ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2012. Т. 43. ВЫП. 5

HOMOTOPY TRANSFER AND SELF-DUAL SCHUR MODULES*

M. Dubois-Violette

Laboratoire de Physique Théorique, Université Paris XI, Orsay Cedex, France

T. Popov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

We consider the free 2-nilpotent graded Lie algebra \mathfrak{g} generated in degree one by a finite dimensional vector space V. We recall the beautiful result that the cohomology $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ of \mathfrak{g} with trivial coefficients carries a GL(V)-representation having only the Schur modules V_{λ} with self-dual Young diagrams $\{\lambda : \lambda = \lambda'\}$ in its decomposition into GL(V)-irreducibles (each with multiplicity one). The homotopy transfer theorem due to Tornike Kadeishvili allows one to equip the cohomology of the Lie algebra \mathfrak{g} with a structure of homotopy commutative algebra.

PACS: 02.20.Sv

1. HOMOTOPY ALGEBRAS A_{∞} **AND** C_{∞}

We start by recalling the definition of homotopy associative algebra. For a pedagogical introduction to the subject we send the reader to the textbook of J.-L. Loday and B. Valette [6].

Definition 1. A homotopy associative algebra, or A_{∞} -algebra over \mathbb{K} is a \mathbb{Z} -graded vector space $A = \bigoplus_{i \in \mathbb{Z}} A^i$ endowed with a family of graded mappings (operations)

 $m_n: A^{\otimes n} \to A, \quad \deg(m_n) = 2 - n, \quad n \ge 1$

satisfying the Stasheff identities SI(n) for $n \ge 1$

$$\sum_{s+t=n} (-1)^{r+st} m_{r+1+t} (Id^{\otimes r} \otimes m_s \otimes Id^{\otimes t}) = 0 \quad \mathbf{SI}(\mathbf{n})$$

where the sum runs over all decompositions n = r + s + t.

r

^{*}Talk given by Todor Popov.

Throughout the text we assume the Koszul sign rule $(f \otimes g)(x \otimes y) = (-1)^{|g||x|} f(x) \otimes g(y)$. We define the shuffle product by the expression $(a_1 \otimes \ldots \otimes a_p) \sqcup (a_{p+1} \otimes \ldots \otimes a_{p+q}) = \sum_{\sigma \in Sh_{p,q}} \operatorname{sgn}(\sigma) a_{\sigma^{-1}(1)} \otimes \ldots \otimes a_{\sigma^{-1}(p+q)}$, the sum running over shuffles Sh is a over all permutations $\sigma \in S$, such that

sum running over shuffles $Sh_{p,q}$, i.e., over all permutations $\sigma \in S_{p+q}$ such that $\sigma(1) < \sigma(2) < \ldots < \sigma(p)$ and $\sigma(p+1) < \sigma(p+2) < \ldots < \sigma(p+q)$.

Definition 2 (see, e.g., [4]). A homotopy commutative algebra C_{∞} , or C_{∞} -algebra is an A_{∞} algebra $\{A, m_n\}$ with the additional condition: each operation m_n vanishes on shuffles

$$m_n((a_1 \otimes \ldots \otimes a_p) \sqcup (a_{p+1} \otimes \ldots \otimes a_n)) = 0, \quad 1 \le p \le n-1.$$
(1)

In particular for m_2 we have $m_2(a \otimes b \pm b \otimes a) = 0$, so a C_{∞} -algebra such that $m_n = 0$ for $n \ge 3$ is a supercommutative Differential Graded Algebra (DGA for short).

Morphism of two A_{∞} -algebras A and B is a family of graded maps $f_n : A^{\otimes n} \to B$ for $n \ge 1$ with deg $f_n = 1 - n$ such that the following conditions hold

$$\sum_{r+s+t=n} (-1)^{r+st} f_{r+1+t} (Id^{\otimes r} \otimes m_s \otimes Id^{\otimes r}) = \sum_{1 \leqslant q \leqslant n} (-1)^S m_q (f_{i_1} \otimes f_{i_2} \otimes \ldots \otimes f_{i_q}),$$

where the sum is on all decompositions $i_1 + \ldots + i_q = n$, and the sign on RHS is determined by $S = \sum_{k=1}^{q-1} (q-k)(i_k-1)$. The morphism f is a *quasi-isomorphism* of A_{∞} -algebras if f_1 is a quasi-isomorphism. It is strict if $f_i = 0$ for $i \ge 1$. The identity morphism on A is the strict morphism f such that f_1 is the identity of A.

A morphism of C_{∞} -algebras is a morphism of A_{∞} -algebras with components vanishing on shuffles $f_n((a_1 \otimes \ldots \otimes a_p) \sqcup (a_{p+1} \otimes \ldots \otimes a_n)) = 0, 1 \leq p \leq n-1.$

2. HOMOTOPY TRANSFER THEOREM

Lemma 1 (see, e.g., [6]). Every cochain complex (A, d) of vector spaces over a field \mathbb{K} has its cohomology $H^{\bullet}(A)$ as a deformation retract.

One can always choose a vector space decomposition of the cochain complex (A, d) such that $A^n \cong B^n \oplus H^n \oplus B^{n+1}$, where H^n is the cohomology and B^n is the space of coboundaries, $B^n = dA^{n-1}$. We choose a homotopy $h : A^n \to A^{n-1}$ which identifies B^n with its copy in A^{n-1} and is 0 on $H^n \oplus B^{n+1}$. The projection p to the cohomology and the cocycle-choosing inclusion i given by $A^n \xrightarrow[i]{} H^n$ are chain homomorphisms (satisfying the additional conditions hh = 0, hi = 0 and ph = 0). With these choices done, the complex $(H^{\bullet}(A), 0)$ is a deformation retract of (A, d)

$$h \bigcap (A,d) \underset{i}{\stackrel{p}{\longleftrightarrow}} (H^{\bullet}(A),0), \quad pi = Id_{H^{\bullet}(A)}, \quad ip - Id_A = dh + hd.$$
 (2)

Let now (A, d, μ) be a DGA, i.e., A is endowed with an associative product μ compatible with d. The cochain complexes (A, d) and their contraction $H^{\bullet}(A)$ are homotopy equivalent, but the associative structure is not stable under homotopy equivalence. However the associative structure on A can be transferred to an A_{∞} -structure on a homotopy equivalent complex, a particular interesting complex being the deformation retract $H^{\bullet}(A)$.

Theorem 1 (Kadeishvili [4]). Let (A, d, μ) be a (commutative) DGA over a field K. There exists a A_{∞} -algebra (C_{∞} -algebra) structure on the cohomology $H^{\bullet}(A)$ and a $A_{\infty}(C_{\infty})$ -quasi-isomorphism $f_i : (\otimes^i H^{\bullet}(A), \{m_i\}) \rightarrow$ $(A, \{d, \mu, 0, 0, \ldots\})$ such that the inclusion $f_1 = i : H^{\bullet}(A) \rightarrow A$ is a cocyclechoosing homomorphism of cochain complexes. The differential on $H^{\bullet}(A)$ is zero $m_1 = 0$ and m_2 is the associative operation induced by the multiplication on A. The resulting structure is unique up to quasi-isomorphism.

3. HOMOLOGY AND COHOMOLOGY OF THE LIE ALGEBRA \mathfrak{g}

Let \mathfrak{g} be the 2-nilpotent graded Lie algebra $\mathfrak{g} = V \oplus \bigwedge^2 V$ generated by the finite dimensional vector space V over the ground field **K** of characteristics zero. The Lie bracket on \mathfrak{g} reads

$$[x, y] := x \land y$$
 when $x, y \in V$ and $[x, y] := 0$ otherwise.

We define the homology with trivial coefficients of the Lie algebra \mathfrak{g} through the Chevalley-Eilenberg complex $C_{\bullet}(\mathfrak{g}) = (\bigwedge^{\bullet} \mathfrak{g}, \partial_{\bullet})$ having differential $\partial_n : \bigwedge^n \mathfrak{g} \to \bigwedge^{n-1} \mathfrak{g}$,

$$\partial_n(x_1 \wedge \ldots \wedge x_n) = \sum_{i < j} (-1)^{i+j} [x_i, x_j] \wedge x_1 \wedge \ldots \wedge \hat{x}_i \wedge \ldots \wedge \hat{x}_j \wedge \ldots \wedge x_n, \quad p > 0.$$
(3)

The homology $H_n(\mathfrak{g},\mathbb{K})$ of the Lie algebra \mathfrak{g} is the homology space of the complex $C(\mathfrak{g})$

$$H_n(\mathfrak{g},\mathbb{K}) := H_n(C_{\bullet}(\mathfrak{g})), \quad H_n(C_{\bullet}(\mathfrak{g})) = \ker \partial_n / \operatorname{im} \partial_{n+1}.$$

The differential ∂ is induced by the Lie bracket $[\cdot, \cdot] : \bigwedge^2 \mathfrak{g} \to \mathfrak{g}$ of the graded Lie algebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$. It identifies a pair of degree-1 generators $e_i, e_j \in \mathfrak{g}_1$ with

one degree-2 generator $e_{ij} := (e_i \wedge e_j) = [e_i, e_j] \in \mathfrak{g}_2$. In more detail the chain degrees read

$$\bigwedge^{n} \mathfrak{g} = \bigwedge^{n} \left(V \oplus \bigwedge^{2} V \right) = \bigoplus_{s+r=n} \bigwedge^{s} \left(\bigwedge^{2} V \right) \otimes \bigwedge^{r} V \tag{4}$$

and differentials $\partial_{n=r+s} : \bigwedge^s (\bigwedge^2 V) \otimes \bigwedge^r V \to \bigwedge^{s+1} (\bigwedge^2 V) \otimes \bigwedge^{r-2} V$ are given by

$$\partial_n: \quad e_{i_1j_1} \wedge \ldots \wedge e_{i_sj_s} \otimes e_1 \wedge \ldots \wedge e_r \mapsto \\ \mapsto \sum_{i < j} (-1)^{i+j} e_{ij} \wedge e_{i_1j_1} \wedge \ldots \wedge e_{i_sj_s} \otimes e_1 \wedge \ldots \wedge \hat{e_i} \wedge \ldots \wedge \hat{e_j} \wedge \ldots \wedge e_r.$$

The differential ∂ commutes with the GL(V)-action, thus the homology $H_{\bullet}(\mathfrak{g}, \mathbb{K})$ is also a GL(V)-module; its decomposition into irreducible polynomial representations V_{λ} (the so-called Schur modules) is given by the following beautiful result.

Theorem 2 (Józefiak and Weyman [3], Sigg [7]). The homology $H_{\bullet}(\mathfrak{g}, \mathbb{K})$ of the 2-nilpotent Lie algebra $\mathfrak{g} = V \oplus \bigwedge^2 V$ decomposes into irreducible GL(V)-modules

$$H_n(\mathfrak{g},\mathbb{K}) = H_n(\bigwedge^{\bullet}\mathfrak{g},\partial_{\bullet}) \cong \bigoplus_{\lambda:\lambda=\lambda'} V_{\lambda},$$
(5)

where the sum is over the self-dual Young diagrams $\{\lambda : \lambda = \lambda'\}$ such that $n = (1/2)(|\lambda| + r(\lambda)).$

By duality, one has the cochain complex $\operatorname{Hom}_{\mathbb{K}}(C(\mathfrak{g}), \mathbb{K}) = (\bigwedge^{\bullet} \mathfrak{g}^*, \delta^{\bullet})$ which is a (super)commutative DGA. The cohomology $H^n(\mathfrak{g}, \mathbb{K})$ with trivial coefficients is calculated by the complex $(\bigwedge^{\bullet} \mathfrak{g}^*, \delta^{\bullet})$

$$H^n(\mathfrak{g},\mathbb{K}):=H^n(\wedge^{\bullet}\mathfrak{g}^*,\delta^{\bullet}).$$

Here the coboundary map $\delta^n : \bigwedge^n \mathfrak{g}^* \to \bigwedge^{n+1} \mathfrak{g}^*$ is transposed* to the differential ∂_{n+1}

$$\delta^{n}: \quad e^{*}_{i_{1}j_{1}} \wedge \ldots \wedge e^{*}_{i_{s}j_{s}} \otimes e^{*}_{1} \wedge \ldots \wedge e^{*}_{r} \mapsto$$

$$\mapsto \sum_{k=1}^{s} \sum_{i_{k} < j_{k}} (-1)^{i+j} e^{*}_{i_{1}j_{1}} \wedge \ldots \wedge \hat{e}^{*}_{i_{k}j_{k}} \wedge \ldots \wedge e^{*}_{i_{s}j_{s}} \otimes e^{*}_{i_{k}} \wedge e^{*}_{j_{k}} \wedge e^{*}_{1} \wedge \ldots \wedge e^{*}_{r},$$
(6)

it is (up to a conventional sign) a continuation of the dualization of the Lie bracket $\delta^1 := [\cdot, \cdot]^* : \mathfrak{g}^* \to \bigwedge^2 \mathfrak{g}^*$ by the Leibniz rule.

^{*}In the presence of metric one has $\delta := \partial^*$ (see below).

Proposition 1 [2]. The cohomology $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ of the 2-nilpotent graded Lie algebra $\mathfrak{g} = V \otimes \bigwedge^2 V$ is a homotopy commutative algebra. The C_{∞} -algebra $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ is generated in degree 1, i.e., in $H^1(\mathfrak{g}, \mathbb{K})$, by the operations m_2 and m_3 .

Sketch of the Proof. By Lemma 1 the commutative DGA $(\bigwedge^{\bullet} \mathfrak{g}^*, \mu, \delta^{\bullet})$ has a deformation retract $H^{\bullet}(\bigwedge^{\bullet} \mathfrak{g}^*)$ thus from the Kadeishvili homotopy transfer theorem 1 follows that the cohomology $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ is a C_{∞} -algebra.

To prove that the C_{∞} -algebra $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ is generated by m_2 and m_3 we will need convenient choice of the homotopy h, the projection p and the inclusion iin the deformation retract (2).

Let us choose a metric $g(,) = \langle , \rangle$ on the vector space V and an orthonormal basis $\langle e_i, e_j \rangle = \delta_{ij}$. The choice induces a metric on $\bigwedge^{\bullet} \mathfrak{g} \stackrel{g}{\cong} \bigwedge^{\bullet} \mathfrak{g}^*$. In presence of metric g, the differential δ is identified with the adjoint of $\partial, \delta :\stackrel{g}{=} \partial^*$ (see Eq. (5)) while ∂ plays the role of homotopy. The deformation retract of the complex $(\bigwedge^{\bullet} \mathfrak{g}^*, \delta^{\bullet})$ takes the following form [7]:

$$pi = Id_{H^{\bullet}(\wedge^{\bullet}\mathfrak{g}^*)}, \quad ip - Id_{\wedge^{\bullet}\mathfrak{g}^*} = \delta\delta^* + \delta^*\delta, \quad \delta^* \stackrel{g}{=} \partial.$$

Here the projection p identifies the subspace ker $\delta \cap \ker \delta^*$ with $H^{\bullet}(\bigwedge^{\bullet} \mathfrak{g}^*)$, which is the orthogonal complement of the space of the coboundaries im δ . The cocyclechoosing homomorphism i is Id on $H^{\bullet}(\bigwedge^{\bullet} \mathfrak{g}^*)$ and zero on coboundaries.

Due to the isomorphisms $H^n(\mathfrak{g},\mathbb{K})\cong H_n^*(\mathfrak{g},\mathbb{K})$ (i.e., $\operatorname{Tor}_n^{U\mathfrak{g}}(\mathbb{K},\mathbb{K})\cong \operatorname{Ext}_{U\mathfrak{g}}^n(\mathbb{K},\mathbb{K})$ in the category of graded algebras [1]) induced by $V \stackrel{g}{\cong} V^*$, the theorem 2 implies the decomposition

$$H^{n}(\mathfrak{g},\mathbb{K})\cong H^{n}(\wedge\mathfrak{g}^{*},\delta)\cong \oplus_{\lambda:\lambda=\lambda'}V_{\lambda},$$

where the sum is over the self-dual Young diagrams λ such that $n = (1/2)(|\lambda| + r(\lambda))$.

We were able to show in [2] that with the use of the explicit expressions [5] for the operations $m_2(x, y) := p\mu(i(x), i(y))$ and $m_3(x, y, z) = p\mu(i(x), h\mu(i(y), i(z))) - p\mu(h\mu(i(x), i(y)), i(z))$ one can generate all the elements in $H^{\bullet}(\mathfrak{g}, \mathbb{K})$ by the degree one elements $H^1(\mathfrak{g}, \mathbb{K})$. \Box

REFERENCES

- Cartan H. Homologie et cohomologie d'une algèbre graduée // Sèm. H. Cartan. 1958. V. 11. P. 1–20.
- 2. Dubois-Violette M., Popov T. Young Tableaux and Homotopy Commutative Algebras // Proc. of «Lie Theory-9». Springer Proc. in Math. 2012 (in press).

- 3. Józefiak T., Weyman J. Representation-Theoretic Interpretation of a Formula of D. E. Littlewood // Math. Proc. Cambridge Phil. Soc. 1988. V. 103. P. 193–196.
- Kadeishvili T. The A∞-Algebra Structure and Cohomology of Hochschild and Harrison // Proc. of Tbil. Math. Inst. 1988. V.91. P. 19–27.
- 5. Kontsevich M., Soibelman Y. Deformations of Algebras over Operads and the Deligne Conjecture // Math. Phys. Stud. 2000. V. 21. P. 255–307.
- 6. Loday J.-L., Valette B. Algebraic Operads. To appear.
- Sigg S. Laplacian and Homology of Free 2-Step Nilpotent Lie Algebras // J. Algebra. 1996. V. 185. P. 144–161.