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CONTRACTION OF ELECTROWEAK MODEL
CAN EXPLAIN THE INTERACTIONS OF NEUTRINOS

WITH MATTER
N. A. Gromov ∗

Department of Mathematics, Komi Science Center UrD, RAS, Russia

The very rare interactions of neutrinos with matter and the dependence of the corresponding
cross section on neutrinos energy are explained as contraction of the gauge group of the electroweak
model already at the level of classical gauge ˇelds. Small contraction parameter is connected with
the universal Fermi constant of weak interactions and neutrino energy as ε2(s) =

√
GF s.

PACS: 12.15-y.

INTRODUCTION

The modern theory of electroweak interactions Å standard Electroweak
Model Å is gauge theory based on gauge group SU(2) × U(1). In physics the
operation of group contraction is well known [1], which transforms, for example,
a simple or semisimple group to a nonsemisimple one. For better uderstanding of
a complicated physical system it is useful to investigate its limit cases for limit
values of its physical parameters. For symmetric system similar limit values are
often connected with contraction parameters of its symmetry group. In this pa-
per we discuss the modiˇed Electroweak Model with the contracted gauge group
SU(2; ε)×U(1). We explain, at the level of classical ˇelds, the vanishingly small
interactions of neutrinos with matter especially for low energies and the decrease
of the neutrinos-matter cross section when energy tends to zero with the help
of contraction of gauge group. We connect dimensionless contraction parameter
ε → 0 with neutrinos energy.

1. MODIFICATION OF THE STANDARD ELECTROWEAK MODEL

We shall follow the books [2Ä4] in description of standard Electroweak
Model. From the viewpoint of electroweak interactions, all known leptons and
quarks are divided into three generations. In what follows, we shall regard only
ˇrst generations of leptons and quarks.
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We consider a model where the contracted gauge group SU(2; ε)×U(1) acts
in the boson, lepton, and quark sectors. The contracted group SU(2; ε) is ob-
tained [5] by the consistent rescaling of the fundamental representation of SU(2)
and the space C2

z′(ε) =
(

εz′1
z′2

)
=

(
α εβ

−εβ̄ ᾱ

) (
εz1

z2

)
= u(ε)z(ε),

detu(ε) = |α|2 + ε2|β|2 = 1, u(ε)u†(ε) = 1
(1)

in such a way that the Hermitian form z†z(ε) = ε2|z1|2 + |z2|2 remains invariant,
when contraction parameter tends to zero ε → 0 or is equal to the nilpotent unit
ε = ι, ι2 = 0. The actions of U(1) and the electromagnetic subgroup U(1)em in
the ˇbered space C2(ι) with the base {z2} and the ˇber {z1} are given by the
same matrices as in the space C2.

The space C2(ε) of the fundamental representation of SU(2; ε) group can
be obtained from C2 by substituting z1 by εz1. Substitution z1 → εz1 induces
another ones for Lie algebra generators T1 → εT1, T2 → εT2, T3 → T3. As far
as the gauge ˇelds take their values in Lie algebra, we can substitute the gauge
ˇelds instead of transforming the generators, namely: A1

μ → εA1
μ, A2

μ → εA2
μ,

A3
μ → A3

μ, Bμ → Bμ. For the new gauge ˇelds these substitutions are as follows:

W±
μ → εW±

μ , Zμ → Zμ, Aμ → Aμ. (2)

The ˇelds Ll =
(

νl

el

)
, Ql =

(
ul

dl

)
are SU(2)-doublets, so their components

are transformed in the similar way as components of z:

νl → ενl, el → el, ul → εul, dl → dl. (3)

The right lepton and quark ˇelds are SU(2)-singlets and therefore are not trans-
formed.

After these transformations and spontaneous symmetry breaking with φvac =(
0

v/
√

2

)
, the standard boson Lagrangian [2] can be represented in the form

LB(ε) = L
(2)
B (ε) + Lint

B (ε) =

=
1
2

(∂μχ)2 − 1
2
m2

χχ2 − 1
4
ZμνZμν +

1
2
m2

ZZμZμ − 1
4
FμνFμν+

+ ε2
{
−1

2
W+

μνW−
μν + m2

W W+
μ W−

μ

}
+ Lint

B (ε), (4)

where as usual second-order terms describe the boson particles content of the
model, and higher-order terms Lint

B are regarded as their interactions. The standard
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lepton Lagrangian [2] in terms of electron and neutrino ˇelds takes the form

LL(ε) = e†l iτ̃μ∂μel + e†riτμ∂μer − me(e†rel + e†l er)+

+
g cos 2θw

2 cos θw
e†l τ̃μZμel − ee†l τ̃μAμel − g′ cos θwe†rτμAμer+

+ g′ sin θwe†rτμZμer + ε2
{

ν†
l iτ̃μ∂μνl +

g

2 cos θw
ν†

l τ̃μZμνl+

+
g√
2

[
ν†

l τ̃μW+
μ el + e†l τ̃μW−

μ νl

]}
= LL,b + ε2LL,f . (5)

The quark Lagrangian [2] in terms of u- and d-quarks ˇelds can be written as

LQ(ε) = d†iτ̃μ∂μd + d†riτμ∂μdr − md(d†rd + d†dr) −
e

3
d†τ̃μAμd−

− g

cos θw

(
1
2
− 2

3
sin2 θw

)
d†τ̃μZμd − 1

3
g′ cos θwd†rτμAμdr+

+
1
3
g′ sin θwd†rτμZμdr − ε2

{
u†iτ̃μ∂μu + u†

riτμ∂μur−

− mu(u†
ru + u†ur) +

g

cos θw

(
1
2
− 2

3
sin2 θw

)
u†τ̃μZμu+

+
2e

3
u†τ̃μAμu +

g√
2

[
u†τ̃μW+

μ d + d†τ̃μW−
μ u

]
+

2
3
g′ cos θwu†

rτμAμur−

−2
3
g′ sin θwu†

rτμZμur

}
= LQ,b + ε2LQ,f , (6)

where me = hev/
√

2 and mu = huv/
√

2, md = hdv/
√

2 represents electron and
quark masses.

The full Lagrangian of the modiˇed model is the sum

L(ε) = LB(ε) + LQ(ε) + LL(ε) = Lb + ε2Lf . (7)

The boson Lagrangian LB(ε) was discussed in [6] for standard formulation and
in [7] without Higgs boson, where it was shown that masses of all particles of
the Electroweak Model remain the same under contraction ε2 → 0. In this limit
the contribution ε2Lf of neutrino, W -boson, and u-quark ˇelds as well as their
interactions with other ˇelds to the Lagrangian (7) will be vanishingly small in
comparison with contribution Lb of electron, d-quark, and remaining boson ˇelds.
So Lagrangian (7) describes very rare interaction neutrino ˇelds with the matter
for low energies. On the other hand, contribution of the neutrino part ε2Lf

to the full Lagrangian is risen when the parameter ε2 is increased, that again
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corresponds to the experimental facts. The dependence of ε on neutrino energy
can be obtained from the experimental data.

In the mathematical language the ˇelds space of the standard electroweak
model is ˇbered after the contraction in such a way that neutrino, W -boson, and
u-quark ˇelds are in the ˇber, whereas all other ˇelds are in the base. We regard
locally trivial ˇbering, which is deˇned by the projection in the ˇeld space. This
ˇbering is understood in the context of semi-Riemannian geometry [8,9] and has
nothing to do with the principal ˇber bundle. The simple and best known example
of such ˇber space is the nonrelativistic space-time with one-dimensional base,
which is interpreted as time, and a three-dimensional ˇber, which is interpreted
as proper space. It is well known that in nonrelativistic physics the time does not
depend on the space coordinates, while the space properties can be changed in
time. The space-time of the special relativity is transformed to the nonrelativistic
space-time when dimensionfull contraction parameter Å velocity of light c Å
tends to the inˇnity and dimensionless parameter v/c → 0.

2. RARELY NEUTRINOS-MATTER INTERACTIONS
FOR LOW ENERGIES AND CONTRACTION OF GAUGE GROUP

To establish the physical meaning of the contraction parameter we consider
neutrino elastic scattering on electron and quarks for low energies s � m2

W , i.e.,
the limit case of the Electroweak Model. The corresponding diagrams for the
neutral and charged currents interactions are presented in the Figure.

Under substitutions (2), (3) both vertex of diagram in Figure, a are multiplied
by ε2, as it follows from lepton Lagrangian (5). The propagator of virtual ˇelds
W according to boson Lagrangian (4) is multiplied by ε−2. Indeed, propagator is
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Neutrino elastic scattering on electron and quarks
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inverse operator to operator of free ˇeld, but the later for W -ˇelds is multiplied
by ε2. So in total, the probability amplitude for charged weak current interactions
is transformed as MW → ε2MW . For diagram in Figure, b only one vertex is
multiplied by ε2, whereas second vertex and propagator of Z virtual ˇeld do not
change, so the corresponding amplitude for neutral weak current interactions is
transformed in a similar way MZ → ε2MZ . A cross section is proportional to a
squared amplitude, so neutrino-electron scattering cross section is proportional to
ε4. For low energies s � m2

W , this cross section is as follows [3]:

σνe = G2
F sf(ξ) =

g4

m4
W

f̃(ξ), (8)

where GF = 10−5(1/m2
p) = 1.17 · 10−5 GeV−2 is Fermi constant, s is squared

energy in c.m. system, ξ = sin θw, f̃(ξ) = f(ξ)/32 is a function of Weinberg
angle. On the other hand, taking into account that contraction parameter is
dimensionless, we can write down

σνe = ε4σ0 = (GF s)(GF f(ξ)) (9)

and obtain

ε2(s) =
√

GF s ≈ g
√

s

mW
. (10)

Neutrino elastic scattering on quarks due to neutral and charged currents
is pictured in Figures, c, d. Cross sections for neutrinoÄquarks scattering are
obtained in a similar way as for the lepton case and are as follows [3]: σW

ν =
G2

F sf̂(ξ)), σZ
ν = G2

F s h(ξ). Nucleons are some composite construction of quarks,
therefore some form factors appeared in the expressions for neutrinoÄnucleons
scattering cross sections. The ˇnal expression σνn = G2

F sF̂ (ξ) coincides with (8),
i.e., this cross section is transformed as (9) with the contraction parameter (10).
At low energies, scattering interactions make the leading contribution to the total
neutrino-matter cross section, therefore it has the same properties (9), (10) with
respect to contraction of the gauge group.

CONCLUSIONS

We have suggested the modiˇcation of the standard Electroweak Model by
the contraction of its gauge group. At the level of classical (nonquantum) gauge
ˇelds the very weak neutrino-matter interactions especially at low energies can
be explained by this model. The zero tending contraction parameter depends on
neutrino energy in accordance with the energy dependence of the neutrino matter
interaction cross section.
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The limit transition c → ∞ in special relativity resulted in the notion of group
contraction [1]. In our model, on the contrary, the notion of group contraction is
used to explain the fundamental limit process of nature.
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