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It is shown that the effective action for the reggeized graviton interactions can be formulated
in terms of the reggeon ˇelds A++ and A−− and the metric tensor gμν in such a way that it is
local in the rapidity space and has the property of general covariance. The corresponding effective
currents j− and j+ satisfy the HamiltonÄJacobi equation for a massless particle moving in the
gravitational ˇeld. These currents are calculated explicitly for the shock waveÄlike ˇelds and a
variation principle for them is formulated. As an application, we reproduce the effective Lagrangian
for the multi-Regge processes in gravity together with the graviton Regge trajectory in the leading
logarithmic approximation with taking into account supersymmetric contributions.
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INTRODUCTION

In the Regge pole model the scattering amplitude at large energies
√

s and
ˇxed momentum transfers

√
−t has the form [1]

Ap
Regge(s, t) = ξp(t)s1+ωp(t)γ2(t), ξp(t) = e−iπωp(t) − p, (1)

where p = ±1 is the signature of the reggeon with the trajectory ωp(t). The
pomeron is the Regge pole of the t-channel partial waves fω(t) with vacuum
quantum numbers and the positive signature describing an approximately constant
behavior of total cross sections for the hadronÄhadron scattering. S.Mandelstam
demonstrated that the Regge poles generate cut singularities in the ω plane [2].
These singularities appear as a result of the analytic continuation of the multipar-
ticle unitarity condition [3]. They correspond to scattering states of the reggeons.
Using the locality of the reggeon interactions in the rapidity space, V.Gribov
constructed an effective (2 + 1) pomeron ˇeld model [4].

On the other hand, it was discovered that in some ˇeld theories the ele-
mentary particles become reggeons after taking into account radiative corrections.
The simplest example of this phenomenon is the electron reggeization in quantum
electrodynamics with a massive photon [5]. Using the counting rules suggested
in [6], the vector boson reggeization in the gauge models with the Higgs mecha-
nism was also established [7].
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In the leading logarithmic approximation (LLA), the scattering amplitude at
high energies in QCD has the Regge form [8]:

MA′B′

AB (s, t) = MA′B′

AB (s, t)
∣∣
Born

sω(t), (2)

where MBorn is the Born amplitude and the gluon Regge trajectory is given
below:

ω(−|q|2) = −αsNc

4π2

∫
d2k

|q|2
|k|2|q − k|2 ≈ −αsNc

2π
ln

|q2|
λ2

, (3)

where λ is a gluon mass, introduced for the infrared regularization.
In the multi-Regge kinematics, where the pair energies

√
sk of the produced

gluons are large in comparison with momentum transfers |qi|, the production

amplitudes in LLA are constructed from products of the Regge factors s
ω(tk)
k

and effective reggeonÄreggeonÄgluon vertices Cμ(qr, qr+1) [8]. The amplitudes
satisfy the Steinmann relations and the s-channel unitarity leading to bootstrap
equations [8].

The knowledge of M2→2+n allows us to construct the BFKL equation for
the pomeron wave function [8]

EΨ(ρ1, ρ2) = H12Ψ(ρ1, ρ2), σt ∼ sΔ, Δ = −αsNc

2π
E0. (4)

Here H12 is the BFKL Hamiltonian and Δ is the pomeron intercept. The operator
H12 has the property of the holomorphic separability [9] and is invariant under
the Méobius transformations [10]

ρk → aρk + b

cρk + d
. (5)

The generalization of Eq. (4) to a composite state of several gluons [11] in the
multicolor QCD leads to an integrable XXX model [12] having a duality sym-
metry [13].

The next-to-leading correction to the BFKL kernel in QCD is also calcu-
lated [14]. Its eigenvalue contains nonanalytic terms proportional to δn,0 and δn,2,
where n is the conformal spin of the Méobius group. But in the case of the N = 4
extended supersymmetric gauge model, these Kronecker symbols are canceled,
leading to an expression having the properties of the Hermitian separability [15]
and maximal transcendentality [16]. The last property allowed one to calculate
the anomalous dimensions of twist-two operators up to three loops [17]. It turns
out that evolution equations for the so-called quasi-partonic operators are inte-
grable in N = 4 SUSY at the multicolor limit [18]. The N = 4 four-dimensional
conformal ˇeld theory due to the Maldacena guess is equivalent to the superstring
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living on the anti-de-Sitter 10-dimensional space [19Ä21]. Therefore, the pomeron
in N = 4 SUSY is equivalent to the reggeized graviton in this space. This equiv-
alence gives a possibility to calculate the intercept of the BFKL pomeron at large
coupling constants [17,22]

j = 2 − Δ, Δ =
1
2π

â−1/2, a =
g2Nc

16π2
. (6)

The duality between the BFKL pomeron and the reggeized graviton means that
the Pomeron calculus could be described in the framework of the approach based
on the effective action for the reggeized gravitons. It is one of the reasons why
we investigate in this paper the gravity at high energies.

To begin with, let us remind the effective ˇeld theory for reggeized glu-
ons [23]. The corresponding effective action is local in the rapidity space

y =
1
2

ln
εk + |k|
εk − |k| , |y − y0| < η, η � ln s. (7)

We introduce the anti-Hermitian ˇelds vμ for the usual gluons and the gauge
invariant ˇelds A± describing the production and annihilation of the reggeized
gluons

vμ(x) = −iT ava
μ(x), A±(x) = −iT aAa

±(x), δA±(x) = 0, (8)

where T a are the gauge group generators in the adjoint representation. The
ˇelds A± satisfy the kinematical constraints

∂−A+ = ∂+A− = 0. (9)

The effective action for a cluster of particles with approximately equal ra-
pidities has the form

S =
∫

d4x(LQCD + Tr(V+∂2
μA− + V−∂2

μA+)), (10)

where LQCD is the usual QCD action and the effective currents V± are given as

V+ = −1
g
∂+P exp

⎛
⎜⎝−g

x+∫
−∞

v+(x′) d(x′)+

⎞
⎟⎠ = v+ − gv+

1
∂+

v+ + . . . (11)

The Feynman rules for this action are derived in [24]. The effective action ap-
proach gives a possibility to construct various reggeon vertices needed to calculate
NLO and NNLO corrections to the BFKL kernel.
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Another application of the effective action for the gauge models is a veriˇ-
cation of the BDS ansatz [25] for the inelastic amplitudes in N = 4 SUSY. It
was shown [26, 27] that the BDS amplitude MBDS

2→4 should be multiplied by the
factor containing the contribution of the Mandelstam cut in LLA. In the two-loop
approximation this factor can also be found from properties of analyticity and fac-
torization [28] or directly from recently obtained exact result for M2→4 [29]. In a
general case, the wave function for the Mandelstam state satisˇes the Schréodinger
equation for an open integrable Heisenberg spin chain [30].

Below we generalize the approach based on the effective action for reggeons
to the case of the high-energy gravity. The graviton reggeization was established
initially with the use of the t-channel unitarity [31]. Later it was shown [32] that
in LLA the graviton Regge trajectory is ˇnite in the ultraviolet region only in the
N = 4 supergravity. In other gravity models the corresponding t-channel partial
wave fj(t) has a Regge cut singularity corresponding to the double-logarithmic
asymptotics [32]. Also, some effective vertices for reggeized graviton interactions
were calculated [33]. These results were veriˇed by the authors of [34] in their
study of gravity at the Planckian energies. An effective ˇeld theory for the
S matrix in gravity with the multi-Regge unitarity was constructed in [35], which
allowed one to investigate the gravitational collapse at the high-energy particle
scattering [36]. The new results for the scattering amplitudes in gravity and
supergravity and related references can be found in the papers [37,38].

1. REGGEON FIELDS IN GRAVITY

It is natural to construct the theory of high-energy processes in gravity in
terms of the reggeized gravitons and their interactions, because in this case
the scattering amplitudes will satisfy automatically the t-channel unitarity. The
s-channel unitarity will be incorporated in the reggeon vertices. In particular,
the so-called bootstrap relations in QCD are consequences of the multiparticle
s-channel unitarity. We begin with the introduction of the ˇelds describing the
usual and reggeized gravitons.

The HilbertÄEinstein action for gravity has the form [39]

S = Sgrav + Sm, (12)

where Sgrav and Sm describe the interaction of the gravity ˇeld gμν(x) and the
matter ˇelds, respectively. Both contributions are invariant under the general
coordinate transformation. For the metric tensor gμν , entering in the invariant
interval

(ds)2 =
∑
μν

gμν dxμ dxν , (13)
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this transformation in the inˇnitesimal form is

δgμν(x) = Dμχν(x) + Dνχμ(x), (14)

where χσ(x) is a small local parameter and Dσ is the covariant derivative
deˇned as

Dμχν(x) = ∂μχν(x) − Γρ
μνχρ(x). (15)

Here ∂μ is the partial derivative in xμ and Γρ
μν is the Christoffel symbol:

Γρ
μν =

1
2
gρσ(∂μgσν + ∂νgμσ − ∂σgμν). (16)

Note that in the Minkowski space the corresponding invariant interval is

(ds)2 = ημν dxμ dxν , (17)

where the Lorentz tensor ημν has the signature (+ −−−).
The action for the pure gravity can be written as follows:

Sgrav = − 1
2κ2

∫
d4x

√
−gR, (18)

where
g = Det (gμν) (19)

and the Einstein parameter κ2 is proportional to the Newton constant γ:

κ2 = 8πγ. (20)

The scalar curvature R is related to the Riemann tensor by the contraction of
indices:

R = Rμνgμν . (21)

In turn, Rμν is expressed in terms of the Riemann tensor of the fourth rank:

Rμν = Rσ
μ,σν , Rσ

μ,αβ = ∂βΓσ
μα − ∂αΓσ

μβ + Γρ
μαΓσ

ρβ − Γρ
μβΓσ

ρα. (22)

The matter action can be written as an invariant integral from the Lagran-
gian Lm:

Sm =
∫

d4x
√
−gLm. (23)

Its variation in the metric tensor is expressed in terms of the energy-momentum
tensor T μν:

δSm =
1
2

∫
d4x

√
−gδgμνT μν , (24)



758 LIPATOV L.N.

which is conserved
DμT μν = 0. (25)

Performing also the variation of the gravity action

δSgrav =
1
2κ

∫
d4x

√
−gδgμνGμν , Gμν ≡ Rμν − 1

2
gμνR, (26)

we obtain from the stationarity condition for the total action δS = 0 the Einstein
equation

Gμν = −κT μν. (27)

Due to the general covariance of the action Sgrav, the left-hand side of this
equation satisˇes the identity

DμGμν = 0, (28)

which is compatible with the conservation of the energy-momentum tensor T μν .
In this paper we want to construct the interaction of the reggeized gravitons

and usual gravitons to describe quasi-multi-Regge processes in gravity at high
energies. In these processes, intermediate particles are produced in clusters with
ˇxed invariant masses mr. The particles inside each cluster have approximately
the same rapidities y ≈ yr in the interval

|y − yr| < η, (29)

where the intermediate parameter η is assumed to satisfy the inequalities

ln s � η � 1. (30)

The relative rapidities of different clusters produced in the multi-Regge kinematics
are considered to be large:

ln s � yr − yr−1 � η. (31)

The interaction between the clusters is performed through an exchange of the
reggeized gravitons described by two additional ˇelds A++ and A−−. These new
ˇelds correspond to the reggeon emission and absorption in crossing channels. In
our quasi-multi-Regge kinematics corresponding to the strongly ordered rapidities,
they satisfy the following kinematical constraints (cf. (32)):

∂+A++ = 0, ∂−A−− = 0, (32)

where
∂± = nσ

±∂σ, n2
± = 0, n+n− = 1 (33)
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and the light-cone vectors n± are expressed in terms of momenta pA, pB of
colliding particles:

n+ = pA

√
2
s
, n− = pB

√
2
s
. (34)

The above constraints for A±± follow from the fact that the Sudakov vari-
ables αr, βr for the produced cluster momentum

kr = βrpA + αrpB + kr⊥, k2
r = sαrβr − k2

r⊥ = m2
r (35)

are strongly ordered

1 � β1 � β2 � . . . � βn, 1 � αn � αn−1 � . . . � β1,
(36)

sαrβr ∼ k2
r⊥ ∼ m2

r .

We derive in the next sections the effective action for high-energy processes
in gravity. This action describes the interaction of gravitons inside each cluster
with neighboring reggeons having approximately the same rapidities. In this
case, apart from the usual HilbertÄEinstein action Sgrav, one should introduce
an additional contribution ΔS containing the linear combination of the reggeon
ˇelds A++ and A−− considered as external sources:

Seff = Sgrav + ΔS. (37)

It is well known that the reggeon describes a family of particles with different
spins and masses lying on the Regge trajectory. The reggeized graviton can be
viewed as a natural generalization of the physical massless graviton with the spin
j = 2. Therefore, it is natural to consider the functions A++ and A−− as ˇelds
invariant under general covariant transformations

δA++ = δA−− = 0, (38)

with the corresponding local parameters χ decreasing at large x. Of course,
A++ and A−− are transformed as usual ˇelds under the global Poincare group.
The induced contribution ΔS can be written in the form

ΔS = − 1
2κ2

∫
d4x

(
j++

∂2
μA++

2
+ j−−

∂2
μA−−

2

)
. (39)

Here the Laplacian operators ∂2
μ are introduced to avoid simultaneous singularities

in the overlapping direct and crossing channels because they cancel neighboring
reggeon propagators 1/q2. These propagators appear from a kinetic contribution
to S bilinear in the ˇelds A±±. As shown below, due to general covariance
the currents j++ and j−− contain the nonlocal operators ∂−1

+ and ∂−1
− , which
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should be interpreted as propagators of the particles in other clusters emitting the
gravitons into the given rapidity interval η.

In the perturbation theory the currents j++, j−− contain contributions linear
in the metric tensor gμν :

j++ ≈ g++ + . . . , j−− ≈ g−− + . . .

The corresponding solution of the Einstein equation for gμν in the external
ˇelds A++ and A−− will have the form

gμν = ημν + δμ
+δν

+A++ + δμ
−δν

−A−− + O(A2). (40)

Therefore, the reggeon ˇelds A++ and A−− can be considered as classical com-
ponents of the gravity ˇeld.

The induced term ΔS should be invariant under general coordinate transfor-
mations, providing that A±± satisfy the kinematical constraints (32). As argued
above, the currents j++ and j−− describe the graviton emission into the given
interval of rapidities from other clusters having different rapidities. In accor-
dance with the condition ∂±A±± = 0, two neighboring reggeons for the cluster r
have the momentum components ∼ k+

r and ∼ k−
r+1, which are transferred almost

completely to the particles inside the cluster. These momenta are shared by the
particles in other clusters with higher values of k±. Because the currents j± are
universal, for their calculation one can consider an arbitrary scattering process
in the gravitational ˇeld having particles with the larger components k± of their
momenta.

2. GENERAL COVARIANCE OF THE EFFECTIVE ACTION

To calculate the effective currents j++ and j−−, we use their invariance
under the general coordinate transformations up to the total derivatives in x+

and x−, taking into account the fact that the ˇelds A++ and A−− are invariant
under these transformations and satisfy additional constraints

∂+A++ = ∂−A−− = 0. (41)

As a gravitational ˇeld we chose the tensor hμν in the following decomposition
of the covariant metric tensor:

gμν = ημν + hμν . (42)

The components of the contravariant metric tensor gμν can be found from the
linear equation

gμσgσν = δμ
ν (43)
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and are obtained by the perturbation expansion

gμν = ημν − hμν + hμρhρν − hμρhρδhδν + . . . (44)

Note that for the tensor hμν and its derivatives we shall use only lower components
implying the Minkowski signature in summation over the repeated indices. The
effective currents j++ and j−− can be calculated in the perturbation series over
the tensor components hμν . For example, j++ can be presented as follows:

j++ = h++ + P
(2)
++(h) + P

(3)
++(h) + . . . , (45)

where the polynomials P
(k)
++ can contain derivatives ∂σ and integral opera-

tors 1/∂+ acting on the ˇelds hμν . Furthermore, we distingwish the compo-
nents h++, hσ+ and hρσ. The corresponding set of recurrent equations for the

homogeneous polynomials P
(n)
++ are obtained from the general covariance of the

induced action using the inˇnitesimal transformations with parameters χρ and χ+:

δP
(n)
++

δhρσ
2∂σχρ +

δP
(n)
++

δhρ+
∂+χρ =

n−1∑
k=1

δP
(k)
++

δhρσ
2Γν

ρσχν , (46)

δP
(n)
++

δh++
2∂+χ+ +

δP
(n)
++

δhρ+
∂ρχ+ = 0. (47)

In the perturbation expansion over hρσ , the right-hand side of the ˇrst equation
should contain only the terms of the same order n. It is also implied that after

the differentiation over hρσ, hρ+ and h
(k)
++ the corresponding tensor components

in P++ should be replaced by the subsequent factors.

The second equation can be easily solved. Namely, P
(n)
++ should contain

the dependence from hσ+ and h++ only in the form of the following linear
combination:

Xσ+ = X+σ = hσ+ − 1
2

∂σ

∂+
h++. (48)

Moreover, we can add to the solution of the ˇrst equation an arbitrary function
of another linear combination

Zρσ = hρσ − 2
∂ρ

∂+
hσ+. (49)

It is convenient to introduce two independent variables: Xσ+ and

Yρσ = hρσ − 2
∂ρ

∂+
hσ+ +

∂ρ∂σ

∂2
+

h++ = hρσ − 2
∂ρ

∂+
Xσ+. (50)
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Then the left-hand sides of the above equations do not contain the derivative
in Yρσ and the ˇrst equation can be written as follows:

∂P
(n)
++

∂Xσ+
∂+χσ =

n−1∑
k=1

δP
(k)
++

δhρσ
2Γν

ρσχν . (51)

Here the right-hand side should be expressed in terms of the variables Xσ+

and Yρσ . In particular, using

P
(1)
++ = h++ (52)

for P
(2)
++ one can obtain the equation

∂P
(2)
++

∂Xσ+
∂+χσ = −2Xσ+∂+χσ, (53)

where the following relation was used:

δh++ = 2∂+χ+ − 2χσ∂+Xσ+ (54)

with the subsequent integration over x+ by parts. Note that the ˇrst term 2∂+χ+

in δh++ gives a vanishing contribution to the induced action ΔS in this order
due to the kinematical constraint

∂+A++ = 0. (55)

Therefore, from Eq. (53) we obtain

P
(2)
++ = −X2

σ+. (56)

To ˇnd P++ in upper orders of the perturbation theory, one should use the
following relations:

δhσ+ = ∂σχ+ + ∂+χσ − χρ (∂+hσρ + ∂σh+ρ − ∂ρh+σ) , (57)

δhσν = ∂σχν + ∂νχσ − χρ (∂νhσρ + ∂σhνρ − ∂ρhνσ) . (58)

Thus, in the third order we obtain the equation

∂P
(3)
++

∂Xσ+
∂+χσ = −2χσhσρ∂+Xρ+ + 2Xσ+δ(2)Xσ+, (59)

where the vector

δ(2)Xσ+ = −χρ (∂+Yρσ + ∂ρXσ+ + ∂σXρ+) +
∂σ

∂+
χρ∂+Xρ+ (60)

enters in the inˇnitesimal transformation of Xσ+

δXσ+ = ∂+χσ + δ(2)Xσ+. (61)
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With the integration over x+ by parts, one can rewrite Eq. (59) in the form

∂P
(3)
++

∂Xσ+
∂+χσ = (∂+χσ)Xρ+(Yρσ + Yσρ) − 2χσ

(
∂σ

∂+
Xδ+

)
∂+Xδ+ −

− 2(∂σχδ)
(

1
∂+

Xσ+

)
∂+Xδ+ − 2(∂2

+χδ)
(

∂σ

∂+
Xδ+

)
1

∂+
Xσ+. (62)

After that its solution can be easily found:

P
(3)
++ = Xσ+Xδ+Yσδ − 2

(
1

∂+
Xσ+

) (
∂σ

∂+
Xδ+

)
∂+Xδ+. (63)

Integrating by parts and using the above expression for Yσδ , one can simplify
this result:

P
(3)
++ = Xρ+Xσ+hρσ − Xσ+

∂σ

∂+
X2

ρ+. (64)

Therefore, we obtain for the effective currents j++ and j−− the following series:

j++ = h++ − X2
σ+ + Xρ+Xσ+hρσ − Xσ+

∂σ

∂+
X2

ρ+ + . . . , (65)

j−− = h−− − X2
σ− + Xρ−Xσ−hρσ − Xσ−

∂σ

∂−
X2

ρ− + . . . (66)

One can verify that with our accuracy these currents are transformed under
the coordinate change as follows:

δj±± ≈ 2∂±(χ± − h±σχσ) + ∂±(χσ − hσρχρ)
∂σ

∂±
(h++ − X2

σ+). (67)

It allows us to guess the law of transformations of j±± in a general case

δj±± = 2∂±χ∓ + ∂±χσ ∂σ

∂±
j±±, χσ = gσρχρ. (68)

3. RAPIDLY MOVING SCALAR PARTICLE IN A GRAVITY FIELD

The general covariance condition for the effective reggeon currents

(δhρσ)
δ

δhρσ
j±± = 0 (69)

is a consequence of equations of motion for the relativistic matter propagating in
the corresponding gravitational ˇeld, because the effective action can be viewed
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as a backward reaction of the rapidly moving particles on the processes taking
place at a given interval of rapidity. Due to the universality of the action, for its
calculation one can consider an arbitrary type of the colliding matter.

Let us restrict ourselves to the scattering of the high-energy scalar particle
off the gravitational ˇeld. The action for the free massless scalar ˇeld φ in the
gravitational background can be written as follows:

Ss =
∫

d4x
√
−g

gμν

2
(∂μφ)(∂νφ). (70)

The corresponding energy-momentum tensor is

Tμν = (∂μφ)(∂νφ) − 1
2
gμνgρσ(∂ρφ)(∂σφ). (71)

We introduce the covariant d'Alambert operator

∇2 =
1√−g

∂μgμν√−g∂ν = Dμ∂μ, (72)

which is symmetric for the invariant scalar product of the ˇelds∫
d4x

√
−gψ∇2φ =

∫
d4x

√
−gφ∇2ψ. (73)

The equation of motion for φ is

∇2φ = 0. (74)

The energy-momentum tensor is conserved:

DμTμν = 0, (75)

due to the equation of motion.
One can also construct the equation for the Green function G(x, x′) of the

scalar particle
−∇2(x)G(x, x′) = δ4(x − x′). (76)

Its arguments can be interchanged with the similarity transformation

G(x, x′) =
√
−g(x′)G(x′, x)

1√
−g(x)

. (77)

The variation of the Green function over the metric tensor can be written as
follows:

δG(x, x′) =
∫

d4yG(x, y)δ(
√
−g∇2)G(y, x′) =

= −
∫

d4y
∂G(x, y)

∂yμ
δ(gμν√−g)

∂G(y, x′)
∂yν

. (78)
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Under the general covariant transformations, which can be written in the form

δ(gμν√−g) =
√
−g (gμσDσχν + gμσDσχν − gμνDσχσ) , (79)

the Green function is transformed as follows:

δG(x, x′) = χσ(x)
∂

∂xσ
G(x, x′) + χσ(x′)

∂

∂x′σ G(x, x′). (80)

The corresponding S matrix exists providing the metric at inˇnity has the
Minkowski form

lim
x→∞

gμν = ημν . (81)

In this case, the scattering amplitude f(p, p′) is expressed in terms of the matrix
element of the Green function with amputated free propagators

f(p, p′) ∼
〈

p′
∣∣∣∣ lim
t→∞

lim
t′→−∞

∂2
σG(x, x′)∂2

σ′

∣∣∣∣ p

〉
, (82)

where the initial and ˇnal particles are on mass shell:

p2 = p′2 = 0. (83)

The scattering amplitude is invariant under the general coordinate transfor-
mations, because the inˇnitesimal parameter χ at inˇnity tends to zero. Note,
however, that generally the particle energy and momentum are not conserved.

For our purpose it is enough to ˇnd the Green function only at high energies:

pσ ≈ p′σ → ∞. (84)

For example, let us consider the colliding particle with the momentum

pA = n+

√
s

2
. (85)

In this case, the wave functions 〈pA| and 〈pA′ | are rapidly oscillate and we can
write the covariant d'Alambert operator in the equation for G(x, x′) as follows:

∇2 = ∂2
σ + h−−∂2

− + 2(∂σhσ−) ∂− +
1
2
(∂+hρσ) gρσ∂− +

1
2
hμ−(∂μhρσ) gρσ∂−,

(86)
where we introduced the notations

gρσ = ηρσ + hρσ, hμ− = −hμ+ + hμρhρ+ + . . . , (87)

h−− = −h++ + h+ρhρ+ − h+ρhρσhσ+ + . . . (88)
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We also imply the following decomposition of the usual Laplace operator:

∂2
σ = ∂+∂− + ∂⊥

σ ∂⊥
σ . (89)

The closed expression for the induced current j++ is

j++ =
∂2

ρ

∂−
∇−2 ∂2

σ

∂−
, (90)

where it is implied that the differential operators in the end of the expression act
to the left after their integration by parts. One can also use a semiclassical ap-
proximation for the Green function. We shall return to the semiclassical approach
in another form in subsequent sections.

4. ®EIKONAL¯ CONTRIBUTION TO THE EFFECTIVE ACTION

As mentioned above, in the perturbation theory the scalar particle in the
intermediate states is strongly virtual in accordance with the fact that in our
kinematics the gravitons emitted from it belong to the clusters with their rapidity
signiˇcantly different from the particle rapidity. Therefore, we can expand its
free propagator as follows:

− 1
∂2

σ

≈ − 1
∂+∂−

+
1

∂+∂−
∂⊥

σ ∂⊥
σ

1
∂+∂−

. (91)

The leading terms ∼ (h++)n are canceled partly in the perturbation expansion
among contributions of the Feynman diagrams corresponding to a different or-
dering of the vertices Sint in time, because the eikonal term with intermediate
particles on mass shell in our case is negligible. To clarify this important fact,
we calculate here several terms of the expansion of scattering amplitude in the
Fourier transform V (k) of the interaction term h++. Omitting the normalization
factors and the vertices V (ki), the scattering amplitude for the scalar particle with
the large momentum p can be written in the second order of perturbation theory
as follows:

Aeik
2 =

1
(p + k1)2

+
1

(p + k2)2
=

(p + k1 + k2)2 − 2(k1k2)
(p + k1)2(p + k2)2

≈ − (k1k2)
2(pk1)(pk2)

,

(92)
where we used the reality requirement for the initial- and ˇnal-state particles

p2 = (p + k1 + k2)2 = 0 (93)

and the condition of the strong virtuality for the particle in the intermediate states

2(pk1) ∼ 2(pk2) � k2
1 ∼ k2

2 ∼ (k1k2). (94)
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In an analogous way, one can obtain the following contributions from the eikonal
diagrams in the third:

Aeik
3 =

1
(p + k1)2

1
(p + k1 + k2)2

+
1

(p + k2)2
1

(p + k1 + k2)2
+

+
1

(p + k1)2
1

(p + k1 + k3)2
+

1
(p + k3)2

1
(p + k1 + k3)2

+

+
1

(p + k2)2
1

(p + k2 + k3)2
+

1
(p + k3)2

1
(p + k2 + k3)2

≈

≈ k3(k1 + k2)
4pk3 p(k1 + k2)

k1k2

pk1 pk2
+

k2(k1 + k3)
4pk2 p(k1 + k3)

k1k3

pk1 pk3
+

+
k1(k2 + k3)

4pk1 p(k2 + k3)
k2k3

pk2 pk3
(95)

and fourth order:

Aeik
4 ≈ − k1k2

8pk1 pk2

(
k4(k1 + k2 + k3)

pk4 p(k1 + k2 + k3)
k3(k1 + k2)

pk3 p(k1 + k2)
+

+
k3(k1 + k2 + k4)

pk3 p(k1 + k2 + k4)
k4(k1 + k2)

pk4 p(k1 + k2)

)
−

− k1k3

8pk1 pk3

(
k4(k1 + k2 + k3)

pk4 p(k1 + k2 + k3)
k2(k1 + k3)

pk2 p(k1 + k3)
+

+
k2(k1 + k3 + k4)

pk2 p(k1 + k3 + k4)
k4(k1 + k3)

pk4 p(k1 + k3)

)
−

− k1k4

8pk1 pk4

(
k3(k1 + k2 + k4)

pk3 p(k1 + k2 + k4)
k2(k1 + k4)

pk2 p(k1 + k4)
+

+
k2(k1 + k3 + k4)

pk2 p(k1 + k3 + k4)
k3(k1 + k4)

pk3 p(k1 + k4)

)
−

− k2k3

8pk2 pk3

(
k4(k1 + k2 + k3)

pk4 p(k1 + k2 + k3)
k1(k2 + k3)

pk1 p(k2 + k3)
+

+
k1(k2 + k3 + k4)

pk1 p(k2 + k3 + k4)
k4(k2 + k3)

pk4 p(k2 + k3)

)
−

− k2k4

8pk2 pk4

(
k3(k1 + k2 + k4)

pk3 p(k1 + k2 + k4)
k1(k2 + k4)

pk1 p(k2 + k4)
+

+
k1(k2 + k3 + k4)

pk1 p(k2 + k3 + k4)
k3(k2 + k4)

pk3 p(k2 + k4)

)
−

− k3k4

8pk3 pk4

(
k2(k1 + k3 + k4)

pk2 p(k1 + k3 + k4)
k1(k3 + k4)

pk1 p(k3 + k4)
+
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+
k1(k2 + k3 + k4)

pk1 p(k2 + k3 + k4)
k2(k3 + k4)

pk2 p(k3 + k4)

)
−

− (k3 + k4)(k1 + k2)
8p(k3 + k4)p(k1 + k2)

k1k2

pk1 pk2

k3k4

pk3 pk4
−

− (k2 + k4)(k1 + k3)
8p(k2 + k4)p(k1 + k3)

k1k3

pk1 pk3

k2k4

pk2 pk4
−

− (k2 + k3)(k1 + k4)
8p(k2 + k3)p(k1 + k4)

k1k4

pk1 pk4

k2k3

pk2 pk3
. (96)

The corresponding ®eikonal¯ terms indeed appear in the effective currents

jeik
++ ≈ g++ − X2

σ+ − Xσ+
∂σ

∂+
X2

ρ+ −

− Xμ+
∂μ

∂+
Xσ+

∂σ

∂+
X2

ρ+ − 1
4

(
∂σ

∂+
X2

ρ+

)2

+ . . . , (97)

jeik
−− ≈ g−− − X2

σ− − Xσ−
∂σ

∂−
X2

ρ− −

− Xμ−
∂μ

∂−
Xσ−

∂σ

∂−
X2

ρ− − 1
4

(
∂σ

∂−
X2

ρ−

)2

+ . . . , (98)

where we took into account that due to the general covariance the light-cone
components h++ and h−− can enter in the ˇnal expressions only inside the
tensors Xσ+ and Xσ−, respectively.

Looking at these expressions and comparing them with the above perturbative
contributions obtained from general covariance considerations, one can formulate
the hypothesis that the complete result for the generally invariant currents is
obtained from the ®eikonal¯ expression by its ®covariantization¯ corresponding
to the substitution of the Minkowski tensor ημν everywhere by the world metric
tensor:

ημν → gμν . (99)

This hypothesis leads to the following result in the perturbation theory:

j++ = h++ − Xσ+gσρXρ+ − Xσ+gσρ ∂ρ

∂+
Xμ+gμνXν+ −

− Xα+gαβ ∂β

∂+
Xσ+gσρ ∂ρ

∂+
Xμ+gμνXν+ −

− gσρ

4

(
∂σ

∂+
Xμ+gμνXν+

)
∂ρ

∂+
Xα+gαβXβ+ + . . . , (100)
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j−− = h−− − Xσ−gσρXρ− − Xσ−gσρ ∂ρ

∂−
Xμ−gμνXν−−

− Xα−gαβ ∂β

∂−
Xσ−gσρ ∂ρ

∂−
Xμ−gμνXν−−

− gσρ

4

(
∂σ

∂−
Xμ−gμνXν−

)
∂ρ

∂−
Xα−gαβXβ− + . . . (101)

Moreover, it allows one to formulate a closed equation for the important ®eikonal¯
contribution

(∂+χρ)
δ

δXρ+
jeik
++ = ((∂ρχσ) + (∂σχρ))

δ

δηρσ
jeik
++ −

−
(

χρ(∂ρXσ+) + (∂σχρ)Xρ+ −
(

∂σ

∂+
(∂+χρ)Xρ+

))
δ

δXσ+
jeik
++, (102)

where, as usual, the factors in front of derivatives should substitute in the same
position the corresponding variables Xσ+ and ηρσ removed by the differentia-
tion. The ˇrst term in the right-hand side of this equation corresponds to the
inˇnitesimal transformation of hρσ in the lowest order of the perturbation theory.

For example, in the fourth order from this ®eikonal¯ equation we derive the
identity

− (∂+χμ)
∂μ

∂+
Xσ+

∂σ

∂+
X2

ρ+ − Xμ+
∂μ

∂+
(∂+χσ)

∂σ

∂+
X2

ρ+ −

− 2Xμ+
∂μ

∂+
Xσ+

∂σ

∂+
Xρ+∂+χρ −

(
∂σ

∂+
X2

ρ+

)
∂σ

∂+
Xμ+∂+χμ ≡

≡ −Xσ+ ((∂σχρ) + (∂ρχσ))
∂ρ

∂+
X2

μ+ − 2Xσ+
∂σ

∂+
Xρ+(∂ρχδ)Xδ+ +

+
(

χρ(∂ρXσ+) + (∂σχρ)Xρ+ −
(

∂σ

∂+
(∂+χρ)Xρ+

))
∂σ

∂+
X2

μ+ +

+ 2Xμ+
∂μ

∂+
Xσ+

(
χρ(∂ρXσ+) + (∂σχρ)Xρ+) − ∂σ

∂+
(∂+χρ)Xρ+

)
, (103)

which can be veriˇed with integration over x+ by parts.
In the ˇfth order one can obtain the relation

(∂+χρ)
δ

δXρ+
P

eik(5)
++ = −Xμ+(∂μχν)

∂ν

∂+
Xσ+

∂σ

∂+
X2

ρ+ −

− Xμ+
∂μ

∂+
Xσ+(∂σχδ)

∂δ

∂+
X2

ρ+ − 1
2
(∂σχρ)

(
∂σ

∂+
X2

μ+

)(
∂ρ

∂+
X2

ν+

)
+

+
(

χρ(∂ρXσ+) −
(

∂σ

∂+
(∂+χρ)Xρ+

))
∂σ

∂+
Xδ+

∂δ

∂+
X2

μ+ +
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+ Xμ+
∂μ

∂+

(
χδ(∂δXσ+) −

(
∂σ

∂+
(∂+χδ)Xδ+

))
∂σ

∂+
X2

ρ+ +

+
(

2Xμ+
∂μ

∂+
Xσ+ +

(
∂σ

∂+
X2

μ+

))
∂σ

∂+
Xρ+

(
χδ(∂δXρ+) − ∂ρ

∂+
(∂+χδ)Xδ+

)
.

(104)

It gives a possibility to calculate the corresponding ®eikonal¯ contribution to j++

in this order:

P
eik(5)
++ = −Xν+

∂ν

∂+
Xμ+

∂μ

∂+
Xσ+

∂σ

∂+
X2

ρ+ −

− 1
4
Xν+

∂ν

∂+

(
∂σ

∂+
X2

ρ+

)2

− 1
2

(
∂σ

∂+
Xμ+

∂μ

∂+
X2

ρ+

) (
∂σ

∂+
X2

ν+

)
. (105)

In the sixth order we obtain in a similar way

P
eik(6)
++ = −Xδ+

∂δ

∂+
Xν+

∂ν

∂+
Xμ+

∂μ

∂+
Xσ+

∂σ

∂+
X2

ρ+ −

− 1
4
Xδ+

∂δ

∂+
Xν+

∂ν

∂+

(
∂σ

∂+
X2

ρ+

)2

− 1
2
Xδ+

∂δ

∂+

(
∂σ

∂+
Xμ+

∂μ

∂+
X2

ρ+

) (
∂σ

∂+
X2

ν+

)
−

− 1
4

(
∂σ

∂+
Xμ+

∂μ

∂+
X2

ρ+

)2

− 1
8

(
∂σ

∂+

(
∂δ

∂+
X2

ρ+

)2
) (

∂σ

∂+
X2

ν+

)
. (106)

To ˇnd a general structure for the currents jeik
++ and jeik

−−, we should inves-
tigate in a more accurate way the recurrent relation following from the eikonal
equation (102).

To begin with, one can use the following formulas (see (60)):

2Xσ+δ(2)Xσ+ − Xσ+Xρ+(∂ρχσ + ∂σχρ) =

= −Xσ+
∂σ

∂+
2Xρ+(∂+χρ) − (∂+χσ)

∂σ

∂+
X2

ρ+ + ∂+χσ
∂σ

∂+
X2

ρ+ (107)

for the variation of the structure X2
σ+ present in the previous order. On the other

hand, the sum of the ˇrst two terms in the right-hand side can be interpreted as
the variation of the expression

−Xσ+
∂σ

∂+
X2

ρ+ (108)

appearing in the next order. The last term in (107) gives a vanishing contribution
in the second order. For higher orders it is multiplied with two possible struc-
tures: Xμ∂μ/∂+ or ∂μ/∂+. The second structure is contracted with the index μ
with the operator ∂μ/∂+ acting on another function. Let us consider these two
possibilities separately.
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We obtain for the variation of the ˇrst structure

δ(2)Xμ+
∂μ

∂+
− Xμ+(∂νχμ + ∂μχν)

∂ν

∂+
=

= χμ∂μXν+
∂ν

∂+
− Xμ+∂μχν

∂ν

∂+
−

(
∂ν

∂+
(∂+χμ)Xμ+

)
∂ν

∂+
. (109)

The second term in the right-hand side cancels the contribution from the last term
in the variation of X2

σ (107) due to the relation

−Xμ+∂μχν
∂ν

∂+
X2

σ+ + Xμ+∂μχσ
∂σ

∂+
X2

ρ+ = 0. (110)

The last term in (109) corresponds to the variation of the following structure in
the next order:

−1
4

(
∂σ

∂+
X2

ρ+

)2

(111)

provided that the operator Xμ+(∂μ/∂+) was applied to X2
ρ+. In other cases we

obtain from the last term the term canceling the variation of the contribution

−1
2

(
∂ν

∂+
X2

μ+

)
∂ν

∂+
(112)

in the next order. The ˇrst term in (109) can be written as follows:

−(∂+χμ)
∂μ

∂+
Xν+

∂ν

∂+
+ ∂+χμ

∂μ

∂+
Xν+

∂ν

∂+
. (113)

Here the ˇrst contribution leads to the following structure in the next order:

−Xμ+
∂μ

∂+
Xν+

∂ν

∂+
(114)

and the second term vanishes provided it is not multiplied by Xμ∂μ/∂+ or ∂μ/∂+

contracted by the index μ with the operator ∂μ/∂+ acting on another function.
In these two cases we should repeat calculations performed above for the last
term in the variation of X2

σ .
At last, we consider the variation of a product of the operators ∂σ/∂+

and ∂ρ/∂+ contracted with hσρ in hσρ:

− (∂σχρ + ∂ρχσ)
∂σ

∂+
. . .

∂ρ

∂+
=

= −
(

∂ρχσ
∂σ

∂+
. . .

)
∂ρ

∂+
− ∂σ

∂+
. . . ∂ρχρ

∂ρ

∂+
+ χμ∂μ

(
∂σ

∂+
. . .

∂σ

∂+
. . .

)
. (115)
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Two ˇrst terms are canceled with the last terms in Eqs. (107) and (113). The last
term in the above relation can be written as follows:

−(∂+χμ)
∂μ

∂+

(
∂σ

∂+
. . .

∂σ

∂+
. . .

)
+ ∂+χμ

∂μ

∂+

(
∂σ

∂+
. . .

∂σ

∂+
. . .

)
. (116)

The ˇrst term here corresponds to the following structure in the next order:

−Xμ+
∂μ

∂+

(
∂σ

∂+
. . .

∂σ

∂+
. . .

)
. (117)

The second term is not zero only if it is multiplied by Xν∂ν/∂+ or ∂ν/∂+

contracted by the index ν with the operator ∂ν/∂+ acting on another function.
In these cases again, we should perform calculations similar to that with the last
term in Eq. (107). Thus, after cancelation of some terms in the variation of j++

in the previous order, we can obtain the solution of Eq. (102) in the next order,
using the above substitutions.

Even more, one can write the following representation for the effective
®eikonal¯ currents in an arbitrary order:

jeik
++ = h++ − ∂+Jeik

+ , j−− = h−− − ∂−Jeik
− . (118)

The above perturbative results allow one to formulate the following ®fan¯ equation
for the quantities Jeik

± :

(∂± − Xσ±∂σ) Jeik
± = X2

μ± +
1
4

(
∂ρJ

eik
±

)2
. (119)

The solutions of these equations should have the following transformation prop-
erties following from the general coordinate invariance of j±±:

δJeik
± = − 2

∂±
χσ∂±Xσ± =

2
∂±

Xσ±∂±χσ. (120)

One can verify that indeed these properties are compatible with the transformations
of various operators entering in the ®fan¯ equations

δ(Xσ±∂σ) = (∂±χσ)∂σ −
(

∂σ

∂±
(∂±χμ)Xμ±

)
∂σ − (∂±χμ)

∂μ

∂±
Xσ±∂σ, (121)

δX2
μ± = 2Xμ±∂±χμ − Xσ±

∂σ

∂±
2Xρ±(∂±χρ) − (∂±χσ)

∂σ

∂±
X2

ρ±, (122)

and

δ∂ρ . . . ∂ρ . . . = −(∂±χμ)
∂μ

∂±
(∂ρ . . . ∂ρ . . .). (123)
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Here we neglected the terms canceled between various structures (see the last
contributions in Eqs. (107), (113), and (116))

Δδ(Xσ±∂σ) = −Xμ±∂μχσ∂σ + ∂±χμ
∂μ

∂±
Xσ±∂σ, ΔδX2

μ± = ∂±χσ
∂σ

∂±
X2

ρ±

(124)
and

Δδ∂ρ. . .∂ρ. . . = − (∂ρχσ∂σ. . .) ∂ρ − ∂σ. . .∂ρχρ∂ρ + ∂±χμ
∂μ

∂±
(∂ρ. . .∂ρ. . .) .

(125)
They generate unessential corrections to j±± proportional to ∂±

Δj±± = −∂±χσ∂σJ±. (126)

5. HAMILTONÄJACOBI EQUATION FOR EFFECTIVE CURRENTS

To construct covariant equations for the effective currents in all orders, we
take into account that j±± are invariant under general coordinate transforma-
tions up to total derivatives in x±. Let us introduce the currents j∓ related
directly to j±±:

j∓ ≡ − 1
∂±

j±± = J± − 1
∂±

h±±. (127)

Using these relations, one can transform the ®eikonal¯ equation (119) for Jeik
± to

the form

−(∂± − hσ±∂σ)j∓eik = h±± − (hρ±)2 − 1
4
(∂ρj

∓
eik)

2. (128)

In ®eikonal¯ approximation, the possible contributions containing the matrix ele-
ments hμν with μ, ν �= ± are absent. To restore such terms, we should impose
on the equation the property of general covariance. To begin with, the inhomo-
geneous term can be modiˇed in such a way that it becomes proportional to a
matrix element of the contravariant metric tensor

h±± − (hρ±)2 → h±± − gρσhρ±hσ± = −g∓∓. (129)

Here and later, the tensors with covariant and contravariant indices are considered
to be different. They are related by a contraction with the metric tensor.

Using similar modiˇcations for the linear and quadratic term, one can obtain
the generally covariant ®fan¯ equation for the currents j∓

g∓σ∂σj∓ = g∓∓ +
gρσ

4
(∂σj∓)(∂ρj∓). (130)
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In accordance with the general covariance, the currents j∓ are transformed
as follows:

δj∓ = 2χ∓ + χρ∂ρj
∓, (131)

where the inˇnitesimal parameters χ∓ and χρ tend to zero at large x in accordance
with the fact that j∓ are deˇned up to the contributions vanishing at x± → ∞.
Indeed, the induced part of the effective action with an integration over x± can
be written as follows:

ΔS = − 1
2κ2

(∫
d2x⊥dx− lim

x+→∞

(
j−

∂2
μA++

2

)
+

+
∫

d2x⊥dx+ lim
x−→∞

(
j+

∂2
μA−−

2

))
, (132)

and this expression is not changed under such transformations.
The equation for j∓ can be presented in a simpler form

gρσ

(
1
2
∂ρj

∓ − g∓ρ

) (
1
2
∂σj∓ − g∓σ

)
= 0. (133)

Its formal solution is
j∓ = 2x∓ − ω∓, (134)

where the quantities ω∓ satisfy the light front equation

gρσ∂ρω
∓∂σω∓ = 0. (135)

The last equation can be obtained in an independent way if we would search
the solution of the generally covariant d'Alambert equation (see Eq. (72) in Sec. 3)

∇2φ(x) = 0 (136)

for the wave function of the scalar particle moving with a large momentum p∓

in the semiclassical form

φ±(x) = exp (−i|p|x∓ + iθ∓(x)), θ∓(x) =
|p|
2

j∓(x), (137)

where θ∓(x) is a rapidly changing phase and j∓ is the effective current in our
normalization. Indeed, by neglecting the derivatives from the metric tensors
in comparison with large derivatives from φ±, we obtain from the d'Alambert
equation its semiclassical version

gρσ

(
1
2
∂ρj

∓ − g∓ρ

) (
1
2
∂σj∓ − g∓σ

)
= 0, (138)

which coincides with Eq. (133) for j∓ derived above.
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The S matrix for the particle scattering at a given impact parameter off the
gravitational ˇeld in the semiclassical approximation has the following form:

S = lim
x±→∞

exp
(

i
|p|
2

j∓(x)
)

, (139)

providing the initial conditions for j∓ are

lim
x±→−∞

j∓(x) = 0. (140)

In particular, this S matrix contains pure eikonal contributions for which the
particle in the intermediate states lies on mass shell. Such contributions should
be absent in the effective action, although they are reproduced by the iteration of
effective vertices in the s channel. It is the reason why the effective current j∓

entering in the action at large x± is proportional to the logarithm of the S matrix:

lim
x±→∞

j∓(x) = −i
2
p±

ln S. (141)

It is well known [39] that the solution of the light front equation

gρσ∂ρω∂σω = 0 (142)

can be expressed in terms of the null-geodesic trajectories of particles in the
gravitational ˇeld satisfying the equation of motion

d2xμ

(dτ)2
= Γμ

αβ

dxα

dτ

dxβ

dτ
, (143)

where τ is a parameter increasing along the trajectory and Γμ
αβ is the Christoffel

symbol. The geodesic equation is presented below in the form of the Hamilton
equations

dxμ

dτ
= gμνων ,

dωα

dτ
= −1

2
ωμων∂αgμν , (144)

where

ωα ≡ ∂αω = gαβ
dxβ

dp
(145)

plays a role of the particle momentum pα.
Note that the light front equation can be considered as the HamiltonÄJacobi

(HJ) equation for the action ω. Its general integral contains an arbitrary function,
but it is well known [40] that this general solution is expressed in terms of the
so-called complete integral containing only four arbitrary constants:

ω = af(xμ, c1, c2) + A. (146)
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The appearance of the parameters a and A is related to the locality and the
homogeneity of the HJ equation (its invariance under the transformation ω →
bω + B). Really, the HJ equation is an integral of motion for the Hamilton
equations allowing one to ˇnd the canonical variables xμ and ων as some functions
of τ . Indeed, providing the HJ equation is fulˇlled at some τ = τ0, it will be
valid at arbitrary τ due to the relation

d

dτ
gρσ∂ρω∂σω = 0, (147)

which follows from the Hamilton equations. On the contrary, the general solution
of the Hamilton equations can be obtained in terms of the complete integral for ω.
Indeed, one can prove [40] that the derivatives of ω over the parameters a, c1, c2

∂ω

∂a
= f = d,

∂ω

∂c1
= d1,

∂ω

∂c2
= d2 (148)

are also integrals of motion and, therefore, one can ˇnd from the last relations the
coordinates xi (i = 1, 2, 3) as functions of t and six parameters a, c1, c2, d, d1, d2,
which corresponds to a general solution of equations of motion.

To construct a complete integral ω for our case of the massless particle
scattering off the gravitation ˇeld from the solution of the Hamilton equations,
we write the light front surface for arbitrary τ in the form

ω(x0, x1, x2, x3) = const. (149)

Let us assume that, at large distances and large negative times t0, where
gμν = ημν , this surface is a plane containing the points parametrized by two
numbers u and v:

x = t0n + un1 + vn2, (150)

where n,n1,n2 are orthogonal unit vectors

n2 = n2
1 = n2

2, (n,n1) = (n,n2) = (n1,n2) = 0. (151)

The initial values of momenta are

∇ω = cn, ω2
0 = c2, (152)

where c is an arbitrary parameter which depends generally on u and v (note that
ω is deˇned up to a common factor). Then, from the Hamilton equations, one
can calculate xα and ωβ for all values of τ and parameters u and v. Thus, we
can obtain xα = xα(τ, u, v, t0;n), which is a parametrized form of the light front
surface ω(n) = const, depending on the light-cone vector:

n =
1√
2
(1,n). (153)

In the usual form, this surface can be obtained by excluding the initial data (u, v)
and τ from four components of the vector xα.
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In particular, to obtain the effective currents j±, we should put

ω± = ω(n±), n± =
1√
2
(1,±1, 0, 0) (154)

and normalize the functions ω± in such a way that

ω± = 2x± − j±. (155)

A possible generalization of the developed effective ˇeld theory could include a
superposition of the currents j(n) with different light-cone vectors n.

The classical equations for the effective actions, apart from the usual Ein-
stein term Gσρ, have the induced terms for the components of the metric ten-
sor g∓∓, gσ∓ and gσρ. These terms are equal to the corresponding functional
derivatives of the action ΔS. The contributions proportional to A++ and A−−

contain the functional derivatives of the currents j−(x) and j+(x), respectively.
Due to the HamiltonÄJacobi equations, these derivatives satisfy the relations

2gρσ(∂ρω
∓)∂σ

δj∓(x)
δgμν(y)

= (∂μω∓)(∂νω∓)δ4(x − y). (156)

The induced terms in the Einstein equation play the role of the energy-momentum
tensor Tμν(y) which is conserved due to the general covariance of the action ΔS.

6. EFFECTIVE ACTION FOR SHOCK-WAVE GRAVITATIONAL FIELDS

To illustrate the general approach based on the effective action, let us con-
sider the HamiltonÄJacobi equation for the massless particle scattering off the
gravitation center with the metric tensor given by the Schwarzschild solution [41]

d2s =
(

r − α

r + α

)
d2t −

(
r + α

r − α

)
d2r − (r + α)2

(
d2θ + sin2 θd2φ

)
, (157)

where we used the spherical coordinates. The parameter α is proportional to the
mass m of the attraction center:

α = γm, κ2 = 8πγ. (158)

The Einstein equations for the massless particle moving around the central body in
the plane (x, y) corresponding to θ = π/2 are reduced to two ordinary differential
equations [39] (

dr

dφ

)2

=
(r + α)4

b2
− (r2 − α2) (159)
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and
(r + α)3

r − α

dr

dt
=

√
(r + α)4 − (r2 − α2)b2, (160)

where b in our case is the impact parameter of the colliding particle which moves
for t → −∞ along the line parallel to the axis x, which corresponds to the
following initial condition for the ˇrst equation, describing its trajectory:

r(φ)
∣∣
φ→0

≈ b

φ
→ ∞. (161)

The solution of this equation can be expressed in terms of the elliptic integral of
the ˇrst kind

∞∫
r

b dr√
(r + α)4 − (r2 − α2)b2

= φ. (162)

It allows one to ˇnd r as a function of φ and b. Inverting this function, one can
ˇnd b:

b = b(r, φ; α). (163)

The solution of the second equation can be written in the form

f(t, r, b, α) ≡ t −
r∫

0

dr√
(r + α)4 − (r2 − α2)b2

(r + α)3

r − α
= C, (164)

where the constant C is found from the initial conditions for r at t → −∞.
In accordance with our normalization, we can construct the complete integral for
the HamiltonÄJacobi equation

ω(n) = 2f(t, r, b(r, φ; α), α), (165)

where the unit vector n deˇnes the direction of the initial particle momentum and
the impact parameter vector ρ is orthogonal to it. The angle φ is in fact the polar
angle with respect to the vector n.

To obtain the effective currents j∓, we should put n = ∓e3 and write ω in
the form

ω∓ = ω(n∓) = 2x∓ − j∓. (166)

To simplify the perturbative expansion of the effective currents, we consider
below the massless particle scattering off the gravitation center moving with the
relativistic velocity v → c in the direction of the third axis e3. Due to the Lorentz
contraction, the ˇeld of this center is given by the metric corresponding to the
shock-wave solution of Aichelburg and Sexl

(ds)2 = ημνdxμdxν + h−−(dx−)2, (167)
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where

h−− =
8√
2
Gμ ln |x|δ(x−), (168)

with x being the transverse component of the vector xρ.
The Hamilton equation for the particle moving in this ˇeld has the form

dxμ

dτ
= ημνων − δμ

+h−−ω+,
dωα

dτ
=

1
2
ω+ω+∂αh−−. (169)

Before reaching the shock wave, the particle propagates along the straight line:

xμ = xμ
0 + ωμ

0 τ, ωμ
0 = ημν(ων)0, ημνωμ

0 ων
0 = 0, (170)

where xμ
0 and (ων)0 are initial values of coordinates and momenta. The collision

with the moving plane x− = 0 takes place at the moment τc ˇxed by the equation

zc = tc, (171)

where the coordinates of the particle are

zc = z0 + ω3
0τc, tc = t0 + ω0

0τc, ρ = x0 − ω0τc. (172)

Here we introduced the notation ρ for the transverse coordinate x at τ = τc.
At τ > τc the new values of ωα are

ω+ = (ω+)0, ω− = (ω−)0 +
4√
2
ω+Gμ ln ρ δ(x−), ω = ω0 +

4√
2
Gμ

ρ

ρ2
ω+,

(173)

where ρ is ˇxed by the initial conditions.
From the equation for xμ we obtain

ωρωσ
dgρσ

dτ
= ωρωσ

(
ημνων − δμ

+h−−ω+

) dgρσ

dxμ
=

= −ω2
+

(
− 8√

2
Gμ

ωρ

ρ2
δ(x−) + ω+

8√
2
Gμ ln ρ ∂−δ(x−)

)
. (174)

This relation is compatible with the HamiltonÄJacobi equation

gρσωρωσ = 0, (175)

which can be veriˇed by its differentiation in τ with the use of the Hamilton
equation for ωα. From the above explicit expressions for ωμ we also derive
that the metric tensor gρσ, calculated in the points of the particle trajectory
xμ = xμ(τ), is

gρσ = ηρσ − δρ
+δσ

+

8√
2
Gμ

(
ln ρ δ(x−) −

(
ρω0

ρ2ω+
+

2√
2
Gμ

1
ρ2

θ(x−)
)

θ(x−)
)

.

(176)
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The coordinates of the massless particle are

x± = x±
c + ω±

0 (τ − τc), x = ρ − ω0(τ − τc) (177)

before its collision with the plane wave and

x− = ω+(τ − τc), x = −
(

ω0

ω+
+

4√
2
Gμ

ρ

ρ2

)
ω+(τ − τc) + ρ,

x+ = x+
c +

(
ω+

0

ω+
+

4√
2
Gμ

(
ω0ρ

ω+ρ2
+

2√
2
Gμ

1
ρ2

))
×

× ω+(τ − τc) −
4√
2
Gμ ln ρ (178)

after its collision at τ > τc. Here we used the identity∫
dx−θ(x−)δ(x−) =

1
2
. (179)

Note that the particle moves along the light rays gρσ dxρ dxσ = 0 to the line
x = ω0(τ − τc).

Calculating τ − τc and ρ from the ˇrst two equations and putting the result
in the right-hand side of the third relation, we obtain the complete integral for the
corresponding HamiltonÄJacobi equation in our normalization

ω = 2x+ − j = 2x+
0 , (180)

where the effective current

j =
8√
2
Gμ

(
ω0ρ

ω+ρ2
x− +

2√
2
Gμ

1
ρ2

x− − ln ρ

)
+ 2

ω+
0

ω+
x−. (181)

Note that this current can be written as follows:

j = −2
ω+

0

ω+
x− +

(ρ − x)2

x− − 8√
2
Gμ ln ρ + 2

ω+
0

ω+
x− (182)

and the equation for ρ is simpliˇed:

∂j = 2
ω0

ω+
. (183)

Let us consider the simplest case where the particle colliding with the shock
wave has the following initial conditions:

ω0 = ω+
0 = 0. (184)
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In this case we have for the effective current

j+ = j(g) =
8√
2
Gμ

(
2√
2
Gμ

x−

ρ2
− ln ρ

)
, (185)

where the vector ρ satisˇes the equation

x = ρ

(
1 − 4√

2
Gμ

x−

ρ2

)
. (186)

Its solution is

ρ = xf(z), z =
8√
2
Gμ

x−

|x|2 , (187)

where

f(z) =
1
2

(
1 +

√
1 + 2z

)
= 1 +

z

2
− z2

4
+

z3

4
− 5z4

16
+ . . . (188)

The current j+ can be written in the form

j+ = a

(
1
4
|x|2
|ρ|2 z − ln ρ

)
= −a (ln x + φ(z)) , a =

8√
2
Gμ, (189)

where

φ(z) = ln f(z) − 1
4

z

f2(z)
=

z

4
− z2

8
+

5
48

z3 − 7
64

z4 + . . . (190)

On the other hand, using expressions (97), (98) and (105) for the eikonal cur-
rents jeik

±± and (48) for Xσ±, we can write the current j+ (127) for the shock-wave
ˇeld (168) in the form

j+ = −a lnx +
a2

∂−

( xσ

2x2

)2

− a3

∂−

xμ

2x2

∂μ

∂−

( xσ

2x2

)2

+

+
a4

∂−

xν

2x2

∂ν

∂−

xμ

2x2

∂μ

∂−

( xσ

2x2

)2

+
a4

4∂−

(
∂μ

∂−

( xσ

2x2

)2
)2

−

− a5

∂−

xρ

2x2

∂ρ

∂−

xν

2x2

∂ν

∂−

xμ

2x2

∂μ

∂−

( xσ

2x2

)2

− a5

4∂−

xν

2x2

∂ν

∂−

(
∂μ

∂−

( xσ

2x2

)2
)2

−

− a5

2∂−

(
∂μ

∂−

xν

2x2

∂ν

∂−

( xσ

2x2

)2
) (

∂μ

∂−

( xσ

2x2

)2
)

. (191)

By differentiating over xσ and integrating over x−, we obtain the same expression
for j+, which veriˇes our general approach. Note that the singularity of j+ at
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z = −1/2 appearing at small |x| (see (188)) leads to a ˇnite radius of convergency
of the perturbation theory, although the singularity is absent at x− > 0.

Let us consider now a more general situation of the massless scattering off
the gravitational ˇeld with the metric

gμν = ημν + δ−μ δ−ν V (x)δ(x−), (192)

where the potential V is an arbitrary function of the points on the shock plane.
Repeating the above calculation, we obtain the generalized equation for the point ρ
in which the particle crosses the plane

x = ρ − x−

2
∂V (ρ) (193)

and the expression for the effective current j+ is

j+ = −V (ρ) +
x−

4
(∂V (ρ))2 = −V (ρ) +

(ρ − x)2

x− . (194)

Note that the equation for the crossing point ρ can be written as the stationarity
condition for j+ as a function of ρ

∂j+ = 0. (195)

Using the perturbation theory for the solution of the equation for εμ = ρμ − xμ

in metric ημν

εμ =
x−

2
Vμ − x−

2
Vμμ1

x−

2
Vμ1 + 2

x−

2
Vμμ1

x−

2
Vμ1μ2

x−

2
Vμ2 + . . ., (196)

where

Vμ1μ2...μn ≡ ∂μ1∂μ2 · · ·∂μnV (x), (197)

and putting the result in j+, we ˇnd

j+
eik = −V (x) + x−

(
1
2
Vσ

)2

− (x−)2

4
Vμ∂μ

(
1
2
Vσ

)2

+ . . . (198)

in agreement with the expressions (98) for the eikonal contribution with the
simpliˇed expression for Xσ−:

Xσ− → − ∂ρ

2∂−
g−−. (199)
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7. VARIATIONAL PRINCIPLE FOR THE EFFECTIVE CURRENTS

Let us consider an even more general conˇguration of the gravitational ˇeld
consisting of n shock waves moving in the z direction:

gμν = ημν + δ−μ δ−ν

n∑
r=1

V (r)(x)δ(x− − x−
r ), (200)

where x−
r are some parameters ordered in the following way:

x−
1 < x−

2 < . . . < x−
n . (201)

By solving the Hamilton equations for the massless particle �ying at τ → −∞
along the z axis from z = −∞ with the impact parameter ρ and ω+

0 = ω0 = 0
for each of the intervals x−

r < x− < x−
r+1 for r = 1, 2, . . ., n, we obtain for the

points ρr in which the trajectory crosses the corresponding planes the following
recurrence relation:

ρ1 = ρ, ρ2 = ρ1 −
x−

2 − x−
1

2
∂1V

(1)(ρ1),

ρ3 = ρ2 −
x−

3 − x−
2

2

2∑
t=1

∂tV
(t)(ρt), . . .

ρn = ρn−1 −
x−

n − x−
n−1

2

n−1∑
t=1

∂tV
(t)(ρt),

x = ρn − x− − x−
n

2

n∑
t=1

∂tV
(t)(ρt),

(202)

where x and x− are coordinates of the particle after its interaction with all shock
waves. Note that the particle coordinate x− and its momentum ω+ are not
changed during collisions:

x− = ω+τ + x−
0 . (203)

But the momenta ω− and ω are different in each interval x−
r < x− < x−

r+1:

ω− =
ω+

2

n∑
r=1

V (r)(ρr)δ(x
− − x−

r ), ω = ωr =
ω+

2

r∑
t=1

∂tV
(t)(ρt). (204)

The metric tensor, calculated on the particle trajectory in this interval, has the form

gρσ = ηρσ − δρ
+δσ

+

n∑
r=1

(
V (r)(ρr)δ(x

− − x−
r )−

−θ2(x− − x−
r )

4

r∑
t=1

(∂tV
(t)(ρt))

2

)
, (205)
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compatible with the integral of motion

gρσωρωσ = 2ω+ω− − ω2 + ω2
+g++ = 0. (206)

Note that the total derivative of g++ in τ is in agreement with the Hamilton
equations

dg++

dτ
= −ω+∂−g++ +

2ω

ω2
+

dω

dτ
. (207)

The coordinate x+ is also changed after each collision, and after all collisions
we have

x+ = x+
0 +

1
2

n∑
r=1

(x−
r+1 − x−

r )

(
r∑

t=1

∂t

2
V (t)(ρt)

)2

− 1
2

n∑
r=1

V (r)(ρr), (208)

where it is implied that ρn+1 = x and x−
n+1 = x−. Thus, we obtain for

the corresponding effective current in the above gravitational ˇeld the following
expression:

j+ =
n∑

r=1

(x−
r+1 − x−

r )

(
r∑

t=1

∂t

2
V (t)(ρt)

)2

−
n∑

r=1

V (r)(ρr), (209)

where it is assumed that the points ρr are expressed in terms of x and x− with
the use of Eqs. (202). Due to these equations, the effective current can be written
even in a simpler form

j+ =
n∑

r=1

(ρr+1 − ρr)2

x−
r+1 − x−

r
−

n∑
r=1

V (r)(ρr), ρn+1 = x, x−
n+1 = x−. (210)

Such a form of the effective current gives a possibility to write the equations
for ρr as its stationarity conditions:

∂rj
+ = 0. (211)

One can verify the perturbative expansion of this effective current by comparing
it with the general expressions (98) for the eikonal contribution.

Let us consider the continuous limit of the scattering problem, assuming that
the number of shock waves is inˇnite and the distance between them tends to
zero. In this case, the metric tensor on the particle trajectory is

gρσ(x, x−) = ηρσ − δρ
+δσ

+

(
g++(ρ, x−) +

ω2

ω2
+

)
, (212)

where
ω = −ω+∂−ρ (213)
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and ρ is considered to be a function of x− and x. This function is calculated
with the use of the equation of motion for the colliding particle. The effective
current can be written as an extremum of the HamiltonÄJacobi functional S:

j+ = min
ρ(y−)

S, S =

x−∫
−∞

dy−L, L = g++(ρ, y−) + (∂−ρ)2, (214)

where the variable y− enumerates the shock waves.
This functional can be considered as a classical action for the massless particle

moving in the gravitational ˇeld, which allows one to formulate a variational
principle for the effective current j+. The current j+ should be calculated on the
geodesic trajectory ρ(x−,x), which can be found from the stationarity condition
for S having the form of the nonrelativistic Newton equation

2∂2
−ρ = ∂g++. (215)

Note that the ®potential¯ g++/2 depends explicitly on x− and, as a result, instead
of the energy momentum conservation from the Newton equation we obtain the
relation containing ∂−g++:

d

dx− ((∂−ρ)2 − g++) + ∂−g++ = 0. (216)

Further, with taking into account the classical equation for ω−

dω−
dx− = −1

2
ω+∂−g++, (217)

we can integrate relation (216) and obtain the integral of motion

(∂−ρ)2 − g++ − 2
ω−
ω+

= 0, (218)

which coincides with the HamiltonÄJacobi equation for our case.
On the other hand, the variation of j− over ρ after the use of the stationarity

equations gives
δj+ = 2(∂−ρ)δρ (219)

and, therefore, the particle momentum can be written in the form

p = ∂j+ = 2∂−ρ. (220)

Further, the differentiation of expression (214) leads to the result

dj+

dx− = L = ∂−j+ + (∂−ρ)∂j+, (221)
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which leads to the relation

∂−j+ = L − (∂−ρ)∂j+ = −H, (222)

where the Hamiltonian is

H =
p2

4
− g++, p = ∂j+ = 2∂−ρ. (223)

As a result, we obtain the equation for j+ valid in the eikonal approximation
(cf. (130))

∂−j+ = g++ − 1
4
(∂j+)2. (224)

The current j+ (214) can also be presented as the following functional of x and p:

j+ =

x−∫
−∞

(−H + p∂−ρ) dy−, (225)

calculated on the solution of its stationarity equations

∂−ρ =
1
2
p, ∂−p = −∂g++. (226)

In the general case of an arbitrary metric tensor gμν for the calculation
of j+, we can use the well-known action for the massless particle moving in the
gravitation ˇeld

S =

τ∫
−∞

dτL, L = pμxμ − e(τ)
2

gμνpμpν , (227)

where e(τ) is the Lagrange multiplier. The stationarity of S leads to the Hamilton
equations (144) with the substitutions ωα → pα and τ → τ ′ =

∫
e dτ . These

equations should be solved for the following initial conditions:

lim
τ ′→−∞

x⊥
μ = ρμ, lim

τ ′→−∞
x+ = x+

0 , lim
τ ′→−∞

p⊥μ = lim
τ ′→−∞

p+ = 0. (228)

Expressing the parameters ρ, τ ′ through the running values of x⊥, x− and
inserting them in the running value of x+, we obtain the effective current j+ in
the form

j+ = 2(x+(x⊥, x−) − x+
0 ). (229)

Its depends on the metric tensor and its derivatives. In a similar way, one can
obtain from the variational principle another current j− entering in the effective
action.
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8. EFFECTIVE REGGEONÄGRAVITON VERTICES

Let us apply the effective action to the problem of calculations of the simplest
effective vertices for the reggeonÄgraviton interactions in the lowest order of the
perturbation theory. For this purpose, it is enough to leave in the currents j±±
only the ˇrst two terms of the perturbative expansion

j±± ≈ h±± − X2
σ±, Xσ± = hσ± − 1

2
∂σ

∂±
h±±. (230)

We also expand the Christoffel symbol

Γρ
μν ≈ 1

2
(∂μhρν + ∂νhρμ − ∂ρhμν − hρσ(∂μhσν + ∂νhσμ − ∂σhμν)) (231)

and the HilbertÄEinstein Lagrangian

√
−gR =

√
−ggμν(∂νΓρ

μρ − ∂ρΓρ
μν + Γσ

μρΓ
ρ
σν − Γσ

μνΓρ
σρ) ≈ L2 + L3, (232)

where

L2 =
∂σhμσ

2
(∂μhρρ − ∂ρhμρ) +

1
4
((∂σhμν)2 − (∂σhμμ)2) (233)

and

L3 = hρσ

(
(∂μhμσ)∂νhνρ − ∂ρhμν

4
∂σhμν − ∂μhνσ

2
(∂νhμρ + ∂μhρν)+

+
∂μhμν

2
(2∂ρhνσ − ∂νhρσ)

)
+ hρρ

(
hμν

(
∂μ∂σhνσ − 1

2
∂2

σhμν

)
+

+
1
2
(∂νhνσ)2 − 3

8
(∂σhμν)2 +

1
4
(∂σhμν)∂μhσν

)
−

− hρρ

8
(∂νhσσ)2 − hρρ

4
hμν∂μ∂νhσσ. (234)

These expressions are valid up to the terms proportional to total derivatives which
give vanishing contributions to the action SHE.

The action is invariant under the general coordinate transformations

δSHE = 0 (235)

with the same accuracy, which can be veriˇed by checking the following relations:

δL2 = ∂ν

(
hμμ

2
(∂2

σχν − ∂ν∂σχσ) + hρμ∂ρ∂νχμ − hνμ∂2
ρχμ

)
+ χμaμ,

(236)
δL3 = −χμaμ,
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where

aμ ≈ ∂2
σhνν

2
∂μhρρ −

(
∂2

σhνν

)
∂δhδμ − ∂μhνν

2
∂σ∂ρhρσ +

+
∂δ∂νhρρ

2
(∂νhδμ + ∂δhνμ − ∂μhδν) + (∂σ∂νhσν)∂ρhρμ +

+
(

∂2
σhρν

2
− ∂ρ∂δhνδ

)
(∂νhρμ + ∂ρhνμ − ∂μhρν) . (237)

Because the induced contributions to the action are also generally covariant,
the EulerÄLagrange equations for the total action are self-consistent. We can
write them in the form

Rμν − 1
2
gμνR =

1
2

δ

δgμν

∫
d4x

(
j++∂2

σA++ + j−−∂2
σA−−)

, (238)

where in the right-hand side it is implied, as usual, that the calculation of the
variational derivative over gμν is combined with the corresponding integration by
parts. The solution of these equations can be expanded in the series over the
reggeon ˇelds A∓∓:

h∓∓ = A∓∓ + O(A2) (239)

similar to the case of the EulerÄLagrange equation for the effective action in
QCD [23]. Inserting this solution in the effective action, one can obtain various
effective vertices for the self-interaction of the reggeon ˇelds A∓∓ in the tree
approximation. The physical gravitational ˇelds will correspond to the �uctua-
tions δh = h − h̄ around the classical solution. The functional integration over
these �uctuations in the quadratic approximation will lead to the graviton Regge
trajectories and to various reggeon couplings in the one-loop approximation. This
traditional approach will be considered in future publications. Here we restrict
ourselves to the simple cases where the results can be obtained in the lowest
orders of perturbation theory.

To begin with, we note that, performing the functional Gaussian integration
over hμν from the exponent containing the induced action with the terms linear
in h++ and h−−, we obtain the kinetic term for the ˇelds A±±

− 1
2κ

∫
d4x

2
(
−∂σh++∂σh−− − h++∂2

σA−− − h−−∂2
σA++

)
→

→ − 1
2κ

∫
d4x

∂σA++∂σA−−
2

. (240)

The kinetic term for the reggeon ˇelds should have an opposite sign. Therefore,
we include in the effective action the bare kinetic term for the reggeon ˇelds

Skin =
1
2κ

∫
d4x∂σA++∂σA−− (241)
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to have the correct renormalized contribution. Strictly speaking, the propagator of
the reggeized graviton should contain the θ function corresponding to the ordering
of rapidities y in the different clusters

〈
0|(Ay1

−−(x1)A
y2
++(x2)) = 4

κ

π2
θ(y1 − y2)

i

(x1 − x2)2
. (242)

Further, the next order corrections in each of the induced actions

− 1
2κ

∫
d4x

2

(
−

(
h++ − 1

4

(
∂ρ

∂+
h++

)2
)

∂2
σA−− −

−
(

h−− − 1
4

(
∂ρ

∂−
h−−

)2
)

∂2
σA++

)

lead, with the use of the Gaussian integration over the ˇelds h±±, to the cubic
interactions of the reggeon ˇelds

S1→2 = − 1
2κ

∫
d4x

8

((
∂ρ

∂+
A++

)2

∂2
σA−− +

(
∂ρ

∂−
A−−

)2

∂2
σA++

)
. (243)

Note that the usual triple graviton vertex gives a vanishing contribution to this
interaction.

In an analogous way, one can calculate in the tree approximation the effective
action for the reggeon transitions 1 → n

S1→n = − 1
2κ

∫
d4x

2
(∂+Jeik

+ (A++)∂2
σA−− + ∂−Jeik

− (A−−)∂2
σA++), (244)

where the ®eikonal¯ currents Jeik
± (h±±) can be obtained from the solution of the

®fan¯ equations(
∂± +

1
2

(
∂σ

∂±
h±±

)
∂σ

)
Jeik
± =

1
4

(
∂σ

∂±
h±±

)2

+
1
4
(∂ρJ

eik
± )2. (245)

The effective action for the reggeon transitions 2 → n (n � 2) in the same
approximation contains a contribution from the usual triple graviton vertex. The
general reggeon interaction n → m is expressed in terms of the solution of the
EulerÄLagrange equation for the effective theory.

Let us consider now the effective action for the reggeonÄreggeonÄgraviton
(RRG) interaction in a tree approximation SRRG. It contains the contribution from
the triple graviton vertex (gv) and from the second order (so) correction (∼ h2)
to the induced action

SRRG =
1
2κ

∫
d4xLRRG, LRRG = LRRG

gv + LRRG
so , (246)
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where

LRRG
gv = A++

((
∂μhμ+ − ∂−h++

2

)
∂−A−− −

−
(

∂+hμ− + ∂μh−+ +
∂νhνμ

2

)
∂μA−−

)
+

+ A−−

((
∂μhμ− − ∂+h−−

2

)
∂+A++ −

−
(

∂−hμ+ + ∂μh−+ +
∂νhνμ

2

)
∂μA++

)
− hρσ

∂ρA++

2
∂σA−− −

− h+−(∂−A−−)∂+A++ − h+−(∂νA++)∂νA−− +

+ hρρ

(
−1

2
A++∂2

σA−− − 1
2
A−−∂2

σA++ −

−3
4
(∂σA++)∂σA−− +

1
2
(∂+A++)∂−A−−

)
, (247)

and

LRRG
so =

(
−

(
h−+ − 1

2
∂−
∂+

h++

)
A++ +

+
1
2

(
hσ+ − 1

2
∂σ

∂+
h++

) (
∂σ

∂+
A++

))
∂2

ρA−− +

+
(
−

(
h−+ − 1

2
∂+

∂−
h−−

)
A−−+

+
1
2

(
hσ− − 1

2
∂σ

∂−
h−−

) (
∂σ

∂−
A−−

))
∂2

ρA++. (248)

The effective action SRRG is invariant

δSRRG = 0 (249)

under the ®Abelian¯ part of the general covariant transformation

δhρσ = ∂ρχσ + ∂σχρ, (250)

because the corresponding contributions SRRG
gv and SRRG

so are transformed as
follows (cf. (236) and (237)):

δSRRG
gv = −δSRRG

so =
1
2κ

∫
d4xΦ(x),

(251)Φ(x) =
(
−χ−∂+A++ +

1
2
χσ∂σA++

)
∂2

ρA−− +

+
(
−χ+∂−A−− +

1
2
χσ∂σA−−

)
∂2

ρA++.
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For the ˇeld of the produced graviton on the mass shell, we have additional
constraints

∂2
μhρσ = ∂μhμρ = hρρ = 0 (252)

and the RRG Lagrangian is simpliˇed as follows:

LRRG = A++

(
−∂−h++

2
∂−A−− − (∂+hμ− + ∂μh−+) ∂μA−−

)
+

+ A−−

(
−∂+h−−

2
∂+A++ − (∂−hμ+ + ∂μh−+) ∂μA++

)
−

− hρσ
∂ρA++

2
∂σA−− − h+−(∂−A−−)∂+A++ −

− h+−(∂νA++)∂νA−− +
(
−

(
h−+ − 1

2
∂−
∂+

h++

)
A++ +

+
1
2

(
hσ+ − 1

2
∂σ

∂+
h++

) (
∂σ

∂+
A++

))
∂2

ρA−− +

+
(
−

(
h−+ − 1

2
∂+

∂−
h−−

)
A−− +

+
1
2

(
hσ− − 1

2
∂σ

∂−
h−−

) (
∂σ

∂−
A−−

))
∂2

ρA++. (253)

Moreover, the corresponding RRG vertex can be written in the momentum
space as follows [32,33]:

ΓRRG
μν (q2, q1) =

1
2
Cμ(q2, q1)Cν(q2, q1) −

1
2
Nμ(q2, q1)Nν(q2, q1). (254)

Here C(q2, q1) is the effective vertex describing the gluon production from the
reggeized gluon:

C(q2, q1) = −q⊥1 − q⊥2 + pA

(
q2
1

kpA
+

kpB

pApB

)
− pB

(
q2
2

kpB
+

kpA

pApB

)
, (255)

where q1, q2 are the momenta of the reggeized gluons, k = q1− q2 is the momen-
tum of the produced gluon and pA, pB are the momenta of the colliding particles.
The vector N(q2, q3) is proportional to the photon bremsstrahlung factor in QED

N(q2, q1) =
√

q2
1q

2
2

(
pA

pAk
− pB

pBk

)
. (256)

Using the light-cone gauge for the polarization tensor of the produced graviton,
the RRG vertex can be written in a simple form, which allows one to construct
the corresponding term in the effective action for the scattering amplitude with
the multi-Regge unitarity [35].
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Let us consider now the effective action for the graviton scattering off the
reggeized gravitons. It can be written as a sum of two terms

SGGR =
1
2κ

∫
d4x(LGGR(A++) + LGGR(A−−)), (257)

proportional to A++ and A−−, respectively. We consider only the ˇrst term,
because the second one can be obtained from it by interchanging the light-cone
indices ®+¯ and ®−¯. In turn, LGGR(A++) is the sum of contributions from the
triple reggeon vertex (rv) and the second order (so) correction to the induced term:

LGGR(A++) = LA++
gv + LA−−

so , (258)

where

LA++
gv = A++

(
(∂μhμ−)2 − (∂−hμν)2

4
− ∂μhν−

2
(∂νhμ− + ∂μhν−)+

+
∂μhμν

2
(2∂−hν− − ∂νh−−)

)
− (∂ρA++)×

×
(

hρσ

2
∂σh−− + hσ−(∂−hρσ + ∂ρhσ−) − hρ−∂σhσ− +

h−−
2

∂σhσρ

)
+

+ hρρ

(
−A++

(
∂2

σh−−
2

+
∂2
−hσσ

4

)
−

−h−−
2

∂2
σA++ + (∂σA++)

(
∂−hσ−

2
− 3

∂σh−−
4

))
(259)

and

LA++
so = −1

2

(
hρ− − 1

2
∂ρ

∂−
h−−

)2

∂2
σA++. (260)

The corresponding Lagrangians are transformed under the general coordinate
transformations as follows:

δLA++
gv = −χρ

(
(∂−hρ− − 1

2
∂ρh−−)∂2

σA++ −

− (∂2
−hσσ + ∂2

σh−− − 2∂−∂σhσ−)
∂ρA++

2

)
−

− χ−
(
∂−∂ρhσσ + ∂2

σ − ∂−∂σhρσ − ∂ρ∂σhσ−
)
∂ρA++ (261)

and

δLA++
so = χρ

(
∂−hρ− − 1

2
∂ρh−−

)
∂2

σA++. (262)
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We can simplify the GGR Lagrangian providing gravitons are on the mass shell
and their ˇelds satisfy additional constraints (252)

LGGR(A++) = A++

(
− (∂−hμν)2

4
− ∂μhν−

2
(∂νhμ− + ∂μhν−)

)
−

− (∂ρA++)
(

hρσ

2
∂σh−− + hσ−(∂−hρσ + ∂ρhσ−)

)
−

− 1
2

(
hρ− − 1

2
∂ρ

∂−
h−−

)2

∂2
σA++. (263)

The corresponding vertex for the graviton scattering off the reggeon ˇeld A++

can be written as follows (see [32,33]):

ΓGGR
μν,μ′ν′ =

1
2

(
ΓGGR

μμ′ ΓGGR
νν′ + ΓGGR

μν′ ΓGGR
νμ′

)
, (264)

where ΓGGR
μμ′ is the effective vertex for the gluon scattering off the reggeized

gluon ˇeld A+:

ΓGGR
μμ′ = −

(
ημμ′ −

k′
μpB

μ′ + kμ′pB
μ

kpB
− q2

pB
μ pB

μ′

2(kpB)2

)
, (265)

where k and k′ are momenta of the initial and ˇnal gluons, pB is the momentum
of the another initial gluon and q is the momentum transfer. After the transition
to the helicity basis, the above vertex ΓGGR

μν,μ′ν′ corresponds to the conservation of
the graviton helicity and leads to the corresponding contribution in the effective
action for the scattering amplitude with the multi-Regge unitarity [35].

9. GRAVITON REGGE TRAJECTORY AND SUPERGRAVITY

To calculate the graviton Regge trajectory in one loop [32], it is needed to
contract two GGR vertices appearing in LGGR(A++) and LGGR(A−−) with two
graviton propagators and integrate the product over the loop momentum. The
integration over the Sudakov variables α and β of the virtual graviton momentum
should give ln s equal to the relative rapidity of the initial particles. To obtain a
nontrivial s-dependence in each of two GGR Lagrangians, one should leave only
the singular contributions appearing in the induced terms

LGGR(A±±) ≈
(

1
2
hρ∓

∂ρ

∂∓
h∓∓ − 1

8

(
∂ρ

∂∓
h∓∓

)2
)

∂2
σA±±. (266)
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From these expressions one can derive the scattering amplitude described by the
contribution of the box diagrams corresponding to two-graviton exchange in the
crossing channel

F = δλAλA′ δλBλB′
κ4s2

(2π)4i

∫
q2
⊥d2k⊥dk+dk−

(k2
⊥ + 2k+k− + iε)((q − k)2⊥ + 2k+k− + iε)

f(k, q),

(267)
where λr are the helicities of the scattered particles and the function f(k, q) is
given as

f(k, q) =
1
2

(k, q − k)2

(k+k−)2
+

k2 + (q − k)2 + 4(k, q − k)
k+k−

=

=
(k⊥, q⊥ − k⊥)2

4(k+ − iε)2

(
1

(k− + iε)2
+

1
(k− − iε)2

)
+

+
q2
⊥

2(k+ − iε)

(
1

k− + iε
+

1
k− − iε

)
. (268)

Here we restored the analytic structure of the poles in accordance with the Feyn-
man iε-prescription. The integral over k+ in F is nonzero only for k− > 0.
Taking it by residues with the subsequent integration over k−, one can obtain

F = FBornω(t) ln s, t = q2
⊥, (269)

where

FBorn = δλAλA′ δλBλB′ κ
2 s2

t
(270)

is the scattering amplitude in the Born approximation and j = 2 + ω(t) is the
graviton Regge trajectory [32]

ω(q2
⊥) =

κ2

(2π)3

∫
q2
⊥d2k⊥

k2
⊥(q − k)2⊥

(
(k, q − k)2⊥

k2
⊥

+

+
(k, q − k)2⊥
(q − k)2⊥

− q2
⊥ +

N

2
(k, q − k)⊥

)
. (271)

Here we added the contribution of N gravitinos for the N -extended super-
gravity [32]. Other superpartners do not give any contribution in this order.

Note that the infrared divergency of the Regge trajectory is universal, but
the logarithmic divergency at large k⊥ depends on N and is absent at N = 4.
Really, the sum of one-loop diagrams does not contain any ultraviolet divergency,
because the gravity is renormalized in one loop. It means that the integral over k2

⊥
is restricted from above by the value of the order of s, which leads to the double-
logarithmic asymptotics of the scattering amplitude with the graviton quantum
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numbers in the t channel. In [32], the corresponding ladder diagrams in the
double-logarithmic approximation were summed and the following result for the
amplitude in the N -extended supergravity was obtained:

A2→2 = −κ2 s2

t
δλAλA′ δλBλB′

1
aξ

I1(2aξ), (272)

where λi are helicities of the initial and ˇnal gravitons, In(x) is the modiˇed
Bessel function and the parameters a and ξ are given as

a =
(

(4 − N)
κ2

16π2
(−t)

)1/2

, ξ = ln
s

t
. (273)

But there are double-logarithmic contributions from other diagrams containing
three and more gravitons in the t channel. They were summed in a closed form
in [42]. To calculate next-to-leading corrections to these results, one should
generalize the effective action constructed above to the supersymmetric case,
because the contribution of the superpartners of the graviton is essential in higher
loops. But we consider below for simplicity only the ˇrst nontrivial correction to
the action in the N = 1 supergravity. In this case, apart from the vierbein em

μ ,
related to the metric tensor gμν in the well-known way

gμν =
∑

n

eμnen
ν , (274)

the RaritaÄSchwinger ˇeld ψμ describing the gravitino with the spin 3/2 is intro-
duced. The action for this ˇeld is given below:

S3/2 =
∫

d4xL3/2, L3/2 = −1
2
εμνρσψ̄μγ5γνDρψσ. (275)

The covariant derivative Dρ is deˇned by the relation

Dρ = ∂ρ +
1
2
σmnωmn

ρ , σmn =
1
2
(γmγn − γnγm), (276)

where ωmn
ρ is the spin connection expressed in terms of the Christoffel symbol:

ωmn
ρ = −eσn∂ρe

m
σ + eσnem

α Γα
ρσ =

=
1
2
eσn(∂σem

ρ − ∂ρe
m
σ ) − 1

2
eσm(∂σen

ρ − ∂ρe
n
σ)+

+
1
2
eνneμmeρk(∂νek

μ − ∂μek
ν). (277)
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The total action of supergravity is invariant under the supersymmetry transfor-
mation

δem
μ =

κ

2
ε̄γmψμ, δψμ =

1
κ

Dμε, (278)

where ε is a local parameter of these transformations, being the anticommuting
Majorano spinor. It is known that, to close the SUSY commutator algebra off-
shell, one should introduce the auxiliary ˇelds S, P and Am. Here, for simplicity
of discussion, we do not take into account them, neglecting total derivatives in
the action and in its variation.

Let us start again with the Born contribution to the induced contribution to
the effective Lagrangian

Lind = − 1
4κ2

(
j++∂2

σA−− + j−−∂2
σA++

)
, j±± ≈ h±± + . . . (279)

and attempt to add to it radiative corrections in the ˇelds hμν and ψμ to derive
its generalization invariant under the local supersymmetric transformations.

We obtain the following inˇnitesimal transformation of the metric tensor with
the light cone components:

δh±± = κε̄γ±ψ±. (280)

To cancel this term, one should add to j±± the contribution

Δ1j±± =
κ2

2
ψ̄±

γ±
∂±

ψ±, (281)

because up to a total derivative in the integrand for the action its supersymmetric
transformation is equal to the expression

δ1 (Δ1j±±) ≈ −κε̄γ±ψ±, (282)

opposite to δh±± in sign.
Thus, in the N = 1 supersymmetric gravity we obtain for j±± with the

next-to-leading accuracy the following result:

j±± ≈ h±± − X2
σ± +

κ2

2
ψ̄±

γ±
∂±

ψ± + . . . (283)

The upper order corrections can be calculated in a similar way.

10. DISCUSSION

In this paper, the effective action for the high-energy processes in gravity was
constructed in terms of the currents j± satisfying the HamiltonÄJacobi equation.
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This equation can be solved in the perturbation theory or for simple conˇgurations
of the external gravitational ˇelds. One can formulate a variational principle for
the currents calculated at such ˇelds. The effective action can be used for the
calculation of various elastic and inelastic scattering amplitudes in the Regge
kinematics. The Feynman rules for the simple vertices containing the reggeized
gravitons are extracted from the effective Lagrangian. The one-loop graviton
Regge trajectory does not contain the ultraviolet divergency only in the N = 4
supergravity. In other models, the amplitudes with the graviton quantum numbers
in the crossing channel have the double-logarithmic terms. It is possible that the
constructed effective action can be generalized to the case of superstrings living
in the anti-de-Sitter 10-dimensional space. In this case, one could use it for
the description of the pomeron interactions at the N = 4 supersymmetric gauge
theory in the framework of the AdS/CFT correspondence.
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