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We consider scattering amplitudes in QCD at high energies
√

s and ˇxed momentum transfers
q =

√
−t with a nonzero temperature T in the t channel. In the s channel the temperature leads

to a compactiˇcation of the impact parameter plane. We ˇnd that the thermal BFKL Hamiltonian in
the leading logarithmic approximation proceeds to have the property of the holomorphic separability.
Moreover, there exists an integral of motion allowing one to construct the Pomeron wave function
for arbitrary T in the coordinate and momentum representations. The holomorphic Hamiltonian
for n-reggeized gluons at T �= 0 in the multicolour limit Nc → ∞ turns out to be equal to the
local Hamiltonian for an integrable Heisenberg spin model. Further, the two-gluon Baxter function
coincides with the corresponding wave function in the momentum representation. We calculate the
spectrum of the Pomeron Regge trajectories at a ˇnite temperature with taking into account the QCD
running coupling. The important effect of the t-channel temperature is the appearance of a conˇning
potential between gluons.

PACS: 11.55.Jy; 12.40.Nn

1. INTRODUCTION

The scattering amplitudes A(s, t) at high energies 2E =
√

s and ˇxed mo-
mentum transfers q =

√
−t were calculated in the leading logarithmic approxi-

mation (LLA) αs ln s ∼ 1, αs = g2/4π → 0 (g is the QCD coupling constant) by
summing the largest contributions ∼ (αs ln s)n to all orders of perturbation theory
by Balitsky, Fadin, Kuraev, and Lipatov (BFKL) [1]. The BFKL Pomeron turns
out to be a composite state of two reggeized gluons in LLA (it takes place also in
the next-to-leading approximation [2]). The Pomeron wave function Ψ(ρ1, ρ2) in
the two-dimensional impact-parameter space ρ satisˇes the stationary Schréodinger
equation

E Ψ(ρ1, ρ2) = H12Ψ(ρ1, ρ2), H12 = Hkin + Hpot. (1.1)
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The intercept Δ of the BFKL Pomeron, related to the high energy asymptotics
σt ∼ sΔ of the total cross section, is proportional to the ground state energy E
of the Hamiltonian H12

Δ = −αsNc

2π
E. (1.2)

The kinetic energy
Hkin = ln |p1|2 + ln |p2|2

is the sum of two gluon Regge trajectories, and the potential energy

Hpot =
1

p1p∗2
ln |ρ12|2 p1p

∗
2 +

1
p2p∗1

ln |ρ12|2 p2p
∗
1 − 4ψ(1), ρ12 = ρ1 − ρ2

is related by similarity transformations to the two-dimensional Green function
ln |ρ12|2. We introduced here the complex gluon coordinates ρr = xr + iyr and
the corresponding momenta pr = i∂/∂(ρr). Further, ψ(z) = Γ′(z)/Γ(z). The
BFKL equation is used for the description of the deep-inelastic leptonÄhadron
scattering together with the DGLAP equation [3] (see, for example, [4]). It is
invariant under the Méobius transformations [5]

ρr → aρr + bρr

cρr + dρr
(1.3)

with arbitrary complex parameters a, b, c, d, and H12 has the property of holo-
morphic separability (see [4] and [6])

H12 = h12 + h∗
12, h12 =

2∑
r=1

[
ln pr +

1
pr

ln (ρ12) pr − ψ(1)
]

. (1.4)

Note, that the above properties are valid only for the Méobius class of functions
Ψ(ρ1, ρ2) vanishing at |ρ12| → 0 [7]. For more singular functions, the transfor-
mations (1.3) schould be generalized [8].

The wave functions Ψ belong to the principal series of unitary representations
of the Méobius group with conformal weights m = 1/2 + iν + n/2 and m̃ =
1/2 + iν − n/2 expressed in terms of the anomalous dimension γ = 1 + 2iν and
the integer conformal spin n being quantum numbers of the local gauge-invariant
operators [5]. The conformal weights are related to the eigenvalues m(m − 1)
and m̃(m̃ − 1) of the Casimir operators M2 and M2∗, where

M2 =

(
2∑

r=1

M
(r)
3

)2

+

+
1
2

(
2∑

r=1

M
(r)
+

2∑
s=1

M
(s)
− +

2∑
r=1

M
(r)
−

2∑
s=1

M
(s)
+

)
= ρ2

12p1p2. (1.5)
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Here M(r) are the Méobius group generators

M
(r)
3 = ρr ∂r, M

(r)
+ = ∂r, M

(r)
− = −ρ2

r ∂r, (1.6)

and ∂r = ∂/∂ρr.
The eigenfunctions of H12 can be considered as three-point functions of a

two-dimensional conformal ˇeld theory and have the property of holomorphic
factorization [5],

fm,m̃(ρ1, ρ2; ρ0) = 〈0| ϕ(ρ1)ϕ(ρ1)Om,̃m(ρ0) |0〉 =

=
(

ρ12

ρ10 ρ20

)m (
ρ∗12

ρ∗10 ρ∗20

)m̃

. (1.7)

One can calculate the energy inserting this Ansatz in the BFKL equation [1]

Em,m̃ = εm + εm̃, εm = ψ(m) + ψ(1 − m) − 2ψ(1). (1.8)

The minimum of Em,m̃ is obtained at m = m̃ = 1/2 leading to a large intercept
Δ = 4(αs/π)Nc ln 2 for the BFKL Pomeron. In the next-to-leading approxima-
tion the effective intercept is comparatively small (Δ ∼ 0.2 for the QCD case [9]).

The increase of total cross sections at large energies is related to the growth
of the gluon number at small values of the Bjorken variable x. This phenomenon
is especially important for the Brookhaven experiment devoted to the search for
the quarkÄgluon plasma in the heavy ion collisions [10,11]. In these collisions the
temperature of the hadron matter grows and the linear potential responsible for the
quark conˇnement disappears, which leads to the suppression of the production of
the ψ meson and other hadrons [11]. A similar deconˇnement effect should also
exist for Pomeron and other reggeons constructed from gluons. To study these
phenomena in our previous short paper [12], we constructed the BFKL equation
for the Pomeron at an arbitrary temperature T in the center-of-mass system of
the t channel (where

√
t = 2ε) and investigated the integrability properties of the

reggeon dynamics in a thermostat for composite states of n-reggeized gluons in
the multi-colour QCD [12]. Here we consider these problems in more detail with
taking into account also effects of the running coupling constant in QCD.

2. GLUON REGGE TRAJECTORY AND BFKL KERNEL AT T �= 0

The gluon Regge trajectory j(t) in the leading logarithmic approximation
(LLA) is given below:

ω(t) = j(t) − 1 =

= − g2

16π3
Nc

∫
d2k

q2 + λ2

(k2 + λ2)((q − k)2 + λ2)
, t = −q2, (2.1)

where g is the coupling constant for the YangÄMills theory with the gauge group
SU(Nc), and λ is a ˇctitious gluon mass introduced to regularize infrared diver-
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gencies. Note, however, that in the gauge theory with the scalar ˇeld described
by the Nc × Nc-Hermitian matrix, the Higgs mechanism leads to an appearance
of the nonzero mass λ for the vector bosons W , and the above expression for
ω(t) describes the boson Regge trajectory [1]. In this case the trajectory goes
through the physical point j = 1 at the particle mass

√
t = λ. For Nc = 2, the

considered model coincides with the electroweak theory at a vanishing Weinberg
angle θW = 0 [13].

Let us consider the Regge kinematics in which the total particle energy
√

s is
asymptotically large in comparison with the temperature T . In this case, one can
neglect the temperature effects in the propagators of the initial and intermediate
particles in the direct channels s and u. But the momentum transfer |q| is consid-
ered to be of the order of T (note, that q is the vector orthogonal to the momenta
of initial particles q ≈ q⊥). As is well known [10], the particle wave functions
ψ(x) at temperature T are periodic in the Euclidean time τ = it with period 1/T .

We introduce the temperature T in the center-of-mass frame of the t channel.
Technically it corresponds to a compactiˇcation of the Euclidean time τ . Thus, the
Euclidean energies of the intermediate gluons in the t channel become quantized as

k
(l)
4 = 2πlT. (2.2)

As an example, one can consider in QCD the gauge-invariant correlation function
for four photon ˇelds having the negative virtualities p2

i < 0 (i = 1, 2, 3, 4).
Other invariants s, t, u of the amplitude are chosen in such a way, that the
corresponding kinematics can be realized by the Euclidean momenta pi. In
this case in the Feynman matrix elements one can integrate over the Euclidean
momenta of virtual quarks and gluons quantized as in Eq. (2.2) in the center-of-
mass system of the t channel. This amplitude can be continued analytically to
the Regge kinematics corresponding to large s and ˇxed negative t and photon
virtualities. In fact, the continuation is performed in the t-channel scattering
angle θ which is not modiˇed by the temperature effects.

In the s channel the invariant t remains to be negative and the momentum
transfer q is an Euclidean vector. Moreover, the analytically continued 4-momenta
of the t-channel gluons can be considered as Euclidean vectors. After the analytic
continuation of the scattering amplitude to the s channel, the t-channel Euclidean
time τ in fact coincides with one of two components y of the impact-parameter
coordinate ρ, which leads to the compactiˇcation of the impact parameter space

ρ = (x, y), 0 < y < T−1 (2.3)

and to the simple quantization condition for the corresponding components of the
transverse gluon momenta

k = (kx, ky), q = (qx, qy), ky = 2πT l, qy = 2πTr, (2.4)

where r, l = 0,±1,±2, . . .
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Therefore we have for the Regge trajectory of the t-channel gluon in a
thermostat the following expression (cf. (2.1)):

ω(−q2) = − g2

8π2
Nc Ω(q), (2.5)

where

Ω(q) = 2πT
∞∑

r′=−∞
×

×
∞∫

−∞

d kx

2π

q2
x + 4π2 T 2r2 + λ2

(k2
x + 4π2T 2(r′)2 + λ2)((q − k)2x + 4π2T 2(r − r′)2 + λ2)

. (2.6)

By calculating the integral over k with residues and assuming that λ 	 q ∼ 2πT ,
one can derive the ˇnal result

Ω(q) =
2π T

λ
− 2 ψ(1) +

1
2

(
ψ

(
1 +

r

2
+ i

qx

4πT

)
+ ψ

(
1 +

r

2
− i

qx

4πT

)
+

+ψ
(
1 − r

2
+ i

qx

4πT

)
+ ψ

(
1 − r

2
− i

qx

4πT

))
, (2.7)

where ψ(x) = Γ′(x)/Γ(x). The singular contribution 2πT/λ was obtained from
the zero mode r′ = 0, and to sum over nonvanishing r′, we used the well-known
relation

ψ(1 − x) − ψ(1) =
∞∑

r′=1

(
1
r′

− 1
r′ − x

)
.

Note, that in another limit λ ∼ q 	 2πT , the main contribution can be
obtained from the zero modes r = r′ = 0:

Ω2+1(q) = 2π
T

λ

q2 + λ2

q2 + 4λ2
. (2.8)

If one will redeˇne the factor g2 by including in it the temperature T , this expres-
sion for Ωz(q) describes the vector boson Regge trajectory for (2+1)-dimensional
non-Abelian gauge theory [14]. Thus, for large T , there is a compactiˇcation of
one space dimension.

In the general case λ ∼ q ∼ 2πT , the result is more complicated

Ωg(q) = 2πT×

×
∞∑

r′=−∞

(q2
x + 4π2T 2r2 + λ2)(q2

x + 4π2T 2r2 − 8π2T 2rr′)√
λ2+4π2T 2r′2 ((q2

x+4π2T 2r2−8π2T 2rr′)2+4q2
x(λ2+4π2T 2r′2))

.

(2.9)
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It is important, that the gluon Regge trajectory (2.6) has the property of
holomorphic separability

Ω(q) = β

(
qx + i2πTr

2

)
+ β

(
qx − i2πTr

2

)
, (2.10)

where

β(z) =
πT

λ
+

1
2

(
ψ

(
1 + i

z

2πT

)
+ ψ

(
1 − i

z

2πT

)
− 2ψ(1)

)
. (2.11)

Now we consider the contribution to the kernel of the BFKL equation from
the emission of a gluon in the intermediate state of the s channel. For the gluon
with a deˇnite helicity and momentum k, the reggeonÄreggeonÄgluon vertex is
equal to the following expression (or to complex conjugated one) [6]:

Γ ∼ q1 q′∗1
k

, k = q1 − q′
1,

where q1, q′1 are complex components of transverse momenta q1, q′
1 of neighbour-

ing reggeized gluons, and k is a complex component of the transverse momentum
of the produced gluon.

The corresponding term in the BFKL equation is proportional to the product
of two vertices Γ and can be presented as an operator with the integral kernel
(see [6])

K = − q1 q∗2
|q1|2 |q2|2

1
k2 + λ2

q′∗1 q′2 + h.c.,

where the factors |q1|−2 and |q2|−2 correspond to the propagators of two reggeized
gluons being constituents of the BFKL Pomeron. The effective gluon propagator
D(k) = 1/(|k|2 + λ2) (regularized by the gluon mass λ) results from the product
of the nonlocal effective vertices Γ ∼ 1/k. In a more traditional form of taking
into account also the masses λ in other vector boson propagators one can write
the integral kernel for various t-channel states i of the colour group as follows
(see [1]):

Ki(q1,q2;q′
1,q

′
2) = − ci

k2 + λ2

(
q′2

1 + λ2

q2
1 + λ2

+
q′2

2 + λ2

q2
2 + λ2

)
+

+
ciq2 +

(
3
2
ci −

1
2

)
λ2

(q2
1 + λ2)(q2

2 + λ2)
. (2.12)

In the case of the SU(2) gauge model with the Higgs mechanism, the coefˇcients
ci for i = 1 (singlet), i = 3 (triplet) and i = 5 (quintet) states are, respectively,

c1 = 2, c3 = 1, c5 = −1. (2.13)
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In the general case the nonstationary BFKL equation in LLA can be written
in the form:

∂f (i)(q1,q2)
∂t

= (Ωg(q1) + Ωg(q2)) f (i)(q1,q2)+

+
∫

d2q′1
2π

Ki(q1,q2;q′
1,q

′
2) f (i)(q′

1,q
′
2), (2.14)

where

t = −g2Nc

8π2
ln s, q2 = q − q1, q′

2 = q − q′
1,

and it is implied that∫
d2q′1
2π

≡ 2πT
∞∑

r′=−∞

∞∫
−∞

d(q′1)x

2π
, (q′1)y = 2πTr′, (2.15)

where r′ = 0,±1,±2, . . . In particular, for the W -boson channel with the
isospin 1 we obtain the bootstrap solution corresponding to the boson reggeization

f (3)(y;q1,q2) = f (3)(0;q1,q2) exp (yωg(q)), ωg(q) = − g2

8π2
NcΩg(q),

providing that the initial conditions are

f (3)(0;q1,q2) =
φ(q)

(q2
1 + λ2) (q2

2 + λ2)
,

and the function φ(q) does not depend on the gluon virtualities q2
1 and q2

2.
For asymptotically high temperatures T → ∞, the BFKL equation becomes

one-dimensional

1
2πT

∂f (i)(q1, q2)
∂t

=
1
λ

(
q2
1 + λ2

q2
1 + 4λ2

+
q2
2 + λ2

q2
2 + 4λ2

)
f (i)(q1, q2)+

+
ciq

2 +
(

3
2
ci −

1
2

)
λ2

(q2
1 + λ2)(q2

2 + λ2)

∞∫
−∞

dq′1
2π

f (r)(q′1, q
′
2)−

−
∞∫

−∞

dq′1
2π

ci

(q1 − q′1)2 + λ2

(
(q′1)

2 + λ2

(q1)21 + λ2
+

(q′2)
2 + λ2

(q2)2 + λ2

)
f (r)(q′1, q

′
2) (2.16)

and can be solved exactly with the use of the Green function constructed in terms
of the eigenfunctions and eigenvalues of the integral kernel [14,15].
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3. BFKL EQUATION IN QCD AT FINITE T

In the BFKL Hamiltonian for QCD, the gluon Regge trajectories lead to the
kinetic energy and the contribution from the real gluon emission is responsible
for the potential energy V (ρ12) with ρ12 = ρ1 −ρ2, where ρ1 and ρ2 are impact
parameters of two gluons in a Pomeron. Going to the coordinate representation at
a ˇnite temperature T , one can perform the Fourier transformation of the effective
propagator for the produced gluon in the limit λ → 0:

V (ρ) = −2πT

∞∑
r=−∞

∞∫
−∞

dk

π

ei(kx+2πTr τ)

k2 + 4π2T 2r2 + λ2
= −2πT

λ
e−λ|x|+

+ ln |1 − e−2πT (|x|+iτ)|2 = −2πT

λ
+ ln |2 sinh (πT ρ)|2 . (3.1)

Note, that the gluon Green function can be written in another form

V (ρ) = −2πT

λ
+ ln |2πTρ|2 +

∞∑
r=1

ln
∣∣∣∣1 +

T 2ρ2

r2

∣∣∣∣2 ρ = x + iτ.

At large, T we obtain the conˇning potential V (ρ) ∼ 2πT |x|. The conˇnement
is related to the conservation of the �ow of the chromoelectric ˇeld through the
surface surrounding the colour charge in the compactiˇed impact parameter plane.

It is important, that the potential energy has the property of holomorphic
separability

V (ρ) = v(ρ) + v(ρ∗), v(ρ) = −πT

λ
+ ln (2 sinh (πTρ)) .

By adding the virtual corrections from the Regge trajectories of two reggeized
gluons and the contributions from the real gluon emission, we cancel infrared
divergencies at λ → 0 and write the homogeneous BFKL equation as the
Schréodinger equation (cf. (1.4))

EΨ(ρ1, ρ2) = HΨ(ρ1, ρ2), ω = −g2 Nc

8π2
E (3.2)

with the Hamiltonian

H =
∑

s=1,2

Ω(ps) +
1

p∗1p2
V (ρ12) p∗1p2 +

1
p1p∗2

V (ρ12) p1p
∗
2.

One can easily verify that the BFKL Hamiltonian H in a thermostat respects
the property of holomorphic separability [6]

H = h + h∗ (3.3)
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with the holomorphic Hamiltonian

h =
1
2

∑
s=1,2

(
ψ

(
1 + i

ps

2πT

)
+ ψ

(
1 − i

ps

2πT

)
− 2ψ(1)

)
+

+
1
p1

ln (2 sinh (πTρ12)) p1 +
1
p2

ln (2 sinh (πTρ12)) p2, (3.4)

where we introduced the holomorphic coordinates ρs = xs+iτs with ρ12 = ρ1−ρ2

and their conjugated momenta according to the deˇnition

ps =
1
2

(
i

∂

∂xs
+

∂

∂τs

)
, [ps, ρr] = iδr,s.

Here it is implied that imaginary parts of momenta ps are quantized as Im p =
πTr. Note, that the above deˇnition of p corresponds to the relation

p =
px − ipy

2
. (3.5)

For a large temperature the holomorphic Hamiltonian is simpliˇed as follows:

lim
T→∞

h =
∑

s=1,2

(
−ψ′′(1)

2

( ps

2πT

)2

+ πT
1
pr

|ρ12| pr

)
.

Using the holomorphic separability (3.3) one can derive the holomorphic
factorization of the Pomeron wave function [6]

Ψ(ρ1, ρ2) =
∑
k,l

akl Ψk(ρ1, ρ2)Ψl(ρ∗1, ρ
∗
2), (3.6)

where k, l enumerate different solutions of the corresponding holomorphic and
antiholomorphic Schréodinger equations for the same energies ε and ε̃, respectively.
The coefˇcients akl are chosen from the single-valuedness constraint for the wave
function Ψ(ρ1, ρ2).

At small T we return to the known result for the holomorphic BFKL Hamil-
tonian [6]

lim
T→0

h = ln(p1 p2) +
1
p1

ln (ρ12) p1 +
1
p2

ln (ρ12) p2 − 2ψ(1). (3.7)

Its eigenfunctions in the coordinate space are inˇnite-dimensional representations
of the Méobius group with the conformal weight m = 1/2 + iν + n/2 [5]

Ψ(ρ10, ρ20) =
(

ρ12

ρ10ρ20

)m

. (3.8)
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The corresponding eigenvalues are

εm = ψ(m) + ψ(1 − m) − 2ψ(1). (3.9)

The eigenfunctions can be written also in the momentum representation

Ψ(p1, p2) ∼
∫

dk k−1−m ((p1 − k) (p2 + k))−1+m , (3.10)

where the closed contour of integration over k is situated between the singularities
of the integrand. There are two independent solutions of such a type and both of
them can be expressed in terms of the hypergeometric functions.

Some properties of the BFKL dynamics in the thermostat are the same as at
a zero temperature. As an example, we point out the bootstrap relation. Namely,
the BFKL equation with gluon quantum numbers in the crossed channel has
the pole solution corresponding to a reggeized gluon. Note, that to obtain the
bootstrap relation, one should restore in the gluon propagators the λ dependence.

On the other hand, some important features of the BFKL equation at T = 0
are modiˇed. For example, the Méobius invariance in the usual form is lost due to
the fact, that the temperature T has a nonzero dimension ∼ m, but this symmetry
is realized in another form, as it will be demonstrated below. Moreover, the
model with n-reggeized gluons in the crossed channel at Nc → ∞ turns out to
be integrable at a ˇnite temperature [12].

4. MEROMORPHIC PROPERTIES OF EIGENFUNCTIONS

It is convenient to measure coordinates in units of 1/(2πT ) and momenta in
units of 2πT by rescaling

2πTρs → ρs,
ps

2πT
→ ps. (4.1)

The potential V (ρ) in these variables has the form

V (ρ) = − 1
λ

+ ln
∣∣∣2 sinh

ρ

2

∣∣∣2 , ρ = x + iτ, (4.2)

where λ is measured in units of 2πT . Note, that the kinetic energy for each of
gluons i = 1, 2 can be written as an integral operator acting on the wave function
as follows:(

Ω(p) − 1
λ

)
Ψ(ρ) = −

∞∫
−∞

dx′×

×
π∫

−π

d τ ′

4π

∣∣∣∣coth
x − x′ + i(τ − τ ′)

2

∣∣∣∣2 (Ψ(ρ′) − Ψ(ρ)) .
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In the new variables, the holomorphic Hamiltonian simpliˇes:

h =
1
2

∑
s=1,2

(ψ(1 + i ps) + ψ(1 − i ps) − 2ψ(1))+

+
∑

s=1,2

1
ps

ln
(
2 sinh

(ρ12

2

))
ps. (4.3)

The Pomeron wave function Ψ(ρ1, ρ2) should be a periodic function of the
second components ys of the vectors ρs with the period equal to 2π. Respec-
tively, second components i∂/(∂ys) of the momenta ps are integer numbers
r = 0,±1,±2, . . . But due to the holomorphic separability (3.3), the BFKL equa-
tion has an additional symmetry. Indeed, H is a periodic function of ρ12 and ρ∗12
separately. If we analytically continue Ψ(ρ1, ρ2) and Ψ(ρ∗1, ρ

∗
2) as functions of

the real parts of ρ12 and ρ∗12 in the complex plane, they will be quasi-periodic
functions along the imaginary axis and in expression (3.6) the corresponding
phases compensate.

It is convenient to introduce in the t channel the center-of-mass coordinate
R, the total momentum Q and the corresponding relative variables z and p:

R =
ρ1 + ρ2

2
= X + iY, z =

ρ12

2
= x + iy,

(4.4)

Q = p1 + p2 =
K + iN

2
, p = p1 − p2 =

k + in

2
,

with the reverse relations

p1 =
Q + p

2
, p2 =

Q − p

2
. (4.5)

They satisfy the commutation relations

[Q, R] = i, [p, z] = i.

Note, that in terms of the usual component (px, py) of gluon momenta we
have (cf. (3.5))

Q =
1
2

((p1 + p2)x − i(p1 + p2)y) ,

(4.6)

p =
1
2

((p1 − p2)x − i(p1 − p2)y) , t = −4|Q|2.

Because H does not depend on R, the total momenta Q, Q∗ are conserved and
below they will be considered as C numbers. To simplify notation, sometimes
the dependence from them will not be shown explicitly.
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The eigenvalues of N and n are expressed through the integer numbers r1,
r2 for the second components of the momenta p1, p2 as follows:

N = r1 + r2, n = r1 − r2.

We can write the total BFKL Hamiltonian in the new variables using the
relation

ψ(1 − x) = ψ(x) + π cot (πx)

as follows:

H = ψ(1 + i p1) + ψ(i p2) + ψ(−i p∗1) + ψ(1 − i p∗2)−

− 4ψ(1) + 2 ln |2 sinh z|2 +
i

2

(
1
p2

− 1
p1

)
(coth z − 1)+

+
i

2

(
1
p∗2

− 1
p∗1

)
(coth z∗ − 1). (4.7)

To ˇnd an asymptotic behaviour of the solution of the Schréodinger equation
at large x = Re z → +∞, the integration contour in the Fourier transformation
over k,

Ψ(x, n) =

∞∫
−∞

dk

π
e−ikx f(k, n),

should be shifted into the low half of the complex plane k up to the singularities
of the function f(k, n). This function has the simple poles at

k = k
(l)
± (s, n) = ±K + i(−4s− n ± N), s = 0, 1, 2, . . .

Indeed, at large positive x we have

2 ln |2 sinh z|2 → 4x = −4i
∂

∂k
,

and therefore one can obtain an approximate solution of the Schréodinger equation
near these singularities in the form

f(k) ∼ Γ(−ip∗1) Γ(ip2)
Γ(1 + ip1)Γ(1 − ip∗2)

=
Γ(ip∗2) Γ(−ip1)

Γ(1 − ip2)Γ(1 + ip∗1)
. (4.8)

One can write the Hamiltonian in another form

H = ψ(1 + i p2) + ψ(i p1) + ψ(−i p∗2) + ψ(1 − i p∗1)−

− 4ψ(1) + 2 ln |2 sinh z|2 +
i

2

(
1
p2

− 1
p1

)
(coth z + 1)+

+
i

2

(
1
p∗2

− 1
p∗1

)
(coth z∗ + 1). (4.9)
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Therefore, by pushing x → −∞ we can ˇnd another approximate solution
for f(k):

f(k) ∼ Γ(−ip∗2) Γ(ip1)
Γ(1 + ip2)Γ(1 − ip∗1)

=
Γ(ip∗1) Γ(−ip2)

Γ(1 − ip1)Γ(1 + ip∗2)
(4.10)

near the poles in the upper semiplane situated at the points

k = k
(u)
± (s, n) = ±K + i(4s − n ± N), s = 0, 1, 2, . . . ,

complex conjugated with respect to k
(l)
± .

Thus, the solution of the Schréodinger equation in the momentum representa-
tion is a meromorphic function of the variable k

Ψ(K, N, k, n) =
∞∑

s=0

∑
σ=±

(
c
(u)
σ (s, n)

k − k
(u)
σ (s, n)

+
c
(d)
σ (s, n)

k − k
(d)
σ (s, n)

)
. (4.11)

There is a simple interpretation of the pole singularities of Ψ(K, N, k, n) in
terms of analytic properties of the vertex Γ(p2

1,p
2
2,Q

2) considered as a function
of the gluon virtualities M2

1 = −p2
1, M

2
2 = −p2

2. This function is obtained from
the above solution Ψ by removing the gluon propagators

Γ(p2
1,p

2
2,Q

2) = |p|21 |p|22 Ψ(K, N, k, n).

If we consider inhomogeneous BFKL equation, the Born contribution
|p|−2

1 |p|−2
2 for Ψ has the poles at |p|21 = 0 corresponding to the singularities at

k = −K ± i(n + N)

and at |p|22 = 0 corresponding to the singularities at

k = K ± i(n − N).

The ˇrst iteration of this inhomogeneous term obtained by applying to it the
BFKL kernel gives (after the cancelation of the second order poles) the single
poles in all points k = ku,l

σ (s) (σ = ±1) (corresponding to the cuts in |p|21 at
σ = −1 and in |p|22 at σ = 1 for T = 0). Note, that for the gluon quantum
numbers in the t channel these poles are cancelled leading to the result depending
only on Q in accordance with the bootstrap property. The subsequent iteration of
the inhomogeneous BFKL equation does not give new singularitiues.

The recurrent relations for the residues of the poles are discussed in the next
section.
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5. RELATIONS FOR RESIDUES

Assuming, that the Pomeron wave functions have the property of the holomor-
phic factorization (3.6), we can restrict ourselves to the problem of constructing
the holomorphic and antiholomorphic wave functions. For example, let us write
the Hamiltonian (4.9) in the separable form:

H = h′ + h̃′∗, (5.1)

where

h′ = ψ(1 + i p2) + ψ(i p1) − 2ψ(1) + 2 ln (2 sinh z)+

+
i

2

(
1
p2

− 1
p1

)
(coth z + 1), (5.2)

h̃′∗ = ψ(−i p∗2) + ψ(1 − i p∗1) − 2ψ(1) + 2 ln (2 sinh z∗)+

+
i

2

(
1
p∗2

− 1
p∗1

)
(coth z∗ + 1). (5.3)

Note, that the Hamiltonian h′ can be written as an integral operator in the
coordinate space

h′ = ρ12 −
∞∑

k=1

(
ekρ12 − 1

)(
− 1

∂1
+

1
∂2

− 2
k

)
e−kρ12 .

Therefore the eigenvalue equation for it has the form

εΨ(z) = 2zΨ(z)+

+ 4
∫ z

dz′

(
e2(z−z′)

1 − e2(z−z′)
(Ψ(z′) − Ψ(z)) − e−2z′

1 − e−2z′ (Ψ(z′) − Ψ(0))

)
.

Here the boundary conditions are not speciˇed, because there is an uncertainty
in a separation of the holomorphic and antiholomorphic contributions in the total
Hamiltonian H .

The dispersion representation for the holomorphic solution of the equation

h′ϕ(1)(p1, p2) = εϕ(1)(p1, p2),

with the poles at p1 = il (l = 0, 1, 2, . . .) (corresponding to the asymptotics of
Ψ(x, n) at x → ∞), can be written as follows:

ϕ(1)(p1, p2) =
∞∑
l=0

r(Q, l)
p1 − il

, Q = p1 + p2. (5.4)



1008 DE VEGA H., LIPATOV L.N.

It is convenient to introduce the singular and regular terms in their expansion
near the poles

lim
p1→il

ϕ(1)(p1, p2) =
r(Q, l)
p1 − il

+ a(Q, l), a(Q, l) =
∞∑

l′=0

′
r(Q, l′)
i(l − l′)

, (5.5)

where
∑′ means that the singular term at l′ = l is omitted.

On the other hand, putting our Ansatz in the eigenvalue equation for the
Hamiltonian h′ (5.2) from the condition of cancelling the poles of the ˇrst and
second orders, we obtain the following relations between r(Q, l) and a(Q, l):

− i a(Q, l) = (ψ(1 + l) + ψ(1 + iQ + l) − 2ψ(1) − ε) r(Q, l)+

+
l∑

s=1

(
−2

s
− i

1
Q − il

+
1
l

)
r(Q, l − s). (5.6)

For l = 0 an additional term appears in the right-hand side of the above
relations:

− ia(Q, 0) = (ψ(1 + iQ) − ψ(1) − ε) r(Q, 0)+

+
∞∑

s=1

(ψ(1 + s) − ψ(1))r(Q, s), (5.7)

where we took into account that
∞∑

s=0

r(Q, s) = 0.

Note, that the above equations can be written only in terms of the residues r(Q, l):

0 = (ψ(1 + l) + ψ(1 + iQ + l) − 2ψ(1) − ε) r(Q, l)−

−
∞′∑
s=0

r(Q, s)
|l − s| +

(
1
l

+
1

l + iQ

) l−1∑
s=0

r(Q, s) (5.8)

for l = 1, 2, . . . and

0 = (ψ(1 + iQ) − ψ(1) − ε) r(Q, 0) −
∞∑

s=1

r(Q, s)
s

+

+
∞∑

s=1

(ψ(1 + s) − ψ(1))r(Q, s) (5.9)

for l = 0.
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We can present the holomorphic Hamiltonian in other form:

h′ = ψ(i p2) + ψ(1 + i p1) − 2ψ(1) + 2 ln (2 sinh z)+

+
i

2

(
1
p2

− 1
p1

)
(coth z − 1), (5.10)

and therefore one can construct the new eigenfunction of h′ with the poles at
p2 = il considering the limit x → −∞:

ϕ(2)(p1, p2) =
∞∑
l=0

r(Q, l)
p2 − il

, (5.11)

where the residues r(Q, l) coincide with those for ϕ(1)(p1, p2).
There is another representation of the total Hamiltonian H as a sum of

holomorphic and antiholomorphic functions

H = h′′ + h̃′′∗, (5.12)

where

h′′ = ψ(1 − i p2) + ψ(−i p1) − 2ψ(1) + 2 ln (2 sinh z)+

+
i

2

(
1
p2

− 1
p1

)
(coth z − 1), (5.13)

h̃′′∗ = ψ(i p∗2) + ψ(1 + i p∗1) − 2ψ(1) + 2 ln (2 sinh z∗)+

+
i

2

(
1
p∗2

− 1
p∗1

)
(coth z∗ − 1). (5.14)

It means that we can ˇnd the eigenfunctions of the holomorphic Hamiltonian h′′

with the poles in the points p1 = −il and p2 = −il:

ϕ(1)(−p1,−p2) =
∞∑

l=0

r(−Q, l)
−p1 − il

, ϕ(2)(−p1,−p2) =
∞∑

l=0

r(−Q, l)
−p2 − il

. (5.15)

Note, that for Q = 0, the above equations for r(Q, l) and a(Q, l) are simpli-
ˇed as follows:

−i a(0, l) = (2ψ(1 + l) − 2ψ(1) − ε) r(0, l) +
l∑

s=1

(
−2

s
+

2
l

)
r(0, l− s) (5.16)
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for l = 1, 2, . . . and

−ia(0, 0) = −ε r(0, 0) +
∞∑

s=1

(ψ(1 + s) − ψ(1)) r(0, s) (5.17)

for l = 0.
The problem how to construct the Pomeron wave function having the property

of the holomorphic factorization will be considered below. In the next section we
shall derive the holomorphic integral of motion. It will give us a possibility of
constructing more simple recurrent relations for residues of the functions φ(1),(2).

6. SMALL-T EXPANSION AND THE INTEGRAL OF MOTION

As was shown above, the BFKL Hamiltonian at ˇnite T can be written as a
sum of the holomorphic and antiholomorpic contributions

H = h + h∗, ρ = ρ12,

where according to Eq. (4.3)

h =
1
2

∑
s=1,2

(ψ(1 + i ps) + ψ(1 − i ps) − 2ψ(1))+

+
∑

s=1,2

1
ps

ln
(
2 sinh

(ρ

2

))
ps. (6.1)

One should solve correspondingly the holomorphic and antiholomorphic
Schréodinger equations

εΨ(ρ) = h Ψ(ρ), ε̃Ψ̃(ρ∗) = h∗ Ψ̃(ρ∗), E = ε + ε̃.

Let us consider the small-T behaviour of h. For this purpose, it is helpful to
use the well-known expansions of the functions appearing in expression (6.1):

ψ(1 + z) = ln z +
1
2z

−
∞∑

k=1

B2k

2k z2k
,

2 ln
(
2 sinh

ρ

2

)
= 2 lnρ +

∞∑
k=1

B2k ρ2k

k (2k)!
,

1
eρ − 1

=
1
ρ
− 1

2
+

∞∑
k=1

B2k ρ2k−1

k (2k)!
,
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where B2k are the Bernoulli numbers. Thus, for small ρ and large p1, p2 (cor-
responding to large T in the initial variables), we obtain

h = h0 + Δh, h0 = ln (p1p2) + 2 ln ρ + i

(
1
p2

− 1
p1

)
1
ρ
− 2ψ(1), (6.2)

where

Δh =
∞∑

k=1

B2k

2k

(
(−1)k+1

(
1

p2k
1

+
1

p2k
2

)
+

2
(2k)!

ρ2k+

+i

(
1
p2

− 1
p1

)
ρ2k−1

(2k − 1)!

)
. (6.3)

Several terms of this expansion are given below:

Δh =
1
12

(
1
p2
1

+
1
p2
2

)
+

i

12

(
1
p2

− 1
p1

)
ρ +

ρ2

12
+

+
1

120

(
1
p4
1

+
1
p4
2

)
− i

720

(
1
p2

− 1
p1

)
ρ3 − ρ4

1440
+

+
1

252

(
1
p6
1

+
1
p6
2

)
+

i

30240

(
1
p2

− 1
p1

)
ρ5 +

ρ6

90720
+

+
1

240

(
1
p8
1

+
1
p8
2

)
− i

1209600

(
1
p2

− 1
p1

)
ρ7 − ρ8

4838400
+ . . . (6.4)

Note, that the odd terms in the expansion in T are absent. Using the above
expressions we can attempt to ˇnd small-T corrections to the Casimir operator of
the Méobius group A0 = M2 being the integral of motion for T = 0:

A = A0 + ΔA, A0 = ρ2 p1p2, [h0, A0] = 0.

In the next-to-leading order for h we have

[
1
12

(
1
p2
1

+
1
p2
2

)
+

i

12

(
1
p2

− 1
p1

)
ρ +

ρ2

12
, ρ2 p1p2

]
=

=
1
6

(
p2

p3
1

+
p1

p3
2

)
+

1
3

(
1
p2
1

+
1
p2
2

)
− i

3

(
p2

p2
1

− p1

p2
2

)
ρ+

+
i

2

(
1
p2

− 1
p1

)
ρ +

(
1 − 1

4

(
p2

p1
+

p1

p2

))
ρ2 − i

6
(p2 − p1)ρ3.
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On the other hand, with the use of the relations[
ln (p1p2) + 2 lnρ + i

(
1
p2

− 1
p1

)
1
ρ
− 2ψ(1), p1p2ρ

4

]
=

= 24i

(
p2

p4
1

− p1

p4
2

)
1
ρ

+ 30
(

p2

p3
1

+
p1

p3
2

)
− 20i

(
p2

p2
1

− p1

p2
2

)
ρ−

− 2i

(
1
p1

− 1
p2

)
ρ −

(
9

(
p2

p1
+

p1

p2

)
+ 4

)
ρ2 + 2i(p2 − p1)ρ3,

[
ln (p1p2) + 2 lnρ + i

(
1
p2

− 1
p1

)
1
ρ
− 2ψ(1), (p1 − p2)ρ3

]
=

= −6
(

p2

p4
1

− p1

p4
2

)
1
ρ

+ 6
(

1
p3
1

− 1
p3
2

)
1
ρ

+ 8i

(
p2

p3
1

+
p1

p3
2

) (
1
p2
1

+
1
p2
2

)
+

+ 6
(

p2

p2
1

− p1

p2
2

)
ρ − 4

(
1
p1

− 1
p2

)
ρ − 3i

(
p2

p1
+

p1

p2

)
ρ2 + 2iρ2,

[
ln p1p2) + 2 ln ρ + i

(
1
p2

− 1
p1

)
1
ρ
− 2ψ(1), ρ2

]
=

= 2i

(
1
p1

− 1
p2

)
ρ − 3

(
1
p2
1

+
1
p2
2

)
− 2i

(
1
p3
1

− 1
p3
2

)
1
ρ
,

we obtain that[
h0, −

1
12

(
p1p2ρ

4 + 4i(p1 − p2)ρ3 + 12ρ2
)]

=

+
1
6

(
p2

p3
1

+
p1

p3
2

)
+

1
3

(
1
p2
1

+
1
p2
2

)
− i

3

(
p2

p2
1

− p1

p2
2

)
ρ − i

2

(
1
p1

− 1
p2

)
ρ−

− 1
4

(
p2

p1
+

p1

p2

)
ρ2 − i

6
(p2 − p1) ρ3 + ρ2.

It means, that indeed up to the next-to-next-to-leading order of the perturba-
tion theory in T 2 we have the integral of motion

[h, A] = 0, A = ρ2p1p2 +
1
12

(
p1p2ρ

4 + 4i(p1 − p2)ρ3 + 12ρ2
)

+ . . . =

= g(ρ) p1 p2,

where

g(ρ) = ρ2 +
ρ4

12
+ . . .
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One can assume∗ that g(ρ) is the periodic function equal to

g(ρ) = 4
(
sinh

ρ

2

)2

.

Thus, the integral of motion is

A = 4
(
sinh

ρ

2

)2

p1 p2. (6.5)

In the next section we shall prove that A indeed commutes with the holomorphic
Hamiltonian.

7. CONFORMAL RELATION BETWEEN MODELS
WITH T �= 0 AND T = 0

The Pomeron wave function can be constructed explicitly in the coordinate
space. For this purpose, we use the conformal transformation of gluon coordinates
and momenta

ρr = ln ρ′r, pr = ρ′rp
′
r (7.1)

of holomorphic Hamiltonian (6.1). In new variables h is reduced to the usual
BFKL Hamiltonian (1.4) for the vanishing temperature:

h = ln (p′1 p′2) +
1
p′1

ln (ρ′12) p′1 +
1
p′2

ln (ρ′12) p′2 − 2ψ(1), (7.2)

To verify this fact it is enough to use the following operator identity (see [4]):

1
2

[
ψ

(
1 + z

∂

∂z

)
+ ψ

(
−z

∂

∂z

)]
= ln z + ln

∂

∂z
, (7.3)

satisfying the hermiticity symmetry, as well as the known properties of the ψ
function. Note, however, that this identity does not allow one to ˇx in h the
contributions proportional to the periodic functions of the type coth (πpr), which
is related to the ambiguity in the presention of H as a sum of holomorphic and
antiholomorphic operators (cf., for example, (5.1) and (5.12)).

Analogously in the new variables the integral of motion, Eq. (6.5), is reduced
to the Casimir operator of the Méobius group

A = −(ρ′12)
2 ∂

∂ρ′1

∂

∂ρ′2
. (7.4)

∗We thank V.N.Velizhanin, who veriˇed this assumption in higher orders of the expansion
in T .
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Its eigenfunctions are well known (see (3.8)). Thus, the Pomeron wave function
at a nonzero temperature having the property of single-valuedness and periodicity
takes the form

Ψ(m,m̃)(ρ1, ρ2, ρ0) =

⎛⎝ sinh
ρ12

2
2 sinh

ρ10

2
sinh

ρ20

2

⎞⎠m
⎛⎜⎝ sinh

ρ∗12
2

2 sinh
ρ∗10
2

sinh
ρ∗20
2

⎞⎟⎠
m̃

.

(7.5)
The orthogonality and completeness relations for these functions can be easily
obtained from the analogous results for T = 0 (see [5]) using the above conformal
transformation.

In summary, the exponential transformation Eq. (7.1), which in dimensional
variables takes the form

ρ′ =
1

2πT
e2πTρ, (7.6)

maps the reggeon dynamics from zero temperature to temperature T . This map-
ping explicitly exhibits the periodicity ρ → ρ + i/T for a thermal state. It must
be noticed that such a class of mappings is known to describe thermal situations
for quantum ˇelds in accelerated frames and in black-hole backgrounds [33].

As is well known [17], the BFKL equation at T = 0 can be generalized
to composite states of n-reggeized gluons. In the multicolour limit Nc → ∞,
the BKP equations are signiˇcantly simpliˇed thanks to their conformal invari-
ance [5], holomorphic separability [6], and an existence of integrals of mo-
tion [16]. The generating function for the holomorphic integrals of motion coin-
cides with the transfer matrix for an integrable lattice spin model [18, 19]. The
transfer matrix is the trace of the monodromy matrix

t(u) = L1(u)L2(u) . . . Ln(u), (7.7)

satisfying the YangÄBaxter equations [19]. The integrability of the n-reggeon
dynamics in multicolour QCD is valid also at nonzero temperature T , where,
according to the above arguments we should take the L-operator in the form of
the following matrix:

Lk =
(

u + pk e−ρk pk

−eρk pk u − pk

)
. (7.8)

The integrals of motion for the n-reggeon composite state now have the form
(cf. [19])

qr =
∑

{i1i2···ir}
(eρi1 −eρi2 ) · · · (eρir −eρi1 ) (e−ρi1 pi1) · · · (e−ρir pir ), [qr, h = 0].

(7.9)
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The holomorphic Hamiltonian is the local Hamiltonian of the integrable Heisen-
berg model with the spins being the unitary transformed generators of the Méobius
group (cf. [20,21])

Mk
3 = ∂k , Mk

+ = e−ρk ∂k, Mk
− = −eρk ∂k. (7.10)

These operators are generators of the conformal transformations

ρk → ln
a eρk + b

c eρk + d
, (7.11)

leaving unchanged the cylinder with the identiˇcation of the points Im ρ ≡ Im ρ+
2π on the complex ρ plane.

Because the Hamiltonian at a nonzero temperature can be obtained by a
unitary transformation from the zero temperature Hamiltonian, the spectrum of
intercepts for multigluon states is the same as for zero temperature [22Ä26], and
the wave functions of the composite states can be calculated by the substitution
ρk → eρk . Nevertheless, formally the spin model with this Hamiltonian is not
symmetric under all possible rotations and therefore it is not the XXX magnet
considered in [20,21].

8. HOLOMORPHIC SOLUTION IN THE MIXED REPRESENTATION

Instead of solving the Schréodinger equation, we can search for a solution of
the eigenvalue equation for the integral of motion (6.5)

AΨ(ρ1, ρ2) = m(m − 1)Ψ(ρ1, ρ2). (8.1)

Extracting from ψ(ρ1, ρ2) the plane wave corresponding to the motion of the
gluon center of mass with the total momentum Q∗ = (p∗1 + p∗2)/2 (see (4.6))

ψ(ρ1, ρ2) = eiQ∗R Ψ(ρ), R =
ρ1 + ρ2

2
, QR = Q∗R + QR∗, (8.2)

one can write the equation for the holomorphic wave function depending on the
relative coordinate ρ = ρ1 − ρ2 as follows:(

Q∗2

4
+

∂2

(∂ρ)2

)
Ψ(ρ) =

m(m − 1)
4(sinh ρ/2)2

Ψ(ρ). (8.3)

Note, that the crossed channel invariant is (4.6)

t = −4|Q|2. (8.4)
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By using the new variable

x =
1 − coth ρ/2

2
, (8.5)

we obtain(
Q∗2

4
+ x(1 − x)∂ x(1 − x)∂

)
Ψ = −x(1 − x)m(m − 1)Ψ.

Extracting from ψ(ρ) an additional factor

Ψ(ρ) = (x(x − 1))iQ∗/2
g(x) (8.6)

one can verify that the function g(x) satisˇes the hypergeometric equation(
x(1 − x)

d2

dx2
+ (γ − (α + β + 1)x)

d

dx
− αβ

)
g(x) = 0

for
α = m + iQ∗, β = 1 − m + iQ∗, γ = 1 + iQ∗.

Independent solutions of these equations are F (α, β; γ; x) and x1−γF (α − γ +
1, β − γ + 1; 2 − γ; x). But because for ρ → 0 we have

x ≈ −ρ−1 → −∞,

near ρ = 0 it is natural to use their linear combinations

g1(x) = (−x)−iQ∗−m F

(
iQ∗ + m, m; 2m;

1
x

)
,

g2(x) = (−x)−iQ∗+m−1 F

(
iQ∗ − m + 1, 1 − m; 2(1 − m);

1
x

) (8.7)

related to each other by the substitution m ↔ 1 − m.
Thus, the functions

Ψ1(ρ) =
(

1 − 1
x

)iQ∗/2

(−x)−m F

(
iQ∗ + m, m; 2m;

1
x

)
,

(8.8)

Ψ2(ρ) =
(

1 − 1
x

)iQ∗/2

(−x)m−1 F

(
iQ∗ − m + 1, 1 − m; 2(1 − m);

1
x

)
are eigenfunctions of the integral of motion and of the holomorphic Hamiltonian.
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We can easily verify, that indeed Ψ1,2 are the eigenfunctions of h in the
particular case Q∗ = 0, where we can expand them at small ρ

lim
Q→0

Ψ1(ρ) = ρm

(
1 − 1

24
m(m − 1)
2m + 1

ρ2+

+
1

5760
m(m − 1)(5m2 + 7m + 6)

(2m + 1)(2m + 3)
ρ4 + . . .

)
.

The Schréodinger equation here can be written as follows:

hΨ(m) = εm Ψ(m).

It is easy to ˇnd the action of various terms in h on the powers ρm+2k, for
example,

1
ps
1

ρm+2k = (−1)s 1
ps
2

ρm+2k = (−i)s
s∏

r=1

1
m + 2k + r

ρm+2k+s.

We use also the following relation for the action of the free Green function at
T = 0 on these terms:

1
εm − h0

ρm+2k = −1
2

(
2k−1∑
r=0

1
m + r

)−1

ρm+2k.

Thus, introducing the small-ρ expansion of the solution at Q = 0

f(m)(ρ) = ρ−mΨ(m) =
∞∑

t=0

ct
(m) ρ2t, c0

m = 1,

one can obtain the following recurrence relation for the coefˇcients ct
(m) of the

Taylor series:

− 2

(
2t−1∑
r=0

1
m + r

)
ct
(m) =

=
t∑

k=1

B2k

k

(
−

2k∏
r=1

1
m + 2t − 2k + r

+
1

(2k)!
− 1

(m + 2t)(2k − 1)!

)
ct−k
(m) .

(8.9)

It gives us a possibility to obtain the small-temperature expansion of the holo-
morphic wave function

f(m)(ρ) = 1 − 1
24

m(m − 1)
2m + 1

ρ2 +
1

5760
m(m − 1)(5m2 + 7m + 6)

(2m + 1)(2m + 3)
ρ4 + . . .

in an agreement with the small-ρ expansion of the explicit solution Ψ1(ρ) at
Q = 0.
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9. SINGLE-VALUEDNESS OF THE POMERON WAVE FUNCTION

The eigenfunctions Ψ1,2(ρ) of the integral of motion A for a general case
Q∗ �= 0 are given below (see (8.8)):

Ψ1(ρ) = Ψ(m)(ρ, Q∗) = (1 − y)iQ∗/2(−y)m F (iQ∗ + m, m; 2m; y),

Ψ2(ρ) = Ψ(1−m)(ρ, Q∗),
(9.1)

where

y =
2

1 − coth ρ/2
= 1 − eρ. (9.2)

Note, that the strip |Im ρ| < π corresponding to the impact-parameter space at
a ˇnite temperature is mapped to all complex plane ρ in such a way, that its
boundaries Im ρ = ±π are mapped respectively into the lower and upper sides of
the cut y > 1. The eigenfunctions

Ψneg
± (ρ, Q∗) = ym(1 − y)± iQ∗/2F (±iQ∗ + m, m;±iQ∗ + 1; 1 − y) (9.3)

for Re ρ < 0 describe the quasi-periodic (Bloch) solutions of the Schréodinger
equation having the property

Ψneg
± (ρ + πi, Q∗) = e∓Q∗ρ Ψneg

± (ρ − πi, Q∗). (9.4)

In the region Re ρ > 0 such Bloch functions are

Ψpos
± (ρ, Q∗) =

= ym(1 − y)∓ iQ∗/2−mF

(
±iQ∗ + m, m;±iQ∗ + 1;

1
1 − y

)
. (9.5)

Using the property of the single-valuedness of the Pomeron wave function
Ψ(m,m̃)(ρ,Q) near ρ = 0, we can present it as follows:

Ψ(m,m̃)(ρ,Q) = Ψ(m)(ρ, Q∗)Ψ(m̃)(ρ∗, Q)+

+ dm,m̃(Q, Q∗)Ψ(1−m)(ρ, Q∗)Ψ(1−m̃)(ρ∗, Q), (9.6)

where

m =
1
2

+ iν +
n

2
, m̃ =

1
2

+ iν − n

2
.

The coefˇcient dm,m̃(Q, Q∗) can be found from the single-valuedness of Ψ near
ρ → ±∞ and its periodicity in respect to the shift Im ρ → Im ρ + 2πi.
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With the use of the known relation for the hypergeometric functions

Ψ(m)(ρ, Q∗) =

= (−y)m

(
Γ(2m)Γ(−iQ∗)

Γ(m − iQ∗)Γ(m)
(1 − y)iQ/2F (iQ∗ + m, m; iQ∗ + 1; 1 − y)+

+
Γ(2m)Γ(iQ∗)

Γ(m + iQ∗)Γ(m)
(1 − y)−iQ∗/2

F (−iQ∗ + m, m;−iQ∗ + 1; 1 − y)
)

(9.7)

and similar relations for Ψ(1−m)(ρ, Q∗), we obtain that near the point ρ = −∞
(corresponding to y = 1) the interference terms disappear and Ψ(m,m̃)(ρ,Q) has
the single-valuedness property provided that

dm,m̃(Q, Q∗) =

= −Γ(2m) Γ(2m̃) Γ(1 − m) Γ(1 − m̃)
Γ(2 − 2m) Γ(2 − 2m̃) Γ(m) Γ(m̃)

Γ(1 − m − iQ∗) Γ(1 − m̃ + iQ)
Γ(m − iQ∗) Γ(m̃ + iQ)

. (9.8)

In an explicit way the wave function near y = 1 (or ρ = −∞) can be written
as follows:

Ψ(m,m̃)(ρ,Q) = 2 cos (πm̃)
Γ(2m) Γ(2m̃)
Γ(m) Γ(m̃)

Γ(−iQ∗) Γ(1 − m̃ + iQ)
Γ(m − iQ∗) Γ(1 + iQ)

ymy∗ m̃×

× (1 − y)iQ∗/2(1 − y∗)iQ/2 F (iQ∗ + m, m; iQ∗ + 1; 1 − y)×
× F (iQ + m̃, m̃; iQ + 1; 1 − y∗)+

+ 2 cos (πm)
Γ(2m) Γ(2m̃)
Γ(m) Γ(m̃)

Γ(1 − m − iQ∗) Γ(iQ)
Γ(1 − iQ∗) Γ(m̃ + iQ)

ymy∗ m̃×

× (1 − y)−iQ∗/2(1 − y∗)−iQ/2 F (−iQ∗ + m, m;−iQ∗ + 1; 1 − y)×
× F (−iQ + m̃, m̃;−iQ + 1; 1 − y∗). (9.9)

With the use of the following relation for the hypergeometric functions:

Ψ(m)(ρ, Q∗) =
(
− y

1 − y

)m
(

Γ(2m)Γ(−iQ∗)
Γ(m − iQ∗)Γ(m)

(1 − y)−iQ∗/2×

× F

(
iQ∗ + m, m; iQ∗ + 1;

1
1 − y

)
+

Γ(2m)Γ(iQ∗)
Γ(m + iQ∗)Γ(m)

(1 − y)iQ∗/2×

× F

(
−iQ∗ + m, m;−iQ∗ + 1;

1
1 − y

))
(9.10)
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and the above expression for dm,m̃(Q, Q∗), we obtain also the single-valued
expression for the wave function near y = ∞ (or ρ = ∞)

Ψ(m,m̃)(ρ,Q) = 2 cos (πm̃)
Γ(2m) Γ(2m̃)
Γ(m) Γ(m̃)

Γ(−iQ∗) Γ(1 − m̃ + iQ)
Γ(m − iQ∗) Γ(1 + iQ)

×

×
(

y

y − 1

)m (
y∗

y∗ − 1

)m̃

(1 − y)−iQ∗/2(1 − y∗)−iQ/2×

× F

(
iQ∗ + m, m; iQ∗ + 1;

1
1 − y

)
F

(
iQ + m̃, m̃; iQ + 1;

1
1 − y∗

)
+

+ 2 cos (πm)
Γ(2m) Γ(2m̃)
Γ(m) Γ(m̃)

Γ(1 − m − iQ∗) Γ(iQ)
Γ(1 − iQ∗) Γ(m̃ + iQ)

ymy∗ m̃×

× (1 − y)iQ∗/2(1 − y∗)iQ/2 F

(
−iQ∗ + m, m;−iQ∗ + 1;

1
1 − y

)
×

× F

(
−iQ + m̃, m̃;−iQ + 1;

1
1 − y∗

)
. (9.11)

By comparing the above expressions for the wave function Ψ(m,m̃)(ρ,Q)
one can verify its symmetry to the transformations

ρ → −ρ, ρ → ρ∗, m → m̃

and

ρ → ρ + 2πi,

corresponding to the single-valuedness of the solution on the cylinder.
We shall use below explicit expressions for Ψ(m,m̃)(ρ,Q) to calculate the

Pomeron Regge trajectories. Note, the Pomeron wave function in the mixed rep-
resentation can be obtained also by the Fourier transformation of expression (7.5)
in the coordinate representation

Ψ(m,m̃)(ρ,Q) ∼
∫

d2R eiqR

(
sinh ρ/2

2 sinh (R + ρ/2) sinh (R − ρ/2)

)m

×

×
(

sinh ρ∗/2
2 sinh (R∗ + ρ∗/2) sinh (R∗ − ρ∗/2)

)m̃

, (9.12)

where Q = (qx + iqy)/2, t = −|q|2 and the integration is performed over the
strip |R2| < π.
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10. BAXTERÄSKLYANIN REPRESENTATION FOR POMERON at T �= 0

Let us consider the eigenvalue equation for the integral of motion in the
momentum space

4
(
sinh

ρ

2

)2

p1 p2 ψ(p1, p2) = m(m − 1)ψ(p1, p2). (10.1)

With the use of the relations

[ρ, p1] = −i, [ρ, p2] = i (10.2)

and the Taylor expansion

e±ρψ(p1, p2) = ψ(p1 ∓ i, p2 ± i), (10.3)

we can rewrite Eq. (10.1) as the ˇnite difference equation

(p1 − i) (p2 + i)ψ(p1 − i, p2 + i) − 2 p1 p2 ψ(p1, p2)+
+ (p1 + i) (p2 − i)ψ(p1 + i, p2 − i) = m(m − 1)ψ(p1, p2). (10.4)

Let us see that this equation is just the Baxter equation for a two lattice sites
inhomogeneous model, that is, a lattice model where there are inhomogeneities
associated to each lattice site [27,28]. In the Pomeron case the lattice consists of
just two sites. We obtain in terms of the variables

Q =
p1 + p2

2
, P =

p1 − p2

2

the equation

φQ(P − i) ψQ(P − i) + φQ(P + i)ψQ(P + i) =
= [m(m − 1) + 2φQ(P )] ψQ(P ), (10.5)

where
φQ(P ) ≡ Q2 − P 2.

We recognize in Eq. (10.5) the Baxter equation for a two lattice sites inhomo-
geneous model with inhomogeneities ±Q. Here, P plays the role of spectral
parameter, ψQ(P ) stands for Baxter's Q function and m(m− 1)+2φQ(P ) is the
eigenvalue of the transfer matrix [27,28].

Notice, that Eq. (10.5) is invariant under the change:

ψQ(P ) → Z(P )ψQ(P ),

where Z(P ) is a periodic function of P with period i.
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Initially we investigate its particular case q = (p1 + p2)/2 = 0, where the
wave function depends only on the relative momentum P = (p1 − p2)/2 and
satisˇes the equation

(P − i)2 ψ(P − i)− 2 P 2 ψ(P )+ (P + i)2 ψ(P + i) = −m(m− 1)ψ(P ). (10.6)

Obviously, that after changing notations

P → λ, ψ(P ) → Q(λ)

it coincides with the Baxter equation [27,28] in the Pomeron case n = 2

(λ + i)n Q(λ + i) + (λ − i)n Q(λ − i) = Λ(λ)Q(λ), (10.7)

where Λ(u) is the eigenvalue of the transfer matrix [19]

Λ(u) = 2 un − m(m − 1)un−2 + q3 un−3 + . . . + qn (10.8)

for the Heisenberg spin model [20, 21] corresponding to the BFKL dynamics in
the multicolour QCD.

The Baxter function Q(λ) according to Sklyanin [29] enters in the fac-
torized expression for the holomorphic wave function of the composite state
of n-reggeized gluons in the so-called BaxterÄSklyanin representation [25] (see
also [26])

ψ(λ1, λ2, . . . , λn−1) =
n−1∏
r=1

Q(λr) Ω0(λ1, λ2, . . . , λn−1), (10.9)

where Ω0(λ1, λ2, . . . , λn−1) is the wave function of a pseudovacuum state. We
should ˇnd a complete set of such holomorphic solutions to be able to construct
the wave function in the total space (q, λ1, . . . , λn−1) with the use of the holo-
morphic factorization [25,26]. The unitary transformation for the transition from
the momentum to the BaxterÄSklyanin representation can be constructed [25,26].

For the Pomeron case n = 2, the Baxter function and the pseudovacuum state
are well known [25]

Q(λ, m) = −π2m(1 − m)
sin πm

3F2(1 − iλ, 2 − m, 1 + m; 2, 2; 1), Ω0(λ) ∼ λ,

(10.10)
where 3F2(−iλ, 2−m, 1 + m; 2, 2; 1) is the generalized hypergeometric function
deˇned by its Taylor expansion

3F2(α1, α2, α3; β1, β2; z) =

=
∞∑

k=0

(α1)k(α2)k(α3)k

(β1)k(β2)k

zk

k!
, (α)k =

Γ(α + k)
Γ(α)

. (10.11)
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The Baxter function is a meromorphic function

Q(λ, m) =
∞∑
l=0

rl(m)
λ − i l

, (10.12)

where

rl(m) = − sin πm

iπ
Q(−il, m), r0(m) = iπ. (10.13)

The residues satisfy the recurrent relation obtained directly from the YangÄBaxter
equation (10.7) [25]

(l + 1)2 rl+1(m) = (2l2 + m(m − 1)) rl(m) − (l − 1)2 rl−1(m). (10.14)

Note, that the Hamiltonian in the BaxterÄSklyanin representation coincides with
the expression for h in the momentum representation at a ˇnite temperature and
q = 0 (see (4.3))

h = ψ(1+i p)+ψ(1−i p)−2ψ(1)+
1
p

ln
(

2 sinh
(

λ

2

))
p, p = i

∂

∂λ
. (10.15)

Using this result one can obtain easily the holomorphic Pomeron energy in terms
of derivatives of Q(λ, m) at λ = ±i (cf. [25]).

Taking into account that the second independent solution of the Baxter equa-
tion is Q(−λ, m), we can construct the wave function in the Baxter representation
from the condition of its normalizability [25]

Φm,m̃(λ) ∼ |λ|2
(
Q(λ∗, m̃)Q(λ, m)+

+ (−1)m−m̃Q(−λ∗, m̃)Q(−λ, m)
)
. (10.16)

It is remarkable that the wave function Ψm,m̃(p) for the Pomeron in the
momentum space for Q = 0 coincides with the Baxter function for the Heisenberg
spin model. As a result, we obtain for it the following expression:

Ψm,m̃(p) ∼ Qm,m̃(p) ∼ Q(p∗, m̃)Q(p, m) + (−1)m−m̃ Q(−p∗, m̃)Q(−p, m).
(10.17)

Note, that the above two expressions Φ and Ψ differ by the factor coinciding with
the pseudovacuum state Ω0(ρ) ∼ |ρ|2, which is a consequence of the fact that Φ
and Ψ are normalized with a different weight. Indeed, the integral of motion is
Hermitian on the functions normalized as follows:

||Ψ||2 =
∫

d2p |Ψ(p)|2 |p|4, (10.18)

where in
∫

d2p the integration over �p and the summation over Im p = 0,±1,±2 . . .
are implied.
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On the other hand, we can obtain for the Baxter function Qm,m̃(λ) the
integral representation

Qm,m̃(λ) ∼
∫

d2ρ eikρ Ψ(m,m̃)(ρ,Q), (10.19)

where the integration is performed over the strip |ρ2| < π. The wave function
Ψ(m,m̃)(ρ,Q) in the mixed representation was calculated in the previous section
(see, for example, (9.12)).

11. POMERON WAVE FUNCTION
IN THE MOMENTUM REPRESENTATION

11.1. Hypergeometric Representations. We can obtain the Pomeron wave
function in the momentum representation by Fourier transformation of the wave
function in the mixed representation Eqs. (9.5). That is,

Ψ(P, Q) =
∫

dρ∗ e−iPρ∗
Ψ(ρ∗, Q). (11.1)

The wave function Ψ(ρ∗, Q) ≡ Ψ(ρ, Q∗)∗ can be expressed in terms of associated
Legendre functions:

Ψ+(ρ∗, Q) = e−iQρ∗
(1 − e−ρ∗

)m
2F1(m + 2iQ, m; 1 + 2iQ; e−ρ∗

) =

= Γ(1 + 2iQ)P−2iQ
m−1

(
coth

ρ∗

2

)
. (11.2)

It is convenient to use the variable t ≡ 1/(1 − eρ∗
) to perform the integral in

Eq. (11.1),

Ψ+(P, Q) = Γ(1 + iQ) e−π(Q+P )×

×
1∫

0

dt tiP−1 (1 − t)−iP−1P−2iQ
m−1 (1 − 2t) =

iπm(1 − m) e−π(Q+P )

(1 + 2iQ) sinh [π(P + Q)]
×

× 3F2(2 − m, m + 1, 1 + i[P + Q]; 2 + 2iQ, 2; 1), (11.3)

where we used Eq. (A.2) in Appendix, and 3F2 stands for the generalized hy-
pergeometric function deˇned in Eq. (10.11). Notice that Eq. (11.3) is invariant
under m ↔ 1 − m, as it must be. In the Q = 0 limit, we recover the result
Eq. (10.10) found in [25] upon the identiˇcation P = −λ.
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By analogy with Eq. (10.10), we consider the solution of the Baxter equation

ψ+(P, Q) ≡ iπ
eπ(P+Q) sinh [π(P + Q)]

sin [πm]
Ψ+(P, Q) = − π2m(1 − m)

(1 + 2iQ) sin (πm)
×

× 3F2(2 − m, m + 1, 1 + i[P + Q]; 2 + 2iQ, 2; 1). (11.4)

Notice, that we can always multiply a solution of the Baxter equation (10.5) by
a periodic function of P with period i. Now we have

ψ+(P, 0) = Q(λ, m)|λ=−P .

Using the transformation formulas for the functions 3F2(a, b, c; d, e; 1), Eq. (11.4)
can be written as [37]

ψ+(P, Q) =
π2 m(1 − m)

Γ(2 + 2iQ) sin (πm)
Γ(i[Q − P ])

Γ(1 − i[Q + P ])
×

× 3F2(1 − m + 2iQ, m + 2iQ, 1 + i[P + Q]; 2 + 2iQ, 1 + 2iQ; 1). (11.5)

We have from Eqs. (10.11) and (11.3) the following series representation for the
momentum wave function:

ψ+(P, Q) = − π

Γ(1 + i [P + Q])
×

×
∞∑

n=1

Γ(n + m)Γ(n + 1 − m)Γ(n + i [P + Q])
(n − 1)! n! Γ(n + 1 + 2iQ)

. (11.6)

The late terms in this series behave as n−1−i[Q−P ]. Hence, this is a convergent
series for Im (P − Q) > 0.

In order to analytically continue the wave function to the lower PÄQ plane,
we integrate term by term in Eq. (11.3) the expansion of P−iQ

m−1(1 − 2t) around
t = 1 with the result (see Appendix):

ψ+(P, Q) = − iπ2

sinh 2πQ

Γ(1 + 2iQ)
Γ(1 − i [P + Q])Γ(m + 2iQ)Γ(1 − m + 2iQ)

×

×
∞∑

n=0

[
Γ(n + m)Γ(n + 1 − m)Γ(n − i [P + Q])

(n − 1)! n! Γ(n + 1 − 2iQ)
−

−Γ(n + m + 2iQ)Γ(n + 1 − m + 2iQ)Γ(n + i[Q − P ])
Γ(n + 2iQ)n! Γ(n + 1 + 2iQ)

]
. (11.7)
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The late terms in this series behave as n−1−i(P−Q). Hence, this is a convergent
series for Im(P − Q) < 0. Equation (11.7) can be explicitly expressed in terms
of 3F2 functions as follows:

ψ+(P, Q) =
π

sin[πm]
Γ(2iQ − 1)Γ(2iQ + 1)

Γ(m + 2iQ)Γ(1 − m + 2iQ)
×

× 3F2(2 − m, m + 1, 1 + i[P + Q]; 2 + 2iQ, 2; 1) +
Γ(1 − 2iQ)Γ(i [Q − P ])

Γ(1 − i [P + Q])
×

× 3F2(1 − m + 2iQ, m + 2iQ, i[Q − P ]; 2iQ, 1 + 2iQ; 1). (11.8)

Equation (11.7) explicitly displays simple poles at

p2 = Q − P = 0, i, 2i, 3i, . . . , li, . . .

We can obtain the linearly independent solution by changing P → −P in
Eqs. (11.2)Ä(11.7), and ψ+(−P, Q) exhibits a semi-inˇnite sequence of poles at

p1 = P + Q = 0, i, 2i, 3i, . . . , li, . . .

Alternatively, Eq. (11.5) explicitly displays simple poles in the upper half
planes p1 and p2 in the Gamma functions factors Γ(ip2)Γ(ip1).

Furthermore, one also gets an independent solution by changing i by −i in
Eqs. (11.2)Ä(11.7).

We can explicitly compute the residues of ψ+(P, Q) at p2 = il, l = 0, 1, 2, . . .
from Eq. (11.7) with the result,

rl(m, Q) ≡ lim
p2→il

[p2 − il] ψ+(Q − p2, Q) =

= −π(2iQ)l

l∑
n=0

(−1)n

n! (l − n)!
(m + 2iQ)n (1 − m + 2iQ)n

(2 iQ)n (1 + 2iQ)n
, (11.9)

where (α)k is deˇned in Eq. (10.11). These residues can be explicitly expressed
in terms of the functions 3F2 as follows:

rl(m, Q) = −π
(2iQ)l

l! 3F2(1−m+2iQ, m+2iQ,−l; 2iQ, 1+2iQ; 1). (11.10)

Alternatively, we can write these residues using [37] as

rl(m, Q) = π
m(1 − m)
1 + 2iQ

3F2(2 − m, m + 1, 1 − l; 2 + 2iQ, 2; 1). (11.11)
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Equation (11.9) yields for the ˇrst residues:

r0(m, Q) = −π,
r1(m, Q)
r0(m, Q)

= −m(1 − m)
1 + 2iQ

,

(11.12)
r2(m, Q)
r1(m, Q)

= −m(1 − m) + 2
4(1 + iQ)

+ 1.

11.2. Pole Expansion. For q �= 0, we can search for the solutions ψ(1) and
ψ(2) of the eigenvalue equation (10.4) with poles in the variables p1 and p2,
respectively (cf. (5.4) and (5.11)):

ψ(s)(p1, p2) =
∞∑

l=0

rl(m, Q)
ps − il

, r0(m, Q) �= 0, (11.13)

where the residues rl(m, Q) do not depend on s and satisfy the recurrence rela-
tions (cf. (5.6))

(l − 1) (2iQ + l − 1) rl−1(m, Q) + (l + 1) (2iQ + l + 1) rl+1(m, Q) =
= [2l (2iQ + l) + m(m − 1)]rl(m, Q). (11.14)

The quantities rl(m, Q) given by Eq. (11.9) indeed obey these recurrence
relations.

Two other independent solutions can be obtained by the substitution

p1,2 → −p1,2 (11.15)

and have the following Mittag-Léof�er representation:

ψ(s)
m (−p1,−p2) =

∞∑
l=0

rl(m,−Q)
−ps − il

, rl(m,−Q) �= 0. (11.16)

Note, that for Q = 0 the functions ψ
(1)
m (p1, p2) and ψ

(2)
m (−p1,−p2) coincide.

We can ˇnd the Pomeron wave function in the momentum space with the
use of the holomorphic factorization analogously to the case Q = 0 (see (10.17)).

For this purpose, one should know the values of the functions ψ
(1)
m (p1, p2) and

ψ
(2)
m (p1, p2) in the regular points p2 → il and p1 → il, respectively. These

quantities coincide with each other

Rl(m, Q) ≡ ψ(1)
m (2Q − il, il) = ψ(2)

m (il, 2Q − il) =
∞∑

k=0

rk(m, Q)
2Q − i(k + l)
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and according to Eq. (10.4) satisfy the recurrence relations

(l + 1) (2iQ + l + 1)Rl+1(m, Q) + (l − 1) (2iQ + l − 1)Rl−1(m, Q) =
= [2l (2iQ + l) + m(m − 1)] Rl(m, q). (11.17)

It is obvious, that R2(m, Q) is expressed only in terms of R1(m, Q)

2 (2iQ + 2)R2(m, Q) = [2 (2iQ + 1) + m(m − 1)] R1(m, Q). (11.18)

Therefore by comparing (11.17) with (11.14) we obtain that Rl(m, Q) and
rl(m, Q) are proportional

Rl(m, Q) =
R1(m, Q)
r1(m, Q)

rl(m, Q). (11.19)

These equations are fulˇlled by the hypergeometric representations obtained
in Subsec. 11.1. Identifying Eqs. (11.4) and (11.13) yields,

ψ(2)(p1, p2) = − π2m(1 − m)
(1 + 2iQ) sin (πm) 3F2(2−m, m+1, 1+i[P+Q]; 2+2iQ, 2; 1).

Therefore,

Rl(m, Q) = − π2m(1 − m)
(1 + 2iQ) sin (πm) 3F2(2 − m, m + 1, 1 − l; 2 + 2iQ, 2; 1).

Using now Eq. (11.11) shows that Eq. (11.19) is fulˇlled. In addition, we get

Rl(m, Q)
rl(m, Q)

=
R1(m, Q)
r1(m, Q)

= − π

sin(πm)
. (11.20)

The Pomeron wave function in the momentum representation should be con-
structed with the use of the holomorphic factorization in such a way that it can
be normalized (cf. (10.18))∫

d2p1 d2p2 |p1|2 |p2|2 |Ψm,m̃(p1,p2)|2 < ∞, (11.21)

where
∫

d2p is the implied integration over px and the summation over py = r.
The normalizability requirement means, that Ψm,m̃(p1,p2) should not contain
the poles at p1,2 = ±i l for l �= 0. Taking into account also its symmetry to the
transformation pr → −pr, we obtain

Ψm,m̃ ∼ ψ(1)
m (p1, p2)ψ

(2)
m̃ (−p∗1,−p∗2)+

+
r1(m, Q)R1(m̃,−Q∗)
r1(m̃,−Q∗)R1(m, Q)

ψ(2)
m (p1, p2)ψ

(1)
m̃ (−p∗1,−p∗2) + (pr → −pr). (11.22)
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The residues of the poles at p1 = −p∗1 = il for l = 1, 2, . . . are zero by construc-
tion. For the residues of the poles at p2 = −p∗2 = il (l = 1, 2, . . .), we obtain

lim
p2→il

(p2 − il)Ψm,m̃(p1,p2) ∼ −rl(m̃,−Q∗)Rl(m, Q)+

+
r1(m, Q)R1(m̃,−Q∗)
r1(m̃,−Q∗)R1(m, Q)

rl(m, Q)Rl(m̃,−Q∗). (11.23)

Due to the recurrence relation it is enough to verify the vanishing of this expres-
sion at l = 1, which gives the condition(

r1(m, Q)R1(m̃,−Q∗)
r1(m̃,−Q∗)R1(m, Q)

)2

= 1. (11.24)

Using Eq. (11.20) and the relation sin (πm) = (−1)n sin (πm̃) yields

r1(m, Q)R1(m̃,−Q∗)
r1(m̃,−Q∗)R1(m, Q)

= (−1)n,

which demonstrates Eq. (11.24).

12. DIPOLE PICTURE AND BALITSKYÄKOVCHEGOV EQUATION

There is a fruitful physical interpretation of the nonstationary BFKL equation
in LLA as an equation for the amplitude N being a function of the rapidity
Y = ln s

N(ρ1, ρ2, Y ) = Nρ1,ρ2
(Y ),

and describing the scattering of the dipole constructed from two gluons with the
transverse coordinates ρ1 and ρ2 off a target. The BalitskyÄKovchegov equation
taking into account also a nonlinear effect of the dipole pair production takes the
form

∂Nρ1,ρ2

∂Y
=

= ᾱs

∫
d2ρ0

2π

ρ2
12

ρ2
10ρ

2
20

(
Nρ1,ρ0

+ Nρ2,ρ0
− Nρ1,ρ2

− Nρ1,ρ0
Nρ2,ρ0

)
, (12.1)

where ᾱs = αs Nc /π.
In the linear approximation the above equation can be written as a Schréodinger

equation
∂Nρ1,ρ2

∂t
= H Nρ1,ρ2

(12.2)
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with an Hamiltonian H . Here we introduce the time by the deˇnition

t = − 2π

αs Nc
Y.

The action of the Hamiltonian on the dipole scattering amplitude is the following
integral transformation:

H Nρ1,ρ2
=

∫
d2ρ0

π

ρ2
12

ρ2
10ρ

2
20

(
Nρ1,ρ2

− Nρ1,ρ0
− Nρ2,ρ0

)
.

On the other hand, it can be written in the operator form

H = 2 ln
(
|ρ12|2

)
+ |ρ12|2 ln

(
|p1|2 |p2|2

)
|ρ12|−2 − 4ψ(1),

where the following relations were used:∫
d2ρ0

π

ρ2
12

(ρ2
10 + λ−2) (ρ2

20 + λ−2)
= 2 ln (ρ2

12λ
2),

∫
d2ρ0

π

ρ2
12

ρ2
10 (ρ2

20 + λ−2)
Nρ1,ρ0

= ρ2
12 ln

|p2|2
λ2

1
ρ2

12

Nρ1,ρ2
.

The Hamiltonian in the operator form has the property of the holomorphic
separability

H = h + h∗, , h = ρ12 ln (p1 p2) ρ−1
12 + 2 ln (ρ12) − 2ψ(1).

It can be easily veriˇed (see [7] and [16]), that h coincides in the Méobius
representation with the usual holomorphic Hamiltonian

h = ln (p1p2) + p−1
1 ln (ρ12) p1 + p−1

2 ln (ρ12) p2 − 2ψ(1).

The important physical property of the dipole picture is the vanishing of
interactions for the dipole with small sizes ρ12 → 0, which is realized in the
Méobius representation [7] (see, however, [8]). It turns out, that this feature is
valid also at ˇnite temperature.

Indeed, in this case the holomorphic Hamiltonian

h̃ψ(1+ ip1)+ψ(1− ip2)−2ψ(1)+2 ln
(
2 sinh

ρ12

2

)
+ i

(
1
p2

− 1
p1

)
e−ρ12

1 − e−ρ12

can be presented as follows:

h′ = ρ12 −
∞∑

k=1

(
1 − e−kρ12

) (
1

k + ip1
+

1
k − ip2

− 2
k

)
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with the use of the relations

i

(
1
p2

− 1
p1

)
e−ρ12

1 − e−ρ12
=

∞∑
k=1

e−kρ12

(
1

k + ip1
+

1
k − ip2

)
,

2 ln
(
2 sinh

ρ12

2

)
= ρ12 − 2

∞∑
k=1

e−kρ12

k
,

ψ(1 + z) − ψ(1) =
∞∑

k=1

(
1
k
− 1

k + z

)
.

The fact, that the Hamiltonian h′ vanishes at ρ12 → 0, means that the
eigenfunction Ψ(ρ12) does not have the regular contribution ∼ const for small ρ12

(it is not valid, however, for the Odderon wave function, as demonstrated in [7,8]).
With the use of the conformal transformation (7.1) we can obtain from (12.1)

the generalized BalitskyÄKovchegov equation in the case of a nonzero temperature

∂Nρ1,ρ2

∂Y
= ᾱs

∫
d2ρ0

2π

|sinh ρ12/2|2

4 |sinh ρ10/2|2 |sinh ρ20/2|2
×

×
(
Nρ1,ρ0

+ Nρ2,ρ0
− Nρ1,ρ2

− Nρ1,ρ0
Nρ2,ρ0

)
, (12.3)

where Nρ1,ρ2
is an averaged number of the dipoles in a hadon with the color

charges situated at the points ρ1 and ρ2, and the integration over ρ0 is performed
over the strip 0 < Im ρ0 = y < 2π.

For a very large temperature T , the coordinate y is completely compactiˇed.
As a result, for T → ∞ in the linear approximation we obtain the BFKL equation
in the (2 + 1)-dimensions [14,15]. Moreover, the nonlinear BalitskyÄKovchegov
equation in this limit turns out to be exactly solvable [31]. It will be interesting
to develop the perturbation theory in the parameter 1/T to relate these nonlinear
equations for the 2 + 1 and 3 + 1 cases.

Note, however, that in the BalitskyÄKovchegov approach one takes into
account only the so-called fan diagrams for the Pomeron interactions among all
possible reggeon diagrams appearing from the high energy effective action [32].
This action gives a possibility to construct the ˇeld theory describing the reggeized
gluon interactions. In the reggeon ˇeld theory the rapidity y = ln s is considered
as a time and the gluon ˇelds depend only on the two-dimensional transverse
coordinates ρ.

13. POMERON TRAJECTORIES
WITH THE RUNNING COUPLING CONSTANT

It was shown above, that independent wave functions describing the Pomeron
at temperature T as a composite state of two gluons with the total momentum Q∗
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and the relative coordinate ρ can be expressed in terms of hypergeometric func-
tions [12] (see (9.1))

Ψ(1)
(m)(ρ, Q∗) = ei/2Q∗ρ(eρ − 1)mF (iQ∗ + m, m; 2m; 1− eρ),

(13.1)
Ψ(2)

(m)(ρ, Q∗) ≡ Ψ(1)
(1−m)(ρ, Q∗).

For ρ → 0, the singularities of Ψ(r)(ρ, Q∗) at 1 − eρ = 1 and 1 − eρ = ∞
correspond to the points ρ = −∞ and ρ = ∞, respectively.

The analytic continuation of Ψ(r) along the imaginary axes from ρ = 0 to ρ =
2πi is equivalent to the continuation of these eigenfunctions in a circle passed in
a clock-wise direction around the singularity at ρ = −∞. The monodromy matrix
expressing the analytically continued solutions in terms of the initial ones was
calculated above through the quasi-periodic (Bloch) solutions (see (9.3) and (9.5))

Ψ(±)
m (ρ, Q∗) as

Ψ(±)
m (ρ, Q∗) ≡ (1 − e−ρ)mF (m ∓ iQ∗, m; 1 ∓ iQ∗ e−ρ) e±i/2Q∗ρ. (13.2)

They obey the quasi-periodicity property

Ψ(±)
m (ρ + 2πi, Q∗) = e∓πQ∗

Ψ(±)
m (ρ, Q∗). (13.3)

Notice the symmetry property Ψ(±)
m (ρ, Q∗) = Ψ(±)

1−m(ρ, Q∗). The wave function

Ψ(1)
(m)(ρ, Q∗) can be expressed in terms of the Bloch solutions Ψ(±)

m (ρ, Q∗) as

Ψ(1)
(m)(ρ, Q∗) =

22m−1

√
π

Γ
(

m +
1
2

)
×

×
[

Γ(iQ∗)
Γ(m + iQ∗)

Ψ+
m(ρ, Q∗) +

Γ(−iQ∗)
Γ(m − iQ∗)

Ψ−
m(ρ, Q∗)

]
, (13.4)

and there is a similar formula for Ψ(2)
(m)(ρ, Q∗).

The Pomeron wave functions can be constructed as a bilinear combination
of holomorphic and antiholomorphic eigenfunctions Ψ(r)(ρ, Q∗) and Ψ(r)(ρ∗, Q)
(cf. (9.6))

Ψ(m,m̃)(ρ,Q) = χ
(1)
(m)(ρ, Q∗)χ(1)

(m̃)(ρ
∗, Q)+

+ c(m, m̃, Q, Q∗)χ(2)
(m)(ρ, Q∗)χ(2)

(m̃)(ρ
∗, Q), (13.5)

where

χ
(1)
(m)(ρ, Q∗) = 21−2 m Γ(m + iQ∗)

Γ(m + 1/2)
Ψ(1)

(m)(ρ, Q∗), χ
(2)
(m)(ρ, Q∗) = χ

(1)
(1−m)(ρ, Q∗),

and N = 2Im Q is an integer.
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The property of the wave function single-valuedness in the cylinder topology
corresponding to the periodicity on the boundaries of the strip 0 < Im ρ12 < 2π
was imposed by requiring the vanishing of cross-terms in the asymptotic behaviour
ρ, ρ∗ → ∞. This condition determines c(m, m̃, Q, Q∗) to be (cf. (9.8))

c(m, m̃, Q, Q∗) = − sinπ(m − iQ∗)
sinπ(m + iQ∗)

,

where we used Eq. (13.4) and

lim
ρ→∞

Ψ(±)
m (ρ, Q∗) = e±i/2Q∗ρ.

In addition, notice that

sinπ(m − iQ∗)
sinπ(m + iQ∗)

=
sinπ(m̃ − i Q)
sinπ(m̃ + iQ)

.

In summary, the Pomeron wave function for a ˇxed coupling constant can
be written as

Ψ(m,m̃)(ρ,Q) = χ
(1)
(m)(ρ, Q∗)χ(1)

(m̃)(ρ
∗, Q)−

− sin π(m − iQ∗)
sin π(m + iQ∗)

χ
(2)
(m)(ρ, Q∗)χ(2)

(m̃)(ρ
∗, Q), (13.6)

up to a normalization constant.
The Pomeron wave function at temperature T takes the following form for

small distances ρ:

f(ρ,Q)
�ρ→0
= ρm(ρ∗)m̃ + eiδm,m̃(Q) ρ1−m(ρ∗)1−m̃ =

= |ρ|1+2iν

(
ρ

ρ∗

)n/2

+ eiδm,m̃(Q) |ρ|1−2iν

(
ρ∗

ρ

)n/2

, (13.7)

where

m =
1
2

+ iν +
n

2
, m̃ =

1
2

+ iν − n

2
,

(13.8)
eiδm,m̃(Q) = eiδ0

m,m̃(Q) eiδT
m,m̃(Q)

and

eiδ0
m,m̃(Q) = (−1)n

(
|Q|
4

)−4iν (
Q

Q∗

)n Γ(m + 1/2)
Γ(3/2 − m)

Γ(m̃ + 1/2)
Γ(3/2 − m̃)

,

(13.9)

eiδT
m,m̃(Q) = |Q|4iν(−1)n

(
Q∗

Q

)n Γ(1 − m + iQ)
Γ(m + iQ)

Γ(1 − m̃ − iQ∗)
Γ(m̃ − iQ∗)

.
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Since Q = Qphys/2πT for T → 0 and ˇxed Qphys we have Q → ∞. We ˇnd
for the zero temperature limit from Eq. (13.9)

lim
T→0

δT
m,m̃(Q) = 0.

Using that

Q = QR +
i

2
N, Q∗ = QR − i

2
N (13.10)

and Im QR = 0, we ˇnd for the states with a vanishing conformal spin n = 0

eiδT
m,m̃(Q) =

[
Q2

R +
(

N

2

)2
]2iν

×

×
Γ

(
1 − N

2
− iν + iQR

)
Γ

(
1 − N

2
+ iν + iQR

) Γ
(

1 − N

2
− iν − iQR

)
Γ

(
1 − N

2
+ iν − iQR

) . (13.11)

Now we consider the case of the running coupling constant using the method
of [5]. The Pomeron wave function must be an eigenfunction of the operator

E(Q) ≡ αs(Q)χ
(
− i

2
d

d ln |ρ|

)
, (13.12)

where

χ(ν) = − 6
π

Re
[
γ + ψ

(
1
2

+ iν

)]
for the vanishing conformal spin n = 0. In the above expression, γ is the Euler
constant and ψ(x) = ∂ ln Γ(x)/∂x stands for the digamma function. The QCD
running coupling constant in one-loop approximation for three �avours u, d, s
takes the form

αs(Q) =
4π

9 log (4Q2/Λ2)
, (13.13)

where Λ ≈ 200 MeV is the QCD parameter.
The scale dependence of the running coupling constant αs(Q) makes the

calculation of eigenfunctions and eigenvalues of Eq. (13.12) a nontrivial task.
In [5], such an eigenvalue problem is solved in a semiclassical approximation in
the zero temperature case. We use the same method here to treat the nonzero
temperature case.

The semiclassical quantization condition takes now the form

φ(νk) = k +
1
4
, k = 0, 1, 2, . . . , (13.14)
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where

φ(ν) ≡ 4
9αs(Q)

⎡⎣ 1
χ(ν)

ν∫
0

dxχ(x) − ν

⎤⎦ − 1
2π

δT
ν (Q), (13.15)

and δT
ν (Q) = δT

m,m̃(Q) is presented in Eq. (13.9).
The corresponding eigenvalue of the operator E(Q) is given approximately by

ωk(Q) = αs(Q)χ(νk), (13.16)

where νk is found from Eqs. (13.14), (13.15). Thus, the eigenvalues and eigen-
functions depend parametrically on Q = Qphys/2 π T . In particular, we recover
the zero temperature limit for Q → ∞ [5]. The characteristic scale in temperature
follows from the running QCD coupling Eq. (13.13) and is given by

Tchar ≡
1

4 π
exp

(
2π

9αs(Q)

)
.

We investigated initially the case N = 0 in Eq. (13.10). In Fig. 1, the Pomeron
Regge trajectories as functions of α(Q), t = |Q|2/4 are constructed for k = 0
in (13.14) for various temperatures. The similar results for the cases k = 1 and
k = 2 are presented in Figs. 2 and 3, respectively. In Fig. 4, the values of the
Regge trajectories for t, corresponding to αs = 0.5, are drawn as functions of
T/Tchar for k = 0 and for N = 0 and N = 2. We see from this ˇgure that for
T → 0 the rotational invariance is restored since the results for N = 0 and N = 2
coincide. It is interesting, that the eigenvalue ω0 ˇrstly grows with the temperature
and then goes down. The vanishing of the intercept at large temperatures T → ∞

Fig. 1. The ˇrst eigenvalue ω0 vs. αs for several values of the temperature
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Fig. 2. The second eigenvalue ω1 vs. αs for several values of the temperature

Fig. 3. The third eigenvalue ω2 vs. αs for several values of the temperature

Fig. 4. The ˇrst eigenvalue ω0 vs. T/Tchar for αs = 0.5 for N = 0 and N = 2
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is related to the effect of the asymptotic freedom because the QCD coupling
constant tends to zero providing that the typical gluon virtualities grow with
temperature, but the functional form of this dependence is not known (cf. [38]).
Its initial growth is presumably related to the fact, that in the case N = 0 the
t-channel temperature leads to a compactiˇcation of the transverse coordinates yi

orthogonal to the momentum transfer q, which leads to a conˇnement phenom-
enon similar to that in the dual Meissner effect resulting in a compression of the
chromo-electric ˇeld in a string stretched between colour objects.

APPENDIX

We compute here the integral in Eq. (11.3).

We have from [36] that

1∫
0

dx (1 − x)μ−λ−1xσ+λ−1P 2λ
ν (1 − 2x) =

=
eiπλ

Γ(1 − 2λ)
B(σ, μ) 3F2(−ν, ν + 1, σ; 1 − 2λ, σ + μ; 1). (A.1)

We can compute here the σ + μ → 0 limit using the series expansion Eq. (10.11)
for the generalized hypergeometric function with the result

lim
σ+μ→0

1
Γ(σ + μ) 3F2(−ν, ν + 1, σ; 1 − 2λ, σ + μ; 1) =

=
σν(ν + 1)

2λ − 1 3F2(1 − ν, ν + 2, σ + 1; 2 − 2λ, 2; 1). (A.2)

We derive here the analytic continuation of the Pomeron wave function
ψ+(P, Q) to the upper PÄQ plane.

The associated Legendre functions appearing in Eq. (11.3) can be expressed
in terms of hypergeometric functions as [36]

P−2iQ
m−1 (1 − 2t) =

1
Γ(1 + 2iQ)

(
1 − 1

t

)−iQ

2F1(m, 1 − m; 1 + 2iQ; t). (A.3)

In order to expand this function in powers of t − 1, we relate the hypergeo-
metric function 2F1(m, 1 − m; 1 + i Q; t) with hypergeometric functions with
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argument 1 − t [36],

2F1(m, 1 − m; 1 + 2iQ; t) =

=
Γ(1 + 2iQ)Γ(2iQ)

Γ(m + 2iQ)Γ(1 − m + 2iQ) 2F1(m, 1 − m; 1 − 2iQ; 1− t) + (1 − t)2iQ×

× Γ(1 + 2iQ)Γ(−2iQ)
Γ(m)Γ(1 − m) 2F1(m + 2iQ, 1 − m + 2iQ; 1 + 2iQ; 1− t). (A.4)

These two hypergeometric functions are expressed with the standard hypergeo-
metric series [36],

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)nzn

(c)nn!
. (A.5)

Inserting Eqs.(A.3)Ä(A.5) into Eq. (11.3) and integrating term by term yields
Eq. (11.7).

We thank G. S. Danilov and V.N.Velizhanin for helpful discussions.
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