INSTANTONS AND CHERN-SIMONS FLOWS IN 6, 7 AND 8 DIMENSIONS

O. Lechtenfeld

Institut für Theoretische Physik, Leibniz Universität Hannover, and Centre for Quantum Engineering and Space-Time Research, Leibniz Universität Hannover, Hannover, Germany

Abstract

The existence of K-instantons on a cylinder $M^{7}=\mathbb{R}_{\tau} \times K / H$ over a homogeneous nearly Kähler 6-manifold K / H requires a conformally parallel or a cocalibrated G_{2}-structure on M^{7}. The generalized anti-self-duality on M^{7} implies a Chern-Simons flow on K / H which runs between instantons on the coset. For K-equivariant connections, the torsionful Yang-Mills equation reduces to a particular quartic dynamics for a Newtonian particle on \mathbb{C}. When the torsion corresponds to one of the G_{2}-structures, this dynamics follows from a gradient or Hamiltonian flow equation, respectively. We present the analytic (kink-type) solutions and plot numerical non-BPS solutions for general torsion values interpolating between the instantonic ones.

PACS: 11.10.Kk

INTRODUCTION

Yang-Mills instantons exist in dimensions d larger than four only when there is additional geometric structure on the manifold M^{d} (besides the Riemannian one). In order to formulate generalized first-order anti-self-duality conditions which imply the second-order Yang-Mills equations (possibly with torsion), M^{d} must be equipped with a so-called G-structure, which is a globally defined but not necessarily closed $(d-4)$-form Σ, so that the weak holonomy group of M^{d} gets reduced.

Instanton solutions in higher dimensions are rare in the literature. In the mideighties, Fairlie and Nuyts, and also Fubini and Nicolai discovered the $\operatorname{Spin}(7)-$ instanton on \mathbb{R}^{8}. Eight years later, a similar G_{2}-instanton on \mathbb{R}^{7} was found by Ivanova and Popov, and also by Günaydin and Nicolai. Our recent work shows that these so-called octonionic instantons are not isolated but embedded into a whole family living on a class of conical non-compact manifolds [1].

The string vacua in heterotic flux compactifications contain non-Abelian gauge fields which in the supergravity limit are subject to Yang-Mills equations with torsion \mathcal{H} determined by the three-form flux. Prominent cases admitting instantons are $\mathrm{AdS}_{10-d} \times M^{d}$, where M^{d} is equipped with a G-structure, with G being $S U(3), G_{2}$ or $\operatorname{Spin}(7)$ for $d=6,7$ or 8 , respectively. Homogeneous nearly

Kähler 6-manifolds K / H and (iterated) cylinders and (sine-)cones over them provide simple examples, for which all K-equivariant Yang-Mills connections can be constructed $[2,3]$. Natural choices for the gauge group are K or G.

Clearly, the Yang-Mills instantons discussed here serve to construct heterotic string solitons, as was first done in 1990 by Strominger for the gauge five-brane. It is therefore of interest to extend our new instantons to solutions of (string-corrected) heterotic supergravity and obtain novel string/brane vacua [4-6].

In this talk, I present the construction for the simplest case of a cylinder over a compact homogeneous nearly Kähler coset K / H, which allows for a conformally parallel or a cocalibrated G_{2}-structure. I display a family of non-BPS Yang-Mills connections, which contain two instantons at distinguished parameter values corresponding to those G_{2}-structures. In these two cases, anti-self-duality implies a Chern-Simons flow on K / H.

Finally, I must apologize for the omission - due to page limitation - of all relevant literature besides my own papers on which this talk is based. The reader can find all references therein.

1. SELF-DUALITY IN HIGHER DIMENSIONS

The familiar four-dimensional anti-self-duality condition for Yang-Mills fields F may be generalized to suitable d-dimensional Riemannian manifolds M,

$$
\begin{equation*}
* F=-\Sigma \wedge F \quad \text { for } \quad F=d A+A \wedge A \quad \text { and } \quad \Sigma \in \Lambda^{d-4}(M), \tag{1}
\end{equation*}
$$

if there exists a geometrically natural ($d-4$)-form Σ on M. Applying the gaugecovariant derivative $D=d+[A, \cdot]$, it follows that

$$
\begin{equation*}
D * F+d \Sigma \wedge F=0 \Longleftrightarrow \text { Yang-Mills with torsion } \mathcal{H}=* d \Sigma \in \Lambda^{3}(M) . \tag{2}
\end{equation*}
$$

This torsionful Yang-Mills equation extremizes the action

$$
\begin{align*}
& S_{\mathrm{YM}}+S_{\mathrm{CS}}=\int_{M} \operatorname{tr}\left\{F \wedge * F+(-)^{d-3} \Sigma \wedge F \wedge F\right\}= \\
&=\int_{M} \operatorname{tr}\left\{F \wedge * F+\frac{1}{2} d \Sigma \wedge\left(A d A+\frac{2}{3} A^{3}\right)\right\} . \tag{3}
\end{align*}
$$

Related to this generalized anti-self-duality is the gradient Chern-Simons flow on M,

$$
\begin{equation*}
\left.\frac{d A}{d \tau}=\frac{\delta}{\delta A} S_{\mathrm{CS}}=*(d \Sigma \wedge F) \sim * d \Sigma\right\lrcorner F \tag{4}
\end{equation*}
$$

In fact, this equation follows from generalized anti-self-duality on the cylinder $\widetilde{M}=\mathbb{R}_{\tau} \times M$ over M (in the $A_{\tau}=0$ gauge).

The question is therefore: Which manifolds admit a global ($d-4$)-form? And the answer is: G-structure manifolds, i.e., manifolds with a weak special holonomy. The key cases we shall encounter in this talk are given in Table 1.

Table 1. Examples of G-structure manifolds in $d=6,7,8$

d	G	Σ	Cases	Example	Structure
6	$S U(3)$	ω	Kähler	$\mathbb{C} P^{3}$	$d \omega=0$
6	$S U(3)$	ω	Nearly Kähler	$S^{6}=\frac{G_{2}}{S U(3)}$	$d \omega \sim \operatorname{Im} \Omega, d \operatorname{Re} \Omega \sim \omega^{2}$
7	G_{2}	ψ	Conf. parallel G_{2}	$\mathbb{R}_{\tau} \times$ nearly Kähler	$d \psi \sim \psi \wedge d \tau, d * \psi \sim-* \psi \wedge d \tau$
7	G_{2}	ψ	Nearly parallel G_{2}	$X_{k, \ell}=\frac{S U(3)}{U(1)_{k, \ell}}$	$d \psi \sim * \psi \Rightarrow d * \psi=0$
7	G_{2}	ψ	Parallel G_{2}	Cone (nearly Kähler)	$d \psi=0=d * \psi$
8	$\operatorname{Spin}(7)$	Σ	Parallel Spin(7)	$\mathbb{R}_{\tau} \times$ parallel G_{2}	$d \Sigma=0, * \Sigma=\Sigma$

Fig. 1. Iterated cylinders, cones and sine-cones over nearly Kähler 6-manifolds
Some of those cases are related via the scheme shown in Fig. 1, with examples in square brackets.

For this talk I shall consider (reductive nonsymmetric) coset spaces $M=$ K / H in $d=6$ as well as cylinders and cones over them. In all these cases, the gauge group is chosen to be K.

2. SIX DIMENSIONS: NEARLY KÄHLER COSET SPACES

All known compact nearly Kähler 6-manifolds M^{6} are nonsymmetric coset spaces K / H :

$$
\begin{gather*}
S^{6}=\frac{G_{2}}{S U(3)}, \quad \frac{S p(2)}{S p(1) \times U(1)}, \quad \frac{S U(3)}{U(1) \times U(1)} \\
S^{3} \times S^{3}= \tag{5}\\
\frac{S U(2) \times S U(2) \times S U(2)}{S U(2)} .
\end{gather*}
$$

The coset structure $H \triangleleft K$ implies the decomposition

$$
\begin{equation*}
\operatorname{Lie}(K) \equiv \mathfrak{k}=\mathfrak{h} \oplus \mathfrak{m} \quad \text { with } \quad \mathfrak{h} \equiv \operatorname{Lie}(H) \quad \text { and } \quad[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m} . \tag{6}
\end{equation*}
$$

Interestingly, the reflection automorphism of symmetric spaces gets generalized to a so-called tri-symmetry automorphism $S: K \rightarrow K$ with $S^{3}=i d$ implying

$$
\begin{equation*}
s: \mathfrak{k} \rightarrow \mathfrak{k} \quad \text { with }\left.\quad s\right|_{\mathfrak{h}}=\mathbb{1} \quad \text { and }\left.\quad s\right|_{\mathfrak{m}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} J=\exp \left\{\frac{2 \pi}{3} J\right\} \tag{7}
\end{equation*}
$$

effecting a $2 \pi / 3$ rotation on $T M^{6}$. I pick a Lie-algebra basis

$$
\begin{equation*}
\left\{I_{a=1, \ldots, 6}, I_{i=7, \ldots, \operatorname{dim} G\}} \quad \text { with } \quad\left[I_{a}, I_{b}\right]=f_{a b}^{i} I_{i}+f_{a b}^{c} I_{c}\right. \tag{8}
\end{equation*}
$$

involving the structure constants $f_{a b}^{\bullet}$. The Cartan-Killing form then reads

$$
\begin{equation*}
\langle\cdot, \cdot\rangle_{\mathfrak{k}}=-\operatorname{tr}_{\mathfrak{k}}(\operatorname{ad}(\cdot) \circ \operatorname{ad}(\cdot))=3\langle\cdot, \cdot\rangle_{\mathfrak{h}}=3\langle\cdot, \cdot\rangle_{\mathfrak{m}}=\mathbb{1} . \tag{9}
\end{equation*}
$$

Expanding all structures in a basis of canonical one-forms e^{a} framing $T^{*}(G / H)$,

$$
\begin{equation*}
g=\delta_{a b} e^{a} e^{b}, \quad \omega=\frac{1}{2} J_{a b} e^{a} \wedge e^{b}, \quad \Omega=-\frac{1}{\sqrt{3}}(f+i J f)_{a b c} e^{a} \wedge e^{b} \wedge e^{c} \tag{10}
\end{equation*}
$$

we see that the almost complex structure $\left(J_{a b}\right)$ and the structure constants $f_{a b c}$ rule everything.

Nearly Kähler 6-manifolds are special in that the torsion term in (2) vanishes by itself! What is more, this property is actually equivalent to the generalized anti-self-duality condition (1):

$$
\begin{equation*}
* F=-\omega \wedge F \Longleftrightarrow 0=d \omega \wedge F \sim \operatorname{Im} \Omega \wedge F \Longleftrightarrow \text { DUY equations, } \tag{11}
\end{equation*}
$$

where the Donaldson-Uhlenbeck-Yau (DUY) equations* state that

$$
\begin{equation*}
\left.F^{2,0}=F^{0,2}=0 \quad \text { and } \quad \omega\right\lrcorner F=0 \tag{12}
\end{equation*}
$$

Another interpretation of this anti-self-duality condition is that it projects F to the 8 -dimensional eigenspace of the endomorphism $*(\omega \wedge \cdot)$ with eigenvalue -1 , which contains the part of $F^{1,1}$ orthogonal to ω. Equations (11) imply also $\operatorname{Re} \Omega \wedge F=0$ and the (torsion-free) Yang-Mills equations $D * F=0$. Clearly, they separately extremize both S_{YM} and S_{CS} in (3), but of course yield only BPS-type classical solutions. In components the above relations take the form

$$
\begin{align*}
& \frac{1}{2} \epsilon_{a b c d e f} F_{e f}=-J_{[a b} F_{c d]} \Longleftrightarrow 0=f_{a b c} F_{b c} \tag{13}\\
& \Longrightarrow \omega_{a b} F_{a b}=0, \quad(J f)_{a b c} F_{b c}=0, \quad D_{a} F_{a b}=0 \tag{14}
\end{align*}
$$

I notice that each Chern-Simons flow $\dot{A}_{a} \sim f_{a b c} F_{b c}$ on M^{6} ends in an instanton.

[^0]Let me look for K-equivariant connections A on M^{6}. If I restrict their value to \mathfrak{h}, the answer is unique: the only $« H$-instanton» is the so-called canonical connection

$$
\begin{equation*}
A^{\mathrm{can}}=e^{i} I_{i} \longrightarrow F^{\mathrm{can}}=-\frac{1}{2} f_{a b}^{i} e^{a} \wedge e^{b} I_{i} \tag{15}
\end{equation*}
$$

where $e^{i}=e_{a}^{i} e^{a}$. Generalizing to «K-instantons», I extend to

$$
\begin{equation*}
A=e^{i} I_{i}+e^{a} \Phi_{a b} I_{b} \quad \text { with ansatz } \quad\left(\Phi_{a b}\right)=: \Phi=\phi_{1} \mathbb{1}+\phi_{2} J \tag{16}
\end{equation*}
$$

which is in fact general for G_{2} invariance on S^{6}. Its curvature is readily computed to

$$
\begin{equation*}
F_{a b}=F_{a b}^{1,1}+F_{a b}^{2,0 \oplus 0,2}=\left(|\Phi|^{2}-1\right) f_{a b}^{i} I_{i}+\left[\left(\bar{\Phi}^{2}-\Phi\right) f\right]_{a b c} I_{c} \tag{17}
\end{equation*}
$$

and displays the tri-symmetry invariance under $\Phi \rightarrow \exp (-2 \pi / 3 J) \Phi$. The solutions to the BPS conditions (11) are

$$
\begin{equation*}
\bar{\Phi}^{2}=\Phi \Longrightarrow \Phi=0 \quad \text { or } \quad \Phi=\exp \left\{\frac{2 \pi k}{3} J\right\} \quad \text { for } \quad k=0,1,2 \tag{18}
\end{equation*}
$$

which yields three flat K-instanton connections besides the canonical curved one,

$$
\begin{equation*}
A^{(k)}=e^{i} I_{i}+e^{a}\left(s^{k} I\right)_{a} \quad \text { and } \quad A^{\mathrm{can}}=e^{i} I_{i} \tag{19}
\end{equation*}
$$

CYLINDER OVER NEARLY KÄHLER COSETS

Let me step up one dimension and consider 7-manifolds M^{7} with weak G_{2} holonomy associated with a G_{2}-structure three-form ψ. Here, the 7 generalized anti-self-duality equations project F onto the -1 eigenspace of $*(\psi \wedge \cdot)$, which is 14-dimensional and isomorphic to the Lie algebra of G_{2},

$$
\begin{equation*}
* F=-\psi \wedge F \Longleftrightarrow * \psi \wedge F=0 \Longleftrightarrow \psi\lrcorner F=0 \tag{20}
\end{equation*}
$$

providing an alternative form of the condition. In components, it reads

$$
\begin{equation*}
\frac{1}{2} \epsilon_{a b c d e f g} F_{f g}=-\psi_{[a b c} F_{d e]} \Longleftrightarrow 0=\psi_{a b c} F_{b c} \tag{21}
\end{equation*}
$$

For the parallel and nearly parallel G_{2} cases, the previous accident (11) recurs,

$$
\begin{equation*}
d \psi \sim * \psi \Longrightarrow d \psi \wedge F=0 \Longrightarrow D * F=0 \tag{22}
\end{equation*}
$$

and the torsion decouples. Note that on a general weak G_{2}-manifold there are two different flows,

$$
\begin{equation*}
\left.\left.\frac{d A(\sigma)}{d \sigma}=* d \psi\right\lrcorner F(\sigma) \quad \text { and } \quad \frac{d A(\sigma)}{d \sigma}=\psi\right\lrcorner F(\sigma) \quad \text { for } \quad \sigma \in \mathbb{R} \tag{23}
\end{equation*}
$$

which coincide in the nearly parallel case. The second flow ends in an instanton on M^{7}.

In this talk I focus on cylinders $M^{7}=\mathbb{R}_{\tau} \times K / H$ over nearly Kähler cosets, with a metric $g=(d \tau)^{2}+\delta_{a b} e^{a} e^{b}$, on which I study the Yang-Mills equation with a torsion given by

$$
\begin{equation*}
* \mathcal{H}=\frac{1}{3} \kappa d \omega \wedge d \tau \Longleftrightarrow T_{a b c}=\kappa f_{a b c} \tag{24}
\end{equation*}
$$

with a real parameter κ. We shall see that for special values of κ my torsionful Yang-Mills equation

$$
\begin{equation*}
D * F+\frac{1}{3} \kappa d \omega \wedge d \tau \wedge F=0 \tag{25}
\end{equation*}
$$

descends from an anti-self-duality condition (20).
Taking the $A_{0}=0$ gauge and borrowing the ansatz (16) from the nearly Kähler base, I write

$$
\begin{align*}
A_{a} & =e_{a}^{i} I_{i}+[\Phi(\tau) I]_{a} \Rightarrow F_{0 a}=[\dot{\Phi} I]_{a} \\
F_{a b} & =\left(|\Phi|^{2}-1\right) f_{a b}^{i} I_{i}+\left[\left(\bar{\Phi}^{2}-\Phi\right) f\right]_{a b c} I_{c} \tag{26}
\end{align*}
$$

which depends on a complex function $\Phi(\tau)$ (values in the $(\mathbb{1}, J)$ plane). Sticking this into (25) and computing for a while, one arrives at

$$
\begin{equation*}
\ddot{\Phi}=(\kappa-1) \Phi-(\kappa+3) \bar{\Phi}^{2}+4 \bar{\Phi} \Phi^{2}=: \frac{1}{3} \frac{\partial V}{\partial \bar{\Phi}} . \tag{27}
\end{equation*}
$$

Nice enough, I have obtained a ϕ^{4} model with an action

$$
\begin{gather*}
S[\Phi] \sim \int_{\mathbb{R}} d \tau\left\{3|\dot{\Phi}|^{2}+V(\Phi)\right\} \text { for } \\
V(\Phi)=(3-\kappa)+3(\kappa-1)|\Phi|^{2}-(3+\kappa)\left(\Phi^{3}+\bar{\Phi}^{3}\right)+6|\Phi|^{4} \tag{28}
\end{gather*}
$$

devoid of rotational symmetry (for $\kappa \neq-3$) but enjoying tri-symmetry in the complex plane. It leads me to a mechanical analog problem of a Newtonian particle on \mathbb{C} in a potential $-V$. I obtain the same action by plugging (26) directly into (3) with $d \Sigma=* \mathcal{H}$ from (24).

For the case of $K / H=S^{6}=G_{2} / S U(3)$, equation (27) produces in fact all G-equivariant Yang-Mills connections on $\mathbb{R}_{\tau} \times K / H$. On $S p(2) /(S p(1) \times U(1))$ and $S U(3) /(U(1) \times U(1))$, however, the most general G-equivariant connections involve two respective three complex functions of τ. The corresponding Newtonian dynamics on \mathbb{C}^{2} respective \mathbb{C}^{3} is of similar type but constrained by the conservation of Noether charges related to relative phase rotations of the complex functions.

4. SEVEN DIMENSIONS: SOLUTIONS

Finite-action solutions require Newtonian trajectories between zero-potential critical points $\hat{\Phi}$. With two exotic exceptions, $d V(\hat{\Phi})=0=V(\hat{\Phi})$ yields precisely the BPS configurations on K / H :

- $\hat{\Phi}=\mathrm{e}^{2 \pi i k / 3} \quad$ with $V(\hat{\Phi})=0 \quad$ for all values of κ and $k=0,1,2$;
- $\hat{\Phi}=0 \quad$ with $V(\hat{\Phi})=3-\kappa \quad$ vanishing only at $\kappa=3$.

Kink solutions will interpolate between two different critical points, while bounces will return to the critical starting point. Thus for generic κ values one may have kinks of «transversal» type, connecting two third roots of unity, as well as bounces. For $\kappa=3$ «radial» kinks, reaching such a root from the origin, may occur as well. Numerical analysis reveals the domains of existence in κ (see Table 2).

Table 2. Existence domains of kink and bounce solutions

κ interval	$(-\infty,-3]$	$(-3,+3)$	+3	$(+3,+5)$	$[+5,+\infty)$
Types of trajectory	Radial bounce	Transversal kink	Radial kink	Radial bounce	-

In Fig. 2 I display contour plots of the potential and finite-action trajectories for eight choices of κ. They reveal three special values of κ : At $\kappa=-3$ rotational symmetry emerges; this is a degenerate situation. At $\kappa=-1$ and at $\kappa=+3$, the trajectories are straight, indicating integrability. Indeed, behind each of these two cases lurks a first-order flow equation, which originates from anti-self-duality and hence a particular G_{2}-structure ψ.

Let me first discuss $\kappa=+3$. For this value I find that

$$
\begin{equation*}
3 \ddot{\Phi}=\frac{\partial V}{\partial \bar{\Phi}} \Longleftarrow \sqrt{2} \dot{\Phi}= \pm \frac{\partial W}{\partial \bar{\Phi}} \quad \text { with } \quad W=\frac{1}{3}\left(\Phi^{3}+\bar{\Phi}^{3}\right)-|\Phi|^{2} \tag{29}
\end{equation*}
$$

which is a gradient flow with a real superpotential W, as

$$
\begin{equation*}
V=6\left|\frac{\partial W}{\partial \bar{\Phi}}\right|^{2} \quad \text { for } \quad \kappa=+3 \tag{30}
\end{equation*}
$$

It admits the obvious analytic radial kink solution,

$$
\begin{equation*}
\Phi(\tau)=\exp \left(\frac{2 \pi \mathrm{i} k}{3}\right)\left(\frac{1}{2} \pm \frac{1}{2} \tanh \frac{\tau}{2 \sqrt{3}}\right) \tag{31}
\end{equation*}
$$

What is the interpretation of this gradient flow in terms of the original YangMills theory? Demanding that the torsion in (24) comes from a G_{2}-structure, $* \mathcal{H}=d \psi$, I am led to

$$
\begin{equation*}
\psi=\frac{1}{3} \kappa \omega \wedge d \tau+\alpha \operatorname{Im} \Omega \Longrightarrow d \psi \sim \kappa \operatorname{Im} \Omega \wedge d \tau \sim \psi \wedge d \tau \tag{32}
\end{equation*}
$$

Fig. 2. Contour plots of the potential and finite-action trajectories for various κ values
where α is undetermined. This is a conformally parallel G_{2}-structure, and (20) quantizes the coefficients to $\alpha=1$ and $\kappa=3$, fixing

$$
\begin{equation*}
\psi=\omega \wedge d \tau+\operatorname{Im} \Omega=r^{-3}\left(r^{2} \omega \wedge d r+r^{3} \operatorname{Im} \Omega\right)=r^{-3} \psi_{\text {cone }} \quad \text { with } \quad \mathrm{e}^{\tau}=r \tag{33}
\end{equation*}
$$

where I displayed the conformal relation to the parallel G_{2}-structure on the cone over K / H.

Alternatively, with this G_{2}-structure the 7 anti-self-duality equations (20) turn into

$$
\begin{equation*}
\left.\omega\lrcorner F \sim J_{a b} F_{a b}=0 \quad \text { and } \quad \dot{A} \sim d \omega\right\lrcorner F \sim e^{a} f_{a b c} F_{b c} \tag{34}
\end{equation*}
$$

With the ansatz (26), the first relation is automatic, and the second one indeed reduces to (29). As a consistency check, one may verify that

$$
\begin{equation*}
\int_{K / H} \operatorname{tr}\{\omega \wedge F \wedge F\} \propto W(\Phi)+\frac{1}{3} \tag{35}
\end{equation*}
$$

I now come to the other instance of straight trajectories, $\kappa=-1$. For this value I find that

$$
\begin{equation*}
3 \ddot{\Phi}=\frac{\partial V}{\partial \bar{\Phi}} \Longleftarrow \sqrt{2} \dot{\Phi}= \pm i \frac{\partial H}{\partial \bar{\Phi}} \quad \text { with } \quad H=\frac{1}{3}\left(\Phi^{3}+\bar{\Phi}^{3}\right)-|\Phi|^{2}, \tag{36}
\end{equation*}
$$

which is a Hamiltonian flow (note the imaginary multiplier!), running along the level curves of the function H, that is identical to W. It has the obvious analytic transverse kink solution,

$$
\begin{equation*}
\Phi(\tau)=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i\left(\tanh \frac{\tau}{2}\right) \tag{37}
\end{equation*}
$$

and its images under the tri-symmetry action.
Have I discovered another hidden G_{2}-structure here? Let me try the other obvious choice,

$$
\begin{equation*}
\widetilde{\psi}=\frac{1}{3} \tilde{\kappa} \omega \wedge d \tau+\tilde{\alpha} \operatorname{Re} \Omega \Longrightarrow d \tilde{\psi} \sim \widetilde{\kappa} \operatorname{Im} \Omega \wedge d \tau+2 \tilde{\alpha} \omega \wedge \omega \tag{38}
\end{equation*}
$$

with coefficients $\tilde{\kappa}$ and $\tilde{\alpha}$ to be determined. It has not appeared in Table 1, but obeys $d * \widetilde{\psi}=0$, which is known as a cocalibrated G_{2}-structure. But can it produce the proper torsion,

$$
\begin{equation*}
d \widetilde{\psi} \wedge F \sim(\widetilde{\kappa} \operatorname{Im} \Omega \wedge d \tau+2 \tilde{\alpha} \omega \wedge \omega) \wedge F \stackrel{!}{=}-\operatorname{Im} \Omega \wedge d \tau \wedge F ? \tag{39}
\end{equation*}
$$

Employing the anti-self-duality with respect to $\tilde{\psi}$,

$$
\begin{equation*}
* \widetilde{\psi} \wedge F=0 \Longrightarrow \omega \wedge \omega \wedge F=2 \operatorname{Im} \Omega \wedge d \tau \wedge F \tag{40}
\end{equation*}
$$

it works out, adjusting the coefficients to $\tilde{\kappa}=3$ and $\tilde{\alpha}=-1$. Hence, my cocalibrated G_{2}-structure

$$
\begin{equation*}
\widetilde{\psi}=\omega \wedge d \tau-\operatorname{Re} \Omega \tag{41}
\end{equation*}
$$

is responsible for the Hamiltonian flow. To see this directly, I import (41) into (20) and get

$$
\begin{equation*}
J_{a b} F_{a b}=0 \quad \text { and } \quad \dot{A}_{a} \sim[J f]_{a b c} F_{b c} \tag{42}
\end{equation*}
$$

Again, the ansatz (26) fulfills the first relation, but the second one nicely turns into (36).

Fig. 3. Contours of the superpotential/Hamiltonian

Fig. 4. Hamiltonian vector field

Fig. 5. Gradient vector field

The story has an eight-dimensional twist, which can be inferred from the diagram in Sec. 1. There it is indicated that my cylinder is embedded into an 8-manifold M^{8} equipped with a parallel $\operatorname{Spin}(7)$-structure Σ. It can be regarded as the cylinder over the cone over K / H. The four-form Σ descends to the cocalibrated G_{2}-structure $\widetilde{\psi}$, while ψ is obtained by reducing to the cone and applying a conformal transformation.

The anti-self-duality condition on M^{8} represents 7 relations, which project F_{8} to the 21-dimensional - 1 eigenspace of $*(\Sigma \wedge \cdot)$. Contrary to the G_{2} situation (34), where 7 anti-self-duality equations split to 6 flow equations and the supplementary condition $\omega\lrcorner F=0$, for $\operatorname{Spin}(7)$ the count precisely matches, as I have also 7 flow equations. Indeed, there is equivalence:

$$
\begin{equation*}
*_{8} F_{8}=-\Sigma \wedge F_{8} \Longleftrightarrow \frac{\partial A_{7}(\sigma)}{\partial \sigma}=*_{7}\left(d \psi \wedge F_{7}(\sigma)\right) \tag{43}
\end{equation*}
$$

5. PARTIAL SUMMARY

Let me schematically sum up the construction.

are G_{2}-instantons for Yang-Mills with torsion $D * F+(* \mathcal{H}) \wedge F=0$ from $S[A]=\int_{\mathbb{R} \times K / H} \operatorname{tr}\{F \wedge * F+1 / 3 \kappa \omega \wedge d \tau \wedge F \wedge F\}$ with $\kappa=+3$ or -1 and obey gradient/Hamiltonian flow equations for $\int_{K / H} \operatorname{tr}\{\omega \wedge F \wedge F\} \propto W(\Phi)+1 / 3$.

REFERENCES

1. Gemmer K. P. et al. // JHEP. 2011. V.09. P. 103; arXiv:1108.3951.
2. Harland D. et al. // Commun. Math. Phys. 2010. V. 300. P. 185; arXiv:0909.2730.
3. Bauer I. et al. // JHEP. 2010. V. 10. P. 44; arXiv:1006.2388.
4. Lechtenfeld O., Nölle C., Popov A. D. // JHEP. 2010. V. 09. P. 074; arXiv:1007.0236.
5. Chatzistavrakidis A., Lechtenfeld O., Popov A. D. To appear.
6. Gemmer K. P. et al. To appear.

[^0]: *Also known as «Hermitian Yang-Mills equations».

