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We give a short overview of the renormalization properties of rectangular Wilson loops, the
Polyakov loop correlator, and the cyclic Wilson loop. We then discuss how to renormalize loops with
more than one intersection, using the simplest nontrivial case as an illustrative example. Our findings
expand on previous treatments. The generalized exponentiation theorem is applied to the Polyakov
loop correlator and is used to renormalize linear divergences in the cyclic Wilson loop.
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INTRODUCTION

We will discuss some loop functions with regard to their renormalization
properties. By loop functions we mean the vacuum or thermal expectation value
of a number of Wilson lines in an SU(N,) gauge theory, which are closed and
traced, and each trace is normalized by the number of colours N..

Rectangular Wilson loops are of special interest, because they are related to
the quarkonium potential, and therefore they have been studied in detail [1-5].
They consist of four straight Wilson lines, two along the time direction at fixed
positions in space and at relative distance r, and two along the direction of r at
fixed times and at temporal separation t.

It is known that rectangular Wilson loops are UV-divergent even after charge
renormalization [6,7]. They need to be renormalized by a multiplicative constant,
% + (’)(oﬁ)], where Cr
is the quadratic Casimir of the fundamental representation, the space—time dimen-
sion D = 4 —2¢ and 1/¢ = 1/e — yg + In4n. This additional divergence
comes from the four corners of the Wilson loop, where the contour has cusps of
angle 7/2.

At finite temperature, the Polyakov loop correlator P.(r,7T") plays a role
similar to the rectangular Wilson loop in the vacuum. It is related to the free

which is given in the MS scheme by Z;, = exp |—
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energy of a static quark—antiquark pair [8,9]. Polyakov loops are Wilson lines
spanning the whole of the imaginary time direction from 7 =0to 7 =03 =1/T
at fixed spatial position. They are closed loops because of the periodic boundary
conditions of the imaginary time formalism. The Polyakov loop correlator consists
of two traced Polyakov loops at spatial distance r. This quantity is free of UV
divergences in dimensional regularization after charge renormalization.

In our publication [10], we have studied the renormalization properties of the
cyclic Wilson loop W, (r,T), which is closely related to the two-loop functions
described above. It is a rectangular Wilson loop at finite temperature, where the
temporal Wilson lines are given by Polyakov loops. However, its divergence
structure does not match that of a vacuum rectangular Wilson loop [11], because
renormalization with a multiplicative constant fails.

The reason for this behaviour lies in the periodic boundary conditions of the
imaginary time formalism. The corners of the cyclic Wilson loop lie at (0, £r/2)
and (B,+r/2), but because 7 = 0 and 7 = [ are identified, these points are
identical and should therefore be treated as intersections instead of cusps. The
renormalization properties of loop functions with cusps and intersections have
been studied in general in [6,12]. Whenever a loop has points of self intersection,
renormalization mixes it with other associated loop functions, which have identical
contours except for a different path ordering prescription at the intersection. In
this case the cyclic Wilson loop mixes with the Polyakov loop correlator. If
one diagonalizes the mixing matrix, one obtains multiplicatively renormalizable
quantities, which are here given by P, itself and the difference W, — P.. The
renormalization constant for the latter is given in dimensional regularization by
Ca o

e
adjoint representation.

Zw,_p, = exp |— + (’)(Ozz) , where Cy is the quadratic Casimir of the

1. LOOP FUNCTIONS WITH MORE THAN ONE INTERSECTION

We would like to point out here that the treatment of multiple intersections
in [12], on which the argument of [10] was based, seems not to rely on the
most general assumptions. Their statement is that for each intersection point
there will be a renormalization matrix which depends only on the angles between
the Wilson lines at the intersection. Let us look at the simplest case of loop
functions with multiple intersections, i.e., loop functions with two intersections
with two incoming and two outgoing lines each. We can distinguish two different
situations: the two intersection points are connected by either two (I) or four
Wilson lines (II).

In either case, there are four different Wilson lines starting and ending at the
intersection point. The associated loop functions which mix under renormalization
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Fig. 1. All possible contours for situations (I) and (II). From left to right, the first row
corresponds to loop functions Lﬁ‘f, Léll), LEIQ), ng) and the second row corresponds to
L§‘1‘>, L(;II), Lg), LS;). The contours are drawn apart at the intersections in order to show
how the Wilson lines are connected, nevertheless, they should be understood to touch at

those points

are given by all possibilities in which the colour indices of incoming Wilson lines
can be contracted to those of outgoing Wilson lines at each intersection. In this
case there are two possibilities at each intersection to combine the colour indices,

so there are in total four associated loop functions. We will denote them as LS)

and Lgl), where the indices ¢ and j label the path ordering prescriptions at the
first and second intersection, respectively. The details of these definitions are
illustrated schematically in Fig. 1.

The important point is that both (I) and (II) loop functions should be renor-
malized by the same matrices, provided that the angles at the intersections are
the same. We will check this at the leading order. The angles will be called
ay; for the left intersection and (y; for the right intersection, where the indices
k and [ label the Wilson lines which define the angle according to Fig.2. In
general, the intersection of four Wilson lines has six different angles, which in
four space-time dimensions are all independent.

XX R

Fig. 2. The labels for the intersection angles are illustrated in the left picture. The second
figure shows a contribution to the intersection divergence which does not depend on
the angles. The two figures on the right show contributions depending on the angles
a2 and aas, respectively. The divergence of the rightmost diagram gets an additional
minus compared to a corresponding cusp divergence, because it involves two outgoing
Wilson lines
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When there is only one gluon, the divergences at the intersections come from
the same diagrams as in the case of cusp divergences. So we can use the general
result for cusp divergences in dimensional regularization obtained in [7]:

C'F Qs

e (L (T =7)coty) = Ao+ A(Y). (0

This consists of two parts, A(y) depends on the cusp angle v and A, is
independent of v. Ag comes from diagrams where the gluon starts and ends at
the same Wilson line close to the intersection. In the case of a cusp, there are
two such diagrams, for the intersections there are four, so the angle-independent
divergence of each intersection is twice that of a cusp.

The angle-dependent part A(y) comes from diagrams where the gluon spans
across an angle close to the intersection. In the case of a cusp, there is always one
incoming and one outgoing line, at the intersection there can be two incoming or
two outgoing lines, in which case the divergence is minus that of a cusp of the
same angle. Illustrations for this can also be found in Fig. 2.

By the contours shown in Fig. 1, it is determined on which angles the in-
tersection divergences depend. The contours consist of either one, two or three
closed Wilson loops. The trace of a single colour matrix vanishes, so diagrams
where the gluon connects two different Wilson loops do not contribute. With this
in mind, we obtain the following divergences for the different loop functions:

Div (L(111)) =40 + A2, o3, 034, 014, P12, B23, B34, B1a)—
— A(ais, o4, f13, 024),  (2)

Div (L(gll)) =40 + A3, a4, Pi2, P23, B34, f14) — A(B13, B24), 3)
Div (L)) = 4A¢ + A(ar2, 23, asa, s, B3, fra) — Alars, aza),  (4)
Div (Ls3) = 480 + A(azs, a14, B3, fra), 5)
Div (L") = 480 + A(aua, aza, B2, B3a), (6)
Div (LSY) = 480 + A(aua, azs, asa, ara, fra, B3, Baa, fra)—

— A(ous, a24, B3, B24),  (7)
Div (L{y)) = 4A¢ + Az, a3, asa, 1, Bia, Boz, Baa, Bia)—
— A(ous, a24, 513, B24),  (8)
Div (L%,)) = 4A¢ + A(azs, ona, B3, f1a), )
where we have introduced the shorthand notation A(vy1,7e,...) = A(y1) +
Aly2) + ...

At the zeroth order in g, all loop functions are equal to 1, therefore also the
renormalization matrices should be given by a unit matrix. We can then make
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a general ansatz for the renormalization matrices Z(!) and Z(® associated with
the left and right intersection, respectively:

1-a b 1-A B
Z(l):( . 1—d>’ Z(z):( C 1—D>’ (10

where all variables are of order af.
If we now require Zi(;)ZJ(.lz)LkIl) and Zi(kl,)Z ;lz)L,glI) to be finite at the leading
order in a,, we arrive at the following system of equations:

(a—b)+(A—B)=Div(L)), (@—b)+(A-B)=DivL{), a1
(d—c¢)+(A—B)=Div(L{}), (d—c¢)+(A-B)=Div(L{]), (@12
(a—b)+(D-C)=Div(LY)), (a—b)+(D-0C)=Div(LY), «13)
(d—c¢)+(D-C)=Div(L{)), (d—c)+(D—-C)=Div(L{Y). (14)

These four equations are not independent; if we look at the left-hand side, we
see that (11) + (14) = (12) 4+ (13) and the same should be true for the right-
hand side. By comparing with equations (2)—(9), we see that this is indeed the
case for loop functions of type (I) but in general not for type (II). We therefore
conclude that type (II) loop functions cannot be renormalized by two independent
renormalization matrices for each intersection.

In the case (I), there is no such a problem and the equations can be solved.
We have a system of three independent equations for four independent variables:
(a—0), (d—c¢), (A—B), and (D — C). The solution can be made unique by the
additional requirement that Z(!) can only depend on the angles iy Z ), only
on f;; and both should have the same form. We get

(a —b) =200 + A2, a3, 34, 014) — A3, (24), )
(d — C) = 2A0 + A(Ozgg, 0414)7
(A= B) =200 + A(Br2, P23, Baa, B1a) — A(Pr3, B24), 6
(D —C) =2A¢0 + A(B23, f14),

and it is easy to check that Z(1) and Z(® are the same as the leading order
renormalization matrices for loop functions with just one intersection with angles
Q5 Or 6”

It seems that the statements on multiple intersections in [12] implicitly assume
that the divergence structures at each intersection have no influence on each
other. But this is only true in case (I). There are two things which determine the
divergence structure at an intersection. The first is the path ordering prescription
at the intersections, which is determined by the indices ¢ and j. The second is how
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the outgoing lines are connected to incoming lines away from the intersection. In
our example, line 1 is always connected to line 4 and line 3 always to line 2 at
both intersections for the type (I) loop functions, where we use the same labels
that have been introduced for the angles in Fig.2. But for type (II), at each
intersection the lines 1 and 3 can be connected to lines 2 or 4 depending on the
other intersection.

However, if we drop the assumption that both intersections can be renormal-
ized independently and instead of two indices for both intersections we use one
index labelling all four loop functions, then the whole line of argument of [12]
can be repeated with only slight adjustments. This means that the type (II) loop
functions are renormalized by a 4 x 4 matrix that in contrast to case (I) is not
given by the tensor product of two 2 X 2 matrices.

Therefore we expect the most general renormalization prescription for loop
functions to read like this: there is one renormalization constant for each cusp
and one renormalization matrix for each independent set of intersections. A set
of intersections is called independent if any other set is connected to it through at
most two Wilson lines. The reason for this classification is that if there are only
one outgoing and one incoming line leading from one set to the other, then there
is only one way in which those can be connected. As soon as there are more
possibilities to connect outgoing and incoming lines, then each one of them will
be realized for some path ordering prescription and we have a situation like in
case (II) of our example.

The renormalization matrices for each independent set depend only on the
renormalization scheme, on the angles at the intersections, and on the way in
which the intersections are connected, but are otherwise completely independent
of any specifics of the contour. The intersections of the cyclic Wilson loop are
independent of each other, so the ansatz in [10] with two renormalization matrices
for the intersections was justified.

2. LINEAR DIVERGENCES IN THE CYCLIC WILSON LOOP

Something that was not considered in [10] is the cancellation of linear di-
vergences in the cyclic Wilson loop. In general, loop functions have power law
divergences, which factorize and exponentiate to give a factor exp [AL(C')], where
L(C) is the length of the contour and A is some linearly divergent constant [13].
In dimensional regularization such linear divergences are absent, so they were
not considered in [10], but here we would like to show how they cancel in other
regularization schemes such as, e.g., lattice regularization.

The cyclic Wilson loop is special in that the two spatial Wilson lines occupy
exactly the same points in Euclidean space—time, but they have opposite orien-
tation and are therefore inverse to each other. They do not cancel only because
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through path ordering they are separated by the Polyakov loops. However, be-
cause of this, many but not all of the diagrams that would normally contribute
to the linear divergence cancel. This means that in the case of the cyclic Wilson
loop the cancellation of these linear divergences will be more complicated than
for loop functions without such overlapping Wilson lines, where it is sufficient to
introduce the renormalization constant exp [—AR(C)].

We will show that the mixing with the Polyakov loop correlator, which we
have introduced to remove the intersection divergences, also takes care of the
linear divergences. The result of this mixing is that W, — P, is multiplicatively
renormalizable. It is possible to express this quantity as one-loop function. If
we use P(r) and S(r) to denote the Polyakov loops and the spatial Wilson lines,
respectively, then we can write

We(r) = A (Tr [S(r)PT(0)ST(r)P(r)]), (17)
P.(r) = % (Tr [PT(0)] Tr[P(x)]). (18)

The untraced Polyakov loops P(r) are complex N, x N, matrices, which can be
decomposed as

P(r) = —Tr[P(r)]1n, + = Tr[P(r)T%] T, (19)

because the unit matrix 1, and the fundamental colour matrices 7%, which are
normalized as Tr[T°T"| = Tr?, form a complete set of linearly independent
N, x N, matrices. If we insert this into the definition of W, — P,, we get

W,(r) — Pu(r) = NLTF (Te[P(e)T"] Tx [S(r) P (0)ST(1)T*]) +

LT [P)] e [S()PT(0)ST(1)]) — Pulr) =

+N_02

= w7 (B[P ST [PHO)T']) =

_ TiT,
N.Tr

(Py@)SE@PL0)), 20

where now we have one spatial Wilson line S4(r) in the adjoint representation
instead of the two Wilson lines S(r) and ST(r) in the fundamental representation.

In the last line we have written everything in components. The reason for
doing this is that there exists an exponentiation formula for untraced Wilson lines
in general colour representations. It has been known for a long time [14, 15] that
expectation values of a closed Wilson line can be exponentiated, i.e., they can be
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expressed as an exponential of a series of Feynman diagrams. These diagrams are
the same as those that would appear in a straightforward perturbative calculation
of the loop functions, but there appear less of them in the exponent and they
have changed colour coefficients. Recently, this exponentiation property has been
generalized in [16,17]. Their framework is multiparton scattering amplitudes, but
the formalism is general.

This generalized exponentiation is to be understood in the following way.
Feynman diagrams for untraced Wilson lines have a number of initial and final
colour indices, where initial and final are used in the context of the path ordering
of the Wilson lines. A multiplication of two diagrams can be defined as the
contraction of the initial indices of the first diagram with the final indices of the
other, and an exponential of diagrams is then defined in the usual way as a power
series with respect to this multiplication. We will outline here the basic ideas
which lead to this exponentiation of untraced Wilson lines, for more details we
refer to [16,17].

The method is known as the replica trick. Suppose that W stands for a
number of untraced Wilson lines, and N for some integer. We can expand

(WYY =14+ NIn(W) + O(N?), 1)

so if we want to write (W) as an exponential, then its exponent will be given by
the term linear in N in the expansion of (W),

Suppose now that we work in a theory with N copies of QCD, which do
not interact with each other. Instead of calculating (W)" as the product of N
expectation values of W, we can also calculate it as the expectation value of the
product of NV copies of W, provided that they do not interact with each other:

(WYY = (W) - (W) (W) = (Wy - Wy W), (22)

where the W, are defined in the ith copy of QCD in the replicated theory. This
last expression introduces a new path ordering: in addition to the path ordering
along the contours of the Wilson lines for each W;, gluons belonging to different
copies of QCD will be arranged such that all gluons from W; stand on the left of
the gluons from W; for all 7 < j.

A Feynman diagram D for expectation values of Wilson lines can be split
into two parts: a kinematical part F'(D), which consists of all integrations of the
propagators, and a colour coefficient C'(D), which includes all colour matrices
and structure constants. In the case of untraced Wilson lines, the colour indices
are thus all included in the colour coefficient. The kinematical parts are the same
in QCD and in the replicated theory, so all dependence on N will appear in the
colour coefficient only. We will use Cn (D) to distinguish the colour coefficient
in the replicated theory from the colour coefficient C'(D) in QCD.
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These colour coefficients are determined in the following way: One attaches
a replica index ¢ to each gluon, writes down all colour matrices and structure
constants which appear in the diagram according to the new path ordering in the
replicated theory, and then sums each replica index from 1 to N. Interacting
gluons are required to have the same replica index. We can expand each colour
factor in N, and according to Eq.(21) the linear term then gives the coefficient
with which this diagram appears in the exponent.

The colour coefficients are tensors with a number of indices which is twice
the number of Wilson lines in W. The number of independent parameters of such
a tensor is, in general, given by the product of the maximal values of each index,
but because the colour coefficients are calculated only with colour matrices in
various representations, their number of independent parameters is usually much
smaller. We can write them as a linear combination of a certain number of basic
tensors, which are determined by the number and colour representation of the
Wilson lines in W.

We will use the Polyakov loop correlator as an illustrating example. We
can write

Pu(r) = % (Te[P(r)] Tx [P1(0)]) = 5%5211@ <Pij (r)Pgl(0)>, 23)

where 4, k are final and j, [ are initial indices. The colour matrices 7'* that will
appear in the Feynman diagrams are all in the fundamental representation and
all of their octet indices a are contracted. Because fundamental colour matrices
with contracted octet indices can be decomposed in terms of Kronecker deltas and
also structure constants can be expressed through fundamental colour matrices,
there remain only two possibilities in which the initial and final indices can be
combined in fundamental tensors:

(t1)ik,jt = 0350k, (t2)ik,j1 = 0irOk;- (24)

For example, the colour coefficient of the one-gluon exchange diagram be-
tween the two Polyakov loops, which we will call Dy, is given by

1 Tr
C(Dy) =TTy =Tr <5iz5kj - Eéij(skl) = —Etl +Tpty.  (25)
In this case the standard colour factor C'(Dy) is identical to the exponentiated
colour factor C'(Dy), but in general they are different.

In the tensor space of ¢; and 5, t1 is the unit element, and ¢5 has the property
t2 = t1. The exponential of a linear combination of ¢; and t5 is therefore given by

exp [Aty + Btz| = exp [A] (cosh [B] t1 + sinh [B] t5). (26)
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Fig. 3. All one- and two-gluon exchange diagrams contributing to the exponentiated
Polyakov loop correlator. The imaginary time axis runs horizontally, the vertical axis
is in the direction of r. The propagators can be understood as dressed, because inserting
loops does not affect their colour factors. The last two diagrams turned upside down
contribute, but are not shown here explicitly

Because diagrams without any gluons connecting the two Polyakov loops will
always have a colour factor proportional to ¢; only, we can factorize them out.
They give the square of a single Polyakov loop and we then only have to con-
cern ourselves with diagrams where one or more gluons are exchanged between
the Polyakov loops. Figure 3 shows all diagrams involving one or two ex-
changed gluons whose exponentiated colour factors do not vanish. We will call
them Di, D1, Dr, and Dy from left to right. With 6;;6(t1)ik, i = N2 and
8;i01k (t2)ik,j1 = N we get

P.(r) = %<Tr [P(0)] >2 exp [4] (cosh [B] + Nic sinh [B]) , (27
A= —%F(DI) — T2(F(Dy) — 2F(Dy) + 2iF(Dy)) +..., (28
B = TpF(Dy) + TAN.(F(Dy) — 2F(Dr) + 2iF(Dy)) + ... (29)

As an example of the calculation of the exponentiated colour factors, we
will consider the diagrams Di; and the corresponding diagram Dx where the
exchanged gluons are crossed. For two exchanged gluons there are N(N — 1)
possibilities to attach different replica indices to them and N possibilities to attach
the same replica index. If the two gluons in Dy have a different replica index,
then the replica path ordering requires that the colour matrices on one of the
Polyakov loops be reversed, so we get a contribution equal to C(Dx). Then
we have

CN(DH) = N(N — 1)C(Dx) + NC(DII) =
= N(C(Dn) - C(Dx)) + O(N?),  (30)

Cn(Dx) = N(N = 1)C(Dx) + NC(Dx) = O(N?), 31
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C(Du) =C(Dn) — C(Dx) =

c

1
=TiN, [ty — —t 32
r <2 NC1>7 (32)

&(Dx) = 0. (33)

Note that diagrams like D;, Dr, and Dy do not appear in a direct pertur-
bative calculation of the Polyakov loop correlator but only in the exponentiation
formula (27), because their traced colour factor is zero. It can be checked by
re-expanding the exponentiated expression that they only start to contribute at
quadratic order.

In the case of W, — P, the situation is more complicated and a simple
exponentiated expression cannot be obtained, because there are many more fun-
damental tensors involved. But still, for the treatment of the linear divergences,
this generalized exponentiation formula is very useful. According to the clas-
sification established in [6], linear divergences can only arise from diagrams
where all gluons are attached to the same Wilson line. Strictly speaking, this
statement is gauge-dependent, it does not apply to singular gauges such as axial
gauges. But since we are ultimately dealing with gauge invariant quantities, we
are free to choose a gauge where it holds true, such as covariant gauges or the
Coulomb gauge.

Now, such diagrams with all gluons attached to the same Wilson line will
always be proportional to the unit tensor, irrespective of which colour representa-
tion that Wilson line is in [6]. All terms proportional to the unit tensor will appear
simply as an exponential multiplying the rest of the loop function; compare the
term A in the previous example.

Linear subdivergences can appear if a diagram has a subdiagram, but then
the exponentiated colour factor is zero [16,17]. By the term subdiagram we mean
the following: if it is possible to cut the same Wilson line twice such that the cut
out part is not connected to any other part of the diagram through gluons, then
this part is called a subdiagram. We exclude from this definition the trivial cases
when no gluons are attached to the cut out part at all or when it is the same as
the whole diagram. A subdiagram is also proportional to the unit tensor only,
so the colour factor of the whole diagram is given by the product of the colour
factors of the subdiagram and of the rest of the diagram.

C(D) = C(Dsub)C(Drest)- (34)
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This statement remains true even if by replica path ordering the subdiagram
is split into smaller subdiagrams. The combinatorial factors from distributing
replica indices to gluons can also be factorized: the total number of distributions
of indices to all gluons is given by the number of distributions to the subdiagram
times the number of distributions to the rest of the diagram. Therefore we can
also write

C'N (D) - CN (Dsub)CN (Drest)~ (35)

Both colour coefficients Cn (Dsupb) and Cn(Dyest) are at least linear in N, so the
colour coefficient of the whole diagram is at least of quadratic order. Therefore
such a diagram does not contribute to the exponent.

Ultimately, this means that also in the case of untraced Wilson lines in general
colour representations, the linear divergences will always appear in the form of
an exponential of a linearly divergent constant times the length of the respective
Wilson lines. In general, the linearly divergent constants, generically denoted A g,
will depend only on the colour representation R and on the renormalization
scheme used.

Finally, we have that

exp[—ZAFB — AA’I“] X Zw.—p, X (Wc(r) — PC(I')) (36)

is a finite quantity, where now Zy,_p, is understood in the same renormaliza-
tion scheme as the linear divergences. Equation (36) provides the renormalized
expression of W, — P, suited for lattice calculations.

We expect that a similar relation holds in general for loop functions with
overlapping Wilson lines. The overlapping parts can be decomposed into a
linear combination of single Wilson lines in various colour representations in
the same way that a direct product of irreducible SU(N,) representations can
be decomposed into a direct sum. Then each term in the decomposition of the
overlapping Wilson lines gets a linearly divergent factor exp [ArL(C')] according
to its representation. We expect that they can be removed by a linearly divergent
renormalization matrix mixing the associated loop functions that correspond to
different path orderings at the endpoints of the overlapping parts. In addition,
there will be intersection divergences at these endpoints.

If we compare the renormalization constant for the intersection divergences
of the cyclic Wilson loop with the cusp renormalization constant of a rectan-
gular Wilson loop, we see that Zyy,_p, at leading order in o, is equal to the
renormalization constant of an adjoint Wilson loop with two cusps of angle 7/2.
At low orders in ag, loop functions depend on the colour representation only
through the quadratic Casimir C'r, which appears as an overall coefficient. At
higher orders this so-called Casimir scaling no longer holds, so it would be an
interesting subject for further study to see, whether the relation between Zyy,_p,
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and the adjoint cusp renormalization constant still holds beyond the breakdown
of Casimir scaling.
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