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AND MASTER INTEGRALS
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We review results for the universal anomalous dimension γuni(j) of Wilson twist-2 operators
in the N = 4 Supersymmetric YangÄMills theory, having the property of maximal transcendentality.
It is shown that a similar property is observed in the results for master integrals.
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INTRODUCTION

This paper deals with the study of the properties of the BalitskyÄFadinÄ
KuraevÄLipatov (BFKL) [1] and DokshitzerÄGribovÄLipatovÄAltarelliÄParisi
(DGLAP) [2] equations in the N = 4 Supersymmetric YangÄMills (SYM)
model [3].

The BFKL and DGLAP equations resum, respectively, the most important
contributions ∼ αs ln(1/x) and ∼ αs ln(Q2/Λ2) in different kinematical regions
of the Bjorken variable x and the ®mass¯ Q2 of the virtual photon in the deep
inelastic leptonÄhadron scattering (DIS) (see Fig. 1 for the muonÄnucleon case)
and, thus, they are the cornerstone in analyses of the experimental data from
leptonÄnucleon and nucleonÄnucleon scattering processes.

In the supersymmetric cases the equations are simpliˇed drastically. In the
N = 4 SYM they become to be related to each other for the nonphysical values
of Mellin moments j, as has been proposed by Lipatov in [4].

The purpose of this paper is to show similar properties of the results for the
anomalous dimension matrix of the twist-2 Wilson operators and the results for
the so-called master integrals.

The anomalous dimensions govern the Bjorken scaling violation for parton
distributions in the framework of QCD. These quantities are given by the Mellin
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Fig. 1. The deep inelastic muonÄnucleon scattering, where k, q and p are the muon, photon
and nucleon momenta, respectively. In the DIS kinematics, p2 = M2 → 0, where M is
the nucleon mass. The standard variables are Q2 = −q2 > 0 and the Bjorken variable
x = Q2/(2pq), where Q2 is the ®mass¯ of the virtual photon and x is the part of the
nucleon momentum carried by the colliding parton (quark or gluon)

transformation (the symbol ∼ is used for spin-dependent case and as = αs/(4π))

γab(j) =

1∫
0

dxxj−1Wb→a(x) =
∞∑

k=0

γ
(k)
ab (j)ak+1

s ,

(1)

γ̃ab(j) =

1∫
0

dxxj−1W̃b→a(x) =
∞∑

k=0

γ̃
(k)
ab (j)ak+1

s

of the splitting kernels Wb→a(x) and W̃b→a(x) for the DGLAP equation [2] which
evolves the parton densities fa(x, Q2) and f̃a(x, Q2) (hereafter a = λ, g, φ for
the spinor, vector and scalar particles, respectively∗) as follows:

d

d ln Q2
fa(x, Q2) =

1∫
x

dy

y

∑
b

Wb→a(x/y) fb(y, Q2),

(2)

d

d ln Q2
f̃a(x, Q2) =

1∫
x

dy

y

∑
b

W̃b→a(x/y) f̃b(y, Q2).

∗In the spin-dependent case a = λ, g.
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The anomalous dimensions and splitting kernels in QCD are known up to the
next-to-next-to-leading order (NNLO)∗ of the perturbation theory (see [5] and
references therein).

The QCD expressions for anomalous dimensions can be transformed to the
case of the N -extended Supersymmetric YangÄMills theories (SYM) if one will
use for the Casimir operators CA, CF , Tf the following values: CA = CF =
Nc, Tfnf = NNc/2. For N = 2 and N = 4-extended SYM the anomalous
dimensions of the Wilson operators also get additional contributions coming from
scalar particles [4]. These anomalous dimensions were calculated in the next-to-
leading order [4, 6] for the N = 4 SYM.

However, it turns out that the expressions for eigenvalues of the anomalous
dimension matrix in the N = 4 SYM [3] can be derived directly from the
QCD anomalous dimensions without tedious calculations by using a number of
plausible arguments. The method elaborated in [4] for this purpose is based on
special properties of the integral kernel for the BFKL equation [1, 7, 8] in this
model and a new relation between the BFKL and DGLAP equations (see [4]).
In the NLO approximation this method gives the correct results for anomalous
dimensions eigenvalues, which was checked by direct calculations in [6]. Using
the results for the NNLO corrections to anomalous dimensions in QCD [5] and
the method of [4], we derive the eigenvalues of the anomalous dimension matrix
for the N = 4 SYM in the NNLO approximation [9].

Starting from four loops, i.e., above existing QCD calculations, the corre-
sponding results for the anomalous dimensions can be obtained (see [10Ä12])
from the long-range asymptotic Bethe equations together with some additional
terms, the so-called wrapping corrections, coming in agreement with Luscher
approach∗∗.

The obtained result is very important for the veriˇcation of the various
assumptions (see recent reviews [14Ä16] and references therein) coming from the
investigations of the properties of conformal operators in the context of AdS/CFT
correspondence [17].

The paper is organized as follows. In Sec. 1, we discuss the BFKL equation,
the leading-order (LO) anomalous dimensions of Wilson operators and propose
the method of obtaining the eigenvalues of the anomalous dimension matrix
above the leading order. Section 2 contains the calculations of some Feynman
diagrams by a similar method. In Sec. 3, we consider three-loop results for
the universal anomalous dimension taken from the corresponding calculations in

∗It is in spin-average case. The corresponding functions in the spin-dependent case are calculated
now only in the next-to-leading order (NLO).

∗∗The three- and four-loop results for the universal anomalous dimension have been reproduced
(see [13]) also by solution of the so-called Baxter equation, which can be obtained from the long-range
asymptotic Bethe equations.
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QCD. Four-loop corrections to the universal anomalous dimension are considered
in Sec. 4.

1. EVOLUTION EQUATION IN N = 4 SYM

The reason to investigate the BFKL and DGLAP equations in the case of
supersymmetric theories is related to a common belief that the high symmetry
may signiˇcantly simplify their structure. Indeed, it was found in the leading-
order approximation [18] that the so-called quasi-partonic operators in N = 1
SYM are uniˇed in supermultiplets with anomalous dimensions obtained from
some universal anomalous dimension by shifting its argument by an integer num-
ber. Further, the anomalous dimension matrices for twist-2 operators are ˇxed
by the superconformal invariance [18]. Calculations in the maximally extended
N = 4 SYM, where the coupling constant is not renormalized, give even more
remarkable results. Namely, it turns out that here all twist-2 operators enter in
the same multiplet, their anomalous dimension matrix is ˇxed completely by the
superconformal invariance, and its universal anomalous dimension in LO is pro-
portional to Ψ(j − 1) − Ψ(1) (see Subsec. 1.2), which means that the evolution
equations for the matrix elements of quasi-partonic operators in the multicolor
limit Nc → ∞ are equivalent to the Schréodinger equation for an integrable
Heisenberg spin model [19, 20]. In QCD, the integrability remains only in a
small sector of these operators [21] (see also [22]). In the case of N = 4 SYM
the equations for other sets of operators are also integrable [23,24].

Similar results related to the integrability of the multicolor QCD were ob-
tained earlier in the Regge limit [25]. Moreover, it was shown [4] that in the
N = 4 SYM there is a deep relation between the BFKL and DGLAP evolution
equations. Namely, the j-plane singularities of anomalous dimensions of the
Wilson twist-2 operators in this case can be obtained from the eigenvalues of the
BFKL kernel by their analytic continuation. The NLO calculations in N = 4
SYM demonstrated [4] that some of these relations are also valid in higher orders
of perturbation theory. In particular, the BFKL equation has the property of the
Hermitian separability, the linear combinations of the multiplicatively renormal-
ized operators do not depend on the coupling constant, the eigenvalues of the
anomalous dimension matrix are expressed in terms of the universal function
γuni(j) which can also be obtained from the BFKL equation [4].

1.1. BFKL. To begin with, we review shortly the results of [7, 8], where the
QCD radiative corrections to the BFKL integral kernel at t = 0 were calculated∗.
We discuss only the formulae important for our analysis.

The total cross section σ(s) for the high-energy scattering of colorless parti-
cles A, B written in terms of their impact factors Φi(qi) and the t-channel partial

∗The t �= 0 case can be found in the recent papers [26].
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wave Gω(q, q′) for the gluonÄgluon scattering is

σ(s) =
∫

d2q d2q′

(2π)2 q2 q′2
ΦA(q)ΦB(q′)

a+i∞∫
a−i∞

dω

2πi

(
s

s0

)ω

Gω(q, q′), s0 = |q||q′|.

(3)
Here, q and q′ are transverse momenta∗ of virtual gluons and s = 2pApB is the
squared invariant mass for the colliding particle momenta pA and pB .

Using the dimensional regularization in the MS scheme to remove ultraviolet
and infrared divergences in intermediate expressions, the BFKL equation for
Gω(q, q′) can be written in the following form:

ωGω(q, q1) = δD−2(q − q1) +
∫

dD−2q2 K(q, q2)Gω(q2, q1), (4)

where

K(q1, q2) = 2ω(q1) δD−2(q1 − q2) + Kr(q1, q2) (5)

and the space-time dimension D = 4− 2ε for ε → 0. The gluon Regge trajectory
ω(q) and the integral kernel Kr(q1, q2) related to the real particle production have
been calculated in [27Ä29].

As was shown in [7, 8], a complete and orthogonal set of eigenfunctions of
the homogeneous BFKL equation in LO is

Gn,γ(q/q′, θ) =
(

q2

q′2

)γ−1

einθ. (6)

The BFKL kernel in this representation is diagonalized up to the effects
related with the running coupling constant as(q2):

ωQCD

MS
= 4as(q2)

[
χ(n, γ) + δQCD

MS
(n, γ)as(q2)

]
. (7)

Applying the formulae of [8], we obtain the following results for eigenval-
ues (7):

χ(n, γ) = 2Ψ(1) − Ψ
(
γ +

n

2

)
− Ψ

(
1 − γ +

n

2

)
, (8)

∗To simplify equations, hereafter we omit arrows in the notation of transverse momenta
−→q ,

−→
q′ ,−→q1 ,−→q2 , . . ., i.e., in our formulae the momenta −→q ,

−→
q′ ,−→q1 ,−→q2 , . . . will be represented as

q, q′, q1, q2, . . ., respectively. Note, however, that the momenta pA and pB are D-space momenta.
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δQCD

MS
(n, γ) =

(
67
9

− 2ζ(2) − 10
9

nf

Nc

)
χ(n, γ) + 6ζ(3) + Ψ′′

(
γ +

n

2

)
+

+ Ψ′′
(
1 − γ +

n

2

)
− 2Φ(n, γ) − 2Φ(n, 1 − γ) −

(
11
3

− 2
3

nf

Nc

)
1
2
χ2(n, γ)+

+
π2 cos (πγ)

sin2(πγ)(1 − 2γ)

{(
1 +

ñf

N3
c

)
γ(1 − γ)

2(3 − 2γ)(1 + 2γ)
δ2
n−

−
(

3 +
(

1 +
ñf

N3
c

)
2 + 3γ(1 − γ)

(3 − 2γ)(1 + 2γ)

)
δ0
n

}
, (9)

where δm
n is the Kronecker symbol, and Ψ(z), Ψ′(z) and Ψ′′(z) are the Euler Ψ

function and its derivatives. The function Φ(n, γ) is given below:

Φ(n, γ) =
∞∑

k=0

(−1)k+1

k + γ + n/2

[
Ψ′(k + n + 1) − Ψ′(k + 1)+

+(−1)k
(
β′(k+n+1)+β′(k+1)

)
− 1

k + γ + n/2
(
Ψ(k+n+1)−Ψ(k+1)

)]
(10)

and

β′(z) =
1
4

[
Ψ′

(z + 1
2

)
− Ψ′

(z

2

)]
.

Adding contributions of scalars and transforming fermions from fundamental
to adjoint representation, we can obtain the BFKL form (7) in N = 4 SYM in
DR scheme [30]:

δN=4
DR

(n, γ) = 6ζ(3) + Ψ′′
(
γ +

n

2

)
+ Ψ′′

(
1 − γ +

n

2

)
−

− 2Φ(n, γ) − 2Φ(n, 1 − γ) − 2ζ(2)χ(n, γ), (11)

where the DR coupling constant âs is related [31] with the MS one as as

âs = as +
1
3
a2

s. (12)

Note that the sum Φ(n, γ) + Φ(n, 1 − γ) can be rewritten (see [4]) as a
combination of functions with argument dependent on γ +n/2 ≡ M and 1− γ +
n/2 ≡ M̃ . Indeed,

Φ(n, γ) + Φ(n, 1 − γ) = χ(n, γ)
(
β′(M) + β′(1 − M̃)

)
+ Φ2(M) − β′(M)×

× [Ψ(1) − Ψ(M)] + Φ2(1 − M̃) − β′(1 − M̃)[Ψ(1) − Ψ(1 − M̃)],
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where χ(n, γ) is given by Eq. (8) and

Φ2(M) =
∞∑

k=0

(
β′(k + 1) + (−1)kΨ′(k + 1)

)
k + M

−

−
∞∑

k=0

(−1)k (Ψ(k + 1) − Ψ(1))
(k + M)2

. (13)

So, this transformation leads to the Hermitian separability of BFKL equation
in N = 4 SYM (see [4] and discussions therein).

1.2. Leading-Order Anomalous Dimension Matrix in N = 4 SYM. In the
N = 4 SYM theory [3], one can introduce the following color and SU(4) singlet
local Wilson twist-2 operators [4, 6]:

Og
μ1,...,μj

= ŜGa
ρμ1

Dμ2Dμ3 · · ·Dμj−1G
a
ρμj

, (14)

Õg
μ1,...,μj

= ŜGa
ρμ1

Dμ2Dμ3 · · ·Dμj−1G̃
a
ρμj

, (15)

Oλ
μ1,...,μj

= Ŝλ̄a
i γμ1Dμ2 · · · Dμj λ

a i, (16)

Õλ
μ1,...,μj

= Ŝλ̄a
i γ5γμ1Dμ2 · · ·Dμj λ

a i, (17)

Oφ
μ1,...,μj

= Ŝφ̄a
rDμ1Dμ2 · · ·Dμj φ

a
r , (18)

where Dμ are covariant derivatives. The spinors λi and ˇeld tensor Gρμ describe
gluinos and gluons, respectively, and φr are the complex scalar ˇelds. For all
operators in Eqs. (14)Ä(18) the symmetrization of the tensors in the Lorentz
indices μ1, . . . , μj and a subtraction of their traces is assumed.

The elements of the LO anomalous dimension matrix in the N = 4 SYM
have the following form (see [20]):

for tensor twist-2 operators:

γ(0)
gg (j) = 4

(
Ψ(1) − Ψ(j − 1) − 2

j
+

1
j + 1

− 1
j + 2

)
,

γ
(0)
λg (j) = 8

(
1
j
− 2

j + 1
+

2
j + 2

)
, γ(0)

ϕg (j) = 12
(

1
j + 1

− 1
j + 2

)
,

γ
(0)
gλ (j) = 2

(
2

j − 1
− 2

j
+

1
j + 1

)
, γ(0)

qϕ (j) =
8
j
, (19)

γ
(0)
λλ (j) = 4

(
Ψ(1) − Ψ(j) +

1
j
− 2

j + 1

)
, γ

(0)
ϕλ (j) =

6
j + 1

,

γ(0)
ϕϕ(j) = 4 (Ψ(1) − Ψ(j + 1)) , γ(0)

gϕ (j) = 4
(

1
j − 1

− 1
j

)
;
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for the pseudo-tensor operators:

γ̃(0)
gg (j) = 4

(
Ψ(1) − Ψ(j + 1) − 2

j + 1
+

2
j

)
,

γ̃
a,(0)
λg (j) = 8

(
−1

j
+

2
j + 1

)
, γ̃

(0)
gλ (j) = 2

(
2
j
− 1

j + 1

)
, (20)

γ̃
(0)
λλ (j) = 4

(
Ψ(1) − Ψ(j + 1) +

1
j + 1

− 1
j

)
.

The matrices, based on the anomalous dimensions (19) and (20), can be
diagonalized [4,20]. They have the following remarkable form:[

DΓD−1

]N=4

unpol

=
−4S1(j − 2) 0 0

0 −4S1(j) 0
0 0 −4S1(j + 2)

,

[
DΓD−1

]N=4

pol

=
−4S1(j − 1) 0

0 −4S1(j + 1) ,

where S1(j) is deˇned below in (25).
Thus, the LO anomalous dimensions of all multiplicatively renormalized

operators can be extracted through one universal function

γ
(0)
uni(j) = −4S(j − 2) ≡ −4

(
Ψ(j − 1) − Ψ(1)

)
≡ −4

j−2∑
r=1

1
r
.

1.3. Method of Obtaining the Eigenvalues of the Anomalous Dimension
Matrix in N = 4 SYM. As was already pointed out in the Introduction, the
universal anomalous dimension can be extracted directly from the QCD results
without ˇnding the scalar particle contribution. This possibility is based on the
deep relation between the DGLAP and BFKL dynamics in the N = 4 SYM [4,8].

To begin with, the eigenvalues of the BFKL kernel are the analytic functions
of the conformal spin |n| at least in two ˇrst orders of perturbation theory (see
Eqs. (7), (8) and (11)). Further, in the framework of the DR scheme [30], one
can obtain from (8) and (9) that there is no mixing among the special functions
of different transcendentality levels i∗; i.e., all special functions at the NLO
correction contain only sums of the terms ∼ 1/γi (i = 3). More precisely, if we
introduce the transcendentality level i for the eigenvalues ω(γ) of integral kernels

∗Similar arguments were also used in [32] to obtain analytic results for contributions of some
complicated massive Feynman diagrams without direct calculations (see also Sec. 2).
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of the BFKL equations in accordance with the complexity of the terms in the
corresponding sums

Ψ ∼ 1/γ, Ψ′ ∼ β′ ∼ ζ(2) ∼ 1/γ2, Ψ′′ ∼ β′′ ∼ Φ ∼ ζ(3) ∼ 1/γ3,

then for the BFKL kernel in LO and in NLO the corresponding levels are i = 1
and i = 3, respectively.

Because in N = 4 SYM there is a relation between the BFKL and DGLAP
equations (see [4,8]), similar properties should be valid for the anomalous dimen-

sions themselves; i.e., the basic functions γ
(0)
uni(j), γ

(1)
uni(j) and γ

(2)
uni(j) are assumed

to be of the types ∼ 1/ji with the levels i = 1, i = 3 and i = 5, respectively.
An exception could be for the terms appearing at a given order from previous
orders of the perturbation theory. Such contributions could be generated and/or
removed by an approximate ˇnite renormalization of the coupling constant. But
these terms do not appear in the DR scheme.

It is known that at the LO and NLO approximations (with the SUSY relation
for the QCD color factors CF = CA = Nc) the most complicated contributions
(with i = 1 and i = 3, respectively) are the same for all LO and NLO anomalous
dimensions in QCD [5] and for the LO and NLO scalarÄscalar anomalous dimen-
sions [6]. This property allows one to ˇnd the universal anomalous dimensions

γ
(0)
uni(j) and γ

(1)
uni(j) without knowing all elements of the anomalous dimensions

matrix [4], which was veriˇed by the exact calculations in [6].
Using the above arguments, we conclude that at the NNLO level there is

only one possible candidate for γ
(2)
uni(j). Namely, it is the most complicated

part of the QCD anomalous dimensions matrix (with the SUSY relation for the
QCD color factors CF = CA = Nc). Indeed, after the diagonalization of the
anomalous dimensions matrix, its eigenvalues should have this most complicated
part as a common contribution, because they differ from each other only by a
shift of the argument and their differences are constructed from less complicated
terms. The nondiagonal matrix elements of the anomalous dimensions matrix
also contain only less complicated terms (see, for example, anomalous dimensions
exact expressions at LO and NLO approximations in [5] for QCD and [6] for N =
4 SYM) and, therefore, they cannot generate the most complicated contributions
to the eigenvalues of anomalous dimensions matrix.

Thus, the most complicated part of the NNLO QCD anomalous dimen-
sions should coincide (up to color factors) with the universal anomalous di-

mension γ
(2)
uni(j).

2. CALCULATION OF FEYNMAN INTEGRALS

Similar arguments give a possibility to calculate a large class of Feynman
diagrams, the so-called master integrals [33]. Let us consider it in some details.
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Application of the integration-by-part (IBP) procedure [34] to loop internal
momenta leads to relations between different Feynman integrals (FI) and, thus,
to necessity to calculate only some of them, which in a sense, are independent
(see [35]). These independent diagrams (which were chosen quite arbitrarily, of
course) are called the master integrals [33].

The application of the IBP procedure [34] to the master integrals themselves
leads to the differential equations [36, 37] for them with the inhomogeneous
terms (ITs) containing less complicated diagrams∗. The application of the IBP
procedure to these diagrams leads to the new differential equations for them with
the new ITs containing even farther less complicated diagrams. Repeating the
procedure several times, at the last step one can obtain the ITs containing only
tadpoles which can be calculated in turn very easily.

Solving the differential equations at this last step, one can reproduce the
diagrams for ITs of the differential equations at the previous step. Repeating
the procedure several times, one can obtain the results for the initial Feynman
diagram.

This scheme has been used successfully for calculation of two-loop two-
point [35,39] and three-point diagrams [32,39,40] with one nonzero mass. This
procedure is very powerful but quite complicated. There are, however, some sim-
pliˇcations, which are based on the series representations of Feynman integrals.

Indeed, the inverse-mass expansion of two-loop two-point (see Fig. 2) and
three-point diagrams (see Fig. 3)∗∗ with one nonzero mass can be considered as

FI =
N̂

q2α

∑
n=1

Cn
(ηx)n

nc

{
F0(n) +

[
ln (−x)F1,1(n) +

1
ε
F1,2(n)

]
+

+
[
ln2(−x)F2,1(n) +

1
ε

ln (−x)F2,2(n) +
1
ε2

F2,3(n) + ζ(2)F2,4(n)
]
+

+
[
ln3(−x)F3,1(n) +

1
ε

ln2(−x)F3,2(n) +
1
ε2

ln (−x)F3,3(n)+

+
1
ε3

F3,4(n) + ζ(2) ln (−x)F3,5(n) + ζ(3)F3,6(n)
]

+ . . .

}
, (21)

where x = q2/m2, η = 1 or −1, c = 0, 1 and 2, and α = 1 and 2 for two-point
and three-point cases, respectively.

∗The ®less complicated diagrams¯ usually contain less number of propagators and sometimes
they can be represented as diagrams with less number of loops and with some ®effective masses¯
(see, for example, [38] and references therein).

∗∗We consider only three-point diagrams with independent upward momenta q1 and q2, which
obey the conditions q2

1 = q2
2 = 0 and (q1 + q2)2 ≡ q2 �= 0, where q is downward momentum.
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I1 I5

I12 I13 I14 I15

I125 I123

I1234

Fig. 2

Here the normalization N̂ = (μ2/m2)2ε
, where μ = 4π e−γEμ is in the

standard MS scheme and γE is the Euler constant. Moreover, the space-time
dimension is D = 4 − 2ε and

Cn = 1 (22)

for diagrams with one-massive-particle cuts (m cuts) and

Cn = 1 and Cn =
(n!)2

(2n)!
≡ Ĉn (23)

for diagrams with two-massive-particle cuts (2m cuts).
For m-cut case, the coefˇcients FN,k(n) should have the form

FN,k(n) ∼ S±a,...

nb
. (24)

In this section, S±a ≡ S±a(j − 1), S±a,±b ≡ S±a,±b(j − 1), S±a,±b,±c ≡
S±a,±b,±c(j − 1) are harmonic sums

S±a(j) =
j∑

m=1

(±1)m

ma
, S±a,±b,±c,···(j) =

j∑
m=1

(±1)m

ma
S±b,±c,···(m), (25)
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P1

P13

P3456

N1 N3 N13 N12

P12 P56 P126

P3 P5 P6

Fig. 3
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For 2m-cut case, the coefˇcients FN,k(n) should have the form∗

FN,k(n) ∼ S±a,...

nb
,

Va,...

nb
,

Wa,...

nb
, (26)

where

Va(j) =
j∑

m=1

Ĉm

ma
, Va,b,c,···(j) =

j∑
m=1

Ĉm

ma
Sb,c,···(m), (27)

Wa(j) =
j∑

m=1

Ĉ−1
m

ma
, Wa,b,c,···(j) =

j∑
m=1

Ĉ−1
m

ma
Sb,c,···(m). (28)

The terms ∼ Va,... and ∼ Wa,... can come only together with the coefˇcients
Cn = 1 and Cn = Ĉn, respectively. The terms ∼ S±a,... can appear in combina-
tion with both Cn values. The origin of the appearance of the terms ∼ Va,... and
∼ Wa,... in the 2m-cut case is the product of series (21) with the different values
of the coefˇcients Cn = 1 and Cn = Ĉn

As examples, consider two-loop two-point diagrams I1, I5 and I12 shown in
Fig. 2 and studied in [32]:

I1 =
N̂

q2

∑
n=1

xn

n

{
1
2

ln2(−x) − 2
n

ln (−x) + ζ(2) + 2S2 − 2
S1

n
+

3
n2

}
, (29)

I5 =
N̂

q2

∑
n=1

(−x)n

n

{
− ln2(−x) +

2
n

ln (−x) − 2ζ(2)−

− 4S−2 −
2
n2

− 2
(−1)n

n2

}
, (30)

I12 =
N̂

q2

∑
n=1

xn

n2

{
1
n

+
(n!)2

(2n)!

(
−2 ln (−x) − 3W1 +

2
n

)}
. (31)

From (29) and (30) one can see that the corresponding functions FN,k(n)
have the form

FN,k(n) ∼ 1
n2−N

(N � 2), (32)

if we introduce the following complexity of the sums
( m∑
i=1

ai = a
)
:

Φηa ∼ Φηa1,ηa2 ∼ Φηa1,ηa2,··· ,ηam ∼ ζa ∼ 1
na

, (33)

where Φ = (S, V, W ).

∗Really, there are even more complicated terms than ones in Eqs. (58) and (59) of [32], which
come from other η values in (21). However, they are outside of our present consideration.
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In Eq. (31),

FN,k(n) ∼ 1
n1−N

(N � 1), (34)

since now the factor 1/n2 has already been extracted.
So, Eqs. (29)Ä(31) show that the functions FN,k(n) should have the following

form:
1
nc

FN,k(n) ∼ 1
n3−N

(N � 2) (35)

and the number 3−N deˇnes the level of transcendentality (or complexity) of the
coefˇcients FN,k(n). The property reduces strongly the number of the possible
elements in FN,k(n). The level of transcendentality decreases if we consider
the singular parts of diagrams and/or coefˇcients in front of ζ functions and of
logarithm powers.

Other I-type integrals in [32] have similar form. They have been calculated
exactly by the differential equation method [36,37].

Now we consider two-loop three-point diagrams P1, P5, P6, P13 and P12

shown in Fig. 3 and considered in [32]:

P1 =
N̂

(q2)2
∑
n=1

xn

n

{
− 1

2ε3
− S1

ε2
+

1
2ε

×

×
[
5S2 − S2

1 +
2
n2

− 2
n

ln (−x) +
1
2

ln2(−x) − ζ(2)
]
−

− 8
3
ζ3 −

(
S1 +

1
n

)
ζ2 +

8
3
S3 +

9
2
S1S2 +

5
6
S3

1 + 4
S2

n
+ 2

S1

n2
+

3
n3

+

+
(

ζ2 − 4S2 − 2
S1

n
− 3

n2

)
ln (−x) +

(
S1 +

3
2n

)
ln2(−x) − 1

2
ln3(−x)

}
,

(36)

P5 =
N̂

(q2)2
∑
n=1

(−x)n

n

{
−6ζ3 + 2(S1ζ2 + 6S3 − 2S1S2 + 4

S2

n
− S2

1

n
+ 2

S1

n2
+

+
(
−4S2 + S2

1 − 2
S1

n

)
ln (−x) + S1 ln2(−x)

}
, (37)

P6 =
N̂

(q2)2
∑
n=1

(−x)n

n

{
− 1

ε2

[
ln (−x)− 1

n

]
+

1
ε

[
ζ2−3S2−4S−2−3

S1

n
− 3

n2
+

+
(

3S1 +
3
n

)
ln (−x) − 3

2
ln2(−x)

]
+ 2ζ3 +

(
7S1 +

2
n

)
ζ2 − 2S3 − 9S1S2+
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+ 10S−3 − 12S−2,1 − 4S1S−2 −
7
2

S2

n
− 9

2
S2

1

n
− 5

S1

n2
− 7

n3
+

(
7
2
S2 −

9
2
S2

1+

+ 5
S1

n
+

7
n2

− 2ζ2

)
ln (−x) +

1
2

(
7S1 +

7
n

)
ln2(−x) +

7
6

ln3(−x)
}

, (38)

P13 =
N̂

(q2)2
∑
n=1

xn

{
− S2

2ε2
− 1

2ε

[
S3 + 4S1,2 − 4

S2

n

]
+

S2

2
ζ2−

− S1,3 − 3S3,1 + 3S1,1,2 + 3S1,2,1 − S2
2 +

(
7S3 − 8S1,2

)
S1 +

5
2
S2

1S2

}
, (39)

P12 =
N̂

q2

∑
n=1

xn

n2

(n!)2

(2n)!

{
2
ε2

+
2
ε

(
S1−3W1+

1
n
−ln (−x)

)
+12W2−18W1,1−

− 13S2 + S2
1 − 6S1W1 + 2

S1

n
+

2
n2

− 2
(

S1 +
1
n

)
ln (−x) + ln2(−x)

}
. (40)

Now the coefˇcients FN,k(n) have the form

1
nc

FN,k(n) ∼ 1
n4−N

(N � 3). (41)

The diagrams P1, P5 and P6 (and also P3 in [32]) have been calculated
exactly by the differential equation method [36,37].

To ˇnd the results for P13 and P12 (and also all others in [32]), we have
used the knowledge of the several n terms in the inverse-mass expansion (21)
(usually less than n = 100) and the following arguments (see [40] and discussions
therein):

• The coefˇcients should have the structure (41) with the rule (33). The
condition (41) reduces strongly the number of possible harmonic sums. It should
be related with the speciˇc form of the differential equations for the considered
master integrals, like(

kε + m2 d

dm2

)
FI = less complicated diagrams,

with some k values. We note that for many other master integrals (for example,
for sunsets with two massive lines in [35, 41]) the property (41) is violated: the
coefˇcients FN,k(n) contain sums with different levels of complexity∗.

∗Really, Refs. [35, 41] contain the Nilson polylogarithms, whose sum of indices relates directly
to the level of transcendentality (4 − N). The representation of the series (29)Ä(31) and (36)Ä(40),
containing S±a,···, as polylogarithms can be found in [32] for m-cut case and in [42] for 2m-cut
one, respectively.
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• If a two-loop two-point diagram with ®similar topology¯ (for example, I1

for P1 and P3, I5 for P5 and P6, I12 for P12 and so on) has already been cal-
culated, we should consider a similar set of basic elements for the corresponding
FN,k(n) of two-loop three-point diagrams but with the higher level of complexity.

• Let the considered diagram contain singularities and/or powers of loga-
rithms.

Because in front of the leading singularity, or the largest power of logarithm,
or the largest ζ function the coefˇcients are very simple, they can be often
predicted directly from the ˇrst several terms of expansion.

Moreover, often we can calculate the singular part using another technique
(see [32] for extraction of ∼ W1(n) part). Then we should expand the singular
parts, ˇnd the basic elements and try to use them (with the corresponding increase
of the level of complexity) to predict the regular part of the diagram. If we have
to ˇnd the ε-suppressed terms, we should increase the level of complexity for the
corresponding basic elements.

Later, using the ansatz for FN,k(n) and several terms (usually, less than 100)
in the above expression, which can be calculated exactly, we obtain a system
of algebraic equations for the parameters of the ansatz. Solving the system,
we can obtain analytical results for FI without exact calculations. To check the
results, it is needed only to calculate a few more terms in the above inverse-mass
expansion (21) and compare them with the predictions of our ansatz with the
above ˇxed coefˇcients.

The arguments give a possibility to ˇnd the results for many complicated
two-loop three-point diagrams without direct calculations. Some variations of the
procedure have been successfully used for calculating the Feynman diagrams for
many processes (see [32,38,39,43]).

Note that the properties similar to (35) and (41) have recently been ob-
served [44] in the so-called double operator-product-expansion limit of some
four-point diagrams. These diagrams encode the quantum corrections to the
four-point correlator and have been considered in [44] up to three-loop level of
accuracy.

3. UNIVERSAL ANOMALOUS DIMENSION FOR N = 4 SYM

The ˇnal three-loop result∗ for the universal anomalous dimension γuni(j)
for N = 4 SYM is [9]

γ(j) ≡ γuni(j) = âγ
(0)
uni(j) + â2γ

(1)
uni(j) + â3γ

(2)
uni(j) + . . . , â =

αNc

4π
, (42)

∗Note that, in accordance with [7], our normalization of γ(j) contains the extra factor −1/2 in
comparison with the standard normalization (see [4]) and differs by sign in comparison with the one
from [5].
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where
1
4

γ
(0)
uni(j + 2) = −S1, (43)

1
8

γ
(1)
uni(j + 2) = (S3 + S−3) − 2 S−2,1 + 2 S1(S2 + S−2), (44)

1
32

γ
(2)
uni(j + 2) = 2S−3 S2 − S5 − 2S−2 S3 − 3 S−5 + 24 S−2,1,1,1+

+ 6(S−4,1 + S−3,2 + S−2,3) − 12(S−3,1,1 + S−2,1,2 + S−2,2,1)−

− (S2 + 2 S2
1)(3S−3 + S3 − 2S−2,1) − S1(8S−4 + S

2

−2+

+ 4S2S−2 + 2S2
2 + 3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1) (45)

and Sa ≡ Sa(j), Sa,b ≡ Sa,b(j), Sa,b,c ≡ Sa,b,c(j) are harmonic sums (see
Eq. (25)) and

S−a,b,c,···(j) = (−1)j S−a,b,c,···(j) + S−a,b,c,···(∞)(1 − (−1)j). (46)

The expression (46) is deˇned for all integer values of arguments (see [4,45,
46]) but can be easily analytically continued to real and complex j by the method
of [45Ä47].

3.1. The Limit j → 1. The limit j → 1 is important for the investigation
of the small-x behavior of parton distributions (see review [48] and references
therein). Especially it became popular recently because there are new experimental
data at small x produced by the H1 and ZEUS collaborations in HERA [49].

Using asymptotic expressions for harmonic sums at j = 1+ω → 1 (see [4,9]),
we obtain for the N = 4 universal anomalous dimension γuni(j) in Eq. (42)

γ
(0)
uni(1 + ω) =

4
ω

+ O(ω1), (47)

γ
(1)
uni(1 + ω) = −32ζ3 + O(ω1), (48)

γ
(2)
uni(1 + ω) = 32ζ3

1
ω2

− 232ζ4
1
ω
− 1120ζ5 + 256ζ3ζ2 + O(ω1) (49)

in agreement with the predictions for γ
(0)
uni(1 + ω), γ

(1)
uni(1 + ω) and also for the

ˇrst term of γ
(2)
uni(1+ω) coming from an investigation of BFKL equation at NLO

accuracy in [8].
3.2. The Limit j → 4. The investigation of the integrability in N = 4 SYM

for BMN operators [50] gives a possibility to ˇnd the anomalous dimension of
a Konishi operator [24,51], which has the anomalous dimension coinciding with
our expression (42) for j = 4:

γuni(j)
∣∣
j=4

= −6 âs + 24 â2
s − 168 â3

s. (50)
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It is also conˇrmed by direct calculation in two- [6,52] and three-loop [53] orders.
The four- and ˇve-loop corrections to the anomalous dimension of a Konishi
operator have also been calculated recently in [54, 55] and [56, 57], respectively
(see the recent review [16] and references therein).

3.3. The Limit j → ∞. In the limit j → ∞ the results (43)Ä(45) are simpli-
ˇed signiˇcantly. Note that this limit is related to the study of the asymptotics of
structure functions and cross sections at x → 1 corresponding to the quasi-elastic
kinematics of the deep-inelastic ep scattering.

We obtain the following asymptotics for the N = 4 universal anomalous
dimension γuni(j) in Eq. (42):

γ
(0)
uni(j) = −4(ln j + γE) + O(j−1), (51)

γ
(1)
uni(j) = 8ζ2(ln j + γE) + 12ζ3 + O(j−1), (52)

γ
(2)
uni(j) = −88ζ4(ln j + γE) − 16ζ2ζ3 − 80ζ5 + O(j−1), (53)

where γE is Euler constant (see also the normalization in Eq. (21)).
3.3.1. Resummation of γuni and the AdS/CFT Correspondence. Over the

last few years there has been a great progress in the investigation of the N = 4
SYM theory in the framework of the AdS/CFT correspondence [17], where the
strong-coupling limit âs → ∞ is described by a classical supergravity in the
anti-de Sitter space AdS5 × S5. In particular, a very interesting prediction [58]
(see also [59]) was obtained for the large-j behavior of the anomalous dimension
for twist-2 operators

γ(j) = a(z) ln j, z =
αNc

π
= 4âs (54)

in the strong-coupling regime (see [60] for asymptotic corrections):

lim
z→∞

a = −z1/2 +
3 ln 2
8π

+ O(z−1/2). (55)

On the other hand, the results for γuni(j) in Eqs. (42) and (51)Ä(53) allow
one to ˇnd three ˇrst terms of the small-z expansion of the coefˇcient a(z)

lim
z→0

a = −z +
π2

12
z2 − 11

720
π4z3 + . . . (56)

For resummation of this series, Lipatov suggested the following equation for
the approximation ã [6]:

z = −ã +
π2

12
ã2, (57)

interpolating between its weak-coupling expansion up to NNLO

ã = −z +
π2

12
z2 − 1

72
π4z3 + O(z4) (58)



THE PROPERTY OF MAXIMAL TRANSCENDENTALITY 737

and strong-coupling asymptotics

ã = −2
√

3
π

z1/2 +
6
π2

+ O(z−1/2) ≈ −1.1026 z1/2 + 0.6079 + O(z−1/2). (59)

It is remarkable that the predictions for NNLO based on the above simple equation
and obtained before the NNLO results (45) and (53) are valid with the accuracy
∼ 10%. It means that this extrapolation seems to be good for all values of z∗.

3.3.2. BeisertÄEdenÄStaudacher Equation. Recently the integral BeisertÄ
EdenÄStaudacher (BES) equation has been proposed in [61] for some function
f(x), which is related with a(z) of (54) at x = 0, i.e., f(0) = a(z).

At small coupling constant z, this equation gives a lot of coefˇcients cm of
the expansion

f(0) =
∑
m=0

cmzm.

These coefˇcients cm obey the transcendentality principle, i.e., cm ∼ ζ(2m) for
m > 0 (or products of ζ function with the sum of indices equal to 2m). Moreover,
up to 4-loop, the coefˇcients are in agreement numerically with the ones obtained
directly from calculations of Feynman diagrams [62,63].

The most important purpose, however, is to ˇnd the z → ∞ limit from the
BES equation, i.e., to try to reproduce the Polyakov et al. asymptotics ∼ z1/2

(see the r.h.s. of (55)). The study was performed and the asymptotics were
reproduced numerically [64] and analytically [65].

Recently the authors of [66] found a method to evaluate the c̃m coefˇcients
of the expansion

f(0) =
∑
m=0

c̃m z(1−m)/2

of the BES equation and calculated several of them. The ˇrst three coefˇcients
are in agreement with the results of exact calculations performed in [58], [60]
and [67], respectively. Moreover, the results of [66] agree well with the tran-
scendentality principle: c̃1 ∼ ln 2 and c̃m ∼ ζ(m) for m > 1 (or products of ζ
function with the sum of indices equal to m).

4. BETHE ANSATZ AND FOUR-LOOP UNIVERSAL
ANOMALOUS DIMENSION

The long-range asymptotic Bethe equations for twist-two operators have the
form(

x+
k

x−
k

)2

=
M∏

m=1,m �=k

x−
k − x+

m

x+
k − x−

m

(1 − g2/x+
k x−

m)
(1 − g2/x−

k x+
m)

exp (2iθ(uk, uj)) ,

M̂∏
k=1

x+
k

x−
k

= 1.

(60)

∗Some improvement of (57) can be found in [62].



738 KOTIKOV A.V.

These are M̂ equations for k = 1, . . . , M̂ Bethe roots uk, which need to be
solved for the Bethe roots uk. The variables x±

k are related to uk through
Zhukovsky map:

x±
k = x(u±

k ), u± = u ± i

2
, x(u) =

u

2

(
1 +

√
1 − 4

g2

u2

)
. (61)

The dressing phase θ ∼ ζ(3) is a rather intricate function conjectured in [61], and
its exact form is not so important for the present consideration.

Once the M̂ Bethe roots are determined from the above equations for the
state of interest, its asymptotic all-loop anomalous dimension is given by

γABA(g) = 2 g2
M̂∑

k=1

(
i

x+
k

− i

x−
k

)
. (62)

The above equations can be solved recursively order by order in g at arbitrary
values of M̂ once the one-loop solution for a given state is known.

This technical problem can nevertheless be surmounted. Assuming the max-
imum transcendentality principle [4] at four-loop order, one may derive the cor-
responding expression for the anomalous dimension by making an appropriate
ansatz with unknown coefˇcients multiplying the nested harmonic sums, and
subsequently ˇxing these constants. The latter is done by ˇtting to the exact
anomalous dimensions for a sufˇciently large list of speciˇc values of M̂ as
calculated from the Bethe ansatz∗.

Luckily, at one loop the exact solution of the Baxter equation is known [68]
and is given by a Hahn polynomial. Knowing the one-loop roots, one can then
expand equation (60) in the coupling constant g order by order in perturbation
theory. The equations for the quantum corrections to the one-loop roots are of
course linear, and thus numerically solvable with high precision.

The result for the four-loop asymptotic dimension has the form [10] (M̂ =
j + 2)

1
256

γABA
uni (j + 2) = 4S−7 + 6S7 + . . . + −ζ(3)S1(S3 − S−3 + 2 S−2,1), (63)

where the symbol ®. . .¯ marks large set of the nested sums of degree seven.
It is possible to analytically continue the expression in the r.h.s. of (63) to

the vicinity of the pomeron pole at M = −1 + ω. An explanation for how this is
done may be found in [46].

∗The study is similar to the one considered in Sec. 2 and used for calculations of Feynman
integrals.
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Harmonic sums of degree seven may lead to poles not higher than seventh
order in ω. In fact, it is known that none of the sums in the r.h.s. of (63)
can produce such a high-order pole except for the two sums S7 and S−7. Their
residues at 1/ω7 are of opposite sign. Thus, one immediately sees that the sum
of the two residues does not cancel.

However, from BFKL calculations [4,8], it is possible to conclude that at the
vicinity of the pomeron pole at M̂ = −1+ω the four-loop anomalous dimensions

γuni(1 + ω) ∼ 1/ω4. (64)

It proves that the above result is not full and there are so-called wrapping
corrections.

The contribution of the wrapping corrections has been added in [11]. So, the
full result has the following form:

γuni(j + 2) = γABA
uni (j + 2) + γwr

uni(j + 2),

1
256

γwr
uni(j + 2) =

1
2

S2
1

[
2S−5 + 2S5 + 4

(
S4,1 − S3,−2+

+ S−2,−3 − 2S−2,−2,1

)
− 4S−2ζ(3) − 5ζ(5)

]
.

This result is in full agreement with BFKL predictions (64).
We note that, by using similar technique and a property of reciprocity

(see [69] and references therein), the ˇve-loop corrections to universal anom-
alous dimensions have been found in [12].

CONCLUSION

In this review we presented the anomalous dimension γuni(j) for the N = 4
supersymmetric gauge theory up to the next-to-next-to-next-to-leading approxi-
mation. All the results have been obtained with the use of the transcendentality
principle. At the ˇrst three orders, the universal anomalous dimensions have been
extracted from the corresponding QCD calculations. The results for four and ˇve
loops have been obtained from the long-range asymptotic Bethe equations to-
gether with some additional terms, the so-called wrapping corrections, coming in
agreement with the Luscher approach.
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