3
uΦ2 (7.14)

to describe collision of ®external¯ ˇeld Φ on the solitons. This model allows one
to introduce the nontrivial probabilities ρ(q1, q2, . . .) considering creation (and
absorption) of the ˇeld Φ. Note that ˇeld u(x) is still ®conˇned¯ even with this
adding.

CONCLUSION

The ˇnal goal of the present approach is to construct the workable at arbitrary
distances, i.e., for arbitrary momenta of produced hadrons, S-matrix formalism for
theories with (hidden) symmetry. But this aim remains unachieved in the present
paper. In subsequent papers more realistic ˇeld models in 4D Minkowski spaceÄ
time metric will be described. But one should not consider the demonstrated
examples of YangÄMills S matrix as the deˇnite proves since I am not sure that
the used O(4) × O(2) solution of YangÄMills equation in the Minkowski in the
situation of general position guarantees the largest contribution. Moreover, only
the SU(2) theory will be considered. Unfortunately, we cannot ˇnd in the frame
of 't Hooft ansatz [35] the solution for larger SU(N) group [36].

It will be to show how one or another physical phenomena may be seen in
the ˇeld theory with symmetry. Namely,

Å no plain-waves production exists in theories with symmetry,
i.e., for instance, the gluons cannot be seen in a free state since simply the last
ones are absent in quantum theory of the symmetry manifolds, or, in other words,
since the gluon states and the ®states¯ of the symmetry manifold belong to the
orthogonal Hilbert spaces. The quark ˇelds will not be included in this simplest
example. But more realistic model with quarks shows that

Å inclusion of matter cannot change the previous conclusion that the gluons
cannot be created.

In the other example we will show how the
Å binding potential may arise among quarks.

Here the situation of general position selection rule will be extremely important:
it will be used that the situation, when (qq̄) potential is independent of the scale
of YangÄMills ˇelds, is mostly probable.

The quantum ˇeld theory with constraints will obey the following important
property:

Å the perturbation theory of quantum systems with symmetry may be free of
any divergences,
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i.e., it may∗ be rightful at arbitrary distances, for VHM case as well. It is the
evident consequence of lessening of the number of dynamical degrees of freedom
because of symmetry constraints∗∗.

There exists also the intriguing question of asymptotic freedom. The point
is that there is no running coupling constants in our strong coupling perturbation
theory without divergences. On the other hand, the asymptotic freedom is the
experimental fact. We will show how

Å the effect of asymptotic freedom may arise
in our quantum theory of the symmetry manifolds. The main question here is to
ˇnd the experimentally observable corrections to the asymptotic freedom law.

In summary, the aim of future publications would be the question: Is the
offered approach complete from physical point of view? It is important since
offered quantization scheme in the situation of general position on Dirac mea-
sure must be true for arbitrary distances, since it is free from arbitrary scale
parameters∗∗∗.
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