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Astronomical data in favor of cosmological acceleration and possible explanations of accelerated
expansion of the Universe are discussed. Main attention is paid to gravity modiˇcations at small
curvature which could induce accelerated cosmological expansion. It is shown that gravitating systems
with mass density rising with time evolve to a singular state with inˇnite curvature scalar. The
Universe evolution during the radiation-dominated epoch is studied in the R2-extended gravity theory.
Particle production rate by the oscillating curvature and the back reaction of particle production on
the evolution of R are calculated in the one-loop approximation. Possible implications of the model
for cosmological creation of nonthermal dark matter are discussed.

PACS: 98.80.Cq

A large set of independent, different-types astronomical data strongly indi-
cate that our Universe today expands with acceleration. The data include the
observation of the large scale structure of the Universe, the measurements of the
angular �uctuations of the cosmic microwave background radiation, the determi-
nation of the Universe age (for a review, see [1]), and especially the discovery
of the dimming of distant Supernovae [2]. It was established and unambiguously
proved that the Universe expansion is accelerated, but the driving force behind
this accelerated expansion is still unknown.

Among possible explanations, very popular is the assumption of a new
(unknown) form of cosmological energy density with large negative pressure,
P < −�/3, the so-called dark energy (for a review, see, e.g., [3]). The latter
can be either a small vacuum energy, which is identical to cosmological con-
stant, or the energy density associated with an unknown, pressumably scalar ˇeld,
which slowly varies in the course of the cosmological evolution. The problem of
vacuum energy and possible ways to its solution are described in [4].

Soon after discovery of the accelerated expansion, theories with competing
mechanism for producing cosmological acceleration have been proposed. These
theories are based on the gravity modiˇcations at large scales by introducing an
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additional term, F (R), into the usual action of General Relativity (GR):

S =
m2

Pl

16π

∫
d4x

√
−g[R + F (R)] + Sm, (1)

where mPl = 1.22 · 1019 GeV is the Planck mass, and Sm is the matter action.
The usual EinsteinÄHilbert action is linear in the curvature scalar R. This is

the reason why the GR equations contain, as it is usual in other ˇeld theories,
only second derivatives of metric despite the fact that the action also contains
second derivatives. If the action differs from a simple linear GR form, the
equation of motion would be higher than the second-order one. Such equations
should contain some pathological features as an existence of tachyonic solutions
or ghosts. However, the theories whose action depends only on a function of
the curvature scalar, F (R), are free of such pathologies because, as is known,
they are equivalent to an addition of a scalar degree of freedom to the usual GR
with the scalar ˇeld satisfying normal second-order ˇeld equation. That is why,
modiˇcations of gravity at large distances are mostly conˇned to F (R) theories.

The pioneering work in this direction was done in [5], which was closely
followed by [6]. In these works the singular in R action

F (R) = −μ4

R
(2)

has been explored with constant parameter μ chosen as μ2 ∼ Rc ∼ 1/t2U to de-
scribe the observed cosmological acceleration.

The corresponding equation of motion reads

(
1
μ4

+
1

R2

)
Rαβ − R

2

(
1
μ4

− 1
R2

)
gαβ − D(αDβ)

(
1

R2

)
+

+ gαβDνDν

(
1

R2

)
=

8π Tαβ

m2
Plμ

4
. (3)

Taking trace over α and β of this equation we obtain

D2R − 3
(DαR)(DαR)

R
=

R2

2
− R4

6μ4
− TR3

6μ4
. (4)

Here T = 8πT ν
ν /m2

Pl > 0. This equation has an evident solution in the absence
of matter R2 = 3μ4 which describes the accelerated de Sitter universe with a
constant curvature scalar.

So far, so good but the small coefˇcient, μ4, in front of the highest derivative
or, what is the same, the large coefˇcient, 1/μ4, in front of the nonderivative
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terms in the presented above form of the equation leads to a strong instability in
the presence of matter [7] with the characteristic time:

τ =
√

6μ2

T 3/2
∼ 10−26 s

(
�m

g/cm3

)−3/2

, (5)

where �m is the mass density of the body, and μ−1 ∼ tu ≈ 3 · 1017 s.
To avoid the problem of such instability, further modiˇcation of the modiˇed

gravity has been suggested. We will consider here some class of the models
discussed in [8]. Some other forms of gravity modiˇcation are reviewed in [9].
The different actions suggested in works [8] have the form

FHS(R) = −Rvac

2
c(R/Rvac)2n

1 + c(R/Rvac)2n
, (6)

FAB(R) =
ε

2
log

[
cosh (R/ε − b)

cosh b

]
− R

2
, (7)

FS(R) = λR0

[(
1 +

R2

R2
0

)−n

− 1

]
. (8)

Despite different forms, these actions result in quite similar consequences. Below
we essentially follow the analysis made in [10].

Introducing notation f(R) = R + F (R), we can write the ˇeld equations as
follows:

f ′(R)Rν
μ − f(R)

2
δν
μ + (δν

μD2 − DμDν)f ′(R) =
8πT ν

μ

m2
Pl

. (9)

Correspondingly, their trace is

3D2f ′(R) + Rf ′(R) − 2f(R) = T, (10)

where prime denotes the ordinary derivative with respect to R.
The condition of accelerated expansion in the absence of matter is the exis-

tence of real positive root, R = R1 > 0, of the equation

Rf ′(R) − 2f(R) = 0, (11)

where R1 is (approximately) constant.
The following necessary conditions to avoid pathologies are to be satisˇed:
1) future stability of cosmological solutions:

f ′(R1)
f ′′(R1) > R1

; (12)
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2) classical and quantum stability (gravitational attraction and absence of
ghosts):

f ′(R) > 0; (13)

3) absence of matter [7] instability:

f ′′(R) > 0; (14)

4) existence of the stable Newtonian limit:

|f(R) − R| � R, |f ′(R) − 1| � 1, Rf ′′(R) � 1. (15)

Note that the effective scalaron mass squared is M2(R) = 1/(3f ′′(R)), and
the third condition (14) means that the scalaron is not a tachyon.

Despite considerable improvement, the models proposed in [8] possess an-
other trouble Å some feature, namely, in a cosmological situation they should
evolve from a singular state with an inˇnite R in the past [11]. In other words,
if we travel backward in time from a normal cosmological state, we come to a
singular state with inˇnite curvature, while the energy density remains ˇnite.

In cosmology, energy density drops down with time, and singularity does
not appear in the future. However, systems with rising mass/energy density will
evolve to a singularity, R → ∞, in a ˇnite time [12,13]. Such future singularity
is unavoidable, regardless of the initial conditions, and inˇnite value of R would
be reached in time which is much shorter than the cosmological one.

Following [13], let us consider version (8) of F (R) function in the case of
large R. We analyze the evolution of R in massive objects with time varying
mass density, �m � �c. The cosmological energy density at the present time is
�c ≈ 10−29 g/cm3, while matter density of, say, a dust cloud in a galaxy could
be about �m ∼ 10−24 g/cm3. Since the magnitude of the curvature scalar is
proportional to the mass density of a nonrelativistic system, we ˇnd R � R0.
In this limit we can approximately take

F (R) ≈ −λR0

[
1 −

(
R0

R

)2n
]

. (16)

Gravitational ˇeld of such an object is supposed to be weak, so the back-
ground metric is approximately �at, and covariant derivatives can be replaced by
the �at ones. Hence equation (10) takes the form

(∂2
t − Δ)R − (2n + 2)

Ṙ2 − (∇R)2

R
+

R2

3n(2n + 1)

[
R2n

R2n
0

− (n + 1)
]
−

− R2n+2

6n(2n + 1)λR2n+1
0

(R + T ) = 0. (17)
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The equation is very much simpliˇed if we choose another unknown function
w ≡ F ′ = −2nλ (R0/R)2n+1 which satisˇes

(∂2
t − Δ)w + U ′(w) = 0. (18)

Here potential U(w) is equal to

U(w) =
1
3

(T − 2λR0)w +
R0

3

[
qν

2nν
w2nν +

(
qν +

2λ

q2nν

)
w1+2nν

1 + 2nν

]
, (19)

where ν = 1/(2n + 1) and q = 2nλ.
Notice that the inˇnite R singularity corresponds to w = 0.
If only the dominant terms are retained and if the space derivatives are

neglected, Eq. (18) simpliˇes to

ẅ +
T

3
− qν(−R0)

3wν
= 0. (20)

Potential U would depend upon time if the mass density of the object changes
with time. We parameterize it as

T = T (t) = T0(1 + κτ), (21)

where τ is dimensionless time introduced below.
With dimensionless quantities t = γτ and w = βz, where

γ2 =
3q

(−R0)

(
−R0

T0

)2(n+1)

, β = γ2T0/3 = q

(
−R0

T0

)2n+1

, (22)

the equation further simpliˇes:

z′′ − z−ν + (1 + κτ) = 0. (23)

Fig. 1. Potential U(z) = z(1 + κτ ) − z1−ν/(1 − ν), ν =
1

5
, τ = 0
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Fig. 2. Ratio z(τ )/zmin(τ ) (a) and functions z(τ ) and zmin(τ ) (b) for n = 2, κ = 0.01,
�m/�c = 105. The initial conditions are z(0) = 1 and z′(0) = 0

Minimum of potential U(z) (Fig. 1) sits at zmin = (1 + κτ)−1/ν . When the
mass density rises, the minimum moves towards zero and becomes more and
more shallow. If at the process of ®lifting¯ of the potential, z(τ) happens to
be at U > 0, it would overjump the potential which is equal to zero at z = 0.
In other words, z(τ) would reach zero, which corresponds to inˇnite R, and so
the singularity can be reached in ˇnite time (Fig. 2).

The aforementioned problems can be cured by adding to the action quadratic
in curvature term R2/(6m2) [14], which prevents from the singular behavior both
in the past and in the future.

In the homogeneous case and in the limit of large ratio R/R0, the addition
of R2 term leads to the following modiˇcation of the equation of motion:[

1 − R2n+2

6λn(2n + 1)R2n+1
0 m2

]
R̈− (2n+2)

Ṙ2

R
− R2n+2(R + T )

6λn(2n + 1)R2n+1
0

= 0. (24)

With dimensionless curvature and time

y = − R

T0
, τ1 = t

[
− T 2n+2

0

6λn(2n + 1)R2n+1
0

]1/2

(25)

the equation for R is transformed into

(
1 + gy2n+2

)
y′′ − 2(n + 1)

(y′)2

y
+ y2n+2 [y − (1 + κ1τ1)] = 0, (26)

where prime now means derivative with respect to τ1.
We introduced here the new parameter, g, which can prevent from the ap-

proach to inˇnity and is equal to

g = − T 2n+2
0

6λn(2n + 1)m2R2n+1
0

> 0. (27)

For very large m, or small g, when the second term in the coefˇcient of the
second derivatives in Eqs. (24) and (26) can be neglected, numerical solution
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Fig. 3. Numerical solutions of Eq. (26) for n = 3, κ1 = 0.01, y(τin) = 1 + κ1τin,
y′(τin) = 0. a) g = 0; b) g = 1

demonstrates that R would reach inˇnity in ˇnite time in accordance with the
results presented above (see Fig. 3, a). Nonzero g would terminate the unbounded
rise of R. To avoid too large deviation of R from the usual gravity, coefˇcient g
should be larger than or of the order of unity. In Fig. 3, b, it is clearly seen,
that for g = 1 the amplitude of oscillations remains constant whereas the average
value of R increases with time.

As follows from Eq. (26), the frequency of small oscillations of y around
y0 = 1 + κ1τ1 in dimensionless time τ1 is

ω2
τ =

1
g

gy2n+2
0

1 + gy2n+2
0

� 1
g
. (28)

It means that in physical time the frequency would be

ω ∼ 1
tU

(
T0

R0

)n+1
yn+1
0√

1 + gy2n+2
0

� m. (29)

In particular, for n = 5 and for a galactic gas cloud with T0/R0 = 105, the
oscillation frequency would be 1012 Hz ≈ 10−3 eV. Higher density objects,
e.g., those with ρ = 1 g/cm3, would oscillate with much higher frequency,
saturating bound (29), i.e., ω ∼ m. All kinds of particles with masses smaller
than m might be created by such an oscillating ˇeld.

As more detailed analysis shows (our work in progress with L. Reverberi),
the pattern of oscillations in the presence of matter is more complicated.
They very much differ from the harmonic ones and consist of high narrow
spikes with characteristic frequency of the order of m, separated by wide low
amplitude periods.

An important effect which is not taken into account in Eq. (24) and which also
inhibits unbounded rise of R is the particle production by oscillating curvature R.
The technique for calculations of particle production applicable to the case of
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modiˇed gravity (6)Ä(8) was worked out in [15] for the case of R2 gravity in
cosmological situation (in the early Universe), where the classical results [16] for
particle production were reproduced.

As was done in [15], let us consider the cosmological evolution of the
Universe in a theory with only an additional R2 term in the action, neglecting
other terms which have been introduced to generate the accelerated expansion in
the contemporary Universe. The impact of such terms is negligible in the limit of
sufˇciently large curvature, |R| � |R0|, where R0 is the cosmological curvature
at the present time.

In other words, we study below the cosmological evolution of the early and
not so early Universe in the model with the following action:

S = −m2
Pl

16π

∫
d4x

√
−g

(
R − R2

6m2

)
+ Sm, (30)

with the account of the back reaction of particle production.
The modiˇed Einstein equations for this theory read

Rμν − 1
2
gμνR − 1

3m2

(
Rμν − 1

4
Rgμν + gμνD2 −DμDν

)
R =

8π

m2
Pl

Tμν, (31)

where D2 ≡ gμνDμDν is the covariant D'Alembert operator.
The curvature scalar R is expressed through the Hubble parameter

H = ȧ/a as
R = −6Ḣ − 12H2. (32)

Therefore, the timeÄtime component of Eq. (31) reads

Ḧ + 3HḢ − Ḣ2

2H
+

m2H

2
=

4πm2

3m2
PlH

�, (33)

where overdots denote derivative with respect to physical time t.
Taking trace of Eq. (31) yields

R̈ + 3HṘ + m2(R + T ) = 0. (34)

This equation is a sort of KleinÄGordon equation for a homogeneous scalar
ˇeld, the ®scalaron¯, of mass m, with a source term proportional to the trace
of the energyÄmomentum tensor of matter. The General Relativity case may be
recovered when m → ∞. In this limit we expect to obtain the usual algebraic
relation between the curvature scalar and the trace of the energyÄmomentum
tensor of matter:

m2
PlRGR = −8πT μ

μ . (35)
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However, unlike the usual GR, in higher-order theories, curvature and matter are
related to each other through a differential equation, but not simply algebraically.
Therefore, the theory may approach GR as m → ∞ in a nontrivial way or even
not approach it at all.

For a perfect �uid with relativistic equation of state, P = �/3, the trace of the
energyÄmomentum tensor of matter T μ

μ vanishes, and R satisˇes the homogeneous
equation. The GR solution R = 0 satisˇes this equation, but if one assumes that
neither R nor Ṙ vanish initially, the general solution for R will be an oscillating
function with a decreasing amplitude. The decrease of the amplitude is induced
by the cosmological expansion (the second term in Eq. (34)) and by particle
production by the oscillating gravitational ˇeld R(t). The latter is not included
in this equation and will be taken into account below.

In what follows, we study the cosmological evolution in the R2 theory as-
suming rather general initial conditions for R and H and dominance of relativistic
matter which is red-shifted according to

�̇R + 4H�R = 0. (36)

We will use either the set of Eqs. (33) and (36) or the set (32) and (34) as the
basic equations. They are, of course, equivalent, but their numerical treatment
may be somewhat different.

There is a possibility of gravitational particle production, which may non-
trivially affect the solutions of the above equations. In the ˇrst approximation,
however, we neglect such contributions, which will be dealt with later on in the
ˇnal part of this paper.

It is convenient to rewrite the equations in terms of the dimensionless quan-
tities τ = H0t, h = H/H0, r = R/H2

0 , y = 8π�/(3m2
PlH

2
0 ), and ω = m/H0,

where H0 is the value of the Hubble parameter at some initial time t0. Thus, the
following two equivalent systems of equations are obtained:⎧⎨

⎩h′′ + 3hh′ − h′2

2h
+

ω2

2
h2 − y

h
= 0,

y′ + 4hy = 0,
(37)

and {
r′′ + 3hr′ + ω2r = 0,

r + 6h′ + 12h2 = 0.
(38)

Here prime indicates derivative with respect to dimensionless time τ .
First, we assume that the deviations from GR are small and expand h =

1/(2τ) + h1 and y = 1/(4τ2) + y1, assuming that h1/h � 1 and y1/y � 1, and
linearize the system of equations.
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The complete asymptotic solution for h has the form

h(τ) � 1
2τ

+
c1 sin (ωτ + ϕ)

τ3/4
, (39)

and describes oscillations of the Hubble parameter around the GR value 1/(2τ).
Moreover, the amplitude of such oscillations decreases more slowly than 1/τ , so
for sufˇciently large τ , the second term would start to dominate, the oscillations
will become large, and the condition h1 � h will no longer be satisˇed. After
this stage is reached, the linear approximation becomes invalid.

However, we can proceed further using a sort of truncated Fourier expansion
which allows one to take into account the nonlinearity of the system in the
limit ωτ � 1. As a result, we have found that h1/h → const. In other words,
the amplitude of the oscillating part of h asymptotically behaves as 1/τ , i.e., in
the same way as the slowly varying part of h, but the oscillation center is shifted
above the GR value 1/2.

Numerical solutions of Eqs. (37) with the initial conditions h0 = 1 + δh0,
h′

0 = −2, y0 = 1 presented in Figs. 4, 5 demonstrate good agreement with the
analytical results. In the linear regime (Fig. 4) function hτ oscillates around the

Fig. 4. Small deviations from GR: δh0 = 10−4, ω = 10. hτ rises, hτ 3/4 remains constant

Fig. 5. Nonlinear regime: δh0 = 1.5, ω = 100. The central value of oscillations of Hubble
parameter is about 0.6 and is shifted from the GR value 0.5
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central value h = 1/2 with amplitude h1 ∼ τ−3/4. As the deviation from the ideal
GR behavior increases, the amplitudes of the oscillating terms of both h and r
decrease faster than τ−3/4 (linear regime), and rather close to τ−1. Furthermore,
the Hubble parameter does not oscillate around the GR value hτ = 1/2, but
around a larger value (Fig. 5).

However, oscillations are damped due to particle production, which can be
evaluated as follows. We start from a massless scalar ˇeld φ minimally coupled
to gravity:

Sφ =
1
2

∫
d4x

√
−g gμν∂μφ ∂νφ. (40)

In spatially-�at FriedmannÄRobertsonÄWalker background it leads to the
equation of motion

φ̈ + 3Hφ̇ − 1
a2

Δφ = 0. (41)

Field φ enters the equation of motion for R (34) via the trace of its energyÄ
momentum tensor:

T μ
μ (φ) = −gμν∂μφ ∂νφ ≡ −(∂φ)2.

In terms of the conformally rescaled ˇeld, χ ≡ a(t)φ, and conformal time η,
such that a dη = dt, we can rewrite the equations of motion as

R′′ + 2
a′

a
R′ + m2a2R = 8π

m2

m2
Pl

1
a2

[
χ′2 − (∇χ)2 +

a′2

a2
χ2 − a′

a
(χχ′ + χ′χ)

]
,

(42)

R = −6a′′/a3, (43)

χ′′ − Δχ +
1
6
a2Rχ = 0, (44)

while action (40) takes the form

Sχ =
1
2

∫
dη d3x

(
χ′2 − (∇χ)2 − a2R

6
χ2

)
. (45)

Here and above, prime denotes derivative with respect to conformal time.
We derive a closed equation for R taking the average value of the

χ-dependent quantum operators in the r.h.s. of Eq. (42) over vacuum in the
presence of an external classical gravitational ˇeld R following the procedure
described in [17], where similar equation was obtained in the one-loop approxi-
mation.

Equation (44) has the formal solution

χ(x) = χ(0)(x) − 1
6

∫
d4y G(x, y) a2(y)R(y)χ(y) ≡ χ(0)(x) + δχ(x), (46)
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where the massless Green function is

G(x, y) =
1

4π|x− y|δ ((x0 − y0) − |x− y|) ≡ 1
4πr

δ(Δη − r). (47)

We assume that the particle production effects slightly perturb the free solu-
tion, so δχ can be considered small and the Dyson-like series can be truncated at
ˇrst order, yielding

χ(x) � χ(0)(x)− 1
6

∫
d4y G(x, y) a2(y)R(y)χ(0)(y) ≡ χ(0)(x)+χ(1)(x). (48)

We calculate the vacuum expectation values of the various terms in the right-
hand side of Eq. (42), keeping only ˇrst-order terms in χ(1). All terms containing
only χ(0) and its derivatives are not related to the particle production and can be
reabsorbed by the renormalization procedure into parameters of the theory.

The dominant contribution of particle production is therefore given by the
right-hand side of the integro-differential equation:

R̈ + 3HṘ + m2R � − 1
12π

m2

m2
Pl

1
a4

η∫
η0

dη′ (a
2(η′)R(η′))′′

η − η′ �

� − 1
12π

m2

m2
Pl

t∫
t0

dt′
R̈(t′)
t − t′

. (49)

This equation is naturally nonlocal in time since the impact of particle production
depends upon all the history of the evolution of the system.

Using again the procedure of truncated Fourier expansion including the back-
reaction effects in the form of Eq. (49), we obtaine the decay rate

ΓR =
m3

48m2
Pl

. (50)

This result is in agreement with [16]. Correspondingly, the oscillating part of R
or H behaves as

cosm1t → e−ΓRt cosm1t, (51)

where m1 is equal to m plus radiative corrections.
We use this result in the calculation of the energy density in�ux of the

produced particles into the primeval plasma.
From Eq. (44) follows that the amplitude of gravitational production of two

identical χ particles with momenta p1 and p2 in the ˇrst order in perturbation
theory is given by

A(p1, p2) �
∫

dη d3x
a2R

6
〈p1, p2|χχ|0〉, (52)
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where
〈p1, p2|χχ|0〉 =

√
2 ei(Ep1+Ep2)η−i(p1+p2)·x. (53)

Since the produced particles are massless and on-mass-shell, E2
k = k2, and

function a2R has the form

a2(η)R(η) = D(η) sin(ω̃η),

where D(η) is a slowly varying function of (conformal) time; ω̃ is the frequency
conjugated to conformal time.

Taking Epi � 0 and neglecting at this stage the variation of D with time,
we obtain

A(p1, p2) � − i

6
√

2
D(η)(2π)4δ(3)(p1 + p2) δ(Ep1 + Ep2 − ω̃). (54)

The particle production rate per unit comoving volume and unit conformal
time is therefore given by

n′ =
∫

d2p1 d3p2

(2π)64Ep1Ep2

|A(p1, p2)|2
V Δη

� D2(η)
576π

, (55)

where V is the total volume; Δη is the interval of conformal time when production
takes place; n is the number density of the produced particles, and prime denotes
derivative with respect to conformal time.

The rate of gravitational energy transformation into a certain species of ele-
mentary particles in conformal variables is

�′ =
n′ω̃

2
=

D2(η)ω̃
1152π

, (56)

and so the rate of variation of the physical energy density of the produced
χ particles is

�̇χ =
m〈R2〉
1152π

. (57)

Here 〈R2〉 is the square of the amplitude of the oscillations of R and we substi-
tuted ω̃ = am.

The total rate of the gravitational energy transformation into elementary par-
ticles is obtained by multiplying the above result by the number of the produced
particle species, Neff :

�̇PP = Neff �̇χ. (58)

Now we can calculate the evolution of the cosmological energy density of
matter, which is determined by the equation

�̇ = −4H� + �̇PP. (59)
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We assumed here that the produced matter is relativistic, and so the ˇrst term
in the r.h.s. describes the usual cosmological red shift, while the second term is
the particle source from the oscillations of R. Since � is not oscillating but a
smoothly varying function of time, its red shift is predominantly determined by
the nonoscillating part of the Hubble parameter, Hc � α/2t.

Parameterizing the oscillating part of the curvature as

R � −6βm sinmt

t
e−ΓRt, (60)

we ˇnd that the energy density of matter obeys the equation

�̇ = −2α

t
� +

β2m3Neff

32πt2
e−2ΓRt. (61)

The characteristic decay time of the oscillating curvature is

τR =
1

2ΓR
=

24m2
Pl

m3
� 2

(
105 GeV

m

)3

s. (62)

The contribution of the produced particles into the total cosmological energy
density reaches its maximum value at approximately this time. The ratio of the
energy density of the newly produced energetic particles and that of those already
existing in the plasma is given by the expression

�hi

�therm
=

8β2Neff

κ(2α1 − 1)
1 − (2ΓRtin)2α1−1

(2ΓRtin)2α1−2
. (63)

Parameter κ is arbitrary, and depends upon the thermal history of the Universe
before tin. In particular, κ = 0 is possible and does not contradict our picture,
since the equations of motion have nontrivial oscillating solutions even if � = 0.

Depending upon the cosmological history and the values of the parameters
of the theory, the role of nonthermal particles may vary from negligible up
to very signiˇcant. It is worth noting that even initially small contribution of
the oscillations of R into the total cosmological energy density could rise due
to a weak decrease of the oscillation amplitude. Moreover, in R-dominated
universe, the Hubble parameter could be different from the GR one, H = α/(2t)
with α > 1, and hence the energy density of relativistic cosmological matter
drops faster than 1/t2. This also ampliˇes possible nonthermal contribution into
the cosmological energy density.

The in�ux of energetic protons and antiprotons produced by the oscillations
of R could have an impact on BBN if such protons were not thermalized at BBN
era. Their effect would either allow one to obtain some bounds on m or even
to improve the agreement between the theoretical predictions for BBN and the
measurements of primordial light nuclei abundances.
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The oscillating curvature might also be a source of dark matter in the form of
heavy supersymmetric (SUSY) particles. Since the expected light SUSY particles
have not yet been discovered at LHC, to some people supersymmetry somewhat
lost its attractiveness. The contribution of the stable lightest SUSY particle into
the cosmological energy is proportional to

Ω ∼ m2
SUSY/mPl, (64)

and for mSUSY in the range 100Ä1000 GeV the cosmological fraction of these
particles would be of order of unity. It is exactly what is necessary for dark
matter. However, it excludes thermally produced LSPs if they are much heavier.
If LSPs came from the decay of R and their mass is larger than the ®mass¯
of R, i.e., m, but not too much larger, the LSP production could be sufˇciently
suppressed to make a reasonable contribution to dark matter.

These and some other manifestations of the considered modiˇed gravity
models will be discussed elsewhere.
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