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GROUP-THEORETICAL CLASSIFICATION OF BPS
STATES IN D = 4 CONFORMAL SUPERSYMMETRY:

THE CASE OF 1/N-BPS∗

V. K. Dobrev

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Soˇa

In an earlier paper we gave the complete group-theoretical classiˇcation of BPS states of the
N -extended D = 4 conformal superalgebras su(2, 2/N), but not all interesting cases were given
in detail. In the present paper we spell out the interesting case of 1/N -BPS and possibly protected
states.
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INTRODUCTION

Recently, superconformal ˇeld theories in various dimensions have been
attracting more interest, especially in view of their applications in string theory.
Thus, the classiˇcation of the UIRs of the conformal superalgebras is of great
importance. For some time such a classiˇcation was known only for the D = 4
superconformal algebras su(2, 2/1) [1] and su(2, 2/N) for arbitrary N [2] (see
also [3,4]). Then, more progress was made with the classiˇcation for D = 3 (for
even N ), D = 5, and D = 6 (for N = 1, 2) in [5] (some results being conjectural),
then for the D = 6 case (for arbitrary N ) it was ˇnalized in [6]. Finally, the
cases D = 9, 10, 11 were treated by ˇnding the UIRs of osp(1/2n) [7].

After we have known the UIRs, the next problem to address is to ˇnd their
characters since these give the spectrum which is important for the applications.
This was done for the UIRs of D = 4 conformal superalgebras su(2, 2/N) in [8].
From the mathematical point of view, this question is clear only for representations
with conformal dimension above the unitarity threshold viewed as irreps of the
corresponding complex superalgebra sl(4/N). But for su(2, 2/N) even the UIRs
above the unitarity threshold are truncated for small values of spin and isospin.
Moreover, in the applications the most important role is played by the represen-
tations with ®quantized¯ conformal dimensions at the unitarity threshold and at
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discrete points below. In the quantum ˇeld or string theory framework, some of
these correspond to operators with ®protected¯ scaling dimension and therefore
imply ®non-renormalization theorems¯ at the quantum level, cf., e.g., [9, 10].
Especially important in this context are the so-called BPS states, cf., [10Ä16,18].

These investigations require deeper knowledge of the structure of the UIRs.
Fortunately, most of the needed information is contained in [2Ä4,19]. We also use
more explicit results on the decompositions of long superˇelds as they descend
to the unitarity threshold [8].

In the paper [20], we gave the complete group-theoretical classiˇcation of
the BPS states, but not all interesting cases were given in detail. In the present
paper, motivated by the paper [21], we spell out the interesting case of 1/N -BPS
states.

1. PRELIMINARIES

1.1. Representations of D = 4 Conformal Supersymmetry. The conformal
superalgebras in D = 4 are G = su(2, 2/N). The even subalgebra of G is
the algebra G0 = su(2, 2) ⊕ u(1) ⊕ su(N). We label their physically relevant
representations of G by the signature:

χ = [d; j1, j2; z; r1, . . . , rN−1], (1.1)

where d is the conformal weight; j1, j2 are nonnegative (half-)integers which are
Dynkin labels of the ˇnite-dimensional irreps of the D = 4 Lorentz subalgebra
so(3, 1) of dimension (2j1 + 1)(2j2 + 1); z represents the u(1) subalgebra which
is central for G0 (and is central for G itself when N = 4), and r1, . . . , rN−1 are
nonnegative integers which are Dynkin labels of the ˇnite-dimensional irreps of
the internal (or R) symmetry algebra su(N).

We recall the root system of the complexiˇcation GCI of G (as used in [4]).
The positive root system Δ+ is comprised of αij , 1 � i < j � 4 + N . The
even positive root system Δ+

0̄
is comprised of αij , with i, j � 4 and i, j � 5;

the odd positive root system Δ+
1̄

is comprised of αij , with i � 4, j � 5. The
generators corresponding to the latter (odd) roots will be denoted as X+

i,4+k,
where i = 1, 2, 3, 4, k = 1, . . . , N .

We use lowest weight Verma modules V Λ over GCI , where the lowest weight
Λ is characterized by its values on the Cartan subalgebra H and is in 1-to-1
correspondence with the signature χ. If a Verma module V Λ is irreducible,
then it gives the lowest weight irrep LΛ with the same weight. If a Verma
module V Λ is reducible, then it contains a maximal invariant submodule IΛ

and the lowest weight irrep LΛ with the same weight is given by factorization:
LΛ = V Λ/IΛ [22].
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There are submodules which are generated by the singular vectors related to
the even simple roots [4]. These generate an even invariant submodule IΛ

c present
in all Verma modules that we consider and which must be factored out. Thus,
instead of V Λ, we shall consider the factor-modules:

Ṽ Λ = V Λ/IΛ
c . (1.2)

The Verma module reducibility conditions for the 4N odd positive roots of
GCI were derived in [3, 4] adapting the results of Kac [22]:

d = d1
Nk − zδN4, (1.3a)

d1
Nk ≡ 4 − 2k + 2j2 + z + 2mk − 2m/N,

d = d2
Nk − zδN4, (1.3b)

d2
Nk ≡ 2 − 2k − 2j2 + z + 2mk − 2m/N,

d = d3
Nk + zδN4, (1.3c)

d3
Nk ≡ 2 + 2k − 2N + 2j1 − z − 2mk + 2m/N,

d = d4
Nk + zδN4, (1.3d)

d4
Nk ≡ 2k − 2N − 2j1 − z − 2mk + 2m/N,

where in all four cases of (1.3) k = 1, . . . , N , mN ≡ 0, and

mk ≡
N−1∑

i=k

ri, m ≡
N−1∑

k=1

mk =
N−1∑

k=1

krk. (1.4)

Note that we shall also use the quantity m∗ which is conjugate to m:

m∗ ≡
N−1∑

k=1

krN−k =
N−1∑

k=1

(N − k)rk, (1.5)

m + m∗ = Nm1. (1.6)

We need the result of [2] (cf. part (i) of the Theorem there) that the following
is the complete list of the lowest weight (positive energy) UIRs of su(2, 2/N):

d � dmax = max (d1
N1, d

3
NN ), (1.7a)

d = d4
NN � d1

N1, j1 = 0, (1.7b)

d = d2
N1 � d3

NN , j2 = 0 , (1.7c)

d = d2
N1 = d4

NN , j1 = j2 = 0, (1.7d)

where dmax is the threshold of the continuous unitary spectrum. Note that in
case (d) we have d = m1, z = 2m/N − m1, and that it is trivial for N = 1.
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Next we note that if d > dmax the factorized Verma modules are irreducible
and coincide with the UIRs LΛ. These UIRs are called long in the modern
literature, cf., e.g., [10, 18, 23Ä27]. Analogously, we shall use for the cases
when d = dmax, i.e., (1.7a), the terminology of semishort UIRs, introduced
in [10, 23], while the cases (1.7b), (1.7c), (1.7d) are also called short UIRs, cf.,
e.g., [10,18,24Ä27].

Next consider in more detail the UIRs at the four distinguished reducibility
points determining the UIRs list above: d1

N1, d2
N1, d3

NN , d4
NN . We note a partial

ordering of these four points:

d1
N1 > d2

N1, d3
NN > d4

NN . (1.8)

Due to this ordering, at most two of these four points may coincide.
First we consider the situations in which no two of the distinguished four

points coincide. There are four such situations:

a : d = dmax = d1
N1 = da ≡ 2 + 2j2 + z + 2m1 − 2m/N > d3

NN , (1.9a)

b : d = d2
N1 = db ≡ z − 2j2 + 2m1 − 2m/N > d3

NN , j2 = 0, (1.9b)

c : d = dmax = d3
NN = dc ≡ 2 + 2j1 − z + 2m/N > d1

N1, (1.9c)

d : d = d4
NN = dd ≡ 2m/N − 2j1 − z > d1

N1, j1 = 0, (1.9d)

where for future use we have introduced notations da, db, dc, dd, the deˇnitions
including also the corresponding inequality.

We shall call these cases single-reducibility-condition (SRC) Verma modules
or UIRs, depending on the context. In addition, as already stated, we use for
the cases when d = dmax, i.e., (1.9a), (1.9c), the terminology of semishort UIRs,
while the cases (1.9b), (1.9d) are also called short UIRs.

The factorized Verma modules Ṽ Λ with the unitary signatures from (1.9)
have only one invariant odd submodule which has to be factorized in order to
obtain the UIRs.

We consider now the four situations in which two distinguished points
coincide:

ac : d = dmax = dac ≡ 2 + j1 + j2 + m1 = d1
N1 = d3

NN , (1.10a)

ad : d = dad ≡ 1 + j2 + m1 = d1
N1 = d4

NN , j1 = 0, (1.10b)

bc : d = dbc ≡ 1 + j1 + m1 = d2
N1 = d3

NN , j2 = 0, (1.10c)

bd : d = dbd ≡ m1 = d2
N1 = d4

NN , j1 = j2 = 0. (1.10d)

We shall call these double-reducibility-condition (DRC) Verma modules or UIRs.
The cases in (1.10a) are semishort UIR, while the other cases are short.
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2. BPS AND POSSIBLY PROTECTED STATES

BPS states are characterized by the number κ of odd generators which anni-
hilate them Å then the corresponding state is called κ/4N -BPS state. The most
interesting case for BPS states is when N = 4 since it is related to super-YangÄ
Mills, cf., [10Ä18]. Also, group-theoretically, the case N = 4 is special since
the u(1) subalgebra carrying the quantum number z becomes central and one can
invariantly set z = 0. When N �= 4 we can also set z = 0, though this does not
have the same group-theoretical meaning as for N = 4.

In the paper [20], we gave the complete classiˇcation of the BPS states, but
not all interesting cases were given in detail. In the present paper, motivated by
the paper [21], we spell out the interesting case of 1/N -BPS states, i.e., the cases
when κ = 4.

It is convenient to consider the case of general N while treating separately
R-symmetry scalars and R-symmetry nonscalars.

2.1. R-Symmetry Scalars. We start with the simpler cases of R-symmetry
scalars when ri = 0 for all i, which also means that m1 = m = m∗ = 0.

These cases are also valid for N = 1, however for N = 1 in all cases we
have κ < 4 [20].

In fact, only three cases are relevant for κ = 4.
• a d = (d1

N1)|m=0=z
= 2 + 2j2 > 2 + 2j1 = (d3

NN )|m=0=z
. The last

inequality leads to the restriction: j2 > j1, i.e., j2 > 0, and then we have

κ = N, m1 = m = 0, j2 > 0. (2.1)

These semishort UIRs may be called semichiral since they lack half of the an-
tichiral generators: X+

3,4+k, k = 1, . . . , N .

• c d = (d3
NN )|m=0=z

= 2 + 2j1 >= (d1
N1)|m=0=z

=⇒

κ = N, m1 = m = 0, j1 > 0. (2.2)

These semishort UIRs may be called semi-antichiral since they lack half of the
chiral generators: X+

1,4+k, k = 1, . . . , N .
Thus, in both cases above, the interesting case κ = 4 occurs only for N = 4,

as 1/4-BPS.

• ac d = dac
|m=0

= 2 + j1 + j2, z = j1 − j2,

κ = 2N, if j1, j2 > 0,

κ = N + 1, if j1 > 0, j2 = 0,

κ = N + 1, if j1 = 0, j2 > 0,

κ = 2, if j1 = j2 = 0.
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Here, κ is the number of mixed elimination: chiral generators X+
1,4+k (k =

1, . . . , N + (1 − N)δj1,0), and antichiral generators X+
3,5+N−k (k = 1, . . . , N +

(1−N)δj2,0). Thus, in the cases when κ = 2N the semishort UIRs may be called
semichiral-antichiral since they lack half of the chiral and half of the antichiral
generators. The interesting case κ = 4 occurs only for N = 2, as 1/2-BPS.

2.2. R-Symmetry Nonscalars. Below we need some additional notation. Let
N > 1 and let i0 be an integer such that 0 � i0 � N −1, ri = 0 for i � i0, and if
i0 < N − 1, then ri0+1 > 0. Let now i′0 be an integer such that 0 � i′0 � N − 1,
rN−i = 0 for i � i′0, and if i′0 < N − 1, then rN−1−i′0

> 0.
The interesting cases of 1/N -BPS states, i.e., when κ = 4, are given in the

following list:

• a d = da = 2 + 2j2 + 2m∗/N, N � 5,

j1 arbitrary, j2 > 0, i0 = 3, 0 � i′0 � N − 5, (2.3)

j2 > j1 +
N−1∑

k=4

(2k/N − 1)rk.

Here are eliminated four antichiral generators X+
3,4+k, k � 4.

• b d = db = 2m∗/N, N � 5,

j2 = 0, j1 arbitrary, i0 = 1, 0 � i′0 � N − 3, (2.4)
[(N−1)/2]∑

k=2

(1 − 2k/N)rk > j1 +
N−1∑

[(N+1)/2]

(2k/N − 1)rk.

Here are eliminated four antichiral generators X+
3,5+N−k, X+

4,5+N−k, k � 2.

• c d = dc = 2 + 2j1 + 2m/N, N � 5,

j1 > 0, j2 arbitrary, i′0 = 3, 0 � i0 � N − 5, (2.5)

j1 > j2 +
N−4∑

k=1

(1 − 2k/N)rk.

Here are eliminated four chiral generators X+
1,4+k, k � 4.

• d d = dd = 2m/N, N � 5,

j1 = 0, j2 arbitrary, i′0 = 1, 0 � i0 � N − 3, (2.6)
[(N−1)/2]∑

k=1

(1 − 2k/N)rk > j2 +
N−4∑

[(N+1)/2]

(2k/N − 1)rk.
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Here are eliminated four chiral generators X+
1,4+k, X+

2,4+k, k � 2.

• ac d = dac = 2 + j1 + j2 + m1, N � 4,

j1 + m/N = j2 + m∗/N,

j1j2 > 0, i0 + i′0 = 2, (2.7a)

j1 > 0, j2 = 0, i0 = 0, i′0 = 2, (2.7b)

j1 = 0, j2 > 0, i0 = 2, i′0 = 0. (2.7c)

Here are eliminated four generators: chiral generators X+
1,4+k, k � 1 + i′0(1 −

δj1,0), and antichiral generators X+
3,5+N−k, k � 1 + i0(1 − δj2,0).

• ad d = dad = 1 + j2 + m1 = 2m/N, N � 3,
(2.8)

j1 = 0, j2 > 0, i0 = 1, i′0 = 0.

Here are eliminated two chiral generators X+
1,5, X+

2,5, and two antichiral generators

X+
3,5+N−k, k = 1, 2.

• bc d = dbc = 1 + j1 + m1 = 2m∗/N, N � 3,
(2.9)

j2 = 0, j1 > 0, i0 = 0, i′0 = 1.

Here are eliminated two chiral generators X+
1,4+k, k = 1, 2, and two antichiral

generators X+
3,8, X+

4,8.

• bd d = dbd = m1, N � 2,
(2.10)

j1 = j2 = 0, i0 = i′0 = 0.

Here are eliminated two chiral generators X+
1,5, X+

2,5, and two antichiral generators

X+
3,8, X+

4,8.
Note that according to the results of [20], the following cases would not be

protected: ad for rN−1 > 2, bc for r1 > 2, bd for r1, rN−1 > 2 when N > 2,
and for r1 > 4 when N = 2.
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