
”ˆ‡ˆŠ� �‹…Œ…�’���›• —�‘’ˆ– ˆ �’�Œ��ƒ� Ÿ„��
2013. ’. 44. ‚›�. 3

THE COULOMB PROBLEM IN SUPERSTRONG B:
ATOMIC LEVELS AND CRITICAL NUCLEI CHARGES
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The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level
in an external homogeneous superstrong magnetic ˇeld is obtained. The in�uence of the screening of
the Coulomb potential on the values of critical nuclear charges is studied.
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INTRODUCTION

We will discuss the modiˇcation of the Coulomb law and atomic spectra in
superstrong magnetic ˇeld. The talk is based on papers [1Ä3], see also [4].

1. D = 2 QED

Let us consider two-dimensional QED with massive charged fermions. The
electric potential of the external point-like charge equals

Φ(k) = − 4πg

k2 + Π(k2)
, (1)

where Π(k2) is the one-loop expression for the photon polarization operator

Π(k2) = 4g2

[
1√

t(1 + t)
ln (

√
1 + t +

√
t) − 1

]
≡ −4g2P (t), (2)

and t ≡ −k2/4m2, [g] = mass.
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In the coordinate representation for k = (0, k‖) we obtain

Φ(z) = 4πg

∞∫
−∞

eik‖z dk‖/2π

k2
‖ + 4g2P (k2

‖/4m2)
. (3)

With the help of the interpolating formula

P (t) =
2t

3 + 2t
(4)

the accuracy of which is better than 10% for 0 < t < ∞ we obtain

Φ = 4πg

∞∫
−∞

eik‖z dk‖/2π

k2
‖ + 4g2(k2

‖/2m2)/(3 + k2
‖/2m2)

=

=
4πg

1 + 2g2/3m2

[
−1

2
|z|+ g2/3m2√

6m2 + 4g2
exp (−

√
6m2 + 4g2|z|)

]
. (5)

In the case of heavy fermions (m � g), the potential is given by the tree
level expression; the corrections are suppressed as g2/m2.

In the case of light fermions (m � g):

Φ(z)
∣∣
m�g

=

⎧⎪⎪⎨
⎪⎪⎩

π e−2g|z|, z � 1
g

ln
( g

m

)
,

−2πg

(
3m2

2g2

)
|z|, z � 1

g
ln

( g

m

)
,

(6)

m = 0 corresponds to the Schwinger model; photon gets a mass due to a photon
polarization operator with massless fermions.

2. ELECTRIC POTENTIAL OF THE POINT-LIKE CHARGE
IN D = 4 IN SUPERSTRONG B

We need an expression for the polarization operator in the external magnetic
ˇeld B. It simpliˇes greatly for B � B0 ≡ m2

e/e, where me is the electron mass
and we use Gauss units, e2 = α = 1/137 . . . The following results were obtained
in [2]:

Φ(k) =
4πe

k2
‖ + k2

⊥ +
2e3B

π
exp

(
− k2

⊥
2eB

)
P

(
k2
‖

4m2

) , (7)
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Φ(z)=4πe

∫
eik‖z dk‖ d2k⊥/(2π)3

k2
‖ + k2

⊥ +
2e3B

π
exp (−k2

⊥/(2eB))(k2
‖/2m2

e)/(3 + k2
‖/2m2

e)
=

=
e

|z|
[
1 − e−

√
6m2

e|z| + e−
√

(2/π)e3B+6m2
e|z|

]
. (8)

For B � 3πm2/e3 the potential is Coulomb up to small corrections:

Φ(z)
∣∣
e3B�m2

e
=

e

|z|

[
1 + O

(
e3B

m2
e

)]
, (9)

analogously to D = 2 case with substitution e3B → g2.
For B � 3πm2

e/e3 we obtain

Φ(z) =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

|z| e(−
√

(2/π)e3B|z|),
1√

(2/π) e3B
ln

(√
e3B

3πm2
e

)
> |z| >

1√
eB

,

e

|z| (1 − e(−
√

6m2
e|z|)),

1
me

> |z| >
1√

(2/π)e3B
ln

(√
e3B

3πm2
e

)
,

e

|z| , |z| >
1

me
,

(10)

V (z) = −eΦ(z). (11)

The close relation of the radiative corrections at B � B0 in D = 4 to the
radiative corrections in D = 2 QED allows one to prove that just like in D = 2
case higher loops are not essential (see, for example, [5]).

3. HYDROGEN ATOM IN THE MAGNETIC FIELD

For B > B0 = m2
e/e, the spectrum of Dirac equation consists of ultrarela-

tivistic electrons with only one exception: the electrons from the lowest Landau
level (LLL, n = 0, σz = −1) are nonrelativistic. So we will ˇnd the spectrum of
electrons from LLL in the screened Coulomb ˇeld of the proton.

The wave function of electron from LLL is

R0m(ρ) =
[
π(2a2

H)1+|m|(|m|!)
]−1/2

ρ|m| e(imϕ−ρ2/(4a2
H )), (12)

where m = 0, −1, −2 is the projection of the electron orbital momentum on the
direction of the magnetic ˇeld.
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For aH ≡ 1/
√

eB � aB = 1/(mee
2) the adiabatic approximation is applica-

ble and the wave function looks like

Ψn0m−1 = R0m(ρ)χn(z), (13)

where χn(z) satisfy the one-dimensional Schréodinger equation:[
− 1

2me

d2

dz2
+ Ueff(z)

]
χn(z) = Enχn(z). (14)

Since screening occurs at very short distances it is not important for odd states,
for which the effective potential is

Ueff(z) = −e2

∫ |R0m(ρ)|2√
ρ2 + z2

d2ρ. (15)

It equals the Coulomb potential for |z| � aH and is regular at z = 0.
Thus the energies of the odd states are

Eodd = −mee
4

2n2
+ O

(
m2

ee
3

B

)
, n = 1, 2, . . . , (16)

and for the superstrong magnetic ˇelds B > m2
e/e3 they coincide with the Balmer

series with high accuracy.
For even states the effective potential looks like

Ũeff(z) = −e2

∫ |R0m(ρ)|2√
ρ2 + z2

d2ρ
[
1 − e−

√
6m2

e z + e−
√

(2/π)e3B+6m2
e z

]
. (17)

Integrating the Schréodinger equation with the effective potential from x = 0
till x = z, where aH � z � aB , and equating the obtained expression for
χ′(z) to the logarithmic derivative of Whittaker function Å the solution of the
Schréodinger equation with Coulomb potential Å we obtain the following equation
for the energies of even states:

ln

(
H

1 + e6

3π H

)
= λ + 2 lnλ + 2ψ

(
1 − 1

λ

)
+ ln 2 + 4γ + ψ(1 + |m|), (18)

where H ≡ B/(m2
ee

3), ψ(x) is the logarithmic derivative of the gamma function
and

E = −(mee
4/2)λ2. (19)

The spectrum of the hydrogen atom in the limit B � m2
e/e3 is shown in Fig. 1.
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Fig. 1. Spectrum of the hydrogen atom in the limit of the inˇnite magnetic ˇeld. Energies
are given in Rydberg units, Ry ≡ 13.6 eV

4. SCREENING VERSUS CRITICAL NUCLEUS CHARGE

Hydrogen-like ion becomes critical at Z ≈ 170: the ground level reaches
lower continuum, ε0 = −me, and two e+e− pairs are produced from vacuum.
Electrons with the opposite spins occupy the ground level, while positrons are
emitted to inˇnity [6]. According to [7] in the strong magnetic ˇeld Zcr dimin-
ishes: it equals approximately 90 at B = 100B0; at B = 3 · 104B0 it equals
approximately 40. Screening of the Coulomb potential by the magnetic ˇeld acts
in the opposite direction, and with the account of it larger magnetic ˇelds are
needed for a nucleus to become critical.

Let us parameterize bispinor which describes electron wave function in the
following way:

Ψ =
(

ϕ
χ

)
, ϕ =

(
c1

c2

)
, χ =

(
b1

b2

)
. (20)
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Substituting Ψ in the Dirac equation for the electron in an external electro-
magnetic ˇeld we obtain⎧⎪⎪⎨

⎪⎪⎩
(ε − m − eϕ)

(
c1

c2

)
+ (−iσ̄

∂

∂r̄
+ eĀσ̄)

(
b1

b2

)
= 0,

−(iσ̄
∂

∂r̄
− eĀσ̄)

(
c1

c2

)
+ (ε + m − eϕ)

(
b1

b2

)
= 0.

(21)

Taking vector potential which describes constant magnetic ˇeld B directed
along z axis in the form Ā = (−(1/2)By, (1/2)Bx, 0), we get

eĀσ̄ = −e

2
B

(
0 y + ix

y − ix 0

)
= − i

2
eBρ

(
0 e−iθ

−eiθ 0

)
, (22)

where ρ =
√

x2 + y2, θ ≡ arctan(y/x). Analogously we obtain

−iσ̄
∂

∂r̄
= −i

⎛
⎜⎜⎝

∂

∂z
e−iθ ∂

∂ρ
− ie−iθ

ρ

∂

∂θ

eiθ ∂

∂ρ
+

ieiθ

ρ

∂

∂θ
− ∂

∂z

⎞
⎟⎟⎠ . (23)

Substituting two last expressions in the Dirac equation we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ε − m − eϕ)
(

c1

c2

)
−

−i

⎛
⎜⎜⎝

∂

∂z
e−iθ

(
1
2
eBρ +

∂

∂ρ
− i

ρ

∂

∂θ

)

eiθ

(
−1

2
eBρ +

∂

∂ρ
+

i

ρ

∂

∂θ

)
− ∂

∂z

⎞
⎟⎟⎠

(
b1

b2

)
= 0,

(ε + m − eϕ)
(

b1

b2

)
−

−i

⎛
⎜⎜⎝

∂

∂z
e−iθ

(
1
2
eBρ +

∂

∂ρ
− i

ρ

∂

∂θ

)

eiθ

(
−1

2
eBρ +

∂

∂ρ
+

i

ρ

∂

∂θ

)
− ∂

∂z

⎞
⎟⎟⎠

(
c1

c2

)
= 0.

(24)
Axial symmetry of electromagnetic ˇeld allows one to determine θ depen-

dence of the functions ci and bi:(
c1

c2

)
=

(
c1(ρ, z) ei(M−1/2)θ

c2(ρ, z) ei(M+1/2)θ

)
,

(
b1

b2

)
=

(
b1(ρ, z) ei(M−1/2)θ

b2(ρ, z) ei(M+1/2)θ

)
, (25)
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where M = ±1/2,±3/2, . . . is the projection of electron angular momentum on
z axis. Substituting (25) into (24) we get four linear equations for four unknown
functions ci and bi (here and below c1 ≡ c1(ρ, z), b1 ≡ b1(ρ, z) . . .):

(ε − m − eϕ)c1 + i

(
−b1z − b2ρ − M + 1/2

ρ
b2 −

eBρ

2
b2

)
= 0,

(ε − m − eϕ)c2 + i

(
−b1ρ +

M − 1/2
ρ

b1 +
eBρ

2
b1 + b2z

)
= 0,

(ε + m − eϕ)b1 + i

(
−c1z − c2ρ − M + 1/2

ρ
c2 −

eBρ

2
c2

)
= 0,

(ε + m − eϕ)b2 + i

(
−c1ρ +

M − 1/2
ρ

c1 +
eBρ

2
c1 + c2z

)
= 0,

(26)

where b1z ≡ ∂b1/∂z, b1ρ ≡ ∂b1/∂ρ, . . . Ground energy state has sz = −1/2,
lz = 0. Taking M = −1/2, we should look for solution of (26) with c1 = b1 = 0:

b2ρ +
eBρ

2
b2 = 0,

c2ρ +
eBρ

2
c2 = 0,

(27)

(ε − m − eϕ)c2 + ib2z = 0,

(ε + m − eϕ)b2 + ic2z = 0.
(28)

The dependence on ρ is determined by (27)

b2(ρ, z) = e−eBρ2/4(−i)f(z),

c2(ρ, z) = e−eBρ2/4g(z).
(29)

Substituting the last expressions in (28) and averaging over fast motion in
transverse to the magnetic ˇeld plane we obtain two ˇrst-order differential equa-
tions which describe electron motion along magnetic ˇeld [7]:

gz − (ε + me − V̄ )f = 0,

fz + (ε − me − V̄ )g = 0,
(30)

where gz ≡ dg/dz, fz ≡ df/dz. They describe the electron motion in the
effective potential V̄ (z):

V̄ (z) = −Ze2

a2
H

[
1 − e−

√
6m2

e|z| + e−
√

(2/π)e3B+6m2
e|z|

] ∞∫
0

e−ρ2/2a2
H√

ρ2 + z2
ρ dρ. (31)
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Fig. 2. The values of BZ
cr: without screening according to [7], dashed line; numerical

results with screening, solid line. The dotted line corresponds to the ˇeld at which aH

becomes smaller than the size of the nucleus

Intergrating (30) numerically we ˇnd the dependence of Zcr on the magnetic ˇeld
with the account of screening. The results are shown in Fig. 2. For the given
nucleus to become critical, larger magnetic ˇelds are needed and the nuclei with
Z < 52 do not become critical.
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