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We propose and discuss a new approach to the analysis of the correlation functions which
contain light-like Wilson lines or loops, the latter being cusped in addition. The objects of interest
are therefore the light-like Wilson null-polygons, the soft factors of the parton distribution and
fragmentation functions, high-energy scattering amplitudes in the eikonal approximation, gravitational
Wilson lines, etc. Our method is based on a generalization of the universal quantum dynamical
principle by J. Schwinger and allows one to take care of extra singularities emerging due to light-
like or semi-light-like cusps. We show that such Wilson loops obey a differential equation, which
connects the area variations and renormalization group behavior of those objects, and discuss the
possible relation between geometrical structure of the loop space and area evolution of the light-like
cusped Wilson loops.

PACS: 11.10.Gh; 11.15.Pg; 11.15.Tk; 11.25.Tq; 11.38.Aw

INTRODUCTION

Wilson lines (also known as gauge links or eikonal lines) can be naturally
introduced in any gauge ˇeld theory. These objects are generically deˇned via
traces of path-ordered exponentials of a gauge ˇeld evaluated along a given

trajectory W(Γ) = P exp

[
−ig

∫
[Γ]

dzμAμ(z)

]
. The path Γ is a curve along

which the gauge ˇeld A gets transported from the initial point to the ˇnal one.
Wilson lines deˇned on closed contours are called Wilson loops. They are path-
dependent nonlocal functionals of the gauge ˇeld, invariant under gauge group
transformations. Putting the matter of question more mathematical, one can
construct a space with its elements being Wilson loops deˇned on an inˇnite
set of contours. Reformulation of QCD in terms of the elements of a generic
loop space would allow one to use gauge-invariant quantities as fundamental
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degrees of freedom instead of the quarks and gluons from the standard QCD
Lagrangian [1, 2]. Observables can then be obtained via correlation functions of
Wilson loops:

Wn(Γ1, . . .Γn) = 〈0| T 1
Nc

Tr Φ(Γ1) · · ·
1

Nc
Tr Φ(Γn) |0〉,

(1)

Φ(Γi) = P exp

⎡
⎣ig

∮
Γi

dzμAμ(z)

⎤
⎦ .

Complete information on the quantum dynamical properties of the loop space is
accumulated in the SchwingerÄDyson equations:

〈0| ∇μFμνO(A)|0〉 = i〈0| δ

δAν
O(A) |0〉, (2)

where O(A) stands for an arbitrary functional of the gauge ˇelds. Let the
functionals O(A) be the Wilson exponentials Φ(Γ) (1). Then Eqs. (2) turn into
the MakeenkoÄMigdal (MM) equations [3]:

∂ν
x

δ

δσμν(x)
W1(Γ) = Ncg

2

∮
Γ

dzμ δ(4)(x − z)W2(ΓxzΓzx), (3)

where the basic operations are the area-δ/δσμν and the path-∂μ derivatives [3]:

δ

δσμν(x)
Φ(Γ) ≡ lim

|δσμν(x)|→0

Φ(ΓδΓ) − Φ(Γ)
|δσμν(x)| , (4)

and the contour ΓδΓ is obtained from the initial one by means of the inˇnitesimal
area deformation δΓ at the point x, while the path variation without changing the
area gives rise to the path derivative

∂μΦ(Γ) = lim
|δxμ|

Φ(δx−1
μ Γδxμ) − Φ(Γ)

|δxμ|
. (5)

The area derivative can be written as well in the so-called Polyakov form Å see,
e.g., [5] for a discussion of an alternative approach.

Note that the derivation of the MM equations from the SchwingerÄDyson
equations is grounded on the Mandelstam formula

δ

δσμν(x)
Φ(Γ) = ig Tr [FμνΦ(Γx)] (6)

and/or on the Stokes theorem, so that the Wilson functionals which do not satisfy
the corresponding restrictions (such as, e.g., cusped light-like loops) apparently
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cannot be straightforwardly treated within the same scheme. There are several
other issues limiting the predictive power of the MM equations. Namely, there
exists an interesting class of Wilson loops which possess very speciˇc singularities
originating, in particular, from the cusps and/or self-intersections of the contours

Fig. 1. The cusped integration
contour on the light-cone with
the one-gluon exchanges giving
rise to the cusp anomalous di-
mension

and, in addition, from the light-like segments of
the integration paths. The simplest example is
given by a Wilson exponential evaluated along a
cusped contour with two semi-inˇnite light-like
sides, Fig. 1. Already the leading order contribu-
tion to this Wilson exponential possesses all the
peculiar singularities: the pure ultraviolet, the in-
frared (due to the inˇnite lengths of the sides), and
the light-like cusp divergences. This simple con-
tour will arise in what follows as a building unit
of many important Wilson loops and correlation
functions. Physically it corresponds to the soft
part of the factorized quark form factor, which
has been studied in detail in [6, 7].

In the present work, we propose and discuss
a new approach to these issues, having in mind,
as an instructive example, a very special type of

Wilson loops Å planar rectangles with light-like sides. Considerable interest
to cusped light-like Wilson polygons has arisen thanks to the recently conjec-
tured duality between the n-gluon planar scattering amplitudes in the N = 4
super-YangÄMills theory and the vacuum average of planar Wilson loops formed,
correspondingly, by n light-like segments connecting space-time points xi, so that
their ®lengths¯ xi − xi+1 = pi are chosen equal to the external momenta of the
n-gluon amplitude (see, e.g., [8] and references therein). It has been demonstrated
that the infrared singularities of the former correspond to the ultraviolet singular-
ities of the latter, and the cusp anomalous dimension is the crucial constituent of
the evolution equations [9].

Wilson exponentials possessing light-like segments (or that are fully light-
like) have been studied also in a different context [6]. The main observation
is that the renormalization properties of these Wilson loops are more intricate
than those of cusped Wilson loops deˇned on off-light-cone integration contours.
Namely, the light-cone cusped Wilson loops are not multiplicatively renormal-
izable because of the additional light-cone singularities (besides the standard
ultraviolet and infrared ones). It is possible, however, to construct a combined
renormalization-group equation taking into account ultraviolet as well as light-
cone divergences. The cusp anomalous dimension, which is the principal in-
gredient of this equation, is remarkably universal: it controls, e.g., the infrared
asymptotic behavior of such important quantities as the QCD and QED Sudakov
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form factors, the gluon Regge trajectory, the integrated (collinear) parton distrib-
ution functions at large-x, the anomalous dimension of the heavy quark effective
theory, etc. [6, 7, 9, 10].

Another interesting ˇeld of application of cusped light-cone Wilson lines
could be transverse-momentum-dependent parton densities (TMDs) [11,12]. The
latter are introduced to describe the intrinsic transverse momentum of partons
inside the nucleon, which is needed in the study of semi-inclusive processes
within (the generalization of) the QCD factorization formalism [11,13].

1. EXAMPLE: SINGULARITY STRUCTURE OF TMDs

Let us discuss the emergent singularities arising in TMDs beyond the tree
approximation. At one-loop level, the following three classes of divergences
appear: (i) standard ultraviolet poles, which are removable by a normal renor-
malization procedure; (ii) pure rapidity divergences, which depend on an addi-
tional rapidity cutoff, but do not violate renormalizability of TMDs, they can be
resumed by means of the CollinsÄSoper evolution equation; (iii) very speciˇc
overlapping divergences, they contain the ultraviolet and rapidity poles simul-
taneously and thus break down the standard renormalizability of TMDs. This
situation resembles the problems with renormalizability of the light-like Wil-
son loops discussed above. However, the structure of Wilson lines is quite in-
volved already in the tree approximation. The most straightforward deˇnition of
®a quark in a quark¯ TMD, which meets the requirement of the parton number
interpretation, reads [14]

Funsub(x,k⊥) =
1
2

∫
dξ−d2ξ⊥
2π(2π)2

e−ik·ξ×

× 〈p| ψ̄a(ξ−, ξ⊥)W†
n(ξ−, ξ⊥;∞−, ξ⊥)W†

l (∞−, ξ⊥;∞−,∞⊥)×

× γ+Wl(∞−,∞⊥;∞−,0⊥)l Wn(∞−,0⊥; 0−,0⊥)n ψa(0−,0⊥) |p〉, (7)

with ξ+ = 0. Here, we deˇne the semi-inˇnite Wilson lines evaluated along a
four-vector w as

Ww(∞; ξ) ≡ P exp

[
−ig

∞∫
0

dτ wμ Aμ
ata(ξ + wτ)

]
,

where the vector w can be light-like wL = n±, (n±)2 = 0, or transverse
wT = l. Formally, the integration of (7) over k⊥ is expected to give the collinear
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(also called integrated) PDF∫
d2k⊥ Funsub(x,k⊥) =

1
2

∫
dξ−

2π
e−ik+ξ−

×

× 〈p| ψ̄a(ξ−,0⊥)Wn(ξ−, 0−)γ+ψa(0−,0⊥) |p〉 = fa(x). (8)

However, this is only justiˇed in tree approximation. It is worth noting that the
normalization of the above TMD

F (0)
unsub(x,k⊥) =

1
2

∫
dξ−d2ξ⊥
2π(2π)2

e−ik+ξ−+ik⊥·ξ⊥×

× 〈p| ψ̄(ξ−, ξ⊥)γ+ψ(0−,0⊥) |p〉 = δ(1 − x)δ(2)(k⊥) (9)

can be most easily obtained by making use of the canonical quantization proce-
dure in the light-cone gauge, where longitudinal Wilson lines become equal to
unity and where equal-time commutation relations for creation and annihilation
operators {a†(k, λ), a(k, λ)} immediately yield the parton number interpretation

F (0)
unsub(x,k⊥) ∼ 〈p| a†(k+,k⊥; λ)a(k+,k⊥; λ) |p〉. (10)

The usage of ®tilted¯ gauge links in the operator deˇnition of TMDs does not
meet this requirement. We visualize the geometrical layout of various Wilson
lines in the operator deˇnition of TMDs in Figs. 2Ä4 and discuss relevant issues
in their captions.

Beyond tree approximation, the virtual diagrams producing terms with over-
lapping singularities are shown in Fig. 5. The typical extra divergency stems
from the one-loop vertex-type graph (Fig. 5, a) in covariant gauges or from the
self-energy graph (Fig. 5, b) in the light-cone gauge (in the large-Nc limit) and
reads

TMDUV⊗LC = −αsNc

2π
Γ(ε)

[
4π

μ2

−p2

]ε

×

× δ(1 − x)δ(2)(k⊥)

1∫
0

dx
x1−ε

(1 − x)1+ε
. (11)

The standard ultraviolet pole in the Gamma-function Γ(ε) is accompanied by
an additional singularity in the integral. The latter is due to the integration
over inˇnite gluon rapidity and cannot be treated by dimensional regularization,
calling for an extra (rapidity) cutoff. The reason for renormalizability violation
in the leading order contribution to TMDs is that light-like Wilson lines (or the
®standard¯ quark self-energy in light-cone gauge) produce more singular terms
than the usual Green functions do.
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Fig. 2. Geometry of the contours in unsubtracted TMDs with light-like (upper panel) and
off-light-cone (lower panel) longitudinal Wilson lines and their reduction to integrated
PDFs in tree approximation. In the former case, the transverse Wilson lines vanish after
k⊥-integration, while the longitudinal Wilson lines turn into one-dimensional connec-
tor Wn(ξ−, 0−). In the off-light-cone schemes, the mutual compensation of transverse
Wilson lines at inˇnity is not visible. Moreover, the integrated conˇguration contains
two nonvanishing off-light-cone Wilson lines, which apparently are not equivalent to the
collinear connector Wn(ξ−, 0−). The interrogation marks next to the transverse Wilson
lines symbolize the lacking of any consistent treatment in TMD formulations with off-
light-cone (shifted) Wilson lines. In contrast, the transverse Wilson lines appear naturally
in ®light-cone¯ schemes

To solve the problems with extra singularities and renormalizability in TMDs,
a variety of (possibly nonequivalent) methods has been proposed. Working in
the covariant Feynman gauge, Ji, Ma, and Yuan proposed a scheme which uti-
lizes tilted (off-light-cone) longitudinal Wilson lines directed along the vector
n2

B �= 0 [15]. Transverse Wilson lines at the light-cone inˇnity cancel in covari-
ant gauges, while the rapidity cutoff ζ = (2p · nB)2/|n2

B| marks the deviation
of longitudinal Wilson lines from a pure light-like direction. A subtracted soft
factor then contains nonlight-like Wilson lines as well. Obviously, such off-light-
cone unsubtracted TMDs with the light-like vector n− replaced by the vector
nB = (−e2yB , 1,0⊥) do not obey the equation (8), not even at tree level. How-
ever, it is possible to formulate a ®secondary factorization¯ method which allows
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Fig. 3. Comparative layout of Wilson lines in unsubtracted soft factors and visualization
of the reduction to the collinear case. The upper panel shows the soft factor in momentum
space, as proposed in [12]. The lower panel presents the tilted off-light-cone integration
paths in impact parameter space, as well as the result of the reduction to the collinear
b⊥ → 0 conˇguration

one to express off-light-cone TMDs (in impact parameter space F(x,b⊥)) as
a convolution of integrated PDFs and perturbative coefˇcient functions in the
perturbative region (that is, at small b⊥), see [15].

In publications [12], it was proposed to explore the renormalization-group
properties of unsubtracted TMDs (7) and to make use of their anomalous dimen-
sion as a tool to discover the minimal layout of Wilson lines in the soft factor that
provides a cancelation of overlapping dependent terms. It has been demonstrated
(in the leading O(αs)-order) that the extra contribution to the anomalous dimen-
sion is exactly the cusp anomalous dimension [9], which is a crucial element of
the investigation of nonrenormalizable cusped light-like Wilson loops. Making
use of specially chosen soft factors, one can get rid of the extra divergences in the
operator deˇnition of the TMDs, however paying a price in the form of signiˇcant
complication of the structure of the Wilson lines in the above deˇnition. In the
present work, we discuss another approach to the problems of light-cone cusped
Wilson loops [16]. To this end, it appears instructive to study those properties
shared by such apparently different quantities as TMDs, light-like Wilson poly-
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Fig. 4. Comparative layout of Wilson lines in subtracted soft factors. The upper panel
corresponds to the soft factor of the TMD distribution function which enters the factoriza-
tion with pure light-like Wilson lines. The lower panel has the same setup, but with the
longitudinal Wilson lines shifted off the light cone

Fig. 5. The virtual one-loop Feynman graphs which produce extra singularities: a) vertex-
type fermion-Wilson line interaction in covariant gauge; b) self-energy graph which yields
the extra divergency in light-cone gauge; c, d are the counter-parts of a, b from the soft
factor made of Wilson lines

gons, etc., which originate in their light-cone structure and arise in the form of
the ®too singular¯ nonrenormalizable terms.
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2. SCHWINGER DYNAMICAL PRINCIPLE
AND AREA EVOLUTION FOR SMOOTH WILSON LOOPS

We made use of the observation that in the large-Nc limit, in the transverse
null-plane, for the light-like planar dimensionally regularized (not renormalized)
Wilson rectangles, the area derivatives introduced in the previous sections can
be reduced to the normal ones. The area variational equations in the coordinate
representation describe the evolution of light-like Wilson polygons and represent,
therefore, the ®equations of motion¯ in loop space, valid for a speciˇc class of
its elements. As a result, the obtained differential equations give us a closed set
of dynamical equations for the loop functionals and can, in principle, be solved
in several interesting cases.

Let us start with the quantum dynamical principle proposed by Schwinger [17]:
the quantum action operator S deˇnes variations of arbitrary states, so that

δ 〈α′|α′′〉 =
i

�
〈α′| δS|α′′〉. (12)

The area variations (4) of ˇeld exponentials Φ(Γ) yield

δ

δσ
〈α′|Φ(Γ) |α′′〉 =

i

�
〈α′|δŜ

δσ
Φ(Γ) |α′′〉, (13)

where Ŝ is yet to be deˇned. The loop space consists of scalar objects with
different geometrical and topological features, hence the equations of motion in
this space must be the laws which state how those objects change their shape. It
means that ®motion¯ in loop space is equivalent to the variation of the integration
contours in Wilson loops [3]. Therefore, we have to ˇnd the correct operator Ŝ,
which governs the shape variations of the light-like cusped loops (Wilson null-
polygons).

Within the standard approach, one utilizes (12) in the form (2) and obtains the
set of the MM Eqs. (3). We will follow another strategy, trying to avoid using
operations which implicitly assume the smoothness of the Wilson loops under
consideration. For the sake of clarity, consider at ˇrst a generic Wilson loop
W (Γ) without specifying whether it is smooth or not. Its perturbative expansion
reads

W(Γ) = W(0) + W(1) = 1 − g2CF

2

∮
Γ

∮
Γ

dzμ dz′ν Dμν(z − z′) + O(g4),

where Dμν is the free dimensionally regularized (ω = 4 − 2ε) gluon propagator

Dμν = −gμνΔ(z − z′), Δ(z − z′) =
Γ(1 − ε)

4π2

(πμ2)ε

[−(z − z′)2 + i0]1−ε
. (14)
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For convenience's sake, we work in the Feynman covariant gauge and separate
out the scalar part of the propagator Δ(z). The issues related to gauge and
regularization independence of the calculations will be considered elsewhere.
Therefore, the l.h.s. of Eq. (13), being applied to the Wilson loop (2), yields

δW(Γ)
δσμν

=
g2CF

2
δ

δσμν

∮
Γ

∮
Γ

dzλ dz′λ Δ(z − z′) + O(g4). (15)

The area differentiation can be performed by making use of the Stokes theorem
(let us assume for a moment that we are allowed to do so)∮

Γ

dzλ Oλ =
1
2

∫
Σ

dσλρ(∂λOρ − ∂ρOλ), Oλ =
∮
Γ

dz′λ Δ(z), (16)

where Γ is considered as the boundary of the surface Σ. One obtains then the
leading perturbative term of the MakeenkoÄMigdal equation (3):

∂μ
δW(Γ©)
δσμν(x)

=
g2Nc

2

∮
Γ©

dyν δ(ω)(x − y) + O(g4). (17)

We have to be careful with this result: in the course of the derivation, we assumed
that the Stokes theorem is valid for all Wilson loops of interest. However, the
last statement is not true in general; for that reason, we mark the ®good¯ (smooth
enough) contours with a special index Γ©. It is worth noting that in 2D QCD
the area differentiation is reduced to the ordinary derivative, since the gluon
propagator (14) for ω = 2 behaves as the logarithm of z, what yields

W(Γ©)2D = exp
[
−g2Nc

2
Σ

]
, Σ = area inside Γ©, (18)

so that 2 ln W ′
Σ = −g2Nc. Calculating in a similar manner the next-to-leading

terms, one can come to the full MM Eq. (3). Nevertheless, we shall stop at this
point and make a couple of steps backward, since we are interested in those loops
that apparently do not satisfy the Stokes theorem conditions. For this reason, we
will try to learn something about the area variations of Wilson loops without using
the Stokes theorem, but instead taking into account an explicit form for the gluon
propagator (which develops a speciˇc singularity on the light cone), Eq. (14).

3. SINGULARITIES OF WILSON RECTANGLES

We are now in a position to extend the Schwinger approach to a more
complicated case and to try to derive the corresponding area evolution equations.



498 CHEREDNIKOV I.O., MERTENS T., VAN DER VEKEN F. F.

The calculation of cusped light-cone Wilson loops beyond tree approximation in
different gauges and the justiˇcation of gauge independence calls for a careful
treatment of a variety of divergences already in leading order. Special attention
must be paid to the separation of the light-cone singularities and the standard
ultraviolet poles [2,6,18]. In the large-Nc limit one obtains in coordinate space [6]

W (Γ�) = 1 − 1
ε2

αsNc

2π

([
−2N+N−μ2 + i0

]ε
+

[
2N+N−μ2 + i0

]ε
)

+

+
αsNc

2π

(
1
2

ln2 N+N− + i0
−N+N− + i0

+ finite terms
)

+ O(α2
s), (19)

where the energy variables in momentum space, s = (p1 + p2)2 and t = (p2 +
p3)2, map onto the area variables in the coordinate transverse null-plane, so
that s/2 = −t/2 → N+N−. We will show separately that the result (19)
is not only gauge-invariant, but is independent of any regularization of light-
cone and ultraviolet divergences and of the way they are separated. This issue
is of particular importance to understand the operator structure of transverse-
momentum-dependent parton densities and soft-collinear effective theory (see,
e.g., [12,19] and references therein). The problem of regularization independence
in the next-to-leading order deserves its own dedicated study.

The transverse null-plane is deˇned by the condition z⊥ = 0; therefore, the
area variations are well deˇned

δσ+− = N+δN−, δσ−+ = −N−δN+. (20)

These operations make sense only at the corner points xi, and we distinguish
between the ®left¯ and ®right¯ variations, as shown in Fig. 6.

W (Γ�) is one of the best studied examples of (partially) light-like objects
which are known to lack multiplicative renormalizability [6]. In order to decrease

Fig. 6. Inˇnitesimal area transformations for a light-cone rectangle on the null-plane: we
consider only those area variations that conserve the angles between the sides. These
variations are deˇned at the corners xi
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the power of singularity that violates the renormalizability, one can follow the
scheme proposed in [7]. Having in mind Eq. (20), we deˇne the area logarithmic
derivative as

δ

δ ln σ
≡ σ+−

δ

δσ+−
+ σ−+

δ

δσ−+
(21)

and apply this operator to the r.h.s. of Eq. (19):

δ

δ ln σ
ln W (Γ�) =

= −αsNc

2π

1
ε

([
−2N+N−μ2 + i0

]ε
+

[
2N+N−μ2 + i0

]ε
)

. (22)

Then the ˇnite cusp anomalous dimension results from

μ
d

dμ

δ ln W (Γ�)
δ ln σ

= −4Γcusp, Γcusp =
αsNc

2π
+ O(α2

s). (23)

We get the ˇnite result (23) by making use of the logarithmic area derivative (21),
given that the inˇnitesimal area variations are deˇned as in (4). The equation (23)
describes the dynamical properties of the light-like Wilson loops [16]. We re-
late, therefore, the geometry of the loop space (expressed in terms of the area
differentials) to the dynamics of the fundamental degrees of freedom Å the
gauge-invariant, regularization-independent light-like Wilson loops.

4. COMBINED EVOLUTION FROM THE SCHWINGER PRINCIPLE

The very possibility to obtain a ˇnite result by means of Eqs. (22), (23) is a
direct consequence of the geometrical properties of loop space, whose constituents
are nonrenormalizable cusped light-like Wilson loops. To show this explicitly,
we restrict ourselves to area variations (20), and apply the area derivative to a
Wilson rectangle

δW (Γ�)
δσμν

=
g2CF

2
Γ(1 − ε)(πμ2)ε

4π2

δ

δσμν

∑
i,j

(vλ
j vλ

j )×

×
1∫

0

1∫
0

dτ dτ ′

[−(xi − xj − τivi + τjvj)2 + i0]1−ε
, (24)

where the sides of the rectangle are parameterized as zμ
i = xμ

i − vμ
i τ with vectors

vi having dimension [mass−1] [6]. A remarkable feature of light-like loops is
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that the area dependence factorizes out from the integrals and can be evaluated
explicitly (taking into account that 2(v1v2) = 2N+N−, see Eq. (20)):

W (1)(Γ�) = −αsNc

2π
Γ(1 − ε)(πμ2)ε(−2N+N−)ε 1

2

1∫
0

1∫
0

dτdτ ′

[(1 − τ)τ ′]1−ε
. (25)

On the other hand, light-like Wilson lines with v2
i = 0 produce an extra singular-

ity, which shows up in the form of the second-order pole ∼ ε−2, while the cusps
violate conformal invariance of the Wilson loop because the ®skewed¯ scalar
products (vivj) �= 0 replace the conformal ones v2

i . Then, performing the area
δ/δ ln σ = δ/δ ln (2N+N−) and the mass logarithmic differentiation of Eq. (25)
and collecting all relevant terms, we come to the result

μ
d

dμ

[
δ

δ ln σ
ln W (Γ)

]
= −

∑
Γcusp, (26)

which was anticipated in Eq. (23) and which is derived now as a direct conse-
quence of the Schwinger approach. It is not surprising that this result resembles,
in some sense, the situation in 2D QCD considered above. The area derivative
turns into the ordinary derivative for the same reason: the null-plane is effectively
a two-dimensional space, where the set of MM equations becomes closed and Å
at least in principle Å solvable [3, 4].

Note that the r.h.s. of Eq. (26) is given by the cusp anomalous dimension,
which is universal quantity (independent of the form of the contour) and which is
known perturbatively up to the O(α3

s) order. It is, therefore, worth analyzing if
the above result is only a leading order approximation, or if it is expected to be
valid in the higher orders as well. Let us take into account the property of linearity
of the (angle-dependent) cusp anomalous dimension in the large-angle asymptotic

regime with respect to the logarithm of the cusp angle χ → 1
2

ln
(2vivj)2

v2
i v2

j

[9]:

lim
χ→∞

Γcusp(χ, αs) =
∑

αn
s Cn(W ) an(W ) ln

(2vivj)
|vi||v2

j |
, (27)

where the ®maximally non-Abelian¯ numerical coefˇcients are

Ck ∼ CF Nk−1
c → Nk

c

2
, (28)

and an are the cusp-independent factors. This regime corresponds exactly to
the light-cone case with the angle-dependent logarithms being transformed into
additional poles in ε: χ → (vivj)ε/ε, see [6, 9]. More speciˇcally, the area
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variable ∼ (vivj) enters the regularized area-dependent cusp anomalous dimension
in the light-cone limit as

Γcusp(area, ε, αs) =
∑

αn
s Cn(W ) an(W )

areaε

ε
, (29)

and, after logarithmic area differentiation, one gets the ˇnite perturbative expan-
sion of the cusp anomalous dimension

lim
ε→0

dΓcusp(area, ε, αs)
d ln area

=
∑

αn
s Cn(W ) an(W ), (30)

which supports the validity of the previous result (26) in the higher orders by
virtue that

Γcusp = −d ln W

d ln μ
.

This means that the result (26) should be understood as an all-order one, akin the
MM Eq. (3): they both are exact and nonperturbative, while the r.h.s's of each
one can be evaluated order by order in perturbation theory. It is worth noting that
Eq. (23) is consistent with the non-Abelian exponentiation of the dimensionally
regularized Wilson loops with cusps

W (Γ�; ε) = exp

[∑
k=1

αk
sCk(W )Fk(W )

]
, (31)

where the summation goes over all two-particle irreducible diagrams, whose
contribution is given by the ®web¯ functions Fk [9, 20]. Therefore, Eq. (23) can
be applied, in principle, for computing the higher-order perturbative corrections
to the cusp anomalous dimension, given that we have a closed recursion of the
perturbative equations.

Besides, for rectangular light-like Wilson loops on the null-plane, Eq. (26)
is valid for transverse-momentum densities with longitudinal gauge links on the
light cone Φ(x,k⊥), such that

μ
d

dμ

[
d

d ln θ
ln Φ(x, k⊥)

]
= 2Γcusp, (32)

where the corresponding area is encoded in the rapidity cutoff parameter θ ∼
(N+N−)−1 [12]. Another interesting example is given by the Π-shape loop with
one (ˇnite) segment lying on the light cone [21]. In the one-loop order one has
in the large-Nc limit

W (ΓΠ) = 1 +
αsNc

2π
+

[
−L2(NN−) + L(NN−) − 5π2

24

]
,

(33)

L(NN−) =
1
2

(
ln (μNN− + i0) + ln (μNN− + i0)

)2
,
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Fig. 7. Π-shape integration contour and the
inˇnitesimal area variations

where the area is deˇned by the prod-
uct of the light-like N− and nonlight-
like N vectors in the coordinate space,
see Fig. 7. The Π-shaped Wilson loop
(33) also satisˇes Eq. (26):

μ
d

dμ

[
d

d ln σ
ln W (ΓΠ)

]
= −2Γcusp,

(34)
the latter being responsible for the re-
normalization-group behavior of the co-
llinear parton densities in the large-x
regime and for the anomalous dimen-

sions of conformal operators with large Lorentz spin [21]. The Π-shape contour
can be split and moved apart to separate two planes by the transverse distance ξ⊥.
The Wilson loop obtained in such a way is expected to be ®dual¯ to the TMD,
see Fig. 8. The detailed analysis of this conˇguration will be presented elsewhere.

Fig. 8. Conjectured ®dual¯ Wilson loop having the combined evolution similar to the one
of a TMD. Transverse Wilson lines are not shown for simplicity

5. CONCLUSIONS AND OUTLOOK

The universal quantum dynamical approach formulated by Schwinger pro-
vides a relevant description of the geometrical and dynamical properties of loop
space. The Wilson loops of arbitrary shape are considered then as fundamen-
tal degrees of freedom, and the MakeenkoÄMigdal equations (3) can be derived
from the SchwingerÄDyson equations for renormalizable loops. In general, the
system of MM equations is not closed and cannot be straightforwardly applied to
a practical calculation in QCD.

The problem we addressed in this paper is how to construct a relevant system
of equations of motion valid for cusped light-like Wilson loops, taking into
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Fig. 9. Generic inˇnitesimal area variations
responsible for the conjectured quantum-
dynamical loop equations for light-like Wil-
son n polygons. Evaluation of minimal
surface differentials for more complicated
cusped Wilson loops is required to derive
corresponding area evolution equations based
on the quantum dynamical principle [22]

account that the latter possess a very speciˇc singularity structure compared to
their off-light-cone relatives. A general solution of this problem is not achieved
yet, but we have demonstrated that some simpliˇcations make it possible to
propose a new potentially fruitful method. In particular, in the large-Nc limit and
in the case of planar rectangular light-like Wilson loops deˇned on the null-plane
z⊥ = 0, the area functional derivative is reduced to the normal derivative for
dimensionally regularized Wilson loops. The area evolution equations (which
can be treated as the nonrenormalizable counterparts of the MM equations) in
coordinate space appear to be equivalent to the energy evolution equations for
cusped Wilson loops in momentum space. The nonperturbative nature of the
dynamical loop equations enables us, in principle, to construct a chain of equations
for, e.g., the cusp anomalous dimension, so that one can calculate it recursively
for any given order in αs. Within the framework we proposed, the dynamics of
elements of loop space are introduced by means of obstructions of initially smooth
Wilson loops, which play, therefore, the role of sources in the Schwinger ˇelds-
sources picture. We have argued that the Schwinger quantum dynamical principle
can be used as an effective tool to study at least one special class of elements of
loop space, cusped Wilson exponentials on the light cone. We implemented the
program only in one of the simplest cases, a rectangular contour on the transverse
null-plane. In Fig. 9, a more involving conˇguration is visualized, an arbitrary
quadrilateral integration contour, of which the area evolution is far from being
trivial and deserves a separate study.
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