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It is shown that the effective action for the reggeized graviton interactions can be formulated
in terms of the reggeon fields AT+ and A=~ and the metric tensor g,,,, in such a way that it is
local in the rapidity space and has the property of general covariance. The corresponding effective
currents 7~ and jT satisfy the Hamilton-Jacobi equation for a massless particle moving in the
gravitational field. These currents are calculated explicitly for the shock wave-like fields and a
variation principle for them is formulated. As an application, we reproduce the effective Lagrangian
for the multi-Regge processes in gravity together with the graviton Regge trajectory in the leading
logarithmic approximation with taking into account supersymmetric contributions.
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INTRODUCTION

In the Regge pole model the scattering amplitude at large energies /s and
fixed momentum transfers y/—t has the form [1]

AR e (5,8) = E(1)s T r 2 (1), g () = el —p, (1)

where p = %1 is the signature of the reggeon with the trajectory wy(¢). The
pomeron is the Regge pole of the t-channel partial waves f,,(t) with vacuum
quantum numbers and the positive signature describing an approximately constant
behavior of total cross sections for the hadron—hadron scattering. S.Mandelstam
demonstrated that the Regge poles generate cut singularities in the w plane [2].
These singularities appear as a result of the analytic continuation of the multipar-
ticle unitarity condition [3]. They correspond to scattering states of the reggeons.
Using the locality of the reggeon interactions in the rapidity space, V.Gribov
constructed an effective (2 + 1) pomeron field model [4].

On the other hand, it was discovered that in some field theories the ele-
mentary particles become reggeons after taking into account radiative corrections.
The simplest example of this phenomenon is the electron reggeization in quantum
electrodynamics with a massive photon [5]. Using the counting rules suggested
in [6], the vector boson reggeization in the gauge models with the Higgs mecha-
nism was also established [7].
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In the leading logarithmic approximation (LLA), the scattering amplitude at
high energies in QCD has the Regge form [8]:

MA (5.8) = MAR (5,1)| 5™, )
where Mpom is the Born amplitude and the gluon Regge trajectory is given
below:
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where X is a gluon mass, introduced for the infrared regularization.

In the multi-Regge kinematics, where the pair energies /s, of the produced
gluons are large in comparison with momentum transfers |g;|, the production
amplitudes in LLA are constructed from products of the Regge factors s:(t’“)
and effective reggeon-reggeon—gluon vertices C),(gr, g-+1) [8]. The amplitudes
satisfy the Steinmann relations and the s-channel unitarity leading to bootstrap
equations [8].

The knowledge of My o4, allows us to construct the BFKL equation for
the pomeron wave function [8]

EV(py, py) = Hia¥(py, py), or~s™, A=-—

Ey. “)

Here H;o is the BFKL Hamiltonian and A is the pomeron intercept. The operator
Hi2 has the property of the holomorphic separability [9] and is invariant under
the Mobius transformations [10]

apy +b
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The generalization of Eq.(4) to a composite state of several gluons [11] in the
multicolor QCD leads to an integrable XXX model [12] having a duality sym-
metry [13].

The next-to-leading correction to the BFKL kernel in QCD is also calcu-
lated [14]. Its eigenvalue contains nonanalytic terms proportional to d,, o and dj, 2,
where n is the conformal spin of the Mdbius group. But in the case of the N = 4
extended supersymmetric gauge model, these Kronecker symbols are canceled,
leading to an expression having the properties of the Hermitian separability [15]
and maximal transcendentality [16]. The last property allowed one to calculate
the anomalous dimensions of twist-two operators up to three loops [17]. It turns
out that evolution equations for the so-called quasi-partonic operators are inte-
grable in N = 4 SUSY at the multicolor limit [18]. The N = 4 four-dimensional
conformal field theory due to the Maldacena guess is equivalent to the superstring
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living on the anti-de-Sitter 10-dimensional space [19-21]. Therefore, the pomeron
in N = 4 SUSY is equivalent to the reggeized graviton in this space. This equiv-
alence gives a possibility to calculate the intercept of the BFKL pomeron at large
coupling constants [17,22]

2
jm2-A, A=tgir o9l

o “T Ton2 ©)

The duality between the BFKL pomeron and the reggeized graviton means that
the Pomeron calculus could be described in the framework of the approach based
on the effective action for the reggeized gravitons. It is one of the reasons why
we investigate in this paper the gravity at high energies.

To begin with, let us remind the effective field theory for reggeized glu-
ons [23]. The corresponding effective action is local in the rapidity space

1 € + |k|
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We introduce the anti-Hermitian fields v, for the usual gluons and the gauge
invariant fields A4 describing the production and annihilation of the reggeized
gluons

vu(r) = =Ty, (x), As(z) = —iT"AL(z), 0AL(z) =0, (8)

where T'* are the gauge group generators in the adjoint representation. The
fields A, satisfy the kinematical constraints

87A+ == 8+A7 == 0 (9)

The effective action for a cluster of particles with approximately equal ra-
pidities has the form

S = /d4m(LQCD + Te(Vy02A- + Vo0, AL)), (10)

where Lqcp is the usual QCD action and the effective currents V. are given as

zt

1 1
Vi =—=0;Pexp | —g / vp (2 d@)T | = vy — gU+Z v+ F - (11)
9 S +
The Feynman rules for this action are derived in [24]. The effective action ap-

proach gives a possibility to construct various reggeon vertices needed to calculate
NLO and NNLO corrections to the BFKL kernel.
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Another application of the effective action for the gauge models is a verifi-
cation of the BDS ansatz [25] for the inelastic amplitudes in N = 4 SUSY. It
was shown [26,27] that the BDS amplitude MPD$ should be multiplied by the
factor containing the contribution of the Mandelstam cut in LLA. In the two-loop
approximation this factor can also be found from properties of analyticity and fac-
torization [28] or directly from recently obtained exact result for M54 [29]. In a
general case, the wave function for the Mandelstam state satisfies the Schrodinger
equation for an open integrable Heisenberg spin chain [30].

Below we generalize the approach based on the effective action for reggeons
to the case of the high-energy gravity. The graviton reggeization was established
initially with the use of the ¢-channel unitarity [31]. Later it was shown [32] that
in LLA the graviton Regge trajectory is finite in the ultraviolet region only in the
N = 4 supergravity. In other gravity models the corresponding ¢-channel partial
wave f;(t) has a Regge cut singularity corresponding to the double-logarithmic
asymptotics [32]. Also, some effective vertices for reggeized graviton interactions
were calculated [33]. These results were verified by the authors of [34] in their
study of gravity at the Planckian energies. An effective field theory for the
S matrix in gravity with the multi-Regge unitarity was constructed in [35], which
allowed one to investigate the gravitational collapse at the high-energy particle
scattering [36]. The new results for the scattering amplitudes in gravity and
supergravity and related references can be found in the papers [37,38].

1. REGGEON FIELDS IN GRAVITY

It is natural to construct the theory of high-energy processes in gravity in
terms of the reggeized gravitons and their interactions, because in this case
the scattering amplitudes will satisfy automatically the ¢-channel unitarity. The
s-channel unitarity will be incorporated in the reggeon vertices. In particular,
the so-called bootstrap relations in QCD are consequences of the multiparticle
s-channel unitarity. We begin with the introduction of the fields describing the
usual and reggeized gravitons.

The Hilbert—Einstein action for gravity has the form [39]

S = Sgrav + va (12)

where Sgrav and Sy, describe the interaction of the gravity field g, (z) and the
matter fields, respectively. Both contributions are invariant under the general
coordinate transformation. For the metric tensor g,,, entering in the invariant
interval

(ds)? = Z G dz dz”, (13)

ng
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this transformation in the infinitesimal form is

89w (x) = Dyuxo(z) + Dyx (), (14)

where x,(z) is a small local parameter and D, is the covariant derivative
defined as

Dyxv(x) = Ouxo(x) — Tl xp(2). (15)

Here ), is the partial derivative in ## and I'f,, is the Christoffel symbol:
re, = L oo 19) 10) 0 6
wr = 59 ( w9ov + OvGuo — ag/w)~ (16)

Note that in the Minkowski space the corresponding invariant interval is
(ds)? = Ny dz* dz”, a7

where the Lorentz tensor n** has the signature (+ — ——).
The action for the pure gravity can be written as follows:

1
Suen = 53 / d'ay/"gR. (18)

where
g = Det (g,1) (19)

and the Einstein parameter x2 is proportional to the Newton constant +:
K% = 8mry. (20)

The scalar curvature R is related to the Riemann tensor by the contraction of
indices:
R =R, ¢g". 21)

In turn, R, is expressed in terms of the Riemann tensor of the fourth rank:

R =R RS g = 010, — 8aT%5 + 0T, ~T0.T7 . (22)

log
w,ov? pas pB

The matter action can be written as an invariant integral from the Lagran-
gian L,,:

Sy = / d*ar/—gLy,. (23)

Its variation in the metric tensor is expressed in terms of the energy-momentum
tensor 1H":

1
55 = 5 / A4/ =g gy T, (24)
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which is conserved
D, T" =0. (25)

Performing also the variation of the gravity action

S

5Sgrav = 2%

1
/ o/ =gigu G, G = R — Zg"'R,  (26)
we obtain from the stationarity condition for the total action §S = 0 the Einstein
equation
GHY = —gTH". 27

Due to the general covariance of the action Sgray, the left-hand side of this
equation satisfies the identity
D,G" =0, (28)

which is compatible with the conservation of the energy-momentum tensor 7#".

In this paper we want to construct the interaction of the reggeized gravitons
and usual gravitons to describe quasi-multi-Regge processes in gravity at high
energies. In these processes, intermediate particles are produced in clusters with
fixed invariant masses m,.. The particles inside each cluster have approximately
the same rapidities y ~ y,- in the interval

ly = yel <, (29)
where the intermediate parameter 7 is assumed to satisfy the inequalities
Ins>n>1. (30)

The relative rapidities of different clusters produced in the multi-Regge kinematics
are considered to be large:

Ins >y, —yr_1>1. (31)

The interaction between the clusters is performed through an exchange of the
reggeized gravitons described by two additional fields AT and A~~. These new
fields correspond to the reggeon emission and absorption in crossing channels. In
our quasi-multi-Regge kinematics corresponding to the strongly ordered rapidities,
they satisfy the following kinematical constraints (cf. (32)):

0 AT =0, 0_A " =0, (32)

where
0r =n%0,, ni =0, nin_=1 (33)



EFFECTIVE ACTION FOR THE REGGE PROCESSES IN GRAVITY 759

and the light-cone vectors ngi are expressed in terms of momenta pa,pp of

colliding particles:
2 2
Ny =Pay/ =, N- =DPB\/ = (34)
s s

The above constraints for A¥* follow from the fact that the Sudakov vari-
ables ., 3, for the produced cluster momentum

kr = Brpa+ oupp + ks, kD =saf — ki =m] (35)
are strongly ordered

160> 0> ... 0, 1>a,>a,1>...> 05,

2
e

2 (36)
Sarﬁr ~ krl ~m

We derive in the next sections the effective action for high-energy processes
in gravity. This action describes the interaction of gravitons inside each cluster
with neighboring reggeons having approximately the same rapidities. In this
case, apart from the usual Hilbert-Einstein action Sgpav, one should introduce
an additional contribution AS containing the linear combination of the reggeon
fields AT and A=~ considered as external sources:

Seff = Sgrav + AS. (37

It is well known that the reggeon describes a family of particles with different
spins and masses lying on the Regge trajectory. The reggeized graviton can be
viewed as a natural generalization of the physical massless graviton with the spin
j = 2. Therefore, it is natural to consider the functions AT+ and A=~ as fields
invariant under general covariant transformations

SATH =§A—— =0, (38)

with the corresponding local parameters x decreasing at large x. Of course,
ATt and A=~ are transformed as usual fields under the global Poincare group.
The induced contribution AS' can be written in the form

1 W (. ORATT  92ATT
AS:—T d*x J++ H2 +)—— . (39)

Here the Laplacian operators 83 are introduced to avoid simultaneous singularities
in the overlapping direct and crossing channels because they cancel neighboring
reggeon propagators 1/¢2. These propagators appear from a kinetic contribution
to S bilinear in the fields AT*. As shown below, due to general covariance
the currents j44 and j__ contain the nonlocal operators 8;1 and 0~', which
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should be interpreted as propagators of the particles in other clusters emitting the
gravitons into the given rapidity interval 7.

In the perturbation theory the currents j 4, j—_ contain contributions linear
in the metric tensor g, :

Jr+ Rty + oy J-Rg—F

The corresponding solution of the FEinstein equation for ¢g"” in the external
fields AT and A=~ will have the form

g =t 4+ SR AT 4 616" AT + O(A?). (40)

Therefore, the reggeon fields A™+ and A=~ can be considered as classical com-
ponents of the gravity field.

The induced term AS should be invariant under general coordinate transfor-
mations, providing that AT+ satisfy the kinematical constraints (32). As argued
above, the currents j; and j__ describe the graviton emission into the given
interval of rapidities from other clusters having different rapidities. In accor-
dance with the condition 9+ A** = 0, two neighboring reggeons for the cluster
have the momentum components ~ k;© and ~ & ,, which are transferred almost
completely to the particles inside the cluster. These momenta are shared by the
particles in other clusters with higher values of k*. Because the currents ji are
universal, for their calculation one can consider an arbitrary scattering process
in the gravitational field having particles with the larger components k* of their
momenta.

2. GENERAL COVARIANCE OF THE EFFECTIVE ACTION

To calculate the effective currents j44 and j__, we use their invariance
under the general coordinate transformations up to the total derivatives in x™
and z~, taking into account the fact that the fields A™" and A~ are invariant
under these transformations and satisfy additional constraints

0 AT =0_A " =0. (41)

As a gravitational field we chose the tensor h,, in the following decomposition
of the covariant metric tensor:

Guv = Nuv + hul/- (42)

The components of the contravariant metric tensor g"” can be found from the
linear equation
9" gov = 0} (43)
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and are obtained by the perturbation expansion
guy = 77/“/ - huu + hp,/)h/)v - hp,phpéhéu +... (44)

Note that for the tensor h,,,, and its derivatives we shall use only lower components
implying the Minkowski signature in summation over the repeated indices. The
effective currents j, and j__ can be calculated in the perturbation series over
the tensor components b, . For example, j; 4 can be presented as follows:

jis =hiy + PR M)+ PO (R) + ..., (45)

where the polynomials P( ) can contain derivatives 0, and integral opera-
tors 1/04 acting on the ﬁelds hyuw. Furthermore, we distingwish the compo-
nents hi4,hs4+ and h,,. The corresponding set of recurrent equations for the

homogeneous polynomials PJ(:fF) are obtained from the general covariance of the
induced action using the infinitesimal transformations with parameters , and x4:

5P(n (5 n— 1
++2 ++ 2111/ y 4
R po OoXp + 5 (9+Xp Z_; Shpe PN (0
5P sp")
2 = 4
5h++ 8—1— 5h pX+ = 0. ( 7)

In the perturbation expansion over h,,, the right-hand side of the first equation
should contain only the terms of the same order n. It is also implied that after
the differentiation over h,q, h,4 and hf}r the corresponding tensor components

in Py should be replaced by the subsequent factors.

The second equation can be easily solved. Namely, PJ(FT should contain

the dependence from h,, and hyi only in the form of the following linear
combination:

10,
Xoy =Xyo =hoy — 5 ER g (48)

Moreover, we can add to the solution of the first equation an arbitrary function
of another linear combination
9
Zpo' == hpo’ - 28_h0'+. (49)
+

It is convenient to introduce two independent variables: X, and

o) 0,005 o)
Yoo = hpo — 8” hoy + e Chiy = hpe _2£X”' (50)
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Then the left-hand sides of the above equations do not contain the derivative
in Y, and the first equation can be written as follows:

OPY P
o = 2T X 51
8X0-+ 8+X o 5hpo' po’X ( )

Here the right-hand side should be expressed in terms of the variables X,
and Y,,. In particular, using

PY —n,, (52)
for Pﬁi one can obtain the equation
P
O+ Xo = —2X54+0+ X0, 53
ox,, O+X +0+X (53)
where the following relation was used:
Ohyq =204 x4 — 2704 X0y (54)

with the subsequent integration over x4 by parts. Note that the first term 204 x+
in dhy4 gives a vanishing contribution to the induced action AS in this order
due to the kinematical constraint

0L ATT =0. (55)
Therefore, from Eq. (53) we obtain
(2) _ 2
Pl =-X7.. (56)

To find Py in upper orders of the perturbation theory, one should use the
following relations:

Shot = Oox+ + 04 Xo — X (O4hop + Oshyp — Ophis), (57)
5hm/ = Os Xv + 8I/XU' - Xp (8uhap + 8ahl/p - 8phl/a) . (58)
Thus, in the third order we obtain the equation
op.”)
0 Xo = —2Xohop0s Xpr +2X, 1 0P X, (59)
00Xt

where the vector
O
(5(2)XU+ = —Xp (aJrng- + 8PXU+ + a[,—Xer) + axpaJrXer (60)

enters in the infinitesimal transformation of X,

0Xoy =04 xo + 0P Xoy. (61)
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With the integration over 1 by parts, one can rewrite Eq. (59) in the form

ap) Oy
Oy Xo = (aJrXU)Xer (thf + Yap) —2Xo | 5 Xo+ ) 0+ X54 —
0Xot o
1 5 Oy 1
= 2(0oxs) | 7= Xot | 04 X5 —2(07x5) | 7~ Xs+ ) 5= Xop. (62)
o o o
After that its solution can be easily found:
3 _ ! Oq
Pl = Xoy X1 Yos =2 | 7= Xoy | | 5~ Xo+ ) O Xsy (63)
o o

Integrating by parts and using the above expression for Ys, one can simplify
this result:
05

o+ 5
04

Therefore, we obtain for the effective currents j and j__ the following series:

3
PO = Xy Xorhpy — Xoy 22 X2, (64)

, O

J++ = h++ - Xng + XerXUJrhpU - XUJraXpQJr +.o (65)
O

joo=ho = X2 + X, Xo_hpo — Xg_a—Xﬁf +... (66)

One can verify that with our accuracy these currents are transformed under
the coordinate change as follows:

. O
0jr+ ~ 20+ (X+ — htoXo) + 0+(Xo — hapo)a(h++ - X2,). (67)

It allows us to guess the law of transformations of j in a general case
. F o 80' . o op
0jtt = 201X + 0xx o 0xe X1 =97 (68)
3. RAPIDLY MOVING SCALAR PARTICLE IN A GRAVITY FIELD

The general covariance condition for the effective reggeon currents

(6h00) =0 (69)

—5hp,, J+

is a consequence of equations of motion for the relativistic matter propagating in
the corresponding gravitational field, because the effective action can be viewed
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as a backward reaction of the rapidly moving particles on the processes taking
place at a given interval of rapidity. Due to the universality of the action, for its
calculation one can consider an arbitrary type of the colliding matter.

Let us restrict ourselves to the scattering of the high-energy scalar particle
off the gravitational field. The action for the free massless scalar field ¢ in the
gravitational background can be written as follows:

Ss = / d“w—_g%(@m)(éyqb). (70)
The corresponding energy-momentum tensor is
T = (0u6)(000) = 509" (0,600 an
We introduce the covariant d’ Alambert operator
V2= % 9" \/—g0, = D"0,,, (72)

V=9

which is symmetric for the invariant scalar product of the fields
/ d*a/—gVie = / d*a\/—gdV3. (73)
The equation of motion for ¢ is
V24 = 0. (74)
The energy-momentum tensor is conserved:
DT, =0, (75)

due to the equation of motion.
One can also construct the equation for the Green function G(z,z’) of the
scalar particle
~V%(2)G(z, ") = 6*(x — 2). (76)
Its arguments can be interchanged with the similarity transformation

G(z,2') = \/—g(x’)G(m’,m)\/%g_(x). (77)

The variation of the Green function over the metric tensor can be written as
follows:

5G(xa') = / dhyG(a, y)3(V=GV) Gy, ') =

B 0G(z,y) y 0G(y,x")
_ / Ay T 8)
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Under the general covariant transformations, which can be written in the form

5(9""vV/=9) = V—=9(9"" Dox” + 9" Dox” — """ DsX?), (79)

the Green function is transformed as follows:

5G(x,2') = X° (£) == G, 2') + 17 (&)

p G(z,z'). (80)

0]
8%‘/0
The corresponding S matrix exists providing the metric at infinity has the
Minkowski form
lim g"” =nM". (81)
r—00
In this case, the scattering amplitude f(p,p’) is expressed in terms of the matrix
element of the Green function with amputated free propagators

f(p,p’) ~ <p’ tlim , lim 8§G(x,x’)8§, p>, (82)
—0o0 t/ ——o00
where the initial and final particles are on mass shell:
pP=p?=0. (83)

The scattering amplitude is invariant under the general coordinate transfor-
mations, because the infinitesimal parameter y at infinity tends to zero. Note,
however, that generally the particle energy and momentum are not conserved.

For our purpose it is enough to find the Green function only at high energies:

Po A Py — 00. (84)

For example, let us consider the colliding particle with the momentum

pA =Ny \/g (85)

In this case, the wave functions (p4| and (pa-| are rapidly oscillate and we can
write the covariant d’Alambert operator in the equation for G(z,z’) as follows:

1 1
V2=02+h""0%+20,h°")0_ + i(amp[,)gpf'a, + ih/ﬁ(auhpg) g7 0_,
(86)
where we introduced the notations
gpg = npa —+ hpg, h'u7 = _hl‘«+ —+ huphp+ + ... y (87)
h__ = —h++ + h+php+ — h+phpo'h0'+ + PPN (88)
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We also imply the following decomposition of the usual Laplace operator:

92 =0,0_ + 0r0+. (89)
The closed expression for the induced current ji 4 is
o2 92
- P —2 %Yo
==V "=, 90
J++ =3 ER (90)

where it is implied that the differential operators in the end of the expression act
to the left after their integration by parts. One can also use a semiclassical ap-
proximation for the Green function. We shall return to the semiclassical approach
in another form in subsequent sections.

4. <KEIKONAL» CONTRIBUTION TO THE EFFECTIVE ACTION

As mentioned above, in the perturbation theory the scalar particle in the
intermediate states is strongly virtual in accordance with the fact that in our
kinematics the gravitons emitted from it belong to the clusters with their rapidity
significantly different from the particle rapidity. Therefore, we can expand its
free propagator as follows:

11 1

1
_@N_&&+ 0 0F 1)

0,0_ % o, 0_

The leading terms ~ (h™T)" are canceled partly in the perturbation expansion
among contributions of the Feynman diagrams corresponding to a different or-
dering of the vertices Sj, in time, because the eikonal term with intermediate
particles on mass shell in our case is negligible. To clarify this important fact,
we calculate here several terms of the expansion of scattering amplitude in the
Fourier transform V (k) of the interaction term A4 . Omitting the normalization
factors and the vertices V' (k;), the scattering amplitude for the scalar particle with
the large momentum p can be written in the second order of perturbation theory
as follows:

eik _ 1 1 (p+ k1 +ko)® = 2(kaka) (k1k2)

2 Ttk k) ke kE 20pkn)(pky)
©92)

where we used the reality requirement for the initial- and final-state particles
p*=(p+k+k)?=0 93)
and the condition of the strong virtuality for the particle in the intermediate states

2(phs) ~ 2pks) > k? ~ K ~ (kika). 94)
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In an analogous way, one can obtain the following contributions from the eikonal
diagrams in the third:

Agik — 1 1 N 1 1 N
(p+F1)?(p+E1+k2)?  (p+k2)? (p+ k1 + ko)?
1 1 1 1
PR kit k)2 k) (ki t Ea)?
1 1 1 1 B
- (p+k2)? (p+ k2 + k3)? * (p+k3)2 (p+ho+ k)2
o ks(k1 4 ko) Kiko ko(k1 +k3)  kiks
" dpks p(ky + ko) pkipks  Apks p(ky + k3) pki pks
kl(kz + k?3) koks

4pky p(ko + k3) pko pks

95)

and fourth order:

Acik k1ko ( ka(kr + ko + k3)  ks(ki + k2)
8pk1 pka \ pkap(k1 + ko + k3) pks p(k1 + k2)
ka(k1 + ko + ka)  ka(kr + k2) > _
pks p(ki + ko + k) pkap(k1 + k2)
_ k1ks ( ka(ki + ko + k3)  ko(k1 + k3)
8pk1 pks \ pkap(k1 + k2 + k3) pka p(k1 + k3)
ko(ki + ks + ka)  ka(k1 + k3) ) B
pha p(k1 + k3 + ka) pkap(k1 + k3)
_ kika ( ks(k1 + ko + ka)  ka(kr + ka)
8pk1 pka \ pks p(k1 + ko + ka) pka p(k1 + ka)
ko(ky + ks + ka)  ks(k1 + ka) > _
pko (ki + ks + k) pkap(k1 + ka)
_ koks ( ka(kr + ko +k3)  ki(ke + k3)
8pka pks \ pkap(k1 + k2 + k3) pk1 p(ka + k3)
kl(k2+ki3+k4) k4(/€2+/€3) ) _
pk1 p(ka + k3 + ka) pkap(ka + k3)
_ koka ( ks(k1 + ko + ka)  ki(ka + ka)
8pka pky \ pks p(k1 + ko + ka) pk1 p(ka + k4)
ki(ko + ks + ka)  ks(ka + ka) > _
pk1 p(ka + ks + k) pkap(ka + ka)
 ksky ( ka(k1 + ks +ka)  ki(ks + ka)
8pks pky \ pka p(k1 + k3 + ka) pk1 p(k3 + ka)
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kq (kg + k3 + k4) kg(kig + kj4) ) _
pk1p(k2 + ks + ka) pka p(ks + ka)
B (/f3 + /€4)(k1 + kz) k1ko ksky B
8p(ks + ka)p(k1 + k2) pki pka pks pka
_ (ko + ka) (k1 + k3)  kiks  koka _
8p(ka + ka)p(k1 + k3) pk1 pks pka pka
(k2 + k3) (ki 4+ ka)  kika  koks

— . (96
8p(ka + k3)p(k1 + ka) pk1 pka pko pks (%6)
The corresponding «eikonal» terms indeed appear in the effective currents
eik 2 95 o
I R g — X5 — Xoy a_Xer -
Jr
O v 0o 1[0y 0\
-ei a(f
],Ii =~ g—_ — X37 — nga__Xif —
0 O oo 1(05 5\’
- Xu_a—iXa_aTXl)_ ~1 (a_X”—> +..., (98)

where we took into account that due to the general covariance the light-cone
components hy and h__ can enter in the final expressions only inside the
tensors X4 and X,_, respectively.

Looking at these expressions and comparing them with the above perturbative
contributions obtained from general covariance considerations, one can formulate
the hypothesis that the complete result for the generally invariant currents is
obtained from the «eikonal» expression by its «covariantization» corresponding
to the substitution of the Minkowski tensor n*¥ everywhere by the world metric
tensor:

nt — ghv. 99)

This hypothesis leads to the following result in the perturbation theory:

) 0
Jit =hpy — Xoy g7 Xy — Xa+gal)éXu+9WXu+ -

« 8 g, 8 v
— Xatg 5£Xa+9 péXwg“ Xyt —

7P a(f v a a
T (X" Xy ) 22 Xar g™ Xy 4., (100)
1 \a; 8,
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J--= h__ — XU—gUpX/)— — Xo- gap gp X MVXI/— -
D ,0
— Xog*P X, gL X, "X, —
9" 5 g’ 5. Xn=9

op
e (g—”Xug””Xu> g_pxa,gaﬂxﬁ, 4. 0

Moreover, it allows one to formulate a closed equation for the important «eikonal»
contribution

J -eik J -eik
(8+X/)) 5X J++ = ((8/)XU) + (8UX/))) 577paj++

817 g el
- (Xp(al)Xa+) + (80X/))Xp+ - (E(8+X/))Xp+>) 5X J+i7 (102)

where, as usual, the factors in front of derivatives should substitute in the same
position the corresponding variables X, and 7,, removed by the differentia-
tion. The first term in the right-hand side of this equation corresponds to the
infinitesimal transformation of h,. in the lowest order of the perturbation theory.

For example, in the fourth order from this «eikonal» equation we derive the
identity

0 Oy Oy Oy
- (8+XH)iXU+5‘ X2 X/H- R (8+Xﬂ)a+ X92+
Oy 8 19) 19)
—2X, X, 0 2x% ) =ZX,.0 =
‘+8 +5- o, X014 Xp — (8+ p+) R ptO+Xp
0, Oy
= —Xo+ ((9oxp) + (Opxo)) iXiJr —2X54 aXer(@an)XaJr +

8(7 80'
+ (Xp(aan+) + (80Xp)Xp+ - (E(8+Xp>Xp+)> EXer +

+ 2Xu+§_iXo—+ <Xp(aan+) + (aaXp)Xer) - g_i(aJrXp)Xer) , (103)

which can be verified with integration over ™ by parts.
In the fifth order one can obtain the relation
1)
0Xpt

0 0, 1 Oy 15)
- X DX Ooa X — 30) (522, ) (B2, ) +

O

ot Xoy —
Yo,

el au
(0 X0) 55— P4 = =X, (Oux) 5~ cX

Oy Oy Os
+ (Xp(aan+) - (a(3+xp)Xp+>) 2, Xa+a X2+
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8 8(7 80'
+ Xu+i (X6(36X0+) - (E(3+X6)X5+)> EXpQJrJF

A 95 Os 9
<2Xu 2. FXoy + (aXﬁJr)) aXer (X(S(aéXer) - i(a+X5)X5+> :
(104)

It gives a possibility to calculate the corresponding «eikonal» contribution to j4
in this order:

, 0, ) Oy
PO = X, X 2R Xy 22 X2, —
++ +9 8 pt 8_;,_ +79 8

1o 0y (05 oy \° 1[0, auz Do o
_ Xy+a (a X,)Jr) _E(EX“*a X7 EXV+ . (105)

In the sixth order we obtain in a similar way

ik(6) 0Os Oy 0 Do o
P—T—+ =—Xo4 7 as Xy as Xyt a# Xa+a X/)+

s O (05 o5 \° 95 [ 0y aNQaUQ
X6+3+XV+3+ (3+X ) X5+3+ (3+X“+3 *o EXH -

1(9 ) 21, (05 2\ (9
_ (Y% x Gux2 ) _ 1% (9 o Yo x2 )
4 (3+ "o, ,)+> 8 <a+ (aJr ,)+) ) (3+ V+> (100

-eik

—

To find a general structure for the currents j‘“k and j we should inves-
tigate in a more accurate way the recurrent relation following from the eikonal
equation (102).

To begin with, one can use the following formulas (see (60)):

2XU+5(2)XU+ = Xo4: X, (OpXo + Ooxp) =

05 [ Oy
U+8_2Xp+(a+XP) - (3+Xa)a—X§+ + 8+X”8 X2, (107)
for the variation of the structure X2 -+ present in the previous order. On the other
hand, the sum of the first two terms in the right-hand side can be interpreted as
the variation of the expression

= X

Oy
~Xop o 5. X2, (108)

appearing in the next order. The last term in (107) gives a vanishing contribution
in the second order. For higher orders it is multiplied with two possible struc-
tures: X,,0,,/04 or 0,,/0,. The second structure is contracted with the index p
with the operator 0,,/04 acting on another function. Let us consider these two
possibilities separately.
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We obtain for the variation of the first structure

9 9y
5(2)Xu+i = Xyt (Ouxp + aHXV)a =

0y 0y 0y dy
= XuOu Xu+8 X/Jrl’auxl/a - (a(aJrXu)Xw) 9, (109)

The second term in the right-hand side cancels the contribution from the last term
in the variation of X g (107) due to the relation

O X2 =0. (110)

0y
X/HrauXV anJr + X/HrauXa a,

The last term in (109) corresponds to the variation of the following structure in

the next order: )
1 /0,
-7 (8+X§+) (111)

provided that the operator X, (9,,/9) was applied to X7, . In other cases we
obtain from the last term the term canceling the variation of the contribution

1/0 0
—— (x| = 112
2 <3+ g +> Oy (a2
in the next order. The first term in (109) can be written as follows:
Oy 0y 0 0y
(aJrXu)a Xqua + aJrXu 8H Xy 8+ (113)

Here the first contribution leads to the following structure in the next order:

—Xu+g—iXy+§—: (114)
and the second term vanishes provided it is not multiplied by X,0,,/0+ or 9,,/0+
contracted by the index p with the operator 0,,/0+ acting on another function.
In these two cases we should repeat calculations performed above for the last
term in the variation of X2.

At last, we consider the variation of a product of the operators 0, /04

and 0,/04 contracted with hy, in he):

o, 0,

_( UXP+8PXU)8+ E =

9% \0, 0o 9, 9y Os
- )% % 5 P A O B
(8”’“8 ) L g, T, (a+ o, ) (1
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Two first terms are canceled with the last terms in Eqgs. (107) and (113). The last
term in the above relation can be written as follows:

0, (O, 0 0, (0 0
—(0 L= Z 0 S A 116
( +XH) a+ (a+ a+ ) + +XH a+ (a+ a+ ) ( )
The first term here corresponds to the following structure in the next order:
0, (0 0
X2 2. 117
"D, (m 5, ) am

The second term is not zero only if it is multiplied by X,0,/0+ or 9,/0+
contracted by the index v with the operator 9, /0; acting on another function.
In these cases again, we should perform calculations similar to that with the last
term in Eq. (107). Thus, after cancelation of some terms in the variation of ji
in the previous order, we can obtain the solution of Eq.(102) in the next order,
using the above substitutions.

Even more, one can write the following representation for the effective
«eikonal» currents in an arbitrary order:

N = by — 0 JS%, G =ho_ —0_J%k (118)
The above perturbative results allow one to formulate the following «fan» equation
for the quantities J§*:

(0 = Xow05) JE* = X24 + (9,75%)*. (119)

The solutions of these equations should have the following transformation prop-
erties following from the general coordinate invariance of ji4:

. 2 2
IS = — X 02 Xox = 2= Xo2 Ot Xo- (120)
8i O+
One can verify that indeed these properties are compatible with the transformations

of various operators entering in the «fan» equations

0o 0
5(Xaiaa) = (8iXa)aa - (a(aiXu)Xui> 80 - (8iXu)iXaiaav (121)

Oy 95
5X3i =2X,+01 X, — XaiaZX/)i@iXp) - (8iXa)ZX§ia (122)

and

9
00y ... 0y ... = —(daxu)

i(ap...ap...). (123)
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Here we neglected the terms canceled between various structures (see the last
contributions in Egs. (107), (113), and (116))

O, O
A(S(Xa:taa) = _Xu:tauXUaa + a:tXuiXU:taav A(SXij: = a:tXaaXﬁi

(124)
and
o,
A§D,...0p. .. = —(0pX60s...) Op — Oo...0pX 0, + 8ixua (0p...0p...).
(125)
They generate unessential corrections to ji i proportional to 04
Ajirr = =04 X000 . (126)

5. HAMILTON-JACOBI EQUATION FOR EFFECTIVE CURRENTS

To construct covariant equations for the effective currents in all orders, we
take into account that jiy are invariant under general coordinate transforma-
tions up to total derivatives in z¥. Let us introduce the currents ;¥ related
directly to jii:

1 1
=——9 = — —hiy. 127
8£7ii Ji By (127)

j:F
Using these relations, one can transform the «eikonal» equation (119) for thik to

the form .
—(0x = hox05)jdi = hasx = (hpx)* = (9555 (128)

In «eikonal» approximation, the possible contributions containing the matrix ele-
ments h,, with u,v # & are absent. To restore such terms, we should impose
on the equation the property of general covariance. To begin with, the inhomo-
geneous term can be modified in such a way that it becomes proportional to a
matrix element of the contravariant metric tensor

hat — (hps)® = has — g" hpshgr = —gT 7. (129)

Here and later, the tensors with covariant and contravariant indices are considered
to be different. They are related by a contraction with the metric tensor.

Using similar modifications for the linear and quadratic term, one can obtain
the generally covariant «fan» equation for the currents j¥

po

g¥90,§T = 7T + QT(agﬁ)(apﬁ). (130)
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In accordance with the general covariance, the currents jT are transformed
as follows:
55T :2x¢+xp8pj¢, (131)

where the infinitesimal parameters xT and x” tend to zero at large = in accordance
with the fact that jF are defined up to the contributions vanishing at 2+ — oo.
Indeed, the induced part of the effective action with an integration over z* can
be written as follows:

1 ) o _02ATT
AS:_Z—mQ /d ridx xllgloo J 5 +

92A—
+/d2dex+ lim <g+‘T>> (132)

and this expression is not changed under such transformations.
The equation for jF can be presented in a simpler form

1 1
g°° (§apﬁ — gff) (5&73'¥ — gf) = 0. (133)

Its formal solution is

jT =22T —wTF, (134)
where the quantities wT satisfy the light front equation
g’ 0,wT O,wT = 0. (135)

The last equation can be obtained in an independent way if we would search
the solution of the generally covariant d’Alambert equation (see Eq. (72) in Sec. 3)

V2p(x) =0 (136)

for the wave function of the scalar particle moving with a large momentum pF
in the semiclassical form

5 ) = exp (=ilpla™ + 07 (@), 0%() = WF), s

where 0F (z) is a rapidly changing phase and jF is the effective current in our
normalization. Indeed, by neglecting the derivatives from the metric tensors
in comparison with large derivatives from ¢*, we obtain from the d’Alambert
equation its semiclassical version

1 1
g’ (gapﬁ - gff) (5&7.7'¥ - gf) =0, (138)

which coincides with Eq. (133) for jT derived above.
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The S matrix for the particle scattering at a given impact parameter off the
gravitational field in the semiclassical approximation has the following form:

S = lim exp <z%g¢(m)) , (139)

xTr—-—00
providing the initial conditions for jF are

lim ¥ (z)=0. (140)

zt——o00

In particular, this S matrix contains pure eikonal contributions for which the
particle in the intermediate states lies on mass shell. Such contributions should
be absent in the effective action, although they are reproduced by the iteration of
effective vertices in the s channel. It is the reason why the effective current jF
entering in the action at large 2 is proportional to the logarithm of the S matrix:

lim jT(z)= —i%lnS. (141)
p

¥ —0c0
It is well known [39] that the solution of the light front equation
977 Opwlow =0 (142)

can be expressed in terms of the null-geodesic trajectories of particles in the
gravitational field satisfying the equation of motion
d?z* o dx® dxP
(dr)2 — B dr dr’

(143)

where 7 is a parameter increasing along the trajectory and I' 5 is the Christoffel
symbol. The geodesic equation is presented below in the form of the Hamilton
equations

dxt dw 1
— =g" vy — = Vaa l“ja 144
dr g w dr 2wuw g (144)
where 5
dx
Wo = Oqw = gag—— (145)
B dp

plays a role of the particle momentum p,,.

Note that the light front equation can be considered as the Hamilton—Jacobi
(HJ) equation for the action w. Its general integral contains an arbitrary function,
but it is well known [40] that this general solution is expressed in terms of the
so-called complete integral containing only four arbitrary constants:

w=af(z" c1,c2) + A. (146)
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The appearance of the parameters a and A is related to the locality and the
homogeneity of the HJ equation (its invariance under the transformation w —
bw + B). Really, the HJ equation is an integral of motion for the Hamilton
equations allowing one to find the canonical variables z* and w, as some functions
of 7. Indeed, providing the HJ equation is fulfilled at some 7 = 79, it will be
valid at arbitrary 7 due to the relation

d
ng’“apwa,,w =0, (147)

which follows from the Hamilton equations. On the contrary, the general solution
of the Hamilton equations can be obtained in terms of the complete integral for w.
Indeed, one can prove [40] that the derivatives of w over the parameters a, ¢, 2

ow . d ow ow
8a_f_ ’ 801_ b 802_
are also integrals of motion and, therefore, one can find from the last relations the
coordinates ' (i = 1, 2, 3) as functions of ¢ and six parameters a, c1, ¢z, d, dy, do,
which corresponds to a general solution of equations of motion.
To construct a complete integral w for our case of the massless particle
scattering off the gravitation field from the solution of the Hamilton equations,
we write the light front surface for arbitrary 7 in the form

w(z®, 2, 2?, 2%) = const. (149)

da (148)

Let us assume that, at large distances and large negative times ty, where
gtv = n*, this surface is a plane containing the points parametrized by two
numbers v and v:

X = ton + unj + vno, (150)
where n, nj, ny are orthogonal unit vectors
n’ =n? =n3, (n,n;)=(n,ny) = (n;,ny)=0. (151)

The initial values of momenta are
Vw = cn, w% =2, (152)

where c is an arbitrary parameter which depends generally on u and v (note that
w 1is defined up to a common factor). Then, from the Hamilton equations, one
can calculate 2 and wg for all values of 7 and parameters w and v. Thus, we
can obtain x® = z%(7, u, v, to; n), which is a parametrized form of the light front
surface w(™ = const, depending on the light-cone vector:

1
n=—(1,n). 153
\/i( ) (153)
In the usual form, this surface can be obtained by excluding the initial data (u, v)
and 7 from four components of the vector z.
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In particular, to obtain the effective currents j*, we should put

1
wi =0 n = —_(1,£1,0,0) (154)

V2

* in such a way that

and normalize the functions w
wt =22F — j*. (155)

A possible generalization of the developed effective field theory could include a
superposition of the currents j() with different light-cone vectors 7.

The classical equations for the effective actions, apart from the usual Ein-
stein term G°”, have the induced terms for the components of the metric ten-
sor g7, g°F and ¢g°?. These terms are equal to the corresponding functional
derivatives of the action AS. The contributions proportional to AT+ and A~~
contain the functional derivatives of the currents j~ (x) and j*(z), respectively.
Due to the Hamilton—Jacobi equations, these derivatives satisfy the relations

35 % (2)
5gn (y)

297 (0,%)0s — (O (O,wT )0 (2 — ), (156)

The induced terms in the Einstein equation play the role of the energy-momentum
tensor T}, (y) which is conserved due to the general covariance of the action AS.

6. EFFECTIVE ACTION FOR SHOCK-WAVE GRAVITATIONAL FIELDS
To illustrate the general approach based on the effective action, let us con-

sider the Hamilton—Jacobi equation for the massless particle scattering off the
gravitation center with the metric tensor given by the Schwarzschild solution [41]

r+« r—a«

s — (7" - O‘) P2t (”_0‘> dr — (r+)? (420 + sin0d%¢) . (157)

where we used the spherical coordinates. The parameter « is proportional to the
mass m of the attraction center:

a=+ym, k?=8ry. (158)

The Einstein equations for the massless particle moving around the central body in
the plane (z,y) corresponding to § = 7/2 are reduced to two ordinary differential

equations [39]
2 4
<Z—;) - % — (12— a?) (159)
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and 5

d
LJ_O;) = =V +a =2 =, (160)
where b in our case is the impact parameter of the colliding particle which moves
for t — —oo along the line parallel to the axis z, which corresponds to the

following initial condition for the first equation, describing its trajectory:

b
r(¢>)\¢ﬁ0 ~ 3 — 0. (161)

The solution of this equation can be expressed in terms of the elliptic integral of
the first kind

= é. (162)

7 bdr
J Vr+a)t = (r? —a?)b?

It allows one to find r as a function of ¢ and b. Inverting this function, one can
find b:
b =b(r, ¢; ). (163)

The solution of the second equation can be written in the form

B r dr (r+a)?
f(t’r’b’a):t_/\/(r+a)4—(7“2—062)b2 r—ao
0

=C, (164)

where the constant C' is found from the initial conditions for r at ¢ — —oo.
In accordance with our normalization, we can construct the complete integral for
the Hamilton—Jacobi equation

w™ = 2f(t,r,b(r, s ), ), (165)

where the unit vector n defines the direction of the initial particle momentum and
the impact parameter vector p is orthogonal to it. The angle ¢ is in fact the polar
angle with respect to the vector n.
To obtain the effective currents jF, we should put n = Fe3 and write w in
the form
wF =w) = 2,F — 7 (166)

To simplify the perturbative expansion of the effective currents, we consider
below the massless particle scattering off the gravitation center moving with the
relativistic velocity v — ¢ in the direction of the third axis e3. Due to the Lorentz
contraction, the field of this center is given by the metric corresponding to the
shock-wave solution of Aichelburg and Sexl

(ds)? = nudatde” + h__(dz™)?, (167)
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where 8
h__ = —Gupn|x|dé(z™), 168
Noa Ix[0(z™) (168)
with x being the transverse component of the vector x”.
The Hamilton equation for the particle moving in this field has the form

dxt dw, 1

ar = niju - 5ih——w+, ? = §w+w+8ah,,. (169)

Before reaching the shock wave, the particle propagates along the straight line:

ot =al +whT, Wi =" (wn)o, Muwhwy =0, (170)

where xg and (wy )o are initial values of coordinates and momenta. The collision
with the moving plane x~ = 0 takes place at the moment 7. fixed by the equation

Ze = te, (171)
where the coordinates of the particle are
Ze =20 + wS’TC, te =to + ngC, P = X9 — WoTe. (172)

Here we introduced the notation p for the transverse coordinate x at 7 = 7.
At 7 > 7. the new values of w, are

4 4 p
wy = (W), w_=(w_)o+ —=wiGulnpd(z™), w=wo+—=Gu—wy,
+=(wi)o (w-)o \/Q+MP() o+ Bt

(173)
where p is fixed by the initial conditions.
From the equation for z* we obtain
dgpa dg/)a
Wplg == = Wptly (77 wu—5ih__w+) o =
8 wp ., _ 8 _
2
=—wi | ——=Gu—0(z7)+wy—=Gulnpo_é(x . (174
2 (- J5Gn s s S po_oa) ). (174)
This relation is compatible with the Hamilton—Jacobi equation
9 wowe =0, (175)

which can be verified by its differentiation in 7 with the use of the Hamilton

equation for w,. From the above explicit expressions for w, we also derive

that the metric tensor g”’, calculated in the points of the particle trajectory

ah = aH(r), is

PwWo 2 1 _ -

Py T B )) o >>
(176)

g7 =nf7 — 6i51%Gu (lnpé(m_) — (
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The coordinates of the massless particle are

et =aftwi(r—1.), x=p-—wo(r—1) 177)

before its collision with the plane wave and

T =wi(t—Te), xX=-— (— + EGMp_pQ> wi (T —7) + p,

;4 2 1
+ ot “o wop
T =x) + ——l——Gu(——i——Gu—))x
(w+ VR CEIVERN S

4
X wi(rT—7) — —=

Gul 178
\/iunp( )

after its collision at 7 > 7.. Here we used the identity

/dmfﬂ(x*)é(x*) = % (179)

Note that the particle moves along the light rays g,, dz” dz® = 0 to the line
X = wo(T — 7¢)-

Calculating 7 — 7. and p from the first two equations and putting the result
in the right-hand side of the third relation, we obtain the complete integral for the
corresponding Hamilton—Jacobi equation in our normalization

w=2z"—j=2z7, (180)
where the effective current
. 8 wop _ 2 1 _ > w(')" -~
= —Gu| —z2 + —=Gu—=z~ —lnp| +2—x". 181
’ V2 M<W+PQ V2 uPQ P W+ (1sh
Note that this current can be written as follows:
+ 2 +
- 8
j:—2w—0x_+u——G,ulnp+2w—0x_ (182)
Wy x~ V2 Wy

and the equation for p is simplified:

8j =220 (183)
W4

Let us consider the simplest case where the particle colliding with the shock
wave has the following initial conditions:

wo =wy =0. (184)
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In this case we have for the effective current

. . 8 2 r~
it =3jl9) = EGM (EGMF - lnp) , (185)
where the vector p satisfies the equation
4 _
X:p(l— ﬁau%). (186)
Its solution is
8 z~
p=xf(z), z= EGNW, (187)
where ) s y
1 z oz z %4
=—(1 1422)=14-——+———+... 188
fE) =5+ Vit22) =140 -7+ 5 — 2=+ (188)

The current T can be written in the form

j+=a(1@z—lnp) =—a(lnz+ ¢(z)) a:iG,u (189)
4p? Cov2

where )
1 =z z z 5 7
-1 Dt s LA 1
¢(z) =In f(2) 170 18 tRF Twmc T (190)

On the other hand, using expressions (97), (98) and (105) for the eikonal cur-
rents jiﬂj‘[ and (48) for X+, we can write the current j = (127) for the shock-wave

field (168) in the form

2
+— gl a_(
Wi anx—i—a_

o )2 a® z, O, (x[, )2
212 O_ 222 0_ \ 22
4

a* x, Oy x, Oy [ To \2 a Op [ To \2 2
‘o aes (o) * e (a (3:2)
_a_"’&&&éx_ua_u(x_a)ia_"’&i ﬂ(x_o)z ‘o
0_ 222 0_ 222 0_ 222 0_ \2x2 40_ 222 0_ \ O_ \2x2
a® (O, x Oy [ o \2 Oy [ To\2
"2 (a—_mm—_(@) > <a__ (z2) > (191)

By differentiating over z, and integrating over £, we obtain the same expression
for j%, which verifies our general approach. Note that the singularity of j* at
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z = —1/2 appearing at small |z| (see (188)) leads to a finite radius of convergency
of the perturbation theory, although the singularity is absent at = > 0.

Let us consider now a more general situation of the massless scattering off
the gravitational field with the metric

Guv = M + 6,0, V(x)d(z™), (192)

where the potential V' is an arbitrary function of the points on the shock plane.
Repeating the above calculation, we obtain the generalized equation for the point p
in which the particle crosses the plane

x=p—"=0V(p) (193)

and the expression for the effective current 57 is

Jt==Vip)+ %(Bv(p))2 — V(g + = (194)

T

Note that the equation for the crossing point p can be written as the stationarity
condition for jT as a function of p

85" = 0. (195)

Using the perturbation theory for the solution of the equation for €, = p, — z,
in metric 7),,,

x x xr xr x x
TVH - TVum 7‘/;11 + QTVHIM TVmua 7‘/112 +.., (196)

€y =

where
Vi piae.in = Oy Opip O, V (%), (197)

and putting the result in j 7, we find

1 2 —)2 1 2
j:i—k = —V(l‘) +x (ava) - %Vuau (avg) + ... (198)

in agreement with the expressions (98) for the eikonal contribution with the
simplified expression for X, _:

Xy g (199)
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7. VARIATIONAL PRINCIPLE FOR THE EFFECTIVE CURRENTS

Let us consider an even more general configuration of the gravitational field
consisting of n shock waves moving in the z direction:

n
Guw = T + 0,6, Y VO (x)8(2™ — a;,), (200)

r=1

where x,. are some parameters ordered in the following way:

T, <y <...<7T,. (201)
By solving the Hamilton equations for the massless particle flying at 7 — —oo
along the z axis from z = —co with the impact parameter p and wyi = wo = 0
for each of the intervals z,; <z~ <=z, forr =1,2,...,n, we obtain for the

points p,. in which the trajectory crosses the corresponding planes the following
recurrence relation:

Ty — X1
P1=P;P2=P1— 2 2 ! 81V(1)(p1),

_ — 2
Lo — X
ps = py — 223" 9,70 (p,), ...

2
t=1
o (202)
Pn = Pn-1— % Z atv(t)(pt)a
t=1

— — n
T —x,
X=p,— TI Z 8.V (p,),
=1

where x and =~ are coordinates of the particle after its interaction with all shock
waves. Note that the particle coordinate z~ and its momentum w, are not
changed during collisions:

T =wyT g - (203)

But the momenta w_ and w are different in each interval x,” <z~ <=z, :

IR ) e = YN g0 204
w_ 2;‘/ (p)0(z~ —z;), w=uw, 2;8tV (p,).  (204)

The metric tensor, calculated on the particle trajectory in this interval, has the form
n
g =7 = 8567 3 (VO(p)oa™ —ay) -
r=1

S ) S (pt»?) . s)

t=1
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compatible with the integral of motion
9 wpwe = 2w w_ — w? + cuﬁrngJr =0. (206)

Note that the total derivative of g7F in 7 is in agreement with the Hamilton

equations

dgt+ 2w d
ZT = —wd gttt 2 (207)

w? i dr’
The coordinate x71 is also changed after each collision, and after all collisions
we have

1 n 3 B
x+:x§{+52(xr+l—xr) (
r=1

where it is implied that p,,; = x and z,_,,; = x~. Thus, we obtain for
the corresponding effective current in the above gravitational field the following
expression:

8‘fvﬂ )——ZVT)pT (208)

t=1

n

2
T 8 n
7= — ) (Z VY (m)) =Y VW), 09)
t=1 r=1

r=1

where it is assumed that the points p, are expressed in terms of x and z_ with
the use of Egs. (202). Due to these equations, the effective current can be written
even in a simpler form

N (pT’ r r _ _
.7+ = Z +1 E V( ) 'r , pn+1 =X, xn-‘,—l =T . (210)
r=1 xT’Jrl — T

Such a form of the effective current gives a possibility to write the equations
for p, as its stationarity conditions:

a,jt =0. @11)

One can verify the perturbative expansion of this effective current by comparing
it with the general expressions (98) for the eikonal contribution.

Let us consider the continuous limit of the scattering problem, assuming that
the number of shock waves is infinite and the distance between them tends to
zero. In this case, the metric tensor on the particle trajectory is

_ _ w?
977 (x,z ):npa_(gi(gi <g++(P7$ )+_w2> , (212)
+

where
w=-wi0_p (213)
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and p is considered to be a function of x_ and x. This function is calculated
with the use of the equation of motion for the colliding particle. The effective
current can be written as an extremum of the Hamilton—Jacobi functional S:

j+=l;1(ﬂin)57 S = /dy‘L L=g"(p,y")+(0-p)% (214)
Hin

where the variable y~ enumerates the shock waves.

This functional can be considered as a classical action for the massless particle
moving in the gravitational field, which allows one to formulate a variational
principle for the effective current 7. The current j© should be calculated on the
geodesic trajectory p(x~,x), which can be found from the stationarity condition
for S having the form of the nonrelativistic Newton equation

20%p=08g"T. (215)

Note that the «potential» g™ /2 depends explicitly on 2~ and, as a result, instead
of the energy momentum conservation from the Newton equation we obtain the
relation containing d_g*+:

d

T=(0-p)* —g"") +0-g"" =0, (216)

Further, with taking into account the classical equation for w_

dw_ 1

— = ——w;0_g*t 217

do— 2W+ g ) ( )
we can integrate relation (216) and obtain the integral of motion

(0-p)* —gt* —2%= =0, 218)
W4

which coincides with the Hamilton—Jacobi equation for our case.
On the other hand, the variation of j~ over p after the use of the stationarity
equations gives
55T =2(0-p)dp (219)

and, therefore, the particle momentum can be written in the form
p=8j" =20_p. (220)
Further, the differentiation of expression (214) leads to the result

dj+ ,+ ‘+
P L=0_j"+(0-p)0j", (221)
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which leads to the relation
0_jT =L—(0_p)8j* = —H, (222)

where the Hamiltonian is

2
H= % —gtt, p=8jt =20_p. (223)

As a result, we obtain the equation for j valid in the eikonal approximation
(ct. (130))

0-jT=g"" - i(aﬁ)? (224)

The current j* (214) can also be presented as the following functional of x and p:

x

jt = / (—H + po_p)dy", (225)

—0o0

calculated on the solution of its stationarity equations

1
0-p=5p, O0-p=-0g"". (226)
In the general case of an arbitrary metric tensor g#” for the calculation
of 57, we can use the well-known action for the massless particle moving in the
gravitation field

e(r) v

S = / drL, L =pua" = —=9""pupy, (227)
— 0o

where e(7) is the Lagrange multiplier. The stationarity of .S leads to the Hamilton
equations (144) with the substitutions w, — po and 7 — 7 = f edr. These
equations should be solved for the following initial conditions:

Jim oz =p lim 2t =af, limopy = lim pt=0. (228)
Expressing the parameters p, 7’ through the running values of z*,z~ and
inserting them in the running value of ™, we obtain the effective current j© in

the form
gt =20zt 7)) — xf). (229)

Its depends on the metric tensor and its derivatives. In a similar way, one can
obtain from the variational principle another current j~ entering in the effective
action.
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8. EFFECTIVE REGGEON-GRAVITON VERTICES

Let us apply the effective action to the problem of calculations of the simplest
effective vertices for the reggeon—graviton interactions in the lowest order of the
perturbation theory. For this purpose, it is enough to leave in the currents ji
only the first two terms of the perturbative expansion

. 105
Jix ~hay — X2, Xot =hor — ———hiy. (230)
204

We also expand the Christoffel symbol

ng

1
I° =~ 5(auhpl, + 0vhpy — Ophyy — Rpo (Ophoy + Ovhoy — Oshyy))  (231)
and the Hilbert-Einstein Lagrangian

V=gR = /—gg" (8,10, — 8,I0, + T3 T4, ~T9T% )~ Ly + Ly, (232)

up* ov pvs op

where o 1
Ly = %(auhpp = Ophyp) + Z((aoh/w)Q - (aUhNN)Q) (233)

and

Ophpw Ouhvo
L3 = hpo ((8uhw)8vhl/p - %aahlw - HT(auhup + Ophpu)+

Oyl
+ 2

1
@@mw—@ma>+mp@w<@@mm—?ﬁm0+

1 3 1
+5@J@J2—§@JMQQ+Z@JWJ@hW>—
—%H@mﬁ—%%w%ww.@w

These expressions are valid up to the terms proportional to total derivatives which
give vanishing contributions to the action Syg.
The action is invariant under the general coordinate transformations

0Sur =0 (235)
with the same accuracy, which can be verified by checking the following relations:

h
0Ly =0, (%(ac%XV — 0y0sXo) + hpuapauXu - huua§Xu> + XpQp,

(236)
0Ls = —xuapu,
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where
thll/ h’l/l/
apy ~ a‘fTauhpp — (92hu) Oshsy — E)"Taaa,)hm +
050, h
+ 2 Tep (8uh6u + 86huu, - 8p,h6u) + (8aauhm/)8phpu +

2
O2h
+ T - 8p86h1/6 (81/]7‘/)” + 8/)huu - 8;1,]1/)1/) . (237)

Because the induced contributions to the action are also generally covariant,
the Euler-Lagrange equations for the total action are self-consistent. We can
write them in the form

[

29

)
09

where in the right-hand side it is implied, as usual, that the calculation of the
variational derivative over g, is combined with the corresponding integration by
parts. The solution of these equations can be expanded in the series over the
reggeon fields A,:

1
=5 /d4a: (ji4+02ATT +j__02A7 ), (238)

hes = Az + O(A?) (239)
similar to the case of the Euler-Lagrange equation for the effective action in
QCD [23]. Inserting this solution in the effective action, one can obtain various
effective vertices for the self-interaction of the reggeon fields A+~ in the tree
approximation. The physical gravitational fields will correspond to the fluctua-
tions 0h = h — h around the classical solution. The functional integration over
these fluctuations in the quadratic approximation will lead to the graviton Regge
trajectories and to various reggeon couplings in the one-loop approximation. This
traditional approach will be considered in future publications. Here we restrict
ourselves to the simple cases where the results can be obtained in the lowest
orders of perturbation theory.

To begin with, we note that, performing the functional Gaussian integration
over hy, from the exponent containing the induced action with the terms linear
in hy4 and h__, we obtain the kinetic term for the fields ALy

1 dix

- ﬁ T (—&,h_H_(‘)Uh__ - h++8[2,A__ - h__8§A++) —

_ =

2K

The kinetic term for the reggeon fields should have an opposite sign. Therefore,
we include in the effective action the bare kinetic term for the reggeon fields

L [ g1, 0 Ass0s4-— *28"‘4”. (240)

1
Skin = o /d4a:80A++8UA__ (241)
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to have the correct renormalized contribution. Strictly speaking, the propagator of
the reggeized graviton should contain the 6 function corresponding to the ordering
of rapidities y in the different clusters

i

(O1(AZ (@) A% (22)) = 4500 — v2) ;o Qa)

1 — x2)

Further, the next order corrections in each of the induced actions
1 d4_x h 1 % h ’ 92 A
o 5 T\ g, o A——
1/0 2
— <h__ 1 (a—ph__) ) 8§A++>

lead, with the use of the Gaussian integration over the fields hi, to the cubic
interactions of the reggeon fields

4 2 2
§1=2 = —i d—; <(§—”A++) O2A__ + (g—”A__) a§A++> . (243)
+ —

Note that the usual triple graviton vertex gives a vanishing contribution to this
interaction.

In an analogous way, one can calculate in the tree approximation the effective
action for the reggeon transitions 1 — n
g = L [ o e AL GRA + oA )92 A 244

=g | 5 O JE(A44)0 A - +0-JZH(A-_)0;A4), (244)

where the «eikonal» currents J$¥(h4y) can be obtained from the solution of the
«fan» equations

1 5‘[, ei 1 aa ? 1 ei
(6& +5 (ahii> 3a> JE = <ahﬂ:ﬂ:> + 70,7597 (245)

The effective action for the reggeon transitions 2 — n (n > 2) in the same
approximation contains a contribution from the usual triple graviton vertex. The
general reggeon interaction n — m is expressed in terms of the solution of the
Euler—Lagrange equation for the effective theory.

Let us consider now the effective action for the reggeon-reggeon—graviton
(RRG) interaction in a tree approximation STRS. It contains the contribution from
the triple graviton vertex (gv) and from the second order (so) correction (~ h?)
to the induced action

SRRG _ 2L /d4l‘LRRG, LRRG _ LgR‘}%G 4 LEORG7 (246)
K
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where
0_h
L = Ay <(8uhu+ - ;*) 0-A -
Ovhy
- <a+hu +Ouhoy + 5 “> aMA> +
Oyh__
+A_ <<8Hhu_ - *2 > DL AL —
oy A
- (8_hu+ +0.h_y + 0 '; ' ) 8HA++> - h,,l,a”%a[,A__ -
= hy(0-A__)0+Ary = hy (0, A44 )0V A+
1 1
+ hop <__A++33A - _A**83A++ -
(3 Ay )0, A+ 5 (8+A++)8 A——>7 (247)
and 18
Lt¢ = (‘ <h+ - 58_h++> Ay +

1 10, 05
+5 <ha+ 30, h++> <aA++)> A+
10,
+ (— (h_+ 55t ) A+

1 10, Os
+3 (ha_ — Ea_h“> (a—A__>> PALL. (248)

The effective action SERC is invariant

§SRRG =0 (249)
under the «Abelian» part of the general covariant transformation
0hpe = 0pXo + O5Xp, (250)
because the corresponding contributions SgVRG and SRRG are transformed as
follows (cf. (236) and (237)):
s SRRG —§SRRG — / dad(a
B(z) = (—X_8+A++ + %XUa,AH) O2A__+ 25D)

1
+ (—X+3—A—— + §XU&7A——> AL
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For the field of the produced graviton on the mass shell, we have additional
constraints
O hpo = Ouhyp = hpp =0 (252)

and the RRG Lagrangian is simplified as follows:

LRRG — 4 <—M%8A — (D4 hy + auh+)aﬂ,4> +

Oth__
+ A (— +2 OpApy — (0-hyy + 8uh—+)8uA++> -

Op A+ OpA__ —hy (0_A__)0 A, —

2
10_
= hy—(00AL1 )0 A+ (= | h—y — §ah++ Ay +

]. ]- ao' ao'
oy (e gt (G2 ot
10,
+ <_ (th - 58—_]7/) A77 +

1 10, Oy
+3 (ha_ - §a—h__> (a—A__>> DAL (253)

Moreover, the corresponding RRG vertex can be written in the momentum
space as follows [32,33]:

—hpo

1 1
IR (g2, q1) = §CH(QQ7(]1)C§/(Q2,Q1) - EN;L(Q%CH)NV(Q%(M)- (254)

Here C(g2,q1) is the effective vertex describing the gluon production from the
reggeized gluon:

2 2
q kpp q kpa

C(QQ7Q1):—Q1L—(12L+PA (—1 + ) — DB (—kQ +
PB  DAPB

) , (255)
kpa = paps

where q1, ¢o are the momenta of the reggeized gluons, k = ¢; — ¢o is the momen-
tum of the produced gluon and p4, pp are the momenta of the colliding particles.
The vector N (g2, g3) is proportional to the photon bremsstrahlung factor in QED

N — /g (A - LB 256
(q2,q1) (J1612<pAk ok (256)

Using the light-cone gauge for the polarization tensor of the produced graviton,
the RRG vertex can be written in a simple form, which allows one to construct
the corresponding term in the effective action for the scattering amplitude with
the multi-Regge unitarity [35].
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Let us consider now the effective action for the graviton scattering off the
reggeized gravitons. It can be written as a sum of two terms

1
SECR = — / d*a (LM (Ayy) + LER(A_L)), (257)
K
proportional to A, and A__, respectively. We consider only the first term,

because the second one can be obtained from it by interchanging the light-cone
indices «+» and «—». In turn, LYGR(A, ) is the sum of contributions from the
triple reggeon vertex (rv) and the second order (so) correction to the induced term:

LOSR(AL ) =Lir+ + Li—, (258)
where

o (O-hw)®  Ouh-
4 2

LQV++ = A++ ((aﬂhﬂ) (auhy,f + ay,huf) +
00 0 ) = @) %
hopo h__
X Ta"h“ + ho— (0—hpo + Opho—) — hp_Osho— + - Ochop | +
0?h__ 0 hyo
+hpp(_A++( 5 T2 )—

h__ O_hg_ Ogh_ _
—T8§A+++(&,A++)( 5 3 )) (259)

and

1 1 ’
LA+ = -5 (hp— - 53_ph__) A+ (260)

The corresponding Lagrangians are transformed under the general coordinate
transformations as follows:

1
SLAH = —x, ((8_h,,_ — 5aph__)al‘f,ahrJr _

- (83]7470 + 83’1—— - 28—8ah0—)M%) -

— X= (0-0phoe + 02 — 0_0shps — 0y0she—) DpAty  (261)

and

1aph> D2A, 4. (262)

5L§})++ = Xp (ahp )



EFFECTIVE ACTION FOR THE REGGE PROCESSES IN GRAVITY 793

We can simplify the GGR Lagrangian providing gravitons are on the mass shell
and their fields satisfy additional constraints (252)

(0-hy)®  Buho-
1

LA ) = Ay <— (Ovhu— + 8uh,,)> -

hpo
— (0,A4+4) (%&,h + ho—(0—hpe + 8phg)> —
1 10, z
~3 hp— — 55‘_,h__ 0:A 1. (263)
The corresponding vertex for the graviton scattering off the reggeon field A,
can be written as follows (see [32,33]):

pv,p' v’ pp! vv'! pv'

[GGR %(FGGRFGGR n PGGRFSMC;R)7 (264)

where TS&R is the effective vertex for the gluon scattering off the reggeized
gluon field A :

KBt koo?  pPol
rGoR = — <mw L R (265)

kpB T 2(kpP)?

where k and k' are momenta of the initial and final gluons, p? is the momentum
of the another initial gluon and ¢ is the momentum transfer. After the transition
to the helicity basis, the above vertex I‘SSE&V/ corresponds to the conservation of
the graviton helicity and leads to the corresponding contribution in the effective
action for the scattering amplitude with the multi-Regge unitarity [35].

9. GRAVITON REGGE TRAJECTORY AND SUPERGRAVITY

To calculate the graviton Regge trajectory in one loop [32], it is needed to
contract two GGR vertices appearing in LS“R(A, ) and LS“F(A__) with two
graviton propagators and integrate the product over the loop momentum. The
integration over the Sudakov variables v and (3 of the virtual graviton momentum
should give In s equal to the relative rapidity of the initial particles. To obtain a
nontrivial s-dependence in each of two GGR Lagrangians, one should leave only
the singular contributions appearing in the induced terms

1.9, 19, ?
LGGR(Aii) ~ <§hp$éh1$ — g (éh1$> ) 8§Aii. (266)
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From these expressions one can derive the scattering amplitude described by the
contribution of the box diagrams corresponding to two-graviton exchange in the
crossing channel

f(k,q),

(267)
where )\, are the helicities of the scattered particles and the function f(k,q) is
given as

k*s? / qf_koJLqu_dk;_
(

F=9§ 4
A TARAB (myai | (K7 + 2ki k- +ie)((q — k)2 + 2k k_ + ie)

1(k,g—k)* K+ (q—k)?>+4(k,q—k)
2 (kyk_)? kyk_
~(ki,qr —ky)? 1 1
= (ks —ie) ((k: i T = 2'6)2) +

L da LI (268)
2(ky —ie) \k— +ie k_—ie)

Here we restored the analytic structure of the poles in accordance with the Feyn-
man ie-prescription. The integral over ky in F' is nonzero only for k_ > 0.
Taking it by residues with the subsequent integration over k_, one can obtain

f(kvq) =

F = Fpomw(t)Ins, t=q3, (269)
where
2 s°
FBOI'II - 6)\A)\A/ (5)\BXB/"i ? (270)

is the scattering amplitude in the Born approximation and j = 2 + w(t) is the
graviton Regge trajectory [32]

) [ b (G b

A= [ Ba-mr U R’
k,q— k)3 N
%—q%g(ia,q—kn). @71)
L

Here we added the contribution of N gravitinos for the N-extended super-
gravity [32]. Other superpartners do not give any contribution in this order.
Note that the infrared divergency of the Regge trajectory is universal, but
the logarithmic divergency at large k, depends on N and is absent at N = 4.
Really, the sum of one-loop diagrams does not contain any ultraviolet divergency,
because the gravity is renormalized in one loop. It means that the integral over k%
is restricted from above by the value of the order of s, which leads to the double-
logarithmic asymptotics of the scattering amplitude with the graviton quantum
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numbers in the ¢ channel. In [32], the corresponding ladder diagrams in the
double-logarithmic approximation were summed and the following result for the
amplitude in the NV-extended supergravity was obtained:

2

s 1
Agyo = _5275/\A)\A/5)\B)\B/_Il(2a€)7 (272)

ag

where \; are helicities of the initial and final gravitons, I, (z) is the modified
Bessel function and the parameters a and & are given as

HQ 1/2 S

But there are double-logarithmic contributions from other diagrams containing
three and more gravitons in the ¢ channel. They were summed in a closed form
in [42]. To calculate next-to-leading corrections to these results, one should
generalize the effective action constructed above to the supersymmetric case,
because the contribution of the superpartners of the graviton is essential in higher
loops. But we consider below for simplicity only the first nontrivial correction to
the action in the N = 1 supergravity. In this case, apart from the vierbein ej;’,
related to the metric tensor g, in the well-known way

Guv =Y _ €€l (274)
n

the Rarita—Schwinger field ¢, describing the gravitino with the spin 3/2 is intro-
duced. The action for this field is given below:

1 _
S/ = / d*xL3je, L3jp = —Eeﬂ”/)wﬂwz)pwa. (275)

The covariant derivative D, is defined by the relation

1 1
Dp = 8/) + §U7rl,nw;nn7 Omn = E(Wm’}/n - ’Yn’Ym)v (276)
where w;'" is the spin connection expressed in terms of the Christoffel symbol:
wy" = —e""0pey + e T, =
1
— ae”"(&,e;” — Opey’) — e"m(&,ez — Opeg)+

+ ol

1 vn m
¢ et epk(aueﬁ—auelj). (277)
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The total action of supergravity is invariant under the supersymmetry transfor-
mation
m "i* m 1
dey" = 567 Yy, 0P, = ;D“e, (278)

where € is a local parameter of these transformations, being the anticommuting
Majorano spinor. It is known that, to close the SUSY commutator algebra off-
shell, one should introduce the auxiliary fields S, P and A,,. Here, for simplicity
of discussion, we do not take into account them, neglecting total derivatives in
the action and in its variation.

Let us start again with the Born contribution to the induced contribution to
the effective Lagrangian

Ling = (J4402A_ 4+ _2AL,), jrz~Rhis+... (279)

4R?

and attempt to add to it radiative corrections in the fields h,, and %, to derive
its generalization invariant under the local supersymmetric transformations.

We obtain the following infinitesimal transformation of the metric tensor with
the light cone components:

Ohiy = KEY£Y4. (280)

To cancel this term, one should add to ji. the contribution
: K2 oy
Arjr+ = e, (281)
2 O+

because up to a total derivative in the integrand for the action its supersymmetric
transformation is equal to the expression

01 (Arjis) = —KEV£)s, (282)

opposite to dh 4 in sign.
Thus, in the N = 1 supersymmetric gravity we obtain for ji. with the
next-to-leading accuracy the following result:

. Koy
Jit A hes — X2+ EgaEy, 4. (283)
2 0+
The upper order corrections can be calculated in a similar way.

10. DISCUSSION

In this paper, the effective action for the high-energy processes in gravity was
constructed in terms of the currents j* satisfying the Hamilton-Jacobi equation.
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This equation can be solved in the perturbation theory or for simple configurations
of the external gravitational fields. One can formulate a variational principle for
the currents calculated at such fields. The effective action can be used for the
calculation of various elastic and inelastic scattering amplitudes in the Regge
kinematics. The Feynman rules for the simple vertices containing the reggeized
gravitons are extracted from the effective Lagrangian. The one-loop graviton
Regge trajectory does not contain the ultraviolet divergency only in the N = 4
supergravity. In other models, the amplitudes with the graviton quantum numbers
in the crossing channel have the double-logarithmic terms. It is possible that the
constructed effective action can be generalized to the case of superstrings living
in the anti-de-Sitter 10-dimensional space. In this case, one could use it for
the description of the pomeron interactions at the N = 4 supersymmetric gauge
theory in the framework of the AdS/CFT correspondence.
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