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Six-dimensional (2, 0) theory can be deˇned on a large class of six-manifolds endowed with
some additional topological and geometrical data. We discuss the nature of the object in such a theory
that generalizes the partition function of a more conventional quantum ˇeld theory.
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The most elementary deˇnition of the partition function Z of, e.g., quantum
mechanics is in a Hamiltonian formulation:

Z = TrH
(
e−βH+γJ+...

)
with

H = Hilbert space of theory,

H, J, . . . = commuting observable operators,

β, γ, . . . = formal parameters.

But this is of course not generally covariant!
In quantum ˇeld theory, we therefore often prefer a Lagrangian formulation,

e.g., for YangÄMills theory with 't Hooft �ux v on a four-manifold B:

Zv =
∑
P

δw1(P ),v

∫
DA . . . exp

⎛
⎝−

∫
B

Tr(g−2F ∧ ∗F + θF ∧ F ) + . . .

⎞
⎠

with

P = gauge bundle,

A = connection on P,

F = ˇeld strength of A,

g, θ = coupling constant, theta angle.

But what is the counterpart of Z for quantum theories which do not admit
a classical description? The best known examples of such theories are the (2, 0)
superconformal theories in six dimensions with the following properties:
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• Completely classiˇed by the type

Φ ∈ ADE � {simply laced Lie algebras}.

• Realized in type IIB string theory at codimension 4 singularity.
• A-series (D-series) realized on coincident M5-branes (with orientifold

plane).
• Holographic representation of A-series as M -theory on AdS7 × S4.
• OSp(6, 2|4) superconformal algebra in �at space with so(6, 2)⊕sp(4) even

subalgebra.
But (2, 0) theories can also be deˇned on an arbitrary six-manifold M en-

dowed with some additional data:
• Data related to the geometry of M , namely,

σ ∈ Σ
= {orientations on M}
= afˇne space over H0(M, Z2)

s ∈ S
= {spin structures on M}
= afˇne space over H1(M, Z2)

[g] ∈ G
= {conformal structures on M}
= inˇnite dimensional real manifold.

• Data related to the sp(4) � so(5) R-symmetry (neglected in this talk).
• Data related to observables deˇned on two- and four-dimensional subman-

ifolds of M (also neglected here).
These theories are indeed generally covariant in six dimensions. But they

cannot be described by any generally covariant Lagrangian. This is intimately
related to the unusual properties of a ®partition object¯ Z that generalizes the
partition function of a more conventional quantum theory. In fact, these theories
do not even have any ®ˇelds¯ that obey classical differential ®equations of mo-
tion¯. It is possible to write a Lagrangian in certain situations in which general
covariance is broken anyway; e.g., compactiˇcation may lead to a low-energy
theory that is a conventional quantum ˇeld theory.

The basic question that will be discussed in this talk is: What kind of object
is Z, and how does it depend on the geometric data (σ, s, [g])?

A brief summary of the answer is:
• Z is not a number but an element of a ˇnite-dimensional vector space V

determined by (σ, s, [g]).
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• A choice of basis of V necessarily breaks six-dimensional general covari-
ance. If this is done, the corresponding components of Z are analogous to the
partition functions Zv for different 't Hooft �ux v in YangÄMills theory.

• As the data are varied, the spaces V ˇt together to the total space of a
vector bundle over Σ × S × G.

We will work with the AN−1 series of models drawing inspiration from the
holographic representation. The holographic dual is a supergravity theory on an
open seven-manifold Y of boundary ∂Y = M with action

S = N

∫
X

C ∧ dC + . . .

Here C is an Abelian three-form gauge ˇeld. In the gauge where C has no
component normal to M , the phase space of the C-ˇeld is the intermediate
Jacobian torus

T = H3(M, R)/H3(M, Z) � (R/Z)2n

with n = (1/2)b3(M) (half of the third Betti number of M ). Geometric quan-
tization of this TFT leads to a holomorphic prequantum line bundle LN over T
and a ˇnite-dimensional Hilbert space

V = H0(T,LN )

of holomorphic sections with dimC V = Nn. The ®partition vector¯ Z is an
element of V .

In somewhat more detail, the data (σ, s, [g]) in the inˇnite-dimensional space
Σ × S × G determines data (ω, u, J) in a ˇnite-dimensional space Ω × U × J
related to the intermediate Jacobian T :

ω ∈ Ω
= {symplectic structures on T

induced from the intersection form}
= set with 2 elements

u ∈ U
= {nondegenerate quadratic forms on H3(M, Z2) polarized by ω}
= set with 22n elements

J ∈ J
= translation invariant complex structures on T }

= complex space of dimension
1
2
n(n + 1).
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We deˇne the map
φ : Σ × S × G → Ω × U × J .

• The symplectic structure ω on H3(M, R) is given by the wedge product
followed by integration over M .

• The nondegenerate quadratic form u on H3(M, Z2) is deˇned as

(−1)u(γ) = exp

⎛
⎝2πi

1
2

∫
S1×M

C ∧ dC

⎞
⎠ .

Here C is an Abelian three-form gauge ˇeld on S1 ×M determined by a straight
line from 0 to γ ∈ H3(M, Z) ⊂ H3(M, R). Because of 1/2, to make sense of
this expression requires a spin structure s on M .

• The complex structure J on H3(M, R) is given by the Hodge duality
operator ∗, which obeys ∗∗ = −1 for an Euclidean signature on M .
The data (ω, u, J) determine a Hermitian line bundle L over the intermediate
Jacobian T :

• The curvature of L is given by ω.
• The holonomy of L along the closed curve on T descending from a straight

line from 0 to γ ∈ H3(M, Z) ⊂ H3(M, Z) is given by (−1)u(γ).
For the AN−1 model, the TFT prequantum line bundle is LN and the partition
vector Z of the (2, 0) theory is an element of V = H0(T,LN ). LN is invariant
under the translations

Tc : T → T

parametrized by c ∈ (1/N)H3(M, Z)/H3(M, Z). Clearly,

T N
c = 1l,

TcTc′ = Tc′Tc.

But the induced operators
T ∗

c : V → V

instead fulˇll the Heisenberg relations

(T ∗
c )N = (−1)u(Nc),

T ∗
c T ∗

c′ = T ∗
c′T

∗
c exp

⎛
⎝2πiN

∫
M

c ∧ c′

⎞
⎠ .

The spin structure s determines the choice of square root signs in the Heisenberg
algebra

T ∗
c T ∗

c′ = ±

√√√√√exp

⎛
⎝2πiN

∫
M

c ∧ c′

⎞
⎠T ∗

c+c′ .
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The vector space V carries an irreducible representation of this Heisenberg
algebra.

Having understood what happens in a speciˇc geometric situation, our next
task is to investigate what happens to the vector space V as the geometric data
(σ, s, [g]) are varied in the space Σ × S × G. The answer is that the vector
space V = H0(T,LN ) is the ˇber of a rank Nn holomorphic vector bundle over
Ω × U × J . Indeed, we have described a map

φ : Σ × S × G → Ω × U × J .

Pullback by φ gives the ®partition bundle¯ over Σ × S × G.
Eventually, one would like to compute the precise ®partition section¯ Z of

this bundle, but this goal is still out of reach. But for the moment, we can at
least gain a more explicit understanding of the holomorphic vector bundle over
Ω × U × J : We concentrate on the space of conformal structures on M

G = G/{mapping class group of M}

and the space of (translation invariant) complex structures on T

J = J /{group isomorphic to Sp2n(Z)},

where the bar denotes the universal covering space. The map φ : Σ × S × G →
Ω × U × J induces a homomorphism

{mapping class group of M} → Spn(Z).

The holomorphic bundle over J pulls back to a (necessarily trivial) holomorphic
bundle over J that we will describe next.

Sp2n(Z) acts on H3(M, Z) � Z2n, preserving the symplectic structure ω
and permuting the possible quadratic forms u in two orbits:

• The ˇrst orbit consists of u which give H3(M, Z2) the structure of a
direct sum of n hyperbolic planes. There is then a (non-unique) Lagrangian
decomposition

H3(M, Z) = A ⊕ B

with

u(a + b) =
∫
M

a ∧ b for a ∈ A, b ∈ B.

• The second orbit consists of u which give H3(M, Z2) the structure of a
direct sum of n − 1 hyperbolic planes and a two-dimensional anisotropic space.
(We conjecture that no u on this orbit arise from a spin structure on M as
described above.)
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The universal covering space J of J can be identiˇed with the genus n
Siegel upper half space (i.e., the set of complex symmetric n × n matrices with
positive deˇnite imaginary part). We describe the holomorphic bundle over J by
explicitly constructing a holomorphic frame, i.e., a frame for the bundle over J
subject to certain quasi-periodicity requirements. This can be seen as a kind of
vector-valued Siegel modular forms for the subgroup of Sp2n(Z) that stabilizes
u that do not seem to have been much considered before in the literature.

With the decomposition H3(M, Z) = A ⊕ B, we can make the following
identiˇcations:

• The complex structure J amounts to a map

τ : A → B ⊗ C

with a certain self-adjointness property and with positive deˇnite imaginary part.
• The intermediate Jacobian is then

T =
B ⊗ C

B ⊕ τA
.

• An element of V = H0(T,LN ) can be identiˇed with a holomorphic
function

ψ(τ |.) : B ⊗ C → C

subject to the quasi-periodicity conditions

ψ(τ |z + m + τn) = ψ(τ |z) exp

⎛
⎝−iπN

∫
M

n ∧ τn + 2n ∧ z

⎞
⎠

for z ∈ B ⊗ C, n ∈ A, and m ∈ B.
We deˇne a holomorphic frame {ψ[a]} indexed by [a] ∈ (1/N)A/A. This

is uniquely determined (up to a common holomorphic factor) by requiring the
following behavior under the Heisenberg translations:

ψ[a](τ |z + b′ + τa′) = ψ[a+a′](τ |z)×

× exp

⎛
⎝−iπN

∫
M

a′ ∧ τa′ + 2a′ ∧ z − 2a ∧ b′

⎞
⎠

for a′ ∈ (1/N)A and b′ ∈ (1/N)B. The solution is

ψ[a](τ |z) =
1

θ(τ |0)

∑
n∈A

exp

⎛
⎝iπN

∫
M

(n + a) ∧ τ(n + a) + 2(n + a) ∧ z

⎞
⎠ .

(Here θ(τ |z) =
∑

n∈A

exp (n ∧ τn + n ∧ z) is the Riemann theta function.)
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Finally, we must investigate how the frame {ψ[a]} for [a] ∈ (1/N)A/A

behaves under a symplectic transformation S: With H3(M, Z) = A ⊕ B, we
write

S =
(

α β
γ δ

)
:

(
B → B A → B
B → A A → A

)
.

The action on a section ψ of H0(T,LN ) is

Sψ(τ |z) = ψ(Sτ |Sz) exp
(
−N

2
γz ∧ Sz

)
,

where

τ 
→ Sτ = (ατ + β)(γτ + δ)−1,

z 
→ Sz = (γτ + δ)∗−1z.

One thus ˇnds the automorphic transformation law

ψ[a](τ |z) =
8
√

1
Nn

∑
[b]∈ 1

N B/B

Sψ[−γb+δa](τ |z)×

× exp

⎛
⎝−iπN

∫
M

δa ∧ βa + 2βa ∧ γb + γb ∧ αb

⎞
⎠ .

These results have been reported in my paper [1], where more details and a
complete set of references can be found.
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