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ON-MASS-SHELL RENORMALIZABILITY
OF THE MASSIVE YANGÄMILLS THEORY

S. A. Larin

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

Renormalizable theory of electroweak interactions without scalar particles can be constructed by
modifying the Standard Model. One should remove all terms with the scalar ˇeld from the Lagrangian
in the unitary gauge. The resulting electroweak theory without the Higgs particle is on-mass-shell
renormalizable and unitary. Thus, the experimental nonobservation of the Higgs boson will not mean
a problem for the concept of renormalizability in quantum ˇeld theory but will conˇrm the scalar free
theory.

PACS: 12.10.-q; 12.15.-y; 12.60.Cn

The massive YangÄMills theory [1] was long considered to be nonrenormal-
izable [2], see also [3, 4] and references therein. The only known way to get
renormalizable and unitary theory with massive YangÄMills bosons was due to
the Higgs mechanism of spontaneous symmetry breaking [5]. This mechanism is
used in the Standard SU(2)× U(1) Model of electroweak interactions [6] which
is established to be renormalizable [7], see also [8] and references therein. In this
way, one introduces in the model the famous scalar Higgs particle which one can
still hope to see in experiments.

Quite recently it was found that the massive YangÄMills theory is in fact on-
mass-shell renormalizable [9]. Correspondingly, one can simplify the Standard
SU(2)×U(1) Model of electroweak interactions by removing from the Lagrangian
in the unitary gauge all terms containing the scalar ˇeld. The resulting electroweak
theory without the scalar Higgs particle remains on-mass-shell renormalizable and
unitary. Thus, at present there are two self-consistent renormalizable theories of
electroweak interactions: one with the exotic scalar particle and one without.
It is up to experiments to choose between them. The nondiscovery of the Higgs
particle at the Large Hadron Collider will indicate the validity of the scalar-free
electroweak theory.

In the present paper we elaborate some points connected with the statement of
renormalizability of the theory without scalar particles. The paper is an extended
version of the preprint [10].

We will work within perturbation theory. To regularize ultraviolet diver-
gences, we will use for convenience dimensional regularization [11] with the
space-time dimension d = 4 − 2ε, ε being the regularization parameter.
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As the simpliˇed case of the real electrowek theory, let us consider the known
model given by the initial SU(2)-invariant Lagrangian of interaction of vector
bosons and scalar ˇelds possessing the spontaneously broken symmetry

L = −1
4
F a

μνF a
μν + (DμΦ)+DμΦ − λ(Φ+Φ − v2)2 (1)

with the doublet of scalar ˇelds Φ(x) in the fundamental representation of
the group.

Here, DμΦ =
(
∂μ − ig

τ

2

a
W a

μ

)
Φ is the covariant derivative, τa are the Pauli

matrices, λ > 0, v2 > 0.
To get the complete Lagrangian, one makes the shift of the scalar ˇeld

Φ(x) =
1√
2

(
iφ1(x) + φ2(x)

√
2v + χ(x) − iφ3(x)

)
,

ˇxes the gauge and adds ultraviolet counterterms.
Let us consider two gauges: the widely used Rξ gauge [7, 12] with an

arbitrary parameter ξ and the unitary gauge.
In the Rξ gauge, one gets the theory described by the generating functional

of Green functions

ZRξ
(J, K) =

1
N

∫
dW dφdχ dc̄ dc exp

(
i

∫
dx(LRξ

+ Ja
μW a

μ + Kχ)
)

,

LRξ
= −1

4
F a

μνF a
μν +

m2

2
W a

μW a
μ − mW a

μ∂μφa +
1
2
∂μφa∂μφa +

1
2
∂μχ∂μχ−

− M2

2
χ2 +

g

2
W a

μ (φa∂μχ − χ∂μφa + εabcφb∂μφc) +
mg

2
χW a

μW a
μ +

+
g2

8
(χ2 + φaφa)W 2

μ − gM2

4m
χ(χ2 + φaφa) − g2M2

32m2
(χ2 + φaφa)2 −

− 1
2ξ

(∂μW a
μ + ξmφa)2 + ∂μc̄a(∂μca − gεabccbW c

μ) − ξm2c̄aca −

− g

2
ξmχc̄aca +

g

2
ξmεabcc̄acbφc + counterterms. (2)

This theory describes three physical massive vector bosons with the mass m =
gv/

√
2, and the physical Higgs ˇeld χ with the mass M = 2λv. Here are

also Goldstone ghosts φa and FaddeevÄPopov ghosts ca with masses ξm2. The
structure of the counterterms (consistent with gauge invariance and SlavnovÄ
Taylor identities [13,14] to ensure unitarity) is well known, see, e.g., [8].
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This is the renormalizable gauge; i.e., Green functions are ˇnite. The corre-
sponding propagators in momentum space are

〈T (W a
μW b

ν )〉 = −iδab

(
gμν − kμkν/m2

k2 − m2
+

kμkν/m2

k2 − ξm2

)
,

〈T (φaφb)〉 = −iδab 1
k2 − ξm2

,

(3)

〈T (c̄acb)〉 = −iδab 1
k2 − ξm2

,

〈T (χχ)〉 = −i
1

k2 − M2
.

In the unitary gauge deˇned by the gauge condition φa = 0, one has the
Lagrangian

LU = −1
4
F a

μνF a
μν +

m2

2
W a

μW a
μ +

1
2
∂μχ∂μχ − M2

2
χ2 +

+
mg

2
χW a

μW a
μ +

g2

8
χ2W a

μW a
μ − gM2

4m
χ3 − g2M2

32m2
χ4 + counterterms. (4)

The propagators in the unitary gauge are obtained from those of the Rξ gauge
in Eq. (3) by taking the limit ξ → ∞. The theory in the unitary gauge is renor-
malizable only on mass shell; i.e., Green functions are divergent at
ε → 0, but the S-matrix elements are ˇnite. In this gauge, all unphysical particles
(longitudinal quanta of vector ˇelds and ghosts) are absent and unitarity of the
theory is manifest.

To show equivalence of S-matrix elements in two gauges, one uses the
functional integral technique. Let us repeat it for the case of the Landau gauge
ξ = 0 (for simplicity), which corresponds in fact to the Lorentz gauge ∂μW a

μ = 0
(the L gauge). The generating functional of Green functions in the L gauge is

ZL(J, K) =
1
N

∫
dW dφdχ exp

(
i

∫
dx(LR + Ja

μW a
μ + Kχ)

)
×

× ΔL(W ) δ(∂μWμ), (5)

where ΔL(W ) is the FaddeevÄPopov determinant [15] and LR is obtained
from LRξ

by omitting terms depending on ξ and ca (and by corresponding mod-
iˇcation of counterterms). The Lagrangian LR is invariant under the following
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gauge transformations:

W a
μ →

(
Wω

μ

)a = W a
μ + ∂μωa + g̃fabcW b

μωc + O(ω2),

φa → (φω)a = φa − m̃ωa − g̃

2
fabcφbωc − g̃

2
χωa + O(ω2), (6)

χ → χω = χ − g̃

2
φaωa + O(ω2),

where
g̃ =

z1

z2
g, m̃ =

z1

z2
m,

and z1, z2 are renormalization constants of the triple W vertex and the W ˇeld.
One inserts in the functional integral the unity

ΔU (χ)
∫

dw δ(φω) = 1. (7)

Making the known change of variables

Wμ → Wω−1

μ , φ → φω−1
, χ → χω−1

, ω−1 → ω

and integrating over ω, one obtains

ZL(J, K) =
1
N

∫
dW dφdχ×

× exp
(

i

∫
dx(LU + JμW ω̃

μ + Kχω̃)
)

ΔU (χ) δ(φ), (8)

where ω̃ is deˇned from the equation

∂μ(W ω̃
μ )a = ∂μ(W a

μ + ∂μω̃a + g̃(fabcW b
μω̃c)) + O(ω̃2) = 0. (9)

The Lagrangian LU is given in Eq. (4).
The functional ΔU (χ) can be presented on the surface φa = 0 as

ΔU (χ) = det
∣∣∣∣m̃ +

g̃

2
χ(x)

∣∣∣∣
3

= const · exp
(∫

δd(0) ln
(
1 +

g

2m
χ(x)

)3

dx

)
.

In dimensional regularization this functional is just a constant and can be absorbed
in the normalization factor N , although this simpliˇcation is not essential for the
following derivation.

One obtains

ZL(J, K) =
1
N

∫
dW dχ exp

(
i

∫
dx (LU + JμW ω̃

μ + Kχω̃)
)

, (10)

where χω̃ is taken on the surface φa = 0.
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The expression (10) differs from the generating functional of Green functions
in the unitary gauge

ZU (J, K) =
1
N

∫
dW dχ exp

(
i

∫
dx (LU + JμWμ + Kχ)

)
(11)

only by source terms. It is known that this difference is not essential for S-matrix
elements, see, e.g., [8]. Thus, the physical equivalence of the L gauge and the
U gauge is proved.

From Eq. (10) one sees that the counterterms of LU are given by the coun-
terterms of LR at φa(x) = 0.

One can also prove directly at the level of Feynman diagrams that S-matrix
elements coincide in the Rξ gauge and the U gauge (it is well known that
the path-integral formalism correctly reproduces in the compact form the direct
diagrammatic approach). To this end, one can just take the limit ξ → ∞ in
diagrams of S-matrix elements in the Rξ gauge since S-matrix elements do
not depend on the gauge parameter ξ. Then one gets the presentation of S-
matrix elements in terms of diagrams in the unitary gauge. The nice property
of dimensional regularization is that the limit ξ → ∞ can be taken before or
after integrations: results coincide (the limit should be taken before removing
regularization).

To consider renormalization for our purpose it is convenient to use the
BogoliubovÄParasiukÄHepp subtraction scheme [16]. As is well known, in
this scheme a counterterm of, e.g., a primitively divergent Feynman diagram
is the truncated Taylor expansion of the diagram itself at some ˇxed values of
external momenta. Hence, counterterms of mass-dependent diagrams are also
mass-dependent. Needless to say that subtractions should respect SlavnovÄTaylor
identities.

Let us consider S-matrix elements in the Rξ gauge without external Higgs
bosons (i.e., with external W bosons only in this simpliˇed model).

We will analyze the dependence of diagrams on the Higgs mass M by using
the expansion in large M (after renormalization but before removing regulariza-
tion). The algorithm for the large-mass expansion of Feynman diagrams is given,
e.g., in [17] (where it is quite reasonably checked in calculations of the 4-loop
diagrams for the Z-boson decay into hadrons). It can be rigorously derived,
e.g., with the technique of [18].

We separate all diagrams into physical ones, which are not nulliˇed in the
limit ξ → ∞, and unphysical ones, which are nulliˇed. In this limit the propagator
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of the W boson reduces to the known unitary form

lim
ξ→∞

〈T (W a
μW b

ν )〉 = −iδab lim
ξ→∞

(
gμν − kμkν/m2

k2 − m2
+

kμkν/m2

k2 − ξm2

)
=

= −iδab gμν − kμkν/m2

k2 − m2
. (12)

The propagators of the Goldstone bosons φa and ghosts ca vanish in this limit and
correspondingly all diagrams which contain these propagators are also nulliˇed.
The limit is quite subtle for diagrams containing ghosts loops coupled to the Higgs
boson since the corresponding coupling constant itself contains the parameter ξ
in the Lagrangian, see Eq. (2). For example, in the one-loop case one gets

lim
ξ→∞

ξ2

∫
ddp

1
(p2 − ξm2)((p + q)2 − ξm2)

=
∫

ddp = 0, (13)

where zero is obtained due to the famous property of dimensional regularization
to nullify scaleless integrals. As we already stressed, the limit ξ → ∞ commutes
with integrations in Feynman integrals within dimensional regularization.

Thus, in our notations the physical diagrams are the diagrams that do not
contain Goldstone bosons propagators or ghosts propagators and the unphysical
diagrams are the diagrams that contain such propagators.

Within the large-M expansion, the physical diagrams with χ propagators
contain either terms with integer negative powers of M2

1
M2n

, n = 1, 2, 3, . . .

or terms with noninteger powers of M2 (noninteger powers contain ε)

1
M2(k+lε)

, k Å integer, l Å positive integer.

This is because each vertex with the large factor M2 has three or four attached
χ propagators due to the structure of the Higgs boson self-coupling.

In contrast, unphysical diagrams can have polynomial in M terms due to
the four-φ vertex with the large factor M2. But they are ξ-dependent (they
are nulliˇed in the limit ξ → ∞) and this polynomial terms cancel in S-matrix
elements. This guarantees in particular the existence of the limit M2 → ∞. The
limit is quite delicate and exists only before the removing regularization. After
removing regularization, terms of the type M2n/M2(lε) produce terms of the type
M2n(ln (M2))k, k, l, n are positive integers, which diverge in this limit. Before
removing regularization we have the ˇnite limit

lim
M→∞

M2n

M2(lε)
= 0, (14)
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where zero is provided by the already mentioned property of dimensional regu-
larization to nullify scaleless integrals.

We would like to stress once again that the limit M → ∞ exists only
in d dimensions. In 4 dimensions it does not exist, which is known as the
nondecoupling of the Higgs boson.

In the renormalizable Rξ gauge, one can present ultraviolet renormalization in
a standard form of the BogoliubovÄParasiuk R operation for individual diagrams.
This ensures that after renormalization the M -dependent terms are ˇnite at ε → 0
separately from M -independent terms. Thus, if one removes all M -dependent
terms, one is left with a ˇnite expression.

On the Lagrangian level it means in the unitary gauge that one removes
from LU all terms containing the ˇeld χ and also all M -dependent terms in the
counterterms. The resulting theory is on-mass-shell ˇnite. This is the massive
YangÄMills theory

Z(J) =
1
N

∫
dW exp

(
i

∫
dx(LYM + Ja

μW a
μ )

)
,

(15)

LYM = −1
4
z2

(
∂μW a

ν − ∂νW a
μ +

z1

z2
gfabcW b

μW c
ν

)2

+ zmm2W a
μW a

μ .

After renormalizability is established, one can ˇx renormalization constants
z1, z2, and zm within the theory (15) (without referring to the Rξ gauge) by
proper normalization conditions.

Thus, the Higgs mechanism can be considered as an efˇcient mathematical
tool to observe on-mass-shell renormalizability of the massive YangÄMills theory,
which is far from to be obvious directly.

It is known that the Higgs theories of vector mesons possess the so-called
tree level unitarity, see, e.g., [3, 19, 20] and references therein. Tree level cross
sections of such theories grow at high energies slowly enough and do not ex-
ceed the so-called unitary limit imposed by the unitarity condition. The reversed
statement is also proved: from the condition of tree level unitarity it follows that
a theory of vector mesons should be a Higgs theory [19]. But one can see that
tree level unitarity is not the necessary condition for renormalizability. Tree level
unitarity is violated in the massive YangÄMills theory. It indicates that higher-
order contributions become relevant at high energies and one looses the pertur-
bative control over the theory. This is due to the presence in external states of
S-matrix elements of longitudinally polarized W bosons whose wave functions
grow with energy like E/m, where E is typical energy of the process. But in
the physical SU(2) × U(1) theory with inclusion of fermions the massive gauge
bosons are highly unstable particles which do not appear as external states of
S-matrix elements in complete calculations and correspondingly tree level unitar-
ity is present (with or without the Higgs boson).
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The above derivation of on-mass-shell renormalizability is also applicable to
other gauge groups. It can be straightforwardly applied to the Standard SU(2)×
U(1) Model of electroweak interactions. The presence of the U(1) gauge boson
and of fermions does not change the derivation. Again, one can remove from the
Lagrangian in the unitary gauge all terms containing the scalar ˇeld. The fermion
masses remain unchanged under this operation. The resulting electroweak theory
without the Higgs particle is on-mass-shell renormalizable and unitary. Thus,
the experimental nonobservation of the Higgs boson at the LHC will not mean
a problem for the concept of renormalizability in quantum ˇeld theory but will
conˇrm the scalar-free theory.
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